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Abstract
In recent years, the antimicrobial nanofinishing of biomedical textiles has
become a very active, high-growth research field, assuming great importance
among all available material surface modifications in the textile industry. This
review offers the opportunity to update and critically discuss the latest advances
and applications in this field. The survey suggests an emerging new paradigm in
the production and distribution of nanoparticles for biomedical textile applica-
tions based on non-toxic renewable biopolymers such as chitosan, alginate and
starch. Moreover, a relationship among metal and metal oxide nanoparticle (NP)
size, its concentration on the fabric, and the antimicrobial activity exists,
allowing the optimization of antimicrobial functionality.

Keywords: nanoparticles, antimicrobial, textile, zinc, silver, titanium, chitosan

Introduction

In the last 20 years, pathogenic bacteria have developed resistance to almost all the
commercially available antibiotics, and the number of new antibiotics expected to enter the
market is limited [1]. Thus, searching for new antibacterial agents is a priority for
pharmaceutical companies and researchers. Recently, novel antimicrobial agents have been
developed using nanoscale materials. Compared to classic antibiotics, these materials have a
lower propensity to induce high-level, single-step resistance mutation due to their multi-targeted
mechanism of action, high surface area to volume ratio, and unique chemical and physical
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properties [2–4]. Numerous types of nanomaterials with antimicrobial properties such as copper
[5, 6], zinc [7], titanium [8, 9], magnesium [10], gold [11], chitosan [12] and alginate [13] have
been developed in recent years. However, among all, silver nanoparticles (AgNPs) have proved
to be the most effective against bacteria, viruses and eukaryotic microorganisms and are being
exploited in medicine for burn treatment, dental materials, metal coating, textile fabrics, water
treatment and sunscreen lotions [1]. Moreover, silver has proved to have low toxicity to human
cells, high thermal stability and low volatility [14]. It is known that the size, shape and
crystalline structure of AgNPs affect their toxicological impact on microorganisms. However,
the mechanism of bactericidal actions of AgNPs is still not fully elucidated, particularly because
most of the available toxicity data are obtained in water or cell culture media, which do not
reflect the complex environment inside living organisms [15]. Nowadays, the prevailing
paradigm suggests a combination of various factors: (i) Nanoscaled direct interactions between
NPs and cell membranes affect their permeability and are followed by a cascade of intracellular
reactions, including DNA condensation; (ii) Silver ions reacting with thiol groups of cellular
proteins interferes with the bacterial respiratory chain; (iii) Extracellular and intracellular
generations of reactive oxygen species have resulted in membrane lipid and DNA damage [14].
Antimicrobial finishing of textiles for biomedical purposes has become an important area of
research and one of the fastest growing sectors of the textile market. The global Antimicrobial
Coatings Market’s worth in 2012 is $1.5 billion and is estimated to reach $2.9 billion by 2018,
growing at a compound annual growth rate of 11.8% from 2013 to 2018 under normal
conditions [16, 17]. In general, the activity of antimicrobial finishes in textiles can be classified
as biocidal or biostatic [18]. While the biocides include agents that kill microorganisms, the
biostatics inhibit the microorganisms’ growth. Antimicrobial textiles commonly use biocides,
such as metal nanoparticles (or their salts), quaternary ammonium compounds, poly
(hexamethylene biguanide), triclosan and chitosan, as active agents. These agents are either
incorporated into the fibers during extrusion or attached to their fiber surface during finishing
[19]. However, the definitions of ‘bacteriostatic’ and ‘bactericidal’ do not enclose two pure
categories of antimicrobial agents that exclusively kill bacteria or that only inhibit growth.
Within 18–24 h after the test, bactericidal agents usually fail to kill every organism, especially if
the inoculum is large, and bacteriostatic agents kill some bacteria [20]. Moreover, the in vitro
microbiological determination of an antibacterial agent in textiles is also influenced by growth
conditions, bacterial density, test duration, extent of reduction in bacterial numbers, fabric
shape, morphology and type of material. The most effective methods for testing the efficacy of
fabrics that contain antimicrobials are the AATCC 100 and the AATCC 147 from the American
Association of Textile Chemists and Colorists. The first test determines both the bacteriostatic
activity as well as the bactericidal activity; the second test detects bacteriostatic activity of
diffusible antimicrobial agents on treated textile materials by determining a zone of inhibition.
However, during the preparation of the manuscript and the compilation of table 1, it became
evident that there was a large variety of different tests that could be utilized to determine the
fabrics’ antimicrobial activity as well as a lack of information about the methodologies utilized
to determine whether an antibacterial agent is bactericidal or bacteriostatic. Most antibacterial
textiles are better described as potentially being both bactericidal and bacteriostatic, but in this
review, they have been considered ‘bactericidal’ textiles only when able to kill more than
99.9% of the inoculum.

Currently, nanotechnology is considered the most promising technology for novel textile
commercial applications since it allows the permanent and effective functionalization of
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Table 1. Antimicrobial nanomaterials applied on textiles.

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

Acrylic
[Ag] 1–7 Photocured Carbox-

ymethyl Starch NPs
20* [S. aureus] 15*
[E. coli]

1* [S. aureus] (15) 0.5*
[E. coli] (15)

[127]

Bamboo
[Ag] <100 NPs grafted with

acrylic acid
98.7 [S. aureus] 100
[E. coli]

84.9 [S. aureus] (50) 96.2
[E. coli] (50)

[128]

[CuO] <100 [1 wt.%] NPs grafted with
acrylamide

100 [S. aureus] 99 [E. coli] 75 [S. aureus] (50) 75
[E. coli] (50)

[94]

[ZnO] 10 [14 μg g−1] NPs grafted with HSDA 99.1 [S. aureus] 99.9
[E. coli]

99 [S. aureus] (20) 98.9
[E. coli] (20)

[87]

Cellulose acetate
[Ag] 3–16 [0.05 wt.%] Electrospinned nanofibers

containing NPs
99.9 [S. aureus] 99.9
[E. coli] 99.9 [K. pneu-
monia] 99.9 [P.
aeruginosa]

n.a. [104]

21 [0.5 wt.%] Electrospinned nanofibers
containing NPs

99.9 [S. aureus] 99.9
[E. coli] 99.9 [K. pneu-
monia] 99.9 [P.
aeruginosa]

n.a. [129]

Cotton
[Alginate/TSA] 99 [70 μg g−1] Colloid NPs impregnated

on fabric
99.9 [E. coli] 99.9 [S.
aureus]

99 [E. coli] (30) [130]

[Ag] 0.65 [7 wt.%] Colloid NPs padded on
fabric

1.21* [S. aureus] 0 [S. aureus] (5) [23]

1–2 [0.8 wt.%] Silica–silver core–shell
particle deposited by
Pad-dry-cure method

<1* [E. coli] n.a. [40]

1.6 [10 μg g−1] Biosynthesized NPs
impregnated on cotton

99 [S. aureus] n.a. [131]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

2–5 [3.17 wt.%] Colloid NPs synthetized
and adsorbed on fabric

99.9 [S. typhimurium] 97
[S. aureus]

96 [S. typhimurium] (30) 93
[S. aureus] (30)

[98]

2–12 [1215 μg g−1] Colloid NPs adsorbed by
exhaustion method

6–7* [E. coli] n.a. [39]

2–12 [385 μg g−1] Colloid NPs adsorbed by
exhaustion method

4–5* [E. coli] n.a. [39]

2–5 [30 μg g−1] Colloid NPs padded on
fabric

99.9 [S. aureus] 99.9 [K.
pneumoniae]

94.5 [K. pneumoniae] (20)
97.2 [S. aureus] (20)

[132]

2–6 NPs−poly(acrylate) clus-
ters impregnated on
fabric

>1* [S. aureus] >1* [S.
epidermidis] >1* [P.
aeruginosa] >1* [C.
albicans]

n.a. [44]

2–8 [0.7 wt.%] Cellulose–Gum poly-
mer–Ag nanocomposite
adsorbed by exhaustion
method

>1.7* [E. coli] n.a. [49]

3 [20 μg g−1] Colloid NPs padded on
fabric

99.9 [S. aureus] 99.9 [K.
pneumoniae]

99.9 (10) [25]

