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Abstract: Scaffolds for cartilage tissue engineering should

promote both adequate biomechanical environment and

chondrogenic stimulation. Hyaluronic acid (HA) has been

used in cartilage engineering for its chondrogenic and

chondroprotective properties, nevertheless its mechanical

properties are limited. Influence of HA microstructure in

chondrocyte response has not been addressed yet. In this

work, polycaprolactone (PCL) scaffolds were modified using

HA following two coating strategies: coating in one step

(PCL-HA1s) yields a gel-like phase within the scaffold,

whereas a two-step reaction (PCL-HA2s) yields a thin HA

layer coating internal surfaces of PCL structure. Chondrocytes

were seeded in the scaffolds and cultured in dedifferentiating

conditions up to 3 weeks and analyzed using a total DNA

assay and sulfated glycosaminoglycan (sGAG) determination

assay; cell morphology and extracellular matrix secretion

were assessed by electron microscopy as well as immuno-

fluorescent imaging (collagen I, collagen II, aggrecan, CD44).

Cells proliferate in all samples and no cytotoxicity is observed.

PCL-HA1s shows higher sGAG production per cell than PCL

and PCL-HA2s at all times. Presence of hyaluronic acid pro-

motes qualitative expression of CD44 surface markers and

aggrecan (more visible in PCL-HA1s than PCL-HA2s), whereas

in dedifferentiating conditions, expression of CD44 and aggre-

can can hardly be detected in pure PCL scaffolds. Collagen

type II seems more prominent in PCL-HA2s; although PCL-

HA2s shows markers for COL II, aggrecan and CD44, quantita-

tive ECM production is not improved with respect to PCL. It is

thus likely that CD44 activation is not sufficient for explaining

the better response in PCL-HA1s. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Articular cartilage repair is a challenge for tissue engineer-
ing, as cartilage has a very limited capacity for repair, due
to the lack of vascularization, the low cellularity of the tis-
sue and the limited anabolic capacity of chondrocytes.1,2

Autologous chondrocyte implant has been implemented in
clinical practice for a decade, with promising results in

patients with single lesions.3 Shortcomings include the need
for extensive in vitro cell expansion, which induces dediffer-
entiation of chondrocytes,4–6 the difficulty to apply the tech-
nique to extensive defects, and the need of using a periosteal
flap to maintain the cell pellet in the defect. This technique
also implies complicated surgery procedures, and two opera-
tions are necessary, one to gather biopsy and another to

Additional Supporting Information may be found in the online version of this article.

Correspondence to: M. Lebourg; e-mail: myle1@upvnet.upv.es

Contract grant sponsor: Valencia Polytechnic University; contract grant number: PAID-06-10

Contract grant sponsor: Spanish Ministry of Science; contract grant number: MAT2010-21611-C03-01

Contract grant sponsors: CIBER-BBN; VI National R&D&i Plan 2008-2011; Iniciativa Ingenio 2010; Consolider Program; Instituto de Salud Carlos

III; European Regional Development Fund; Valencian Generality; Conselleria de Sanidad (Generalitat Valenciana)

518 VC 2012 WILEY PERIODICALS, INC.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55625223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


implant the cell pellets).7 Furthermore, the lack of mechani-
cal scaffolding may be a drawback due to the poor mechani-
cal properties of the cell pellet and could cause damage and
necrosis in the surrounding zone arising from stress concen-
tration. As a matter of fact, poor integration of repair tissue
with surrounding tissue remains a problem in existing carti-
lage therapies.8 Scaffolds are useful as carriers for implanted
cells and eventually allow matching the biomechanical prop-
erties of native cartilage. A wide range of materials have been
considered for articular cartilage tissue engineering, ranging
from natural polysaccharides such as agarose, chitosan, hyal-
uronic acid, and their derivatives, as well as synthetic materi-
als like poly(lactic-co-glycolic)acid,9 polylactic acid, polycap-
rolactone (PCL), and polyurethane. PCL scaffolds have been
successfully used for repairing chondral defects in a rabbit
model10; its elastic nature and low resorption rate allow for
long term mechanical withstanding of the repair tissue.
Nevertheless, PCL is a synthetic material that does not pro-
vide specific signals (e.g., biological interaction sites) that
may enhance chondrocyte phenotype maintenance and
proper extracellular matrix (ECM) secretion.11,12

On the other hand, hyaluronic acid (HA) is recognized by
chondrocytes surface receptor CD44 and has been shown to
have a positive influence on a large number of cellular pathways
including chondrocyte proliferation,13 ECM secretion,14 and phe-
notypic regulation.15,16 HA has also shown protective properties
in case of osteoarthritic condition15 and oxidative stress of chon-
drocytes,17 being a recognized treatment as injectable liquid, as
well in a gel state, after esterification, for implants (HyaffV

