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Abstract 

In many countries, historical buildings were built with masonry walls constituted by random 
assemblages of stones of variable dimensions and shapes. The analysis of historic masonry 
structures requires often complex and expensive computational tools that in many cases are difficult 
to handle, given this large variability of masonry. The present paper validates a methodology for the 
characterization of the ultimate response of quasi periodic masonry. 
For this purpose, the behaviour at collapse of a wall at the Guimarães castle in Portugal is 
investigated by means of a rigid-plastic homogenization procedure, accounting for the actual 
disposition of the blocks constituting the walls and the texture irregularity given by the variability 
of dimensions in the blocks. 
A detailed geometric survey is conducted by means of the laser scanning technique, allowing for a 
precise characterization of dimensions and disposition of the blocks. After a simplification of the 
geometry and assuming mortar joints reduced to interfaces, homogenized masonry in- and out-of-
plane strength domains are evaluated on a number of different Representing Elements of Volume 
(RVEs) having different sizes and sampled on the walls of the castle. Strength domains are obtained 
using a Finite Element (FE) limit analysis approach with a heterogeneous discretization of the 
RVEs with triangular elements representing units and interfaces (mortar joints), at different 
orientations of the principal actions with respect to the horizontal direction. The role played by 
vertical compression is also investigated, considering the case of masonry with weak and strong 
mortar.  
Finally, a series of limit analyses are carried out at structural level, using two different FE numerical 
models of the so-called Alcaçova wall, a representative perimeter wall of the caste. The first model 
is built with a heterogeneous material and the second model is built with a homogeneous material 
obtained through the homogenization procedure performed previously. The purpose is to 
determinate the reliability of results, in terms of limit load and failure mechanism, for the 
homogenized model and to compare these results to the ones obtained with the heterogeneous 
model.  
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1. Introduction 

Masonry constituted by the assemblage of blocks with variable dimensions is very common in both 

existing and historical buildings. However, the complexity of the problem, and the number of 

variables required by accurate numerical heterogeneous FE analyses [1]-[5], usually preclude the 

study of these structures in the inelastic range through commercial software. As a consequence, it 

can be stated that, at present, the numerical analysis of masonry structures randomly assembled 

remains a very challenging problem, despite the efforts recently expended by many authors to 

tackle the problem using stochastic homogenization schemes [6]-[8].  

When dealing with a random assemblage of stones, a key problem is the definition and the use of a 

suitable material constitutive law at a macro-scale. Homogenization [9]-[15] seems the most 

straightforward approach, representing a good compromise between micro [16] [17] and macro-

modelling [18] [19] and allowing the derivation in a rational way of stress-strain relationships for 

masonry, suitably taking into account texture and mechanical properties of the constituent materials 

only at a cell level. Additionally, homogenization may lead to the utilization of effective models, 

with reduced computational effort for real scale simulations [10]-[14]. 

To corroborate the idea that homogenization is a suitable tool for the analysis of masonry with 

blocks having variable dimensions, it is noted that most models available in the literature for 

irregular masonry are based on homogenization concepts (e.g. [20]-[28]). These contributions deal 

usually with the analysis of irregular masonry within the linear elastic range [20]-[25]. Non-linear 

analyses through homogenization are relatively common for periodic arrangements (e.g. [9]-[14]), 

less investigated for random FRP materials [29], and definitely under investigated for quasi periodic 

masonry and random stones assemblages. Indeed, despite attractive, homogenization remains 

difficult as it must handle several elementary cells under different loading conditions, with different 

dimensions and locations in the wall. In this context, the prediction of the load bearing capacity of 
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random walls by means of limit analysis is valuable, particularly if it can be managed on standard 

PCs within a reasonable computation effort [6] [8].  

The present paper applies stochastic homogenization concepts for masonry constituted by blocks 

with variable dimensions, to a real case study of historical interest -the Guimarães castle in 

Portugal-, assuming that joints are reduced to interfaces and stone blocks have a rigid-plastic 

behaviour. The hypotheses adopted for mortar and blocks allow combining homogenization of 

quasi periodic masonry with limit analyses theorems [30]-[33]. 

Despite the fact that recent and less recent literature (e.g. [9], [31]-[34]) has widely shown that very 

reliable predictions of collapse loads and failure mechanisms of real scale structures may be 

obtained with limit analysis, its validity limits must be also considered with care. Among others, a 

remarkable point concerns the assumption of ductile behavior of the interfaces connecting the stone 

blocks, which is crucial for the application of limit analysis approaches at the meso- and macro-

scale. Indeed, the real behavior of the interfaces is quasi-brittle in tension with sudden rupture. At 

least in principle, one could expect different behaviors between ductile and brittle models. 

However, such differences tend to be moderate when joint tensile strength is low, as it usually 

occurs for masonry. 

First, a characterization of the masonry geometry under consideration is discussed and a statistical 

analysis regarding the dimensions of the stones forming the walls of Guimarães castle is carried out. 

This is followed by a homogenized limit analysis on several Representative Volume Elements 

(RVEs) from the Alcaçova wall in the Guimarães castle, performed in order to obtain in-plane an 

out-of-plane failure surfaces to be utilized at a structural level, considering the case of masonry with 

weak and strong mortar. Afterwards, out-of-plane limit analyses are carried out using two different 

FE numerical models of Alcaçova wall, being the first one built with a heterogeneous material and 

the second one with a homogeneous material that was obtained through the homogenization 

procedure performed in the previous step. The hypotheses adopted for the mortar joints approximate 

the behaviour for the present condition of the walls and after the planned conservation works. 
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2. Rigid-plastic homogenization in presence of blocks with variable 

dimensions 

The homogenization theory may represent a powerful tool in problems involving periodic 

arrangements of heterogeneous materials, where the study of the whole structure within a 

heterogeneous approach is impractical or impossible, due to the computational effort. A non-

rigorous homogenization may be also attempted for random composites, provided that a suitable 

portion of the whole structure (test window) is extracted. 

The basic idea of homogenization [10]- [13] consists in introducing averaged quantities 

representing the macroscopic stress and strain tensors (respectively Σ  and E ) as follows: 

dY
A Y
∫>==< )(1 uεεE

 

dY
A Y
∫>==< σσΣ 1 , 

( 1 ) 

where A stands for the area of the elementary cell, ε  and σ  stand for the local quantities (stresses 

and strains respectively) and <*> is the averaging operator. 

Periodicity conditions are imposed on the stress field σ  and the displacement field u, given by:  
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where u  is the total displacement field and peru  stands for a periodic displacement. Here, it is 

worth noting that, in equation ( 2 ), the periodicity of the displacement fluctuation peru  forces 

corresponding boundary segments to exhibit the same shape in the deformed configuration. For 

instance, within a displacement based FE code, a linear constraint relation between couples of nodes 

may be imposed. Let us consider two points, say P1 and P2 on opposite boundary sides of the RVE, 

see Figure 1, such that Lyy += )P()P( 2111  and )P()P( 2212 yy =  where 1y - 2y  indicate a local frame 

of reference with origin placed on the center of the RVE and L  denotes RVE size along 1y . Within 
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such assumptions, the linear constraint relation reads ( )12
per
P12 PP −+= EuuP , with per

P1u = per
P2u . The 

macroscopic homogenized quantity E  may then be imposed on the cell through boundary nodes 

displacements. Conversely, anti-periodicity of the stress field requires that the micro-stress vector 

σn  is mirrored on opposite sides of Y∂ , as depicted in Figure 1. 