3–20 [336 μg g−1] Colloid NPs/PEG adsor-
bed by exhaustion
method

10.5* [E. coli] 6.7* [S.
aureus]

1* [E. coli] (50) 1.8* [S.
aureus] (50)

[133]

3–20 [336 μg g−1] Colloid NPs adsorbed by
exhaustion method

2–3* [E. coli] n.a. [39]

3–20 [894 μg g−1] Colloid NPs adsorbed by
exhaustion method

5–6* [E. coli] n.a. [39]

3–8 [108 μg g−1] Biosynthesized NPs pad-
ded on fabric

96 [E. coli] 98 [S. aureus] 55 [E. coli] (20) 59 [S.
aureus] (20)

[24]

5 Dodecanethiol-capped
NPs in silica sol

40 [E. coli] n.a. [42]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

6–8 [100 μg g−1] Pad-dry-curePad-dry-cure
method

96 [E. coli] 98.3 [S.
aureus]

59 [E. coli] (20) 62 [S.
aureus] (20)

[48]

6–8 [50 μg g−1] Pad-dry-cure method 96 [E. coli] 96.4 [S.
aureus]

56.6 [E. coli] (20) 60.9 [S.
aureus] (20)

[48]

7–11 [758 μg g−1] Microwave synthetized
colloid NPs padded on
fabric

99.9 [E. coli] 99.9 [S.
aureus]

37 [E. coli] (15) 26 [S.
aureus] (15)

[134]

8 Pad-dry-cure method 99.9 [E. coli] 99.9 [S.
aureus]

99.9 [E. coli] (30) 99.9 [S.
aureus] (20)

[135]

10 NPs with dendrimers in
Pad-dry-cure method

95 [E. coli] 95 [S. aureus] n.a. [50]

10 [50 μg g−1] Colloid NPs impregnated
on fabric

99.9 [E. coli]99.9 [S. aur-
eus] 99.9 [C. albicans]

99.9 (5) [136]

10–20 Colloid NPs impregnated
by US

63.6 [B. linens] 62.7 [S.
epidermidis]

n.a. [137]

10–110
[8.2 μg g−1]

Spherical AgNPs deposi-
tion by US

99.9 [S. aureus] 99.9
[E. coli]

0 [S. aureus] (5) 0
[E. coli] (5)

[34]

11 NPs grafted with
HBP-NH2

99.4 [S. aureus] 99.4
[E. coli]

96.7 [S. aureus] (50) 96.5
[E. coli] (50)

[138]

15–30 NPs adsorbed by exhaus-
tion method

20 [F. oxysporum] 25 [A.
brassicicola]

n.a. [139]

18 [88 μg g−1] Colloid NPs with HBP-
NH2 impregnated on
fabric

99 [E. coli] 99.3 [S.
aureus]

98.8 [E. coli] (20) 99 [S.
aureus] (20)

[45]

20 Covalent bond of AgNPs
polystyrene-block-poly-
acrylic acid reverse
micelle cores

>20* [E. coli] >1* [S.
aureus]

0* [E. coli] (5) >1* [S.
aureus] (20)

[140]

20 [2 wt.%] >1.5* [E. coli] n.a. [141]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

Colloid NPs impregnated
on fabric

20–110
[14.1 μg g−1]

Disc AgNPs deposition
by US

99.9 [S. aureus] 99.9
[E. coli]

0 [S. aureus] (5) 0
[E. coli] (5)

[34]

20–60
[1500 μg g−1]

UV-assisted Pad-dry-cure
method

>1* [E. coli] >1.5* [S.
aureus]

<1* [E. coli] (10) >1.5* [S.
aureus] (10)

[58]

30 [54 μg g−1] Colloid NPs adsorbed by
exhaustion in CF4-
plasma treated fabric

77 [P. aeruginosa] 68 [E.
faecalis]

n.a. [60]

30–50 Colloid NPs adsorbed by
exhaustion method

99.9 [E. coli] 99.8 [S.
epidermis]

93.3 [E. coli] (20) 90.8 [S.
epidermis] (20)

[142]

30–200
[140 μg g−1]

Silica/AgNPs Pad-dry-
cure method

100 [E. coli] 100 [S. aur-
eus] 100 [A. niger]

n.a. [41]

32–64
[12.8 μg g−1]

Prism AgNPs deposition
by US

99.9 [S. aureus] 99.9
[E. coli]

12.5 [S. aureus] (5) 49.9
[E. coli] (5)

[34]

35–80 [0.5 wt.%] Colloid NPs deposition
by UV

5* [E. coli] 4* [S. aureus]
5* [C. albicans] 3*
[P. p43]

n.a. [143]

41 [5300 μg g−1] Ethanolic solution of
AgNO3 and butylamine
impregnated on fabric

98 [E. coli] 95 [S. aureus] n.a. [43]

50 [30 wt.%] Gas-phase reaction
between phosphine and
copper sulphate and
AgNO3

100 [S. aureus] 100 [S. aureus] (10) [144]

50 [9.4 μg g−1] Polygonal AgNPs deposi-
tion by US

99.9 [S. aureus] 99.9
[E. coli]

25 [S. aureus] (5) 0
[E. coli] (5)

[34]

60 [100 μg g−1] NPs and BTCA impreg-
nated on fabric

100 [E. coli] 100 [S.
aureus]

96 [E. coli] 92 [S. aur-
eus] (30)

[46]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

75 Microfibers containing
NPs by UV irradiation

80 [E. coli] n.a. [57]

80 [26 μg g−1] Colloid NPs adsorbed by
exhaustion in CF4-
plasma treated fabric

<60 [P. aeruginosa] <60
[E. faecalis]

n.a. [60]

80 [6 wt.%] Synthesis and deposition
of NPs using US
irradiation

100 [E. coli] 100 [S.
aureus]

n.a. [54]

180 [4 wt.%] Colloid NPs padded on
fabric

1.66* [S. aureus] 4.2* (5) [23]

200 [350 μg g−1] Colloid NPs impregnated
on fabric

99 [E. coli] 100 [S. aureus]
100 [P. aeruginosa]

n.a. [145]

200 [452 μg g−1] Colloid NPs padded on
fabric

99.9 [E. coli] 99.8 [S.
aureus]

n.a. [146]

>200 [16.8 μg g−1] Hierarchical AgNPs
deposition by US

99.9 [S. aureus] 99.9
[E. coli]

91.3 [S. aureus] (5) 99.9
[E. coli] (5)

[34]

257 [34.5 wt.%] NPs impregnated on fabric 99.9 [E. coli] 199.9 [E. coli] (10) [147]
[Ag/Chitosan] 40 [1 wt.%] Pad-dry-cure method 31* [E. coli] 26* [S.

aureus]
15* [E. coli] (20) 17* [S.
aureus] (20)

[148]

50–175 Colloid NPs impregnated
on fabric

3* [E. coli] n.a. [52]

[Ag/Chitosan/TiO2] 5000 [7 wt.% ] Pad-dry-cure method 98 [E. coli] 100 [S. aureus] n.a. [149]
[Chitosan] 5–180 [0.5 wt.%] Colloid NPs impregnated

on fabric
99.9 [E. coli] 99.9 [S.
aureus]

65 [E. coli] (20) 78 [S.
aureus] (20)

[124]

40 Colloid NPs impregnated
on fabric by US

5 [E. coli] 25 [E. faecalis] n.a. [123]

350 [0.8 wt.%] NPs grafted with GPTMS 80 [E. coli] 80 [M. lutues] n.a. [125]
[Chitosan/Alginate] 35 95 [B. cereus] (30) 87

[E. coli] (30) 98 [P.
[150]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

Pad-dry-cure method of
NPs loaded with leaf
extract

100 [B. cereus] 98 [E. coli]
100 [P. aeruginosa] 100
[S. aureus]

aeruginosa] (30) 98 [S.
aureus] (30)

[CuO] 10 [5 wt.%] Colloid NPs impregnated
on fabric by US

99.9 [E. coli] 99.9 [S.
aureus]

n.a. [56]

10–20 [1.5 wt.%] Colloid NPs impregnated
on fabric by US

99.8 [E. coli] n.a. [55]

15 [1.4 wt.%] Colloid NPs impregnated
on fabric by US

99.9 [E. coli] 99.9 [S.
aureus]

n.a. [91]