R

). The
HyaffV

R

clinical outcome is quite satisfying in young patients with
single lesions, nevertheless it does not seem to yield significant
improvement of patient wellbeing7 in more complicated cases.
Rapid degradation of such scaffolds and intrinsically poor me-
chanical properties could compromise the biomechanical envi-
ronment and be insufficient to obtain a whole regeneration of
complicated defects before the scaffolding material disappears.18

The combination of a macroporous scaffold made of a
polymer providing the desired mechanical properties and a
HA coating of the pore walls can take advantage of the bio-
active properties of HA while providing the seeded chondro-
cytes with an adequate biomechanical environment. In a
previous study, physical properties of polylactide scaffolds
coated with glutaraldehyde crosslinked HA were studied.19

Here we investigate hybrid scaffolds that show higher po-
rosity, better defined pore architecture and slower degradation
rate to evaluate their suitability for cartilage tissue engineering.

We hypothesize that the presence of HA will boost the per-
formance of human primary articular chondrocytes when
seeded in vitro in standard culture conditions and inhibit the
dedifferentiation that is observed when culturing cells with fetal
bovine serum in PCL scaffolds23; we further hypothesize that
the physical structure of hyaluronic acid in the hybrid scaffold
has an outstanding importance in modulating cell response.

MATERIALS AND METHODS

Scaffold preparation
Scaffolds were prepared by a mixed particle leaching/ freeze
extraction process. Low molecular weight polyethylmetha-

crylate (PEMA) beads (from Lucite International) with mean
diameter 200 lm were used as a porogen. Freeze extraction
is a modification of freeze drying as proposed by Wang and
coworkers.21 Here dioxane was used as a solvent for PCL.
The PCL solution (20%w/w in dioxane) was mixed with
PEMA beads in a weight ratio 1:1 and immediately frozen
in liquid nitrogen. Solvent extraction was performed in cold
ethanol at �20�C as described elsewhere20; ethanol was
changed three times. Subsequently particle leaching
was performed in ethanol at 40�C until no more porogen
was detected in the washing solvent.

Coating in one step
For the crosslinking in one step (PCL-HA1s), 2% hyaluronic
acid (from Streptococcus Equi, Sigma–Aldrich) was dis-
solved in 0.2M sodium hydroxide (Scharlau) aqueous solu-
tion under mild stirring.

The scaffolds were immersed in reaction vessels contain-
ing HA solution mixed with a 2:1 molar ratio of divinylsul-
fone (DVS). The vessels were then connected to a vacuum
pump for 2 min to force the viscous HA solution to pene-
trate into the scaffold’s pores, and allowed to react for 2 h
at room temperature before washing. Scaffolds were washed
with acetone/water mixture 50/50 and dried.

Coating in two steps
For the crosslinking in two steps (PCL-HA2s), 1% hyal-
uronic acid was dissolved in distilled water under mild stir-
ring at room temperature. During the first step, the scaf-
folds were immersed in the mentioned solution. The reactor
vessels were connected to a vacuum pump for 2 min to
force penetration of HA solution into the scaffold’s pores;
then excess HA outside of the sample was eliminated, and
samples were allowed to dry in an oven at 37�C for 1 day
and finally dried under vacuum. This process was repeated
three times. Then in a second step, crosslinking was per-
formed in acetone/water mix (80/20) at pH 12 to prevent
dissolution of HA but to permit some swelling and the nec-
essary deprotonation of hydroxyl moieties of HA,23 adding a
2:1 molar ratio of DVS with respect to reactive moieties. At
the end of the reaction, samples were washed with 80/20
(v/v) acetone/water mixture and allowed to dry at air.

Morphology
The morphology of the cross section of the coated scaffolds
was analyzed using scanning electron microscopy (SEM) to
analyze the shape of dry samples and CryoSEM to observe
the samples swollen in water.

For observation with SEM, samples were cryofractured
(to preserve the microstructure of the scaffolds) and
mounted on copper stubs with a graphite conductive tape,
and gold sputtered.

The microscope used was JEOL JSM6300 scanning elec-
tron microscope at an acceleration voltage of 15 kV.

For CryoSEM, wet samples were carefully wiped with fil-
ter paper, mounted in a clamp, ultrafrozen, and then cryo-
fractured; the sublimation temperature used was �50�C.
Finally samples were gold sputtered in the same cold
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vacuum chamber of a JEOL JSM6300 electron microscope
and observed at an acceleration tension of 15 kV.