Let mS , bS  and homS  denote respectively the strength domains of mortar, blocks and homogenised 

macroscopic material. It has been shown by Suquet [30] that a kinematic upper bound 

approximation of homS  can be derived through the support function ( )Dhomπ  as follows: 
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where: 

- pervDyv +=  is the microscopic velocity field; 

- perv  is a periodic velocity field; 

- d and D are respectively the microscopic and macroscopic strain rate fields; 

- S is any discontinuity surface of v in Y, n is the normal to S; 

- ( ) ( )]][[]][[2/1]];[[ vnnvnv ⊗+⊗=π ; 

- ( ) ( ){ }yσd:σd
σ

S∈= ;maxπ . 

The above considerations hold on a Representative Element of Volume (RVE) that should generate 

the entire wall by repetition. The RVE is defined as the smallest volume that contains all the 

essential information about the microstructure. On the boundaries of the RVE, periodicity and anti-

periodicity conditions should be assigned in agreement with equation ( 2 ).  

However, the identification of a RVE for old masonry is not always an easy task, as is the case here 

analysed. Indeed, using adequate translations for a periodic structure, a unit cell that generates the 
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whole structure can be used [10]. In composite material such as fibre-reinforced ones, it is sufficient 

to choose a relatively large portion of material, depending on the size of the inclusions, to determine 

the RVE. The definition of the material statistical homogeneity and the proof of convergence when 

the material sample size approaches infinity are addressed in [35]-[37]. For the problem at hand, it 

should be noted that the inclusions (irregular stones) in the matrix (the mortar) can assume different 

relative dimensions and arrangement, depending on the portion of masonry analysed. 

The method here developed to find an approximation of macroscopic masonry ultimate strength is 

an iterative one and follows the procedure envisaged in [20], assuming rigid plastic behaviour of the 

constituent materials. The following steps are necessary to obtain macroscopic strength domains: 

1. The first phase consists in choosing a rectangle, the so called test-window, which contains a 

sufficient portion of both phases (irregular stones and mortar) in an entire wall. Since its 

position and dimension are fully arbitrary, ideally, a large Monte Carlo sampling of different 

test windows (differing in both dimension and position) should be performed, to handle 

statistically the output resultant masonry macroscopic strength. Obviously, the larger is the 

number of windows considered, the harder is the computational effort required to have an 

estimation of the macroscopic resistance. As a rule, the utilization of small test windows 

should be withdrawn. Heuristic rules suggest to avoid sizes smaller that 3-4 times the 

maximum dimensions of the stones  [27]. Within a FE discretization of the test window, this 

compromise leads to medium size problems. In what follows, in order to obtain a relatively 

fast estimation of masonry strength domain, several different test windows differing in size 

have been considered. 

2. The next phase is to determine the strength values of the test window in plane stress 

conditions, see for instance [28]. This information is retrieved discretizing the test window 

into a triangular heterogeneous mesh and in solving, by means of a plane stress limit 

analysis code, a standard homogenization problem in the rigid plastic case (upper-bound 
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solution). All the numerical models used here for limit analysis belong to the upper bound 

family and are based on the kinematic discontinuous formulation originally presented by 

Sloan and Kleeman [38] and applied many times for masonry (e.g. [39][40]). Theoretical 

details of the code are given in Appendix A.  

3. The final phase is to implement the mean homogenized strength domains at structural level, 

using a homogeneous failure surface. To perform the numerical simulations at structural 

level, the mean failure surface previously evaluated is adopted, in agreement with [6] [8].  

3. Geometric characterization of the Guimarães castle 

The origin of the castle dates back to the 10th century and the fights against the Moors in the Iberian 

Peninsula. In the 11th century, the first King of Portugal was born there. Later, between the 12th and 

14th centuries, the castle was enlarged and the defence capacity was improved. At a certain stage, 

the castle was abandoned and suffered damage caused by time, and by the subsequent changes of 

use. In the 20th century, important restoration works have been carried out and the current condition 

is shown in Figure 2. The castle is surrounded by eight square towers, which delimit the main 

square, with a main tower (“Torre de Menagem” in Portuguese and “Keep” in English) in the 

centre. The main wall under study in this paper is the so-called “Alcáçova” Wall, which is 

originally the highest and most protected part of an Iberian medieval castle, with a defence function 

and where the civil or ecclesiastical authorities lived. The word was later used to define the part of 

the castle where the governor lived.  

The plan view of the castle is relatively simple, with a pentagonal (Figure 2-b) shape in plan. The 

castle is also surrounded by eight square towers, delimiting the main geometry, and protecting the 

main tower. The current version of the castle has Romanesque origin, with a geometry resembling a 

Middle Age shield, with a small central chamber and difficult access.  
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3.1. Automatic geometry extraction of quasi-periodic masonry walls by 

terrestrial laser scanning 

The masonry material characterizing the geometry of the castle is constituted by granite stone 

ashlars in the external leaves. Horizontal mortar courses are relatively regular, despite the fact that 

the height of the courses is not constant and that the length of the units is rather variable (see for 

instance Figure 2-c). In order to represent this feature, a statistical description considering mean, 

standard deviation, coefficient of variation and probability distribution for the size of the stones on 

four walls is investigated. The statistical study was possible thanks to a detailed laser scanning 

survey conducted on the whole structure, which allowed determining the size of each stone 

automatically. 

Laser scanning was used in order to have an extensive and accurate geometric documentation of the 

castle. Data processing usually involves a tedious processing and managing such massive data 

requires advanced knowledge in geomatics. Under the aim of having a tool that allows accurate 

geometric documentation, avoiding deep skills in laser scanning processing, an algorithm for 

automatic geometry extraction of quasi-periodic masonry walls was developed using Matlab 

software. The results obtained in some wall samples of Guimarães castle were compared with a 

simpler photography based procedure in order to validate, in terms of quality, the usage of the 

second method when access to a laser scanning instruments is not possible. Next, the main steps of 

the methodology are summarized. 

3.2. Data acquisition and pre-processing 

A terrestrial laser scanner model RIEGL LMS Z-390i was used to collect the geometry of the 

external walls of the Castle. This laser scanner is able to record long distances (up to 400 m in 

normal light conditions) with a nominal accuracy of 6 mm at 50 m. The technical specifications of 

the equipment are given in [41]. The acquisition rate reaches values of 11,000 points per second 
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which allowed collecting the geometry of the tower walls used for the comparison very fast (point 

clouds bigger that 6 million points took about 20 minutes). The spatial resolution of the point clouds 

was set to 0.02 degrees (3mm at 10m range) for both horizontal and vertical angles. The raw point 

cloud is collected into a central coordinate system, where each point position is defined by spherical 

coordinates: a distance and two angles (vertical, referred to the zenith of the instrument; and 

horizontal, referred to its azimuth). The instrument is managed using the software Riscan Pro, 

where the raw data is stored. Points are automatically converted to a Cartesian coordinate system 

(XYZ).  