40–60 [0.2 wt.%] Pad-dry-cure method 93.7 [E. coli] 95 [S.
aureus]

48 [E. coli] (15) 45 [S.
aureus] (15)

[151]

50 Microencapsulated NPs
adsorbed by exhaustion
method

92.71 [E. coli] 100 [S.
aureus]

86 [E. coli] (10) 92 [S.
aureus] (10)

[38]

60–75 [2 wt.%] Pad-dry-cure method 86.5 [E. coli] 94.2 [S.
aureus]

9.8 [E. coli] (20) 12 [S.
aureus] (20)

[92]

60–80 [0.7 wt.%] Colloid NPs impregnated
on fabric by US

73 [E. coli] 66 [S. aureus]
72 [MRSA] 50 [A. bau-
mannii] 74 [P.
aeruginosa]

5 [E. coli] (65) 46 [S. aur-
eus] (65)

[95]

100–150 Colloid NPs coated by
pad-dry-cure method

80 [E. coli] 99 [S. aureus]
98 [A.niger]

n.a. [93]

200–400
[0.74 wt.%]

Colloid NPs impregnated
on fabric by US

38 [E. coli] 38 [S. aureus]
52 [K. pneumonia] 52
[MRSA] 1 [A. bau-
mannii] 15 [P.
aeruginosa]

n.a. [152]

[TiO2] 7 [2 wt.%] Pad-dry-cure method 72.9 [S. aureus] 74.5 [K.
pneumonia]

29.9 [S. aureus] (20) 30.5
[K. pneumonia] (20)

[153]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

10–15 [6 wt.%] Colloid anatase NPs
impregnated on fabric
by US

25 [E. coli] 94.4 [S. aur-
eus] 59.5 [C. albicans]

n.a. [154]

10–15 [8 wt.%] Colloid rutile NPs
impregnated on fabric
by US

6.9 [E. coli] 72.4 [S. aur-
eus] 40.3 [C. albicans]

n.a. [154]

10–15 [6 wt.%] Colloid anatase NPs
impregnated on fabric
by US+UV

29.2 [E. coli] 99.9 [S.
aureus] 70.1 [C.
albicans]

n.a. [154]

10–15 [8 wt.%] Colloid rutile NPs
impregnated on fabric
by US+UV

31.9 [E. coli] 99.3 [S.
aureus] 62.4 [C.
albicans]

n.a. [154]

12m [2 wt.%] Pad-dry-cure method 75.8 [S. aureus] 77.6 [K.
pneumonia]

34.7 [S. aureus] (20) 34.7
[K. pneumonia] (20)

[153]

13–20 [1 μg g−1] Pad-dry-cure method 94 [E. coli] 99 [S. aureus] 83 [E. coli] (10) 86 [S.
aureus] (10)

[76]

<50 [5 wt.%] Colloid NPs impregnated
on fabric

98 [S. aureus] 98 [K.
pneumoniae]

n.a. [75]

70–390 [0.5 wt.%] Apatite-coated NPs by
pad-dry-cure method

5.5 [E. coli] 13.4 [S. aur-
eus] 24.2 [M. luteus]

n.a. [74]

[ZnO] 10–20 [0.8 wt.%] Colloid NPs impregnated
on fabric by US

17 [E. coli] n.a. [55]

20–100 Colloid NPs impregnated
on fabric by US

100 [S. aureus] n.a. [155]

25 ZnO nanoparticle incorpo-
rated PS-b-PAA coating

>1* [S. aureus] >1*
[E. coli]

n.a. [156]

30–40 [0.66 wt.%] Roll to roll US coating on
enzyme pre-treated
fabric

36 [S. aureus] 35 [P. aer-
uginosa] 25 [A.

15 [S. aureus] (10) 30 [P.
aeruginosa] (10) 12 [A.
baumannii] (10) 30

[157]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

baumannii] 70 [E. coli]
31 [MRSA]

[E. coli] (10) 32
[MRSA] (10)

30–60 [10 wt.%] Pad-dry-cure method 99 [E. coli] 98 [M. luteus] n.a. [158]
30 [0.75 wt.%] Colloid NPs deposition

by US
99.9 [E. coli] 99.9 [S.
aureus]

n.a. [83]

37 [20 wt.%] Pad-dry-cure method 100 [E. coli] 100 [S.
aureus]

n.a. [159]

38 [0.2 wt.%] Pad-dry-cure method 91.8 [S. aureus] 15 [K.
pneumoniae]

n.a. [84]

38 [0.6 wt.%] Pad-dry-cure method 96.8 [S. aureus] 99.9 [K.
pneumoniae]

n.a. [84]

38 [1 wt.%] Pad-dry-cure method 99.9 [S. aureus] 99.9 [K.
pneumoniae]

n.a. [84]

<50 Colloid NPs impregnated
on fabric

97 [S. aureus] 98 [K.
pneumoniae]

n.a. [75]

60–70 [0.75 wt.%] Roll to roll US coating on
fabric

36 [S. aureus] 18 [P. aer-
uginosa] 11 [A. bau-
mannii] 65 [E. coli]
38 [MRSA]

15 [S. aureus] (10) 12 [P.
aeruginosa] (10) 0 [A.
baumannii] (10) 5 [E. coli]
(10) 10 [MRSA] (10)

[157]

<100 Layer-by-layer deposition
of NPs

1.3* [S. aureus] 0 [S. aureus] (20) [85]

80–150 [4.3 wt.%] Nanorods and chalcone
solution padded on
fabric

99.9 [E. coli] 99.6 [S.
aureus] 99.9 [P.
aeruginosa]

n.a. [36]

200 [2 wt.%] Pad-dry-cure method 80 [E. coli] 99.6 [S.
aureus]

75 [E. coli] (5) 98 [S. aur-
eus] (5)

[160]

[ZnO/Chitosan] 15–60 [0.3 wt.%] Colloid NPs impregnated
on fabric by US

99.9 [E. coli] 98.5 [S.
aureus]

85 [E. coli] (10) 70 [S.
aureus] (10)

[161]

28–100 [6 wt.%] Pad-dry-cure method n.a. [89]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

22* [E. coli] 25* [S.
aureus]

30 Pad-dry-cure method 100 [E. coli] 100 [M.
luteus]

n.a. [162]

60 [0.5 wt.%] Colloid NPs impregnated
on fabric by US

40 [E. coli] 48 [E. faecalis] n.a. [123]

[ZrO] 2–5 [2.41 wt.%] Colloid NPs synthetized
and adsorbed on fabric

98 [S. typhimurium] 95 [S.
aureus]

92 [S. typhimurium] (30) 90
[S. aureus] (30)

[98]

Cotton/polyester
[Ag] 30–200 [59 μg g−1] Silica/AgNPs Pad-dry-

cure method (65/35)
100 [E. coli] 100 [S. aur-
eus] 100 [A. niger]

n.a. [41]

100 [1000 μg g−1] Colloid NPs impregnated
on fabric (60/40)

100 [S. aureus] 100 [S. aureus] (4) [163]

[TiO2] <50 [5 wt.%] Colloid NPs impregnated
on fabric (55/45)

98 [S. aureus] 99 [K.
pneumoniae]

n.a. [75]

[ZnO] 30 Pad-dry-cure method 100 [E. coli] 100 [M.
luteus]

n.a. [162]

30–60 [10 wt.%] Pad-dry-cure method
(65/35)

98 [E. coli] 99 [M. luteus] n.a. [158]

<50 Colloid NPs impregnated
on fabric (55/45)

98 [S. aureus] 99 [K.
pneumoniae]

n.a. [75]

Polyacrylonitrile
[Chitosan] 1000 [15 wt.%] Electrospinned nanofibers

containing Chitosan
100 [E. coli] 100 [S. aur-
eus] 99.8 [P. aeruginosa]
100 [M. luteus]

n.a. [122]

Polyamide
[Ag] 8 Electrospinned nanofibers

containing NPs
99.9 [E. coli] n.a. [105]

10 [4.46 μg g−1] 99.9 [C. albicans] 64.7 [C. albicans] (5) [70]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