Compression test
Compression tests were performed using a Microtest univer-
sal testing machine with 15N load cell on cylindrical sam-
ples of 6 mm diameter and around 5 mm in height. A dis-
placement ramp was applied at 1 mm min�1 until a force of
14N was reached. Elastic compressive modulus of the scaf-
fold (E) was determined as the slope of the linear elastic
zone of a stress–strain representation (see Supporting Infor-
mation Fig. 1). Methodology for curve interpretation and
modulus calculation was taken from American Society for
Testing and Materials D1621-04a standard ‘‘compressive
properties of rigid cellular plastics.’’ The results presented
are average values of five measurements; error bars corre-
spond to standard deviation.

Water absorption behavior
For water absorption analysis samples were immersed in
distilled water and allowed to take up water until equilib-
rium was reached (48 h). Samples were weighed dry (Wd)
and wet (Ws) and a ratio describing water uptake was cal-
culated according to Eq. (1):

Swelling ratio ¼ Ws

Wd
(1)

Five samples were measured for each group.

Thermogravimetric analysis
The thermogravimetric analysis was performed in a SDT
Q6000 thermogravimetric analyzer (TGA) from TA Instru-
ments to determine the amount of crosslinked HA present
in both types of coated scaffolds.

The samples were placed in a platinum pan and sub-
jected to a heating scan from 50 to 1000�C at 20�C min�1

under nitrogen atmosphere.
The mass was monitored as a function of the tempera-

ture; results were analyzed using the software TA analyzer
from the instrument. Degradation peaks of HA and PCL
were determined using bare crosslinked HA and PCL sam-
ples: using differential weight loss signal, onset and offset
temperatures of the first degradation peak associated to HA
at T ¼ 255�C were determined. From the weight scan of
pure HA, it has been determined that the weight loss at this
temperature corresponds to 35% of the total mass of HA.
Weight loss percentage between these temperatures was
determined, and corresponding HA weight in the sample
was calculated (see Supporting Information Fig. 2).

Cell culture
Prior to cell culture experiments, cylindrical samples of 6 �
5 mm2 were washed in phosphate saline buffer (PBS), then
sterilized in ethanol for 3 h at 4�C, washed several times in
PBS and placed in a multiwell tissue-culture polystyrene
plate with high glucose medium supplemented with 1%

penicillin/streptomycin and 10% fetal bovine serum (FBS)
to permit adsorption of serum proteins onto the scaffolds.

Human chondrocytes were harvested from a knee of a
patient undergoing arthroplasty (man, 71 years) after
informed consent following the guidelines of the ethical
committees of Universitat Politècnica and Clı́nica de la Salud
of Valencia. The cartilage was dissected from subchondral
bone, finely diced and then washed with supplemented 100
U penicillin, 100 lg streptomycin (Biological Industries)
Dulbecco’s modified Eagle’s medium (DMEM) (Gibco). For
chondrocyte isolation, finely diced cartilage was incubated
for 30 min with 0.5 mg mL�1 hyaluronidase (Sigma–
Aldrich) while shaking at 37�C, and then with 1 mg mL�1

pronase (Merck, VWR International SL) during 60 min in
the same conditions. Subsequently the cartilage pieces were
washed with supplemented DMEM and digested with 0.5
mg mL�1 of collagenase-IA (Sigma–Aldrich) in a shaking
water bath at 37�C overnight. The resulting cell suspension
was filtered through a 70-lm pore nylon filter (BD Bioscien-
ces) to remove tissue debris. Cells were centrifuged and
washed with DMEM supplemented with 10% FBS (Invitro-
gen SA). Finally, the cells were plated in tissue culture flasks
and amplified in a monolayer culture using T150 cm2 cul-
ture flasks until passage 2 for 10–12 days, in DMEM me-
dium with 4.5 g L�1 Glucose, enriched with 10% of FBS, 1%
penicillin/streptomycin, 1% of ascorbic acid, 1% of D-L
glutamine and 1% of L-pyruvate.

After trypsinization and cell counting following standard
techniques, �4 � 105 cells suspended in DMEM (50 lL
sample�1) were injected into the scaffolds with a syringe.
The cells were allowed to adhere for 30 min in the incuba-
tor at 37�C and 5% CO2 and then samples were put in new
wells that were completed with culture medium at 500 lL
well�1 (DMEM 4.5 g L�1 glucose, supplemented with 10%
FBS, 1% penicillin/streptomycin, 1% ascorbic acid, 1% D-L
glutamine and 1% L-pyruvate). Two scaffolds of each type
were left empty to be used as acellular controls for quanti-
tative biochemical tests.

The culture was led in static conditions in an incubator at
37�C and 5% CO2. The culture medium was changed every 2
days and samples were collected at 7, 14, and 21 days.

After being washed in Dulbecco phosphate saline buffer
(DPBS), samples were fixed in 3.7% paraformaldehyde
(Sigma–Aldrich) at 4�C for 1 h. Samples for quantitative bio-
chemical analysis were washed with DPBS and placed in
centrifuge microtubes containing milliQ-water (Millipore)
and stored in a �80�C freezer until analysis.