In addition, most laser scanners have the ability of recording the “intensity” data. This parameter 

refers to an attribute that represents the amount of energy of the returned pulse, see Figure 3. This 

intensity is expressed as a percentage of the emitted laser pulse [42] and is considered to be a key 

attribute to perform classification of ashlars and joints (with or without mortar) in masonry walls. 

From the results of the segmentation, morphology analysis of ashlars can be done. Once the walls 

are scanned, smaller point clouds are used as sample walls to serve as input data for the algorithm 

developed. These point clouds are exported to ASCII format containing the Cartesian coordinates 

and intensity attribute for each point. 

The algorithm was designed to perform point cloud data segmentation based on digital image 

processing using the so-called 2.5D approach. Due to the overall geometric characteristics of 

masonry walls, normally forming planar surfaces as a whole, a planar projection of the 3D point 

cloud is performed. To achieve this, wall planes are estimated performing an orthogonal planar 

fitting of the whole sample wall. After obtaining a plane for projection, all the 3D points are 

orthogonally projected over the fitted plane. The next step consists of transforming the vector planar 

image to a raster image. For that process, it is essential to fix a cell size that will correspond with 

the spatial resolution of the processing data. Taking into account the resolution of the original point 

cloud, a square cell of 1cm-width and 1cm-height was fixed for the images. The digital number of 
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each cell is computed as the averaged intensity value of the points contained, so the intensity image 

of the wall is obtained. 

Figure 4 shows intensity images of the walls from Guimarães castle. Once an image is created, the 

new task consists of the definition of each individual block in order to obtain its dimensions (length 

and height). Also, the user may select a smaller window of segmentation into the whole image in 

order to facilitate the statistical random sampling. The dimensional analysis for each sample 

window is subsequently computed. The core principle used for ashlar segmentation is based on an 

edge detection algorithm using the so-called Sobel operator [38]. By computing directional intensity 

gradients (first derivative of intensity image) it is possible to detect abrupt differences between each 

pixel and its neighbours. After performing directional projections of the previous functions, joints 

are accurately detected and block dimensions can be stored. Figure 5 summarizes the process of 

joint detection and geometric analysis of masonry blocks. From this methodology it was possible to 

obtain the length and height of masonry blocks composing the walls of Guimarães castle using a 

long-range terrestrial laser scanner. The final accuracy of the laser scanning processing algorithm 

resulted to be between 1-2cm (pixel size in intensity image), depending on the accessibility 

conditions to the sample walls. Table 1 summarizes morphological analysis of two sample walls, 

and shows a comparison between the photographic method and the laser scan. It can be observed 

that a reasonable agreement is found, even if the sample is not exactly the same. 

For the sake of clarity, the four walls chosen for such a detailed study will be denoted hereafter as 

Wall 1, Wall 2, Tower Wall and Alcaçova Wall. Their location is clearly identified in Figure 2-b 

and the photographic survey was used, as the laser scan results and edge extraction process was 

only recently completed. 

The statistical analysis was carried out as follows: firstly, each wall was considered independently, 

evaluating the statistical distribution of the length and the height of the stones; then, all data were 

considered together, in order to evaluate the actual overall distributions on the entire castle.  
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The numbers of stones considered for each sample were the following: Wall 1 has 110 units, Wall 2 

110 units, Tower wall 110 units and Alcaçova wall 308 units. The results from the statistical 

analysis of Wall 1, Wall 2, Tower wall, Alcaçova wall and the entire sample walls are presented 

from Figure 6 to Figure 9. In particular, in Figure 6, the statistical distributions obtained for the 

length and the height of the stones belonging to Wall 1 are depicted. A best fit, assuming 3-

parameters lognormal probabilistic distributions for both variables is also represented. The mean 

values for the length and height of the stones are 75.8 cm and 38.9 cm respectively. The stones’ 

length is typically around 67.5 cm and the height of the stones is typically about 40 cm.  

When dealing with Wall 2 (see Figure 7), the mean values of the length and height are 69.7 cm and 

43.8cm, respectively. The length of the stones is typically about 65 cm and the height of the stones 

is around 40 cm. The best fitting probabilistic distribution for both variables is sketched in Figure 7.  

When dealing with the Tower wall (Figure 8), the mean values for stones length and height are 85.2 

cm and 45.7 cm, respectively, and the height of the stones is typically about 49.5 cm. The 

probabilistic distribution for both variables is depicted in Figure 8. In the Alcaçova wall (see Figure 

9), the mean values for the length and the height of the stones are 59.8 cm and 33.5 cm, 

respectively,  and the typical height of the stones is about 39 cm. 

When all samples are considered together, length and height mean values are equal to 68.6 cm and 

38.4 respectively, with standard deviations equal to 27.8 cm (CoV of 40%) and 9.26 cm (CoV of 

24%). The typical length of the stones is about 55 cm. Lengths between 50 cm and 60 cm have the 

largest frequency (133 on 639 stones). A second group of stones with a large frequency exists (125), 

with lengths ranging between 60 and 70 cm. The smallest length is about 25 cm and the 210 cm, 

being both atypical. The histogram is slightly skewed to the right. The typical stones height is about 

39 cm. Heights between 38 cm and 40 cm are quite frequent. The smallest height is 13 cm and the 

largest about 62 cm, which are both very atypical. The probabilistic distributions for both variables 

using a 3-parameters lognormal model are summarized in Figure 10.  
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A summary of the geometrical data is reported in Table 2. From the statistical analysis conducted, 

the following major issues are worth noting: 

• A large variability of the mean length and height values of the stones for the four walls 

analysed is observed (from 60 to 80 cm in length and from 34 to 46 cm in height). The ratio 

between the maximum and minimum value found is similar for both quantities (about 75%).  

• The stones geometrical ratio between height and length (h/b) is rather important for the 

quality of the masonry bond. h/b average ratio is about 56% (1:1.8). Only in Wall 2, a 

slightly different h/b ratio is found, equal to 63% (1:1.6). 

• The scatter found on length values is always much larger than that found on height values, 

being the scatter of the full sample not so much different from the scatter of each individual 

sample. 

• Wall 2 is the sample with lowest scatter, whereas the Alcaçova wall is the sample with the 

largest scatter, despite that fact that the Alcaçova number of stones is three times larger than 

Wall 2. 

• The difference found between an averaging procedure performed on the total sample 

weighting the number of samples or obtained assuming the same weight is moderate, with a 

change in the dimensions found near 5%.  

• The probabilistic length distributions are clearly skewed, requiring for fitting a lognormal 

distribution. The probabilistic height distribution is relatively symmetric, meaning that a 

normal distribution can be used. 