Colloid NPs impregnated
on corona-plasma treated
fabric

10 [4.46 μg g−1] Colloid NPs impregnated
on corona-plasma treated
fabric

99.9 [E. coli] 99.9 [S.
aureus]

83.2 [E. coli] (5) 85.3 [S.
aureus] (5)

[63]

10 [4.46 μg g−1] Colloid NPs impregnated
on corona-plasma treated
dyed fabric

98.6 [C. albicans] n.a. [64]

10 [4.46 μg g−1] Colloid NPs impregnated
on corona-plasma treated
dyed fabric

99.9 [E. coli] 99.9 [S.
aureus]

n.a. [164]

10–20
[0.025 wt.%]

Thermal reduction of sil-
ver acetate during melt
processing of PA

80.6 [E. coli] n.a. [101]

10–20 [0.06 wt.%] Thermal reduction of sil-
ver acetate during melt
processing of PA

99.9 [E. coli] n.a. [101]

30–200 [31 μg g−1] Silica/AgNPs Pad-dry-
cure method

100 [E. coli] 100 [S. aur-
eus] 100 [A. niger]

n.a. [41]

50–100 [1 wt.%] Colloid NPs impregnated
on fabric by US

99 [P. aeruginosa] 99 [S.
aureus]

n.a. [66]

70 Colloid NPs impregnated
on fabric

5–6* [E. coli] n.a. [165]

80 Colloid NPs impregnated
on dyed fabric

100 [E. coli] 100 [S. aur-
eus] 100 [P. aeruginosa]

0 [E. coli] 0 [S. aureus] 0
[P. aeruginosa]

[166]

<100 Layer-by-layer deposition
of NPs

53 [S. aureus] n.a. [167]

[CuO] 85 [8.5 wt.%] >1* [S. aureus] n.a. [97]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

In situ produced NPs
grafted with CTAB

[TiO2] 21 [1 wt.%] Electrospinned nanofibers
containing NPs

99 [E. coli] n.a. [73]

[ZnO] <100 [5 wt.%] Sheath-core fibers pre-
pared by melt-spinning
method

100 [S. aureus] 100 [K.
pneumoniae]

n.a. [86]

<100 [1 wt.%] Sheath-core fibers pre-
pared by melt-spinning
method

95 [S. aureus] 68 [K.
pneumoniae]

n.a. [86]

Poly(ε-
caprolactone)

[Ag-Zr(HPO4)2] 63.7 [1 wt.%] Electrospinned nanofibers
containing NPs

98.4 [E. coli] 99.3 [S.
aureus]

n.a. [106]

Polyester
[Ag] 2–5 Colloid NPs padded on

fabric
99.7 [S. aureus] 99.8 [K.
pneumoniae]

15.3 [K. pneumoniae] (20)
84.3 [S. aureus] (20)

[132]

2–6 Silver−poly(acrylate) NPs
clusters impregnated on
fabric

>1* [S. aureus] >1* [S.
epidermidis] >1* [P.
aeruginosa] >1* [C.
albicans]

n.a. [44]

3 [10 μg g−1] Colloid NPs padded on
fabric

99.9 [S. aureus] 99.9 [K.
pneumoniae]

n.a. [25]

10 NPs with dendrimers in
Pad-dry-cure method

95 [E. coli] 60 [S. aureus] n.a. [50]

10 [8.61 μg g−1] Colloid NPs impregnated
on corona-plasma treated
fabric

99.1 [C. albicans] 96.7 [C. albicans] (5) [70]

10 [8.61 μg g−1] [63]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

Colloid NPs impregnated
on corona-plasma treated
fabric

99.9 [E. coli] 99.8 [S.
aureus]

99.9 [E. coli] (5) 99.6 [S.
aureus] (5)

10 [8.61 μg g−1] Colloid NPs impregnated
on corona-plasma treated
dyed fabric

99.9 [C. albicans] n.a. [64]

10 [8.61 μg g−1] Colloid NPs impregnated
on corona-plasma treated
dyed fabric

99.9 [E. coli] 99.9 [S.
aureus]

n.a. [164]

11 [1 wt.%] NPs plasma grafted with
acrylic acid

99.9 [E. coli] 99.9 [S.
aureus]

n.a. [168]

<20 [10 μg g−1] Colloid NPs impregnated
on fabric

100 [S. aureus] 42 [K.
pneumoniae]

n.a. [169]

<20 [100 μg g−1] Colloid NPs impregnated
on fabric

100 [S. aureus] 100 [K.
pneumoniae]

n.a. [169]

30–200
[8.9 μg g−1]

Silica/AgNPs Pad-dry-
cure method

100 [E. coli] 100 [S. aur-
eus] 100 [A. niger]

n.a. [41]

40–70 [155 μg g−1] Colloid NPs impregnated
on RF-plasma treated
fabric

99.9 [E. coli] 99.9 [S.
aureus]

99.9 [E. coli] 5) 99.9 [S.
aureus] 5)

[61]

80 [93 μg g−1] Colloid NPs impregnated
on corona-plasma treated
fabric

19 [E. coli] 67 [S. aureus]
74 [S. faecalis] 6 [P.
aeruginosa]

n.a. [62]

[Ag/Chitosan] 166 [0.2 wt.%] Colloid NPs impregnated
on PVP treated fabric

100 [S. aureus] n.a. [53]

[Chitosan] 5–180 [0.5 wt.%] Colloid NPs impregnated
on fabric

90 [E. coli] 99.9 [S.
aureus]

50 [E. coli] (20) 75 [S.
aureus] (20)

[124]

115 [0.2 wt.%] Colloid NPs impregnated
on PVP treated fabric

90 [S. aureus] n.a. [53]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

[Fe3O4] 30–40 In situ synthesis of NPs 100 [S. aureus] n.a. [100]
[α-Fe2O3] 40–50 In situ synthesis of NPs 80.5 [S. aureus] n.a. [100]
[SiO2/Ag/CuO] 500/30/17

[2.5 wt.%]
Top-coating with Pericoat
PU 340 NEW paste
containing NPs

100 [E. coli] 99.8 [S. aur-
eus] 99.9 [K. pneumo-
niae] 100 [C. albicans]
99.4 [A. niger] 96.5 [T.
mentagraphytes]

99.9 [E. coli] (20) 99.8 [S.
aureus] (20) 99.9 [K.
pneumoniae] (20) 100 [C.
albicans] (20) 56.4 [A.
niger] (20) 92.1 [T. men-
tagraphytes] (20)

[170]

[TiO2] 6 [2.1 wt.%] Alginates and colloid NPs
impregnated on fabric

99.9 [E. coli] 99.8 (5) [171]

Polyethylene
[Ag/Chitosan] 5 [1.1 wt.%] Electrospinned nanofibers

containing NPs
99.9 [E. coli] n.a. [107]

Polyethylene/
Chitosan

[Ag] 12–18 [1.3 wt.%] Electrospinned nanofibers
containing NPs

15* [E. coli] 20* [S. aur-
eus] 18* [P. aeruginosa]
12* [C. albicans]

n.a. [172]

Polyethylene/
polypropylene

[Ag] <10 [12 μg g−1] Colloid NPs padded on
non-woven fabric

99.8 [S. aureus] 99.9 [K.
pneumoniae]

n.a. [173]

Poly(l-lactide)
[Ag] 30 [32 wt.%] Electrospinned nanofibers

containing NPs
94.2 [E. coli] 98.5 [S.
aureus]

n.a. [108]

35 [5 wt.%] Electrospinned nanofibers
containing NPs

5* [E. coli] 5* [S. aureus] n.a. [109]

Polypropylene
[Ag] 15 [0.3 wt.%] n.a. [103]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

Sheath-core fibers pre-
pared by melt-spinning
method

99.9 [S. aureus] 99.9 [K.
pneumoniae]

30 [0.1 wt.%] Twin-screw mixer
extrusion

99.9 [S. aureus] n.a. [102]

[TiO2/Ag] 60–100 [0.2 wt.%] Sheath-core fibers pre-
pared by melt-spinning
method

99.2 [S. aureus] n.a. [78]

Poly(vinyl alcohol)
[Ag] 6 [0.1 wt.%] Electrospinned nanofibers

containing NPs
99.9 [S. aureus] 99.9 [K.
pneumoniae]

n.a. [110]