Immunofluorescent staining
For immunostaining, sample embedding and cutting was per-
formed as follows: samples cut in halves were first immersed
in a 30% sucrose solution overnight; then the scaffolds were
taken out, lightly wiped to remove excess solution, placed in
a mould with (OCT) optimum cutting temperature compound
(OCT, Tissue Tek) and frozen rapidly at �80�C. The embed-
ded scaffolds were cut longitudinally using the cryotome
Microm HM 500 at �30�C in 200-lm-thick sections, which
were then placed over treated microscope slides (StarFrost).
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Sections were washed gently with DPBS 1� two times to
eliminate the OCT. Then immunostaining was carried out fol-
lowing standard procedure. On the one side, staining for cell
morphology and presence of proteoglycan was achieved
using Phalloidin Bodipy FL (1/200, Invitrogen) for staining
of actin and mouse anti-human aggrecan (1/50, Invitrogen)
and Alexa 647 anti-mouse (1:400, Invitrogen) as a secondary
antibody. On the other hand, staining of collagen type I and II
was achieved using Rabbit a-human collagen I antibody
(1:50, Chemicon International) mixed with mouse a-human
collagen II antibody (1:100, Chemicon International) and
using Alexa 488 a-rabbit (1:400, Invitrogen) and Alexa 647
a-mouse (1:400, Invitrogen) as secondary antibodies. The
presence of CD 44 receptors at the end of culture time was
checked by staining with mouse anti-CD44 (1:200, Abcam)
and Alexa 488 a-mouse (1:400, Invitrogen). Primary antibod-
ies were incubated for 2 h, secondary antibodies and Phalloi-
din for 1 h. Finally, nuclei were stained with DAPI (0.2 lg
mL�1, Sigma–Aldrich), and mounted with Fluorsave Vecta-
shield mounting medium (Atom).

As a result of immunostaining, actin, collagen I, and
CD44 are stained green while aggrecans and collagen II are
stained red. Nuclei are stained blue.

Immunostained sections were observed in a Leica IM
500 confocal microscope; for each sample 12 stacks of 3-lm
each were observed (samples were observed up to a depth
of 30 lm).

Sulfated glycosaminoglycans content
The content of sulfated glycosaminoglycans (sGAG) was
determined using Blyscan assay kit (modified version of di-
methyl methylene blue assay) (Biocolor). In brief, samples
were digested enzymatically using proteinase K (Roche).
Thereafter, an aliquot of supernatant was reacted with Bly-
scan dye for 30 min protected from light on an orbital
shaker. sGAG-dye precipitate was obtained by centrifugation
and the resulting pellet was dissolved in 1 mL dissociation
reagent and incubated for 10 min in an orbital shaker.
Finally, samples were transferred to a 96-well-plate and ab-
sorbance was read in triplicate at 656 nm in a Victor micro-
plate reader (Perkin Elmer). The quantities of sGAG were
calculated from a calibration curve obtained with chondroi-
tin sulfate standard. For each sample type three samples

were assayed. Results presented are the mean value and
error bars corresponds to standard deviation.

Total deoxyribonucleic acid
The total deoxyribonucleic acid (DNA) present in the sam-
ples was determined using P7589 Quant-iT Picogreen
dsDNA assay kit (Invitrogen) following the supplier’s
instructions.

In brief, the samples were prepared as for sGAG deter-
mination (digestion with proteinase K) to free all DNA and
protect it from DNAases released from lysed cells. Six stand-
ard DNA solutions with known concentrations were pre-
pared for calibration. Aliquots of samples and standards
were mixed with Picogreen Working Solution and corre-
sponding quantity of assay Buffer. After reaction for 5 min
in the dark at room temperature, fluorescence was read on
a Victor microplate reader (Perkin Elmer) in triplicate. DNA
concentration was determined using the calibration curve.
For each sample type three samples were assayed. Results
presented are the mean value and error bars corresponds
to standard deviation.

RESULTS

Scaffold and coating morphology
As a result of the preparation process, scaffolds with high
porosity (86.6% as determined by the weight increase when
the pore structure is filled with ethanol22) and double pore
size distribution were obtained [Fig. 1(a)]. The macropores
are produced as a result of the leaching of porogen particles
out of the matrix, and their mean size is between 200 and
300 lm. Micropores are formed as a result of the solid–
liquid phase separation between dioxane and polycaprolac-
tone during the freezing process. As can be seen in Figure
1(a), the structure is highly interconnected so as to permit
colonization by cells and free diffusion of nutrients as well
as metabolism by-products. The coating techniques succeed
in producing two different coating morphologies. One step
filling and crosslinking of the scaffold pores produces a HA
gel phase that fills the macropores. When the swollen
hydrogel is frozen and water sublimated