4. FE homogenized failure surfaces: Numerical results 

To fully characterize the macroscopic masonry behaviour at failure when a plane stress condition is 

assumed, it is necessary to provide a strength domain in the space of membrane actions 11Σ  
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(horizontal homogenized normal stress), 22Σ  (vertical homogenized normal stress), 12Σ  (shear 

homogenized stress). 

Traditionally, a 2D representation of such surfaces is given by many authors [6] [8] [31] providing 

three different 2D sections of the 3D surface at three fixed angles ϑ , defined as the angle between 

the horizontal direction and the homogenized principal stress hhσ . Assuming vvσ  the principal 

stress acting orthogonally to hhσ , such sections are obtained keeping ϑ  fixed and varying point by 

point a further angle, say ψ , defined as ψ =tan-1
vvσ / hhσ . Within this assumption, the homogenized 

membrane resistances 11Σ , 22Σ  and 12Σ  are defined as follows: 

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( ) ( )ϑϑψϑψλ
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 ( 3 ) 

where λ  is the load multiplier.  

The FE models representing the RVEs are built using different samples of walls from the Alcaçova 

wall with different sizes. The wall is built using two external leaves with an average thickness of 

400 mm and separated by an infill.  

Here it is worth mentioning that out-of-plane homogenized strength domains reported in what 

follows refer to a single external leaf with thickness equal to 400 mm. Since both infill mechanical 

properties are very poor (cohesion in practice vanishing and friction angle equal to 20°) and its 

thickness is relatively small (200 mm), a conservative hypothesis has been adopted disregarding the 

effect induced by the interlocking between external leafs and infill. Thus, the overall ultimate 

moments of the façade have been evaluated as the sum of the contributions of the single leafs, 

assuming for the infill an isotropic behaviour obeying a Mohr-Coulomb failure criterion (ultimate 

bending moment and torsion may be easily evaluated by means of trivial formulas). The hypothesis 

that leafs bend separately has therefore implicitly made. Finally, it has to be noted that the 
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subdivision of each leaf with 12 layers provides quite good estimates of the out-of-plane failure 

loads, as shown in [9]. 

The wall has 308 stones irregularly disposed, but maintaining the horizontal alignment of the bed 

joints (coursed masonry). It was decided to consider three RVEs of different size, labelled as 3x3, 

4x4 and 5x5, having dimensions respectively equal to three, four and five times the mean length and 

the mean height of the stones. For each RVE size, three different samples located randomly on the 

wall are taken into account (Figure 11). In addition, three artificial RVEs are built using mean size 

stones and periodic arrangement, in order to compare the resulting failure surfaces with those 

obtained considering the actual geometry and disposition of the blocks.  

It is worth noting that the so called random test windows method is utilized to have an estimate of 

the masonry behavior at the macro-scale. The stochastic analysis on wall texture and conducted in 

the previous section is done to have an insight into average values of blocks height and length and 

build the artificial RVEs with comparison purposes. A fully stochastic approach is not adopted in 

the paper because it would require large scale Monte Carlo simulations, basing on stochastic 

distributions found from the survey, as envisaged in [8]. Large scale numerical computations on the 

case study considered are without the aim of the present research, which remains limited to the 

proposal of a method for a rough evaluation of collapse loads useful from an engineering viewpoint. 

A certain scatter on predicted homogenized properties is obviously possible when using the test 

window method, as demonstrated in another context by Zeman and Sejnoha [29], depending on the 

size of the test window (large test windows are linked to data at failure exhibiting less scatter) and 

the actual local disposition of the bricks. Since for the case analyzed, the length of the blocks and 

their disposition vary with sufficient regularity, the scatter obtained is in any case rather limited. 

A linearized Lourenço and Rots [2] failure criterion is adopted for joints reduced to interfaces 

whereas a classic Mohr-Coulomb failure criterion is used for block-block interfaces (see [3] for 

details). Triangular rigid elements are utilized to mesh the RVEs, in order to speed up calculations. 

Despite the fact that plastic dissipation is allowed in the model only on interfaces, this does not 
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represent either a limitation or a lack of accuracy of the numerical model. It is expected, indeed, that 

failure occurs for the formation of cracks zigzagging along mortar joints, being the stone strength 

rather high.  

The RVEs considered are depicted in Figure 12 (actual disposition of the stones) and Figure 13 

(artificial models), along with their FE discretization (each colour represents a different stone). The 

main geometrical properties of the RVEs are summarized in Table 3 for the sake of clearness. 

Furthermore, in Table 4 the number of elements and nodes utilized for the FE discretization is 

summarized. For each RVE and in each orientation ϑ, 32 values with steps of half of 22.5º have 

been calculated. The 32 points were then connected to draw failure surfaces. The optimization 

problem arising in order to obtain the failure surface is solved by using an algorithm code 

developed in [31].  

Two different cases are considered, assuming a masonry material with good and poor mechanical 

properties. For masonry with weak mortar, the compressive strength cf  of joints reduced to 

interfaces is assumed equal to 12 MPa, with ultimate tensile strength tf  equal to 0.05 MPa, 

cohesion c  equal to tf , friction angle Φ =30° and shape of the linearized compressed cap 

expressed by the angle 2Φ  equal to 45°. The compressive strength of stones is assumed equal to 

89.5 MPa and their ultimate tensile strength is equal to 0.93 MPa, according to experimental 

characterization reported in [44]. For masonry with strong mortar, only the ultimate tensile strength 

of masonry is changed, assuming a value equal to 0.3 MPa, keeping c  equal to tf .  

Figure 14 shows some typical in-plane homogenized failure surface sections for a 4x4 RVE in case 

of weak (-a) and strong (-b) mortar, at different orientations of the principal axes with respect to the 

bed joint direction. The RVE exhibits the expected anisotropic behaviour. 

In Figure 15, a 3D representation of the strength domain in the tension-tension (-a) and 

compression-compression regions for a 4x4 RVE is provided for the sake of clearness. The typical 
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orthotropic behaviour in tension due to blocks staggering is worth noting, as well as a moderate 

difference between vertical and horizontal compression failure loads is noted. 

In Figure 16, a comparison between in-plane homogenized failure surfaces obtained by means of 

the 4x4 RVEs and the artificial 4x4 RVE, at different orientations of the principal stress axes with 

respect to bed joint direction is summarized (-a: weak mortar joint, –b: strong mortar). As can be 

seen, failure surfaces obtained from real RVEs of the same size exhibit a similar behaviour at 

failure, while more remarkable deviation is found for the artificial RVE, with a significant 

difference in horizontal strength. Such a response has been experienced also for 3x3 and 5x5 RVEs.  

Consequently, from results reported in Figure 16, it can be stated that particular care should be used 

by the user when artificial RVEs are adopted to have an estimation of the homogenized failure 

surfaces of masonry with blocks having variable dimensions. While the approach based on artificial 

RVEs undoubtedly allows saving time and may be easily automated, it could, at least in principle, 

provide unreliable collapse loads when failure occurs for the activation of yield lines associated to a 

predicted masonry strength different from the real one. 