[Ag/Chitosan] 2–10 [1 wt.%] Electrospinned nanofibers
containing NPs

99.9 [E. coli] n.a. [111]

20 [0.6 wt.%] Electrospinned PVA
nanofibers contain-
ing NPs

100 [E. coli] n.a. [51]

[TiO2/Ag/Chitosan] 100 [0.04 wt.%] Electrospinned nanofibers
containing NPs

99 [E. coli] 98 [S. aureus] n.a. [79]

Poly(vinyl alco-
hol)/Silk

[Ag] 3.8 Electrospinned nanofibers
containing NPs

>1* [E. coli] >1* [S.
aureus]

n.a. [112]

Silk
[Ag] 4.3 [116.5 μg g−1] Colloid NPs and PNP

impregnated on fabric
99.5 [E. coli] 99.9 [S.
aureus]

98.9 [E. coli] (30) 99.4 [S.
aureus] (30)

[174]

5–50 [2.3 wt.%] Colloid NPs impregnated
on fabric

99.9 [S. aureus] n.a. [175]

15–30 Colloid NPs adsorbed by
exhaustion method

45 [F. oxysporum] 50 [A.
brassicola]

n.a. [139]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

10 [40 μg g−1] Colloid NPs applied by
exhaustion

100 [S. aureus] 84 [S. aureus] (10) [176]

<10 UV-assisted in situ synth-
esis of AgNPs

1.59* [E. coli] 1.84* [S.
aureus]

n.a. [65]

<10 [50 μg g−1] Colloid NPs applied by
exhaustion in US bath

94 [E. coli] 100 [S. aureus] n.a. [177]

11.5 [13 μg g−1] Colloid NPs impregnated
on fabric

>1* [M. lysodeikticus] >1*
[E. coli] >1* [S. aureus]

n.a. [178]

<20 Synthesis of NPs on silk
fibers via γ-ray
irradiation

96 [S. aureus] 85 [S. aureus] (10) [179]

30–200
[170 μg g−1]

Silica/AgNPs Pad-dry-
cure method

100 [E. coli] 100 [S. aur-
eus] 100 [A. niger]

n.a. [41]

35 [60 μg g−1] Colloid NPs applied by
exhaustion

100 [S. aureus] 78 [S. aureus] (10) [176]

50 [268.6 μg g−1] Colloid NPs impregnated
on fabric

99 [E. coli] 98 [E. coli] (50) [180]

<100 [98.7 μg g−1] Multi-amidine/silver
nitrate sol added by
steam method

99.9 [E. coli] 99.5 [S.
aureus]

>97.4 [E. coli] (50) [181]

<100 Colloid NPs impregnated
on fabric

100 [E. coli] n.a. [182]

<100 Layer-by-layer deposition
of NPs

80 [S. aureus] n.a. [167]

[Au] 21 [0.21 wt.%] In situ synthesized NPs
impregnated on fabric

100 [E. coli] n.a. [99]

[Chitosan] 20.8 [1 wt.%] Colloid NPs impregnated
on fabric

95 [S. aureus] 90 [S. aureus] (20) [183]

[TiO2] 50 [25 μg g−1] n.a. [184]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

Colloid NPs and PUA
applied by dyeing

19* [E. coli] 23* [S.
aureus]

[TiO2/Ag] 20/5 [1 wt.%] DHPBA modified NPs
padded on fabric

>1* [E. coli] >1* [S. aur-
eus] >1* [P. aeruginosa]

n.a. [80]

Viscose
[Ag] 2–9 [4 wt.%] AgNPs SiO2 Sol-gel

coating
53 [A. niger] 41 [B. sub-
tilis] 88 [P. putida]

n.a. [185]

30–200
[230 μg g−1]

Silica/AgNPs Pad-dry-
cure method

100 [E. coli] 100 [S. aur-
eus] 100 [A. niger]

n.a. [41]

[Chitosan] 5–180 [0.5 wt.%] Colloid NPs impregnated
on fabric

99.9 [E. coli] 99.9 [S.
aureus]

55 [E. coli] (20) 76 [S.
aureus] (20)

[124]

Wool
[Ag] 1–7 Photocured Carbox-

ymethyl Starch NPs
24* [S. aureus] 22*
[E. coli]

3* [S. aureus] (15) 1*
[E. coli] (15)

[127]

2–6 Silver−poly(acrylate) NPs
clusters impregnated on
fabric

>1* [C. albicans] n.a. [44]

4.2 [5 μg g−1] Colloid silver NPs
impregnated by pad-
dry-cure

99.9 [S. aureus] 99.7 [K.
pneumoniae]

n.a. [186]

15 × 6 Nanodisc colloid NPs
impregnated on fabric

98.5 [E. coli] n.a. [35]

22 × 14 Nanodisc colloid NPs
impregnated on fabric

93.8 [E. coli] n.a. [35]

45–60 Colloid NPs adsorbed by
exhaustion method

99.9 [E. coli] 98.9 [S.
epidermis]

92 [E. coli] (20) 91.7 [S.
epidermis] (20)

[142]

48 × 5 Nanoprism colloid NPs
impregnated on fabric

77 [E. coli] n.a. [35]

n.a. [41]
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Table 1. (Continued.)

Textile fabric and
fiber [Nanomaterial]

NPs average size
(nm)
[Concentration] Method

% Bacterial reduction
[Strain]

% Bacterial reduction after
washing [Strain] (Washing
cycles) Reference

30–200
[310 μg g−1]

Silica/AgNPs Pad-dry-
cure method

18 [E. coli] 56 [S. aureus]
50 [A.niger]

[SiO2/Ag] 34.6 Colloid NPs impregnated
on fabric

71 [E. coli] n.a. [187]

60 [4.3 wt.%] Colloid NPs impregnated
on RF-plasma treated
fabric

85 [E. coli] 95 [S. aureus] 70 [E. coli] (20) 73 [S.
aureus] (20)

[71]

[TiO2/Ag] 21 [1 wt.%] TiO2 NPs in silver nitrate
solution impregnated on
fabric

100 [E. coli] 100 [S.
aureus]

n.a. [81]

Wool/polyester
[Ag] 30–200

[250 μg g−1]
Silica/AgNPs Pad-dry-
cure method (45/55)

100 [E. coli] 100 [S. aur-
eus] 0 [A.niger]

n.a. [41]

[TiO2] 21 [0.25 wt.%] Colloid NPs crosslinked
with BTCA on fabric
(45/55)

99 [E. coli] n.a. [188]

21 [0.75 wt.%] Colloid NPs crosslinked
with BTCA on fabric
(45/55)

100 [E. coli] n.a. [188]

*Inhibition zone in mm; n.a. Not available.
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substrates without affecting their macro-scale properties, such as breathability or hand feel [18].
Nanoparticles as antimicrobial agents have increasingly been used in textile research due to
their unique physico-chemical properties and biological activity, which may differ significantly
from ion and bulk materials [21]. However, nanoparticles (NPs) in humans may affect normal
cellular proliferation and protein functions primarily due to their metallic nature, and the
generation of reactive oxygen species may initiate pro-inflammatory and toxic activities [22].
The first chapter of the manuscript is dedicated to AgNPs because most of the research in this
field was conducted using this metal. For the same reason, because the majority of the
information regarding the effect of NP morphology and deposition methods was only studied
on silver, three subchapters (NP morphology, chemical deposition methods and physical
deposition methods) were added. The first subchapter is dedicated to the importance of size,
shape, composition, crystallinity and structure of NPs on their antimicrobial activity. The
second is dedicated to chemical deposition methods, with special emphasis on the new routes
for the deposition of NPs based on environmental benign natural polymers. The third
subchapter is about physical deposition methods, focusing on plasma technology. The
following chapters report on research using other antimicrobial metal and metal oxide NPs and
nanofibers. The last chapter reports on the recent use of natural polymer NPs, especially
chitosan, in the antimicrobial finishing of textiles due to the environmental and toxicological
concerns regarding the use of heavy metals for the production of NPs. Thus, due to the
increasing dichotomy between environmental and health concerns and the potential benefits of
using NPs as finishing agents, this review offer the opportunity to update and critically discuss
the latest advances and applications for the textile industry.