Furthermore, it is worth mentioning that in both cases of weak and strong mortar, the continuous 

alignment of the bed joint results in a no variation of the vertical strength (σh), because the RVEs 

tend always to fail along a preferential plane of weakness formed by the bed joint. 

A large amount of numerical results is obtained, not reported here for the sake of conciseness. 

In Figure 17, Figure 18 and Figure 19, a comparison between the mean strength values obtained 

post-processing results collected for each single RVE is reported respectively for orientations ϑ=0°, 

22.5° and 45° of the principal stress axis with respect to bed joint orientation. The agreement among 

results obtained with different sizes of the RVEs is very promising, indicating that even a small 

sampled RVE may provide reasonable estimates of masonry strength. 

Some meaningful failure modes obtained from selected RVEs for orientations ϑ=0°, 22.5° and 

45°are depicted in Figure 19, where a qualitative comparison with experimental results by 

Dhanasekar et al. [45] is also shown. A staircase crack in the 4x4 representative volume element is 
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found independently of the quality of the mortar. It is noted that dilatancy is present in the 

numerical model, even if it is believed that the influence in the global behaviour is very low (the 

upper boundary is allowed to move up, meaning that an artificial confining stress built up does not 

occur).  

5.Out-of-plane homogenized failure surfaces 

In order to speed up limit analysis computations, the simplified homogenization approach proposed 

for the first time in [46] is utilized to obtain out-of-plane homogenized strength domains.  

The utilization of alternative procedures is certainly possible, as for instance the utilization of the 

out-of-plane upper bound code proposed in [8]. However, it was decided to firstly evaluate in-plane 

homogenized failure surfaces and discuss differences for in-plane actions there, where the 

comparison is much more straightforward. Then, the layered lower bound model proposed in [46] is 

utilized to evaluate out-of-plane failure surfaces. It has been shown that reliable predictions of the 

actual failure surfaces are obtained with [46] model, see for instance [9], with a slight increase of 

the overall numerical efficiency of the multi-step procedure proposed, when compared to a direct 

out-of-plane upper bound approach conducted with finite elements. 

According to the layered approach, the RVEs considered for the determination of the in-plane 

strength domains are here re-analysed, subdividing them along the thickness into several layers (for 

practical purposes, it has been shown that 12 subdivisions represent a good compromise between 

numerical efficiency and reliability of the results). For each layer, the out-of-plane stress 

components σi3 (i=1, 2, 3) of the micro-stress tensor σ are set to zero, meaning that only the in-plane 

components σij (i,j=1,2) are considered active and constant along the ∆il thickness. This allows 

handling the homogenized out-of-plane strength domain in each layer as it was in plane stress-

condition. The out-of-plane strength domain Shom may be therefore estimated by means of the 

following optimization problem: 
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where: 

- λ  is the load multiplier, representing the ultimate moment in the 122211 MMM −−  (horizontal 

bending-vertical bending-torsion) along the direction Σn  identified by angles ψ  and ϑ ; 

- )(~ Liσ  denotes the homogenized membrane stress tensor (i.e. )(~ Liσ =[ )(
11

~ Liσ  )(
12

~ Liσ ; )(
12

~ Liσ  )(
22

~ Liσ ]) of layer 

Li ; 

- ψ  and ϑ  are spherical coordinates in 122211 MMM −− , given by ( )
( )2

22
2

11

12tan
MM

M
+

=ϑ , 

( )
11

22tan
M
M

=ψ ; 

- LiS  denotes the (non-linear) homogenized strength domain of the th
Li  layer. 

Membrane actions are kept for the sake of simplicity constant and independent from load multiplier. 

In particular, we assume that 01211 == NN  and that ( )tzHN −−= γ22  where γ  is masonry specific 

weight, H  and t  are wall height and thickness and z  is the vertical position of the RVE 

considered. Such hypothesis on membrane loads seems reasonable for practical purposes and 

approximates well real in-plane internal actions for laboratory tests and isolated walls or walls with 

a few perpendicular interconnections, as the case here analyzed. Finally, when dealing with the 

analysis at collapse of the Alcaçova wall reported in what follows, it is worth mentioning that in-

plane vertical pre-compression affects considerably 122211 ,, MMM strength domains. This 

assumption proved to be technically acceptable in the majority of the real cases. 
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In the out-of-plane numerical simulations, the thickness of the RVEs is assumed equal to 0.40 m 

and three increasing compressive vertical loads are analysed, corresponding to three different levels 

with respect to the top edge of the Alcaçova wall: 22N =0 (top), 22N = self-weight/2 (mid-height), 

22N = self-weight (bottom). Out-of-plane failure surfaces are presented for the sake of clearness as 

sections on 2211 MM −  and 1211 MM −  planes. 

In Figure 21 and Figure 23, 2211 MM −  (sub-figures –a) and 1211 MM −  (sub-figures –b) out-of-

plane homogenized failure surface section for the 4x4a RVE at increasing vertical compressive 

loads are depicted, for mortar with poor and good mechanical properties respectively.  

In Figure 22, for the sake of completeness, two 3D representations of the out-of-plane failure 

surface ( 122211 MMM −−  space) for the 4x4a RVE, assuming respectively a zero (-a) and maximum 

(-b) pre-compression are depicted. The maximum pre-compression occurs in correspondence of the 

wall foot, whereas a zero pre-compression is present at the top edge. Analogously to the in-plane 

case, the orthotropic behaviour of the masonry material considered, again linked to blocks 

staggering, is worth noting. Furthermore, pre-compression tends to slightly distort the orthotropic 

failure surface when 11M  and 22M  have opposite signs.  

As expected, the vertical pre-compression increases not only the vertical bending moment ( 22M ) 

but also the horizontal one, as a result of the interlocking of the blocks and the frictional behaviour 

of the bed joint, which exhibits an increased torsional resistance when pre-compressed. In some 

cases, with strong mortar (3x3b, 3x3c, 4x4c, 5x5b), due to the insufficient staggering of the stones 

in the RVE, 11M  does not increase sensibly and a straight vertical crack is obtained, meaning that a 

blocks failure is also experienced. In general, authors experienced that very similar results are 

obtained performing calculations ( 4 ) on all the different RVEs considered in the present study, see 

Figure 12. 

In Figure 24 (-a: weak mortar, b: strong mortar), a comparison between the mean values of out-of-

plane strengths obtained averaging results of different RVEs of the same size is depicted, assuming 
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a compressive load 22N =132.8 kN/m, corresponding to the situation at the base of the wall. As can 

be observed, the vertical bending moment ( 22M ) exhibits very similar values for the different cell 

sizes (and the same occurs for torsion 12M ). Some non-negligible perturbation is observed for 

horizontal bending moment ( 11M ), being more sensitive to the compressive loads and the actual 

staggering of the blocks. Still, the scatter is fully acceptable for engineering purposes.  