Nanosilver

As we can see in table 1, several methods have been used for surface nanomodifications of
textiles, but most of the research has been performed using nanosilver immobilized on cotton,
polyester, polyamide, silk and wool fabrics by conventional dip- or pad-dry methods [23–25].
The term ‘nanosilver’ is conventionally attributed to silver metals, but a fraction of the silver
salts could also fall under the NP definition according to the International Standard Organisation
(ISO), which defines an NP as having a maximum diameter of 100 nm in at least three
dimensions. However, all particles with a diameter between 100 to 1000 nm were also assumed
to contain NPs, unless there was concrete information about the size distribution and the
stability of agglomerates. Taking this into account, according to Windler et al up to 80% of all
silver used in textiles (45 metric tonnes) may be considered in the nanoform [26]. Considerable
work has been done in the functionalization of textile materials with AgNPs. Most of the
research is focused on the antimicrobial effects of modified textile materials, but no evident
conclusions about the binding mechanism between AgNPs and textile fibers has been proposed.
Thus, due to the huge amount of AgNP-containing textiles, some concerns have been raised
about the release of silver into the environment after repeated washing [27, 28]. Some authors
questioning the use of AgNPs of lower than 30 nm in textiles due to the additional effort it
requires towards synthesis, stabilization and incorporation when the same results could be
obtained simply by immersing the fabric in solutions of AgNO3 [29]. The critics are basing their
questions on the difficulties in achieving small particle sizes of narrow size distributions with
green processes and on the toxicity concerns of particles with a size between 1 and 10 nm,
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which can penetrate human skin [30]. Nowadays, the release of silver is an emerging
environmental problem. Therefore, it is expected that further research will be more oriented
towards the environmental, nanotechnological and regulatory aspects of the exploitation of
textile products with deposited or immobilized NPs [31].

NP morphology

The way in which NPs alter surface properties and impart textile antimicrobial functions is
mainly determined by their size, shape, composition, crystallinity and structure [32]. It has been
described that AgNPs of between 1 and 10 nm present a greater impact on bacteria than larger
particles, and that triangular-shaped NPs display greater biocidal action than rod- or spherical-
shaped ones [33]. Recent results of studies on the antimicrobial effect on cotton fabric of
different morphologies of AgNPs, such as spherical, polygonal, disk, prism, and hierarchical
assemblies (figure 1), confirmed that non-spherical morphologies, such as polygonal-, prism-
and hierarchical-like shapes, in comparison with spherical and disc morphologies exhibited a
stronger growth-inhibitory effect against Gram-negative and Gram-positive bacteria. In
addition, among various tested morphologies, the hierarchical-like morphology showed very
good antimicrobial activity after five washing cycles [34]. On the other hand, in a few other
works available in the literature using nano-rods, -discs and -prisms in textiles, moderate
biocide activity is shown when compared with conventional spherical-shaped NPs [35, 36].
Supposedly, the significantly larger surface area of the NPs allows higher contact with bacteria,
enhancing their bactericidal activity. However, other factors, such as dielectric and quantum
confinement effects, could be responsible for the different properties of metal or metal-oxide
NPs with respect to bulk materials [37].

Figure 1. Close-up of the TEM image of AgNPs (X200000 magnification) in different
shapes and sizes. (1) Cubic, (2) Spherical ∼10 nm, (3) Triangular, (4) Spherical ∼60 nm,
(5) Rod-like. TEM was performed using a JEOL JEM 1400 TEM (Tokyo, Japan)
operating at an acceleration voltage of 120 kV. Nanoparticle sample was applied to
glow-discharged carbon-coated copper grids followed by negative staining with a
solution of 1% (w/v) uranyl acetate.
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Chemical deposition methods

Most of the methods used in AgNP production are based on reactions in the liquid medium and
often require environmentally hazardous surfactants, reducing agents and templates for the
synthesis of AgNPs [38, 39]. Several studies reporting on silica–silver core–shell NPs mainly
review the chemical synthesis processes and their characterization. Silica is a class of very
important core materials for immobilizing NPs on its surface due to its high chemical and
thermal stability, chemical inertness, large surface areas, and good compatibility with other
materials. Nischala et al synthesized extremely small (1–2 nm) AgNPs attached on silica core
particles with an average size of 270 nm using a simple one-pot chemical method. The silver
containing silica core–shell particles immobilized on cotton did not leach out from the fabric
and showed excellent antibacterial activity even after 10 washing cycles [40]. Novel
fiber–silica–Ag composites with biocidal activity were also successfully produced by
chemically modifying cotton, wool, silk, polyester and polyamide fabrics. The results show
that the chemical and morphological structures of the fibers directly influenced their
absorptivity and affinity for the AgNPs. On the other hand, a chemical strong-binding of Ag
to the fibers seems to significantly reduce the effectiveness of the antimicrobial activity of the
AgNPs [41]. Other methods include the reduction of silver ions by ethanol or isopropanol or the
coating with acrylates or cross-linkable polysiloxanes to stabilize NP dispersion onto the fabric
[32, 42–46]. The introduction of green chemistry into nanotechnology is one of the most
important topics in nanoscience research today. The main purpose is to avoid the environmental
toxicity or biological hazards normally associated with the preparation of AgNPs using
synthetic reducing agents. To date, new routes for the development of NPs based on
environmentally benign natural polymers such as chitosan, hyaluronan, starch, and cyclodextrin
have been explored [47]. Hebeish et al synthesized small AgNPs using hydroxypropyl starch as
both a reducing and stabilizing agent, retaining excellent antibacterial properties even after 20
washing cycles, reflecting the importance of binders in the fixation of AgNPs on the surface of
the fabrics [48]. Raghavendra et al tested on cellulose fibers several natural carbohydrates such
as gum acacia and gaur gum as an effective reducing agent for the green synthesis of AgNPs
from AgNO3. The thermal stability and mechanical properties of the cellulosic composites were
found to be better than cellulose fibers alone [49]. Mahltig et al fabricated hybrid nanomaterials
based on dendrimers as polymeric stabilizers for the preparation of AgNPs used as finishing
agents to produce antimicrobial textiles. The results confirmed that the antimicrobial effect rises
with increases in the dendrimers’ generations due to decreasing size of the formed AgNPs. By
changing thermal fixation and dendrimers’ generations, the strength of the antimicrobial effect
can be controlled [50]. Several works involve chemical modification of textile fabrics by
natural, biocompatible and biodegradable polysaccharide chitosan followed by incorporating
AgNPs into the fabrics. Abdelgawad et al produced antibacterial nanofiber mats of PVA loaded
with AgNPs enveloped in chitosan after reduction with glucose. The results showed superior
properties and synergistic antibacterial effects by combining chitosan with AgNPs [51]. Other
authors produced silver-loaded chitosan NPs attached to textiles, which also exhibited excellent
antibacterial activity [52, 53].
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Physical deposition methods

In the last decade, physical methods such as ultrasound [54–56], UV irradiation [57–59],
plasma pre-treatment and ion-beam-assisted deposition [60–64] have been proved to be
effective for the deposition, insertion and synthesis of well-dispersed nanophase materials on
textiles. Lu et al developed a UV-assisted in situ synthesis approach to immobilize AgNPs on
silk fibers for antibacterial applications. Results show that AgNPs with excellent crystalline
structures are efficiently attached on the silk surface in an irradiation time-dependent manner
[65]. Sonochemical reactions are capable of enhancing AgNP adhesion to the fabric surface by
physical or chemical bonding depending on the nature of the substrate [66]. Pre-treatment of
textiles by low-pressure plasmas can also improve loading of AgNPs from colloids (figure 2).
Different plasma particles (e.g. electrons, ions, free radicals, photons) provide superficial
functionalization and etching of the fiber without deterioration of bulk properties. Plasma is
particularly important for the surface activation of hydrophobic synthetic fibers such as
polyester and polyamide fabrics because it makes fibers more accessible to water and chemical
species [67–69]. However, little research using plasma pre-treatment reports about antimicrobial
activity on fabrics. The Serbian group headed by M Radetic reported great stability and uniform
AgNPs coatings, as well as high antibacterial activity and laundering durability, using several
plasma sources such as low-temperature air radio frequency (RF), dielectric barrier discharge
(DBD) and corona discharge in different textile materials [61, 63, 64, 70]. Although RF-
powered plasma devices allow easier control of properties and uniformity, this system requires
more complex handling and a vacuum system, which can be avoided by using DBD and corona
discharges at atmospheric pressure. Other groups working with plasma (including corona and

Figure 2. SEM images (X4000 magnification) of antimicrobial AgNP aggregates
deposited on DBD plasma pre-treated polyamide 6,6 fibers. Images were carried in a
FEG-SEM, NOVA 200 Nano SEM, FEI Company. Secondary and backscattering
electron images were performed with an acceleration voltage of 5 kV and 15 kV,
respectively. Samples were covered with a film of Au–Pd (80–20 wt.%) in a high-
resolution sputter coater, 208 h Cressington Company, coupled to a MTM-20
Cressington High Resolution Thickness Controller.
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CF4-plasma) have obtained similar results on AgNPs deposition, but with lower biocide
performance [60, 62, 71].