A good benchmark to evaluate the reliability of results provided by the numerical models presented 

in this study, is obtained comparing the ultimate vertical bending moments 22M  provided by the 

present analysis with those obtained by means of the following simple equation, see [14], which is 

deduced by simple equilibrium considerations assuming a flexural failure occurring on a single bed 

joint: 

( ) ( )

tc

c

tc

ff
Ntfx

ffxtxM

+
+

=

+
−

=

22

22 2  ( 5 ) 

A comparison between homogenization predictions and equation ( 5 ) results is reported in Figure 

25 for both weak (-a) and strong (-b) mortar, as a function of the vertical pre-compression 22N . The 

correspondence is almost perfect for all the cases considered, meaning that reliable approximations 

might be achieved using the numerical model presented in this study.  

6. Structural analyses 

For the sake of conciseness, the structural study is restricted to the part of the Alcaçova wall located 

above a much thicker wall (see Figure 2) connected to secondary small buildings and rooms. The 

analysis of the whole wall would require full 3D computations, which are outside the scope of the 

present paper.  
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The portion of the wall under consideration may be reasonably assumed as supported on three 

edges, one corresponding to the lower edge, the remaining two corresponding to vertical 

boundaries. The dimensions of the wall are 14.25 m in length and 6.85 m in height. The thickness 

of the external leaves is 0.40 m. The wall has seven openings, labelled from O-1 to O-7 for the sake 

of clearness in Figure 2-c. The openings represent approximately 20% of the area of the entire wall. 

Above each opening a lintel is present.  

In order to carry out the analysis of Alcaçova wall, two numerical models are utilized and the 

results obtained critically compared: the first is a heterogeneous model, where the actual disposition 

of the blocks is considered in detail, whereas the second is a homogenized model where strength 

domain obtained in the previous section are utilized. Figure 26 shows the discretization adopted for 

both models and the number of elements required for the analyses. 

Limit analyses are performed using the out-of-plane model firstly proposed in [47], where plastic 

dissipation is allowed only at the interfaces between adjoining elements. Such approach is 

sufficiently reliable in the case under consideration because blocks may be reasonably regarded as 

infinitely resistant, whereas cracks are expected to zigzag directly inside thin joints. Non negligible 

differences are expected if comparing the results obtained with those for regular patterns, because 

the actual disposition of the blocks may play a major role, especially in horizontal bending. For 

instance, when blocks staggering decreases between two contiguous rows for some irregularities of 

block dimensions, the overall horizontal bending strength in that region decreases considerably, 

because horizontal joint contribution tends to vanish. 

Results obtained comprise limit loads and the possible collapse mechanisms, whereas no 

information on displacements is provided. External seismic load depending on the load multiplier is 

applied to the model as out-of-plane pressure on single elements following a first mode distribution. 

Collapse mechanism obtained by means of both the heterogeneous and the homogenized model 

assuming joints with weak mortar are depicted in Figure 28. The actual thickness of the plate 
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elements is visualized for the sake of clearness, as well as all the cracks forming the failure 

mechanism are labelled.  

Cracks a4, a5, a13, a14, a17 belong to two types of vertical cracks located in the middle third of the 

wall. These cracks are caused by the vertical bending moment. Crack a4 is a vertical line and forms 

for the inexistent staggering of the blocks in eleven masonry courses in this area. Crack a13 

propagates following head and bed joints, whereas Cracks a8 and a18 follow the horizontal 

alignment of the blocks. Cracks a1, a2, a3, a6, a7, a9, a10, a11, a12, a15, a16 appear on corners and 

surrounding different portions of the openings, and are mainly diagonal, propagating for a 

combined effect of horizontal and vertical bending moment. This combination of effects is caused 

by the edge constrains applied to the wall, representing the connections of the Alcaçova wall with 

orthogonal walls and with the base horizontal base. It is important to remark that these types of 

cracks develop on areas close to the lateral edges. Finally, it can be stated that globally the failure 

mechanism is similar to a local overturning, as usually occurs for historical masonry buildings. 

When dealing with the homogeneous model, it should be taken in to account that cracks can only 

follow the mesh lines. As can be seen from Figure 28-b, where the failure mechanism obtained by 

means of the homogenized model is represented, such model appears in term of cracks, in 

satisfactory agreement with the heterogeneous one. In particular, crack b1 is similar to a1, b2 to a2, 

b3 to a3. b4 appears slightly different and propagates on the right side, but maintaining the same 

pattern (vertical crack). b5 is again similar to a5, a6 to b6, b7 to a9, b8 to a11, b14 to a19, b15 to 

a14, b16 to b15, b17 to a16, b18 to a18 and b19 to a17. Cracks b10, b11, b12 and b20 exhibit some 

discrepancies. However, from a global point of view, the agreement seems quite satisfactory, both 

models providing comparable failure mechanisms.  

Figure 29 shows the same comparison on collapse mechanisms for a strong mortar condition. 

Again, the collapse active mechanisms are characterized in both cases by a long vertical crack on 

the right, developing on the same eleven head joints. Furthermore, horizontal cracks are still present 
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in the corners of the openings, as the compressive vertical load provided by self-weight is not 

sufficient to preclude cracks promoted by the horizontal bending.  

Diagonal cracks for combined vertical and horizontal bending are still present near the edges of the 

wall and also in the corners of openings. As can be seen, the cracks patterns provided by the 

heterogeneous and homogenized model appear again in very good agreement. In particular, the 

following matches hold:c1 is comparable with d1, c2 with d2, c3 with d3, c4 with d6, c21 with d7, 

c6 with d8, c20 with d18, c8 with d10, c9 with d19, c10 with d20, c11 with d11, c12 with d12, c18 

with d13, c16 with d14, c15 with d15, c14 with d21, c17 with d16. 

A comparison between the failure loads obtained with both models is summarized in Table 5 , for 

both strong and weak mortar hypotheses. The accuracy of the homogenized model, defined as the 

ratio between the homogenized and heterogeneous failure loads, is also represented. As can be 

noted, homogenized limit analysis results are in good agreement with the full heterogeneous 

computations, confirming the reliability of the approach proposed. Limit load is represented as a 

fraction of the wall self-weight, thus giving a direct indication of the horizontal acceleration that the 

structure may withstand under seismic excitation, as a fraction of the gravity acceleration. 

Obviously, for weak mortar (the most realistic assumption) the vulnerability of the wall under 

horizontal loads results quite high. 

In order to further assess the results obtained at a structural level with the model proposed, a 

sensitivity analysis upon mesh refinement is conducted, with the three different meshes reported in 

Figure 27. A fast convergence of results is obtained, represented in terms of accuracy of the 

homogenized model when compared to the heterogeneous one. As can be seen, sensitivity to mesh 

refinement is rather low. Indeed, no plastic deformation is allowed in the model, which essentially 

is a FE implementation of the yield line theory. A slight dependence of collapse loads upon both 

interfaces orientation and disposition is therefore expected. Mesh adaptation schemes based on 

sequential linear programming, after [48], are under study by the authors. 
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It is worth emphasizing that the crack patterns provided by Finite Elements with strong mortar keep 

a certain similarity to the ones obtained in the case of weak mortar. The main reason is that the 

failure mode is heavily controlled by the geometrical restraints. The purpose of using a strong 

mortar (i.e. a lime grout based injection during a possible rehabilitation intervention) is indeed not 

to change the structural behaviour of the wall, but to improve the ultimate load.  

Finally, it has to be underlined that the limit load associated to the heterogeneous model is equal to 

34.4% of the self-weight, whereas the limit load of the homogeneous model is equal to 31.6% of the 

self-weight. The results seem in reasonable agreement (less than 10% difference, see Table 5 ), with 

closer match between the original and the strengthened wall. It is also interesting to observe that the 

introduction of strong mortar significantly increases the limit load of the Alcaçova wall (almost four 

times). 

7. Conclusions 

The behaviour at collapse of one perimeter wall belonging to the Guimarães castle in Portugal has 

been investigated by means of a rigid-plastic homogenization procedure, accounting for the actual 

disposition of the blocks constituting the wall and the texture irregularity given by the variability of 

dimensions in the blocks. 

To determine such geometric variability, a detailed geometric survey has been conducted by means 

of the laser scanning technique, allowing for a precise characterization of dimensions and 

disposition of the blocks.  

Laser scanning technique was proved to be useful for the accurate and extensive geometric survey 

of large masonry structures, as the example of Guimaraes castle. Additionally, a novel procedure 

that avoids the tedious and costly data processing was developed, allowing automatic geometric 

extraction of masonry blocks. This achievement facilitates integrating such fast, massive and 

accurate geometric tool in structural engineering applications because an expert in geomatics is not 

required to manage the massive data. 
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After a simplification of the geometry and assuming mortar joints reduced to interfaces, 

homogenized masonry in- and out-of-plane strength domains have been evaluated on a number of 

different Representing Elements of Volume (RVEs) having different sizes and sampled on the walls 

of the castle. Strength domains have been obtained using a Finite Element (FE) limit analysis 

approach with a heterogeneous discretization of the RVEs. 

By means of such strength domains, a homogenized limit analysis has been carried out on the wall 

and results have been compared with those provided by a standard heterogeneous discretization of 

the domain. The comparison, in presence of both good and weak mortar joints, have proved a 

satisfactory reliability of the homogenization proposed performed on different RVEs with blocks 

having variable dimension. 
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APPENDIX A: FE limit analysis model 

To provide collapse loads for the RVEs reported in Figure 12 and Figure 13, a FE limit analysis 

code is adopted, which utilizes a triangular discretisation with discontinuities of the velocity field 

along the edges of adjacent triangles. At each node j , a horizontal velocity j
xu and a vertical 

velocity j
yu  are introduced. The resulting velocity field within a triangular element is linear, 

whereas the strain rate field is constant. Across the interfaces a linear velocity jump is assumed and 

therefore for each interface four unknowns are introduced ( [ ]Tuvuv 2211 ∆∆∆∆=∆u ) representing 

the normal ( jv∆ ) and tangential ( ju∆ ) velocity jumps with respect to the discontinuity direction 

evaluated at the nodes j =1 and j =2 of the interface. For any pair of nodes on the interface between 

two adjacent triangles ( ) ( )nm − , the tangential and normal velocity jumps can be written in terms of 

the Cartesian nodal velocities of elements ( ) ( )nm − , so that four linear equations in the form 

0uAuAuA =∆++ eqEneqEmeq
131211  can be written for each interface, where u∆  has been already 

defined, Emu  and Enu  are the 16x  vectors that collect the velocities of the elements ( )m  and ( )n  

respectively, eq
11A  and eq

12A  are 64x  matrices depending only on nodal coordinates of element ( )m  

and ( )n , respectively, and eq
13A  is a 44x  matrix depending only on coordinates of nodes 1 and 2. 

For continuum, three equality constraints representing the plastic flow in continuum (obeying an 

associated flow rule) are introduced for each element in the form: 
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( 6 ) 

where E
plε  is the plastic strain rate vector of element E , 0≥Eλ  is the plastic multiplier, CS  indicates 

a generic (non) linear failure surface for continuum and [ ]Tyx
C τσσ=Σ  is the plane-stress 

vector in continuum ( xσ : normal x -axis stress, yσ : normal y -axis stress, τ : tangential stress).  

Assuming that a linearization with m  planes of the failure surface in the form inCinCS bΣA ≤≡  is 

available, where inA  is a 3mx  matrix (each row corresponds to coefficients of one linearization 

plane) and inb  is the 1mx  vector of linearization planes right hand sides, the three linear equality 

constraints per element can be written in the form ( ) 0λAuA =+ ETinEeq


21 , where Eu  is the vector of 

element velocities, Eλ  is the 1mx  vector of plastic multiplier rates of the element (one for each 

plane of the linearized failure surface), and eq
21A  is a 63x  matrix depending only on nodal 

coordinates of the element. 

Analogously to the continuum case, one can assume that a linearized failure surface 

in
I

in
I

IS bΣA ≤≡  is available for the interfaces (which typically coincide with mortar joints reduced 

to interfaces or internal brick interfaces). Here [ ]Tτσ=Σ  collects the normal stress σ  on the 

interface and the shear action τ  in the interface direction, while the matrices in
IA  and in

Ib  have the 

same meaning as in the continuous case. 

For the particular problem at hand, further equalities constraints in the general matrix form: 

0uAuA =+ Ereq
jp

Epeq
jr  ( 7 ) 

must be applied in the numerical model for piers and spandrel in order to comply with particular 

boundary conditions specified. 
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After some elementary assemblage operations, a simple linear programming problem is obtained 

where the objective function is the total internal power: 

( ) ( ){ }
















≥
≥
=

+

0λ
0λ
bUA

λbλb

ass
I

ass
E

eqeq

ass
I

Tin
assI

ass
E

Tin
ass







thatsuch

min ,

 

( 8 ) 

where:  

- in
assb  and in

assI ,b  are the assembled right-hand sides of the inequalities, which determine the 

linearised failure surface of the material of the continuum and of the interfaces, respectively; 

- [ ]ass
I

assass
E λuλuU  ∆=  is the vector of global variables, which collects the vector of 

assembled nodal velocities ( u ), the vector of assembled element plastic multiplier rates ( ass
Eλ ), the 

vector of assembled velocity jumps on interfaces ( assu∆ ), and the vector of assembled interface 

plastic multiplier rates ( ass
Iλ ); 

- eqA  is the overall constraints matrix and collects velocity boundary conditions, relations between 

velocity jumps on interfaces and elements velocities, constraints for plastic flow in velocity 

discontinuities, constraints for plastic flow in continuum and ( 7 ) equalities. 
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9. Figures 
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Figure 1: Generic test-window on a irregular texture, anti-periodicity of the micro-stress field 
and periodicity of uper. 
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Figure 2. Guimarães castle. –a: Panoramic View. –b: Plan view. –c: 