Nanotitanium dioxide

Nano TiO2, one of the most powerful photocatalytic materials, possesses high activity, strong
oxidizing power and long-term stability [72]. When illuminated under UV light with
wavelengths lower than 385 nm, nano TiO2 electrons are excited from the valence band to the
conduction band [73]. The positive hole in the valence band can then react with water or
hydroxide ions adsorbed on the surface to produce hydroxyl radicals, and the electron in the
conduction band can reduce O2 to produce superoxide ions. These two highly reactive species
are able to decompose a variety of organic materials, including microorganisms [74]. However,
there are few reports on the use of TiO2 nanomaterial for textile applications, and only NPs with
a diameter lower than 20 nm have shown effective, but not complete, antimicrobial activity in
cotton, polyester, polyamide and wool/polyester fabrics [73–75].

Khurana et al observed that cationic as well as non-ionic dispersing agents led to a
reduction in size of the TiO2 NPs produced by sol gel methods, whereas anionic dispersing
agents led to an increase in particle size. The TiO2 NPs so synthesized were successfully
applied onto cotton while maintaining their antimicrobial activity for up to 10 washes with the
help of a binder [76]. Although there are numerous advantages in utilizing nano TiO2 in textiles,
some drawbacks have also been reported. First, due to its high band gap, semiconductor TiO2

shows photocatalytic activity under UV rays, which practically limits the use of sunlight or
visible light as an irradiation source. Second, the electron-hole recombination rate is too high,
resulting in low photocatalytic efficiency. It has been suggested that through adding noble
metals to the surface of TiO2, photocatalytic activity can be increased by extending the light
absorption range of TiO2 from UV to the visible range [77]. Some examples using mixed silver/
TiO2 are found in the existing literature for polypropylene, poly (vinyl alcohol), silk and wool,
but they did not apparently show any additional advantages over silver [78–81]. Moreover, the
dissipation mechanism of the UV energy is not often considered. A direct application of TiO2 to
products such as paint, textile, plastics and paper can lead to the creation of free radicals with
consequent photochemical decomposition of the substrates [74]. Free radicals are also
implicated in a number of potential health issues such as skin aging. However, free radical
generation can be reduced by over 90% by incorporating a dopant ion within the titanium oxide
lattice structure [82].

Nanozinc oxide

ZnO NPs exhibit strong antibacterial activities on a broad spectrum of bacteria on cotton
[36, 55, 75, 83–85], polyamide [86] and bamboo fabric [87]. Moreover, excellent multi-
functional textiles with good UV protection in addition to very good antibacterial properties
against Gram positive and Gram negative bacteria can be obtained using ZnO in combination
with synthetic [88] and natural organic polymers such as chitosan [89]. The use of functional
polymer matrices such as PMME or PNIPAM as a dispersion medium for ZnO NPs results in
improved functional and bonding properties in fabrics (figure 3). Similar to TiO2, the
photocatalytic generation of hydrogen peroxide was suggested to be one of the primary
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mechanisms. In addition, penetration of the cell envelope and disorganization of bacterial
membrane upon contact with ZnO NPs were also indicated to inhibit bacterial growth.
However, the role of the Zn2+ ion released from the dissolution of ZnO is not yet clear, and the
antibacterial mechanism of ZnO is still under investigation [90].

Nanocopper

Limited information, almost exclusively on cotton, is available on the antimicrobial activity and
action mechanism of nano CuO in textiles [38, 55, 56, 91–93]. CuO is cheaper than silver,
easily mixed with polymers and relatively stable in terms of both chemical and physical
properties. Very recently, Teli et al have developed a bamboo rayon fabric grafted with
acrylamide utilized to immobilize copper NPs. The product showed antibacterial activity
against Gram-positive and Gram-negative bacteria and was found to be durable until 50 washes
[94]. Perelshtein et al has recently sonochemically coated a cotton fabric with CuO NPs while
maintaining antibacterial properties even after 65 cycles of washings according to hospital
protocols of hygienic washing (75 °C) [95]. However, in comparison with AgNPs, higher
concentrations of CuO are required to achieve a comparable bactericidal effect [96]. Moreover,
CuO NPs synthesis is often more challenging in comparison to noble metals such as silver and
gold. Copper sulphate in aqueous solution tends to form Cu2O due to the relatively low CuO/
Cu2+ redox potential and spontaneous oxidation of the NPs in ambient conditions. This last
drawback can be avoided by protecting copper NPs against oxidation during preparation and
storage using non-aqueous solvents, surfactants or ligands to prevent NP agglomeration during
the process of synthesis [97].

Figure 3. SEM images (X1500 and X50000 magnification) of antimicrobial ZnO NPs—
PNIPAM composite coated on DBD plasma pre-treated cotton fibers. Images were
carried in a FEG-SEM, NOVA 200 Nano SEM, FEI Company. Secondary and
backscattering electron images were performed with an acceleration voltage of 5 kV and
15 kV, respectively. Samples were covered with a film of Au–Pd (80–20wt.%) in a
high-resolution sputter coater, 208 h Cressington Company, coupled to a MTM-20
Cressington High Resolution Thickness Controller.
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Other metals and metal oxides

Very few examples are found in the existing literature about the use of other nanomaterials in
textiles for antibacterial purposes. Gouda et al has used in situ synthesized zirconium oxide NPs
deposited into cotton gauze fabrics. ZrO2 NPs gave a 98% and 95% reduction rate in colony
count against Gram-positive and Gram-negative bacteria, respectively. However, antifungal
activity was lower than that of fabrics treated with nanosilver. No skin irritation was observed,
and all prepared samples were durable enough to wash even after 30 laundering washing cycles
[98]. Tang et al developed a simple in situ synthesis route for gold NPs to be applied to multi-
functionalized silk fabrics. The AuNPs were prepared in a heated solution containing white silk
fabric samples. Silk fabrics treated with AuNPs showed strong antibacterial activity, excellent
UV protection properties and enhanced thermal conductivity. However, silk fabrics were
colored red and brown by the AuNPs because of their localized surface plasmon resonance
property [99]. Harifi et al prepared multi-functional polyester fabric with magnetic, antibacterial
and sono-Fenton catalytic activities by in situ synthesis of magnetite and hematite NPs using
ferric chloride, ferrous sulphate and sodium hydroxide. The results suggest the potential of the
proposed method in producing fabrics with durable magnetic properties that are suitable for
various applications such as electromagnetic shielding, antibacterial fabrics and sono-Fenton
catalyst for dye discoloration [100]. In their review, Dastjerdi and Montazer discussed other
nano-structured, antimicrobial agents with a potential for textile modification, including carbon
nanotubes, nanoclay and its modified forms, and gallium- and liposome-loaded NPs; however,
no textile applications have yet been developed [32].