Alcaçova wall: sector enclosed in the red box is considered in the 

numerical models. 
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Figure 3. Raw point cloud of two of the tower of the castle coloured with the attribute of 
intensity for each points. 
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Figure 4. Intensity image of Alcaçova wall (background) and one tower (front). 
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Figure 5. Edge detection process for a window sample in the walls: a) grey scaled intensity image; 

b) first derivatives for horizontal direction; c) first derivatives for vertical direction; d) peaks 
showing joints between masonry courses. BELEN: size of a b c d to reduce, increase font on 

subfigures and in english 
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Figure 6. –a: Identification of the stones inside Wall 1. Distribution of length (-b) and 

height (-c) of the stones. 
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Figure 7. –a: Identification of the stones inside Wall 2. 
Distribution of length (-b) and height (-c) of the 

stones. 
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Figure 8. –a: Identification of the stones inside the Tower Wall. Distribution of length (-b) and height (-c) 
of the stones. 
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Figure 9. –a: Identification of the stones inside the Alcaçova Wall. Distribution of length (-b) and 
height (-c) of the stones. 
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Figure 10. Distribution of length (l) and the height (h) of the stones in the all samples together. 
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Figure 11 Location of representative volume elements. –a: 3x3 RVEs. 
–b: 4x4 RVEs. –c: 5x5 RVEs. 
 



 42 

 

 
3x3-a 

 
3x3-b 

 
3x3-c 

 
4x4-a 

 
4x4-b 

 
4x4-c 

 
5x5-a 

 
5x5-b 

 
5x5-c 

Figure 12. 3x3, 4x4 and 5x5 RVE numerical models, taken from Alcaçova wall with a 
triangular mesh 
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Figure 13. Artificial RVE numerical model, taken from Alcaçova wall with a triangular 
mesh and periodic arrangement. 
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-a -b 
Figure 14. Typical in-plane homogenized failure surfaces for a 4x4 RVE at different orientations of the 

principal stress axes with respect to bed joint direction. –a: weak mortar joint. –b: strong mortar. 
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-a -b 
Figure 15. 3D representation of the in-plane failure surface obtained for a 4x4 RVE in presence 

of weak mortar. (-a) tension-tension region (-b) compression-compression region. 
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-a -b 
Figure 16. Comparison between in-plane homogenized failure surfaces obtained from 4x4 RVEs and 

artificial 4x4 RVEs at different orientations of the principal stress axes with respect to bed joint 
direction. –a: weak mortar joint. –b: strong mortar. 
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Figure 17. Comparison between the mean values of in-plane homogenized failure surfaces for each size 

of RVEs with ϑ=0º. –a: weak mortar joint. –b: strong mortar. 
 

  

-a -b 
Figure 18. Comparison between the mean values of in-plane homogenized failure surfaces for each size 

of RVEs with ϑ=22.5º –a: weak mortar joint. –b: strong mortar. 
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-a -b 
Figure 19. Comparison between the mean values of in-plane homogenized failure surfaces for each size 

of RVEs with ϑ=45º. –a: weak mortar joint. –b: strong mortar. 
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Figure 20. Qualitative comparison of mode failure between 4x4 RVE from masonry with strong 
mortar at orientations of the load equal to ϑ=0, 22.5º and 45° (respectively subfigures –a, -b and –c) 

and experimentally observed failure modes 
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Figure 21. Out-of-plane homogenized failure surfaces (-a: M11-M22, -b: M11-M12) for 4x4 
RVE of masonry with weak mortar at different vertical compressive loads. 
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Figure 22 3D representation of the out-of-plane failure surface obtained for a 4x4 RVE in presence of 
weak mortar. (-a) wall head (-b) wall foot (maximum vertical membrane compression). 
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Figure 23. Out-of-plane homogenized failure surfaces (-a: M11-M22, -b: M11-M12) for 4x4 
RVE of masonry with strong mortar at different vertical compressive loads. 
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Figure 24. Comparison between the mean values of out-of-plane homogenized failure surfaces for 
each RVE size. –a: RVE with weak mortar. –b: RVE with strong mortar 
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Figure 25. Comparison between RVEs and a simplified analytical formula performed on bed 
joint to predict vertical ultimate bending moment with increasing vertical load: -a: RVE with 

weak mortar. –b: RVE with strong mortar 
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Figure 26. Numerical homogenous (top, 173 elements) and 
heterogeneous (bottom, 1299 elements) models of Alcaçova wall. 
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Figure 27 . Mesh sensitivity analysis conducted on 

three discretizations with increasing number of 
elements. 
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Figure 28. Collapse mechanism of the heterogeneous (top) and homogeneous (bottom) model with 
weak mortar. 
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Figure 29. Collapse mechanism of the heterogeneous (top) and homogeneous (bottom) model 
with strong mortar. 
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 Laser 

scanning 
Photography 

Length Average [cm] 61 60 
CoV 51% 44% 

Height Average [cm] 41 34 
CoV 9% 23% 

Table 1. Laser scanning vs photography results for Alcáçova wall 
 

 

 

 

 

 

 

       Results 
 

 
  Wall  

Number of 
units 

Ratio 
Height 

/ 
Length 

h / l 

Length Height 

Average 
[cm] 

(CoV) 

Typical [cm] 
(Frequency) 

Range 
[cm] 

Height [cm] 
(CoV) 

Typical [cm] 
(Frequency) 

Range 
[cm] 

Wall 1 110 0.51 76 
(34%) 

70 
(27%) 40-170 39 

(20%) 
40 

(38%) 20-40 

Wall 2 110 0.63 70 
(27%) 

65 
(27%) 45-135 44 

(19%) 
40 

(25%) 25-60 

Tower 110 0.54 85 
(37%) 

65 
(34%) 50-180 46 

(17%) 
50 

(35%) 15-60 

Alcaçova 308 0.56 60 
(44%) 

45 
(25%) 25-210 34 

(23%) 
40 

(35%) 15-60 

Full 
Sample 

Weighted 
average 0.56 69 

(40%) 
55 / 65 

(21%) / (20%) 25-210 38 
(24%) 

40 
(35%) 15-60 

Table 2. Statistical parameters of wall samples from Guimarães castle 
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 Width (cm) Height (cm) 

Mean Stone 59.81 33.55 

3x3 179.43 100.65 

4x4. 239.24 134.2 

5x5 299.05 167.75 

Table 3. Geometry of the representative volume elements (RVE) 
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RVE Number of nodes Number of elements 
3x3-a 64 96 
3x3-b 41 59 
3x3-c 47 69 

3x3-periodic 38 54 
4x4-a 198 341 
4x4-b 63 97 
4x4-c 64 101 

4x4-periodic 59 91 
5x5-a 201 353 
5x5-b 91 148 
5x5-c 84 137 

5x5-periodic 80 130 
Table 4. Number of nodes and number of triangular elements of the 

representative volume elements (RVE) 
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Joints Heterogeneous model 

(% of self-weight) 

Homogenous model 

(% of self-weight) 

Accuracy of 

homogeneous model (%) 

Weak mortar 8.7 6.9 80 

Strong mortar 34.4 31.6 90 

Table 5. Comparison of limit loads from the heterogeneous model and homogeneous model. 
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