Nano-additivated fibers and nanofibers

Several methods also include the bulk modification of conventional filament yarns of polyamide
or polypropylene with various concentrations of different nanocomposite fillers, such as Ag,
chitosan, PVA, ZnO, TiO2 and mixed Ag/TiO2, via melt mixing [86, 101, 102]. Yeo and Jeong,
for example, produced bi-component, sheath-core fibers prepared by using a melt–spinning
method with polypropylene chips and AgNPs. However, the fibers containing AgNPs in the
core part showed no antibacterial activity. Only fibers having AgNPs in the sheath part showed
antibacterial activity [103]. On the other hand, Dastjerdi et al produced biostatic polypropylene
filament yarns with various blending contents of nanocomposite based on Ag/TiO2 NPs using a
twin-screw extruder. However, despite having good biostatic properties, none of the tested
blends displayed a bactericide effect [78]. The bulk modification of filament yarns with various
concentrations of nanocomposite fillers via melt mixing is an environmentally friendly and
easily adjustable modification method. However, it is limited to synthetic fibers, and the
particles situated in the central part of the filaments hardly contribute to the fibers’ antibacterial
properties. Although the production of core–shell bi-component fibers can be helpful in
removing this disadvantage, the required systems are not easily adaptable to industrial
standards. A similar problem is also noticeable in the case of reduction of metallic salts to NPs
in the bulk polymeric matrix [32].

These problems, however, could be solved by the use of electrospun nanofibers due to
their high surface-area-to-volume and length-to-diameter ratios (figure 4) [73, 79, 104–112].
Electrospinning is a process carried out at room temperature that allows the production of
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polymer fibers with diameters in the sub-micron size range, through the application of an
external electric field, keeping intact the bulk properties of the polymers. Because of unique
properties such as a high surface-to-volume ratio, very good mechanical performance, high
porosity and diameters in the nanoscale, electrospun mats made from ultrafine polymer fibers
have been drawing great attention for antimicrobial coatings. Moreover, electrospinning is a
high quality, environmentally friendly and easily adjustable method for industrial applications.
Several researchers have investigated the spinnability of different polymers. For instance,
electrospun nanofibers of cellulose acetate, PVA, PAN and polyester urethane were used to
disperse several antimicrobial materials, such as spherical gold and AgNPs, Fe2O3, gallium
nitride, zirconium carbide and carbon nanotubes [113–115]. Suspension of AgNPs directly
combined into electrospinning polymer solutions is the most used method to prepare composite
nanofibers. However, nanofibers produced using this method have demonstrated diminished
antimicrobial efficiency due to nanoparticle aggregation. A more efficient method was the
in situ reduction of silver ions in pre-electrospinning solutions, resulting in a more uniform
dispersion of AgNPs [116].

Electrospun nanofibers based on chitosan and chitosan NPs applied on several textiles such
as cotton, viscose and polyester fabrics have also been extensively investigated. Solutions of
pure chitosan are not electrospinnable, independently of their polysaccharide concentrations,
mainly due to the high surface tension and conductivities of chitosan acetic acid solutions.
Electrospun antimicrobial nanofibers may, however, be fabricated from blended systems of
chitosan and fiber-forming polymers such as nylon, cellulose acetate, PEO, PET, PAN and PVA
[117–119]. Electrospinning allows extensive tunability in material properties and functions
through the selection of polymeric nanofibers, ceramic nanofibers, metallic nanofibers or
composite nanofibers. Ideally, nanofibers should be made into continuous yarn before weaving
into textile fabrics. However, the diameter of the yarn collected using this process was less than
5 μm and it is uncertain whether the yarn was strong enough to be woven into textiles since

Figure 4. SEM images (X50000 magnification) of antimicrobial nanofibers obtained
from PVA and chitosan (left), and PVA and AgNO3 (right). Images were carried in a
FEG-SEM, NOVA 200 Nano SEM, FEI Company. Secondary and backscattering
electron images were performed with an acceleration voltage of 5 kV and 15 kV,
respectively. Samples were covered with a film of Au–Pd (80–20 wt.%) in a high-
resolution sputter coater, 208 h Cressington Company, coupled to a MTM-20
Cressington High Resolution Thickness Controller.
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several studies showed that insufficient nanofibers in the bundle would result in yarn breakage
[120]. For these reasons, now the majority of the electrospun nanofibers incorporating
antimicrobial properties are utilized for the production of filtration membranes in order to
reduce the formation of biofilm, which is a common source of membrane fouling.

Chitosan

Due to the environmental and toxicological concerns about the use of heavy metals for the
production of NPs, researchers have been recently exploring the use of natural polymers,
especially chitosan, in the antimicrobial finishing of textiles. Chitosan [(C6H11O4N)n], the N-
deacetylated derivative of chitin [(C8H13O5N)n] due to the presence of amino groups, is a
cationic polyelectrolyte, one of the few occurring in nature. This gives chitosan singular
chemical and biological characteristics, such as biocompatibility, antibacterial properties, heavy
metal ion chelation ability, gel-forming properties and hydrophilicity. The use of chitosan NPs
in protein and drug delivery systems is being actively researched and reported in the literature
[121]. However, the research on chitosan NPs for textile applications is limited because most of
the literature is based on the use of bulk chitosan as a coating or finishing agent. Antimicrobial
fabrics with nanocoated chitosan have proved to be a durable, cost-effective and eco-friendly
process. Some research has shown, however, that chitosan NPs have a less inhibiting effect on
S. aureus compared to bulk chitosan since NPs have less positive charge available to bind to the
negative bacterial cell wall. Conversely, other researchers reported that chitosan NPs exhibit
higher antibacterial activity due to the NP’s larger surface area and higher affinity with bacteria
cells, which yield a quantum-size effect [53, 122–125]. These contradictory results suggest that
the antimicrobial mode of action of chitosan is not a simple mechanism, but is an intricate
event-driven process that needs further investigation [126].

Conclusions

Most of the literature about antimicrobial textile nanocomposites is focused on silver. However,
other metals and metal oxides such as zinc, titanium, copper, zirconium, iron and gold show
improved biocidal properties at nanoscale. ZnO and CuO nanocomposites display similar
performance compared to silver while TiO2 efficacy is limited by light availability due to its
photocatalytic mechanism of action. Despite the heterogeneous range of methods, textile
substrates, nanoparticle sizes and concentrations that can be found in the literature, some
general assumptions can be made about metal and metal oxide NPs based on the collected data.
Silver and copper NPs of between 1 and 15 nm showed the best biocide activity at relatively
low concentrations on the fabrics (5–50 ppm or 1–2wt.%). AgNPs of up to 50 nm, still require
relatively low concentrations of around 100 ppm or 5wt.% to have complete Gram-positive and
Gram-negative inhibition effects. Titanium oxide NPs applied to textiles are generally in the
size range of 1–20 nm. With some exceptions, TiO2 NPs showed low antimicrobial activity (an
average of 70%) even at high concentrations of 10wt.% on the fabrics. This occurs mainly
because TiO2 NPs are fully effective just under UV rays, which limits their practical use in the
textile industry. On the other hand, ZnO NPs need a higher average size of 30–40 nm, but with a
lower concentration (around 1wt.%) than TiO2 to be effective. This is possibly due to the
synergetic dual effect of the photocatalytic generation of hydrogen peroxide and the direct
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disorganization of the bacterial membrane. However, despite the promising results, the
available information of ZnO NPs on textiles is still limited. All types of metal and metal oxide
NPs with diameters greater than 100 nm need concentrations comparable to the metal ions or
bulk materials to achieve the same antimicrobial performance.

The bacterial species Staphylococcus aureus (Gram positive), Escherichia coli (Gram
negative) and Klebsiella pneumoniae (Gram negative) are the most-tested strains. Some authors
have also tested different bacteria and fungi such as Candida albicans. However, the eukaryotic
cytotoxicity and allergic reactions in humans are not considered in NP-containing textiles.
Moreover, few authors have tested the antimicrobial efficiency after a reasonable number (at
least 20) of washing cycles, limiting the precise estimation of the amount and form of NPs
released from the fabrics into the environment. The risk assessment of the nanomaterials used in
commercial textile products requires a better understanding of nanomaterial mobility,
bioavailability and toxicity in the environment. Due to this increasing dichotomy between
environmental and health concerns and the potential benefits of using NPs as an antimicrobial
finish for textiles, the use of natural polymers, especially chitosan, and electrospun nanofibers
have been recently explored. The research about chitosan NPs deposited on fabrics is still at an
early stage; however, from the little information available, it is possible to estimate that the
average sizes range from 20–200 nm and that the effective concentration is usually lower than
1wt.%. The latest research in this field seems to indicate an emerging new paradigm in the
production and distribution of NPs for textile applications utilizing non-toxic renewable
biopolymers such as chitosan, alginate and starch.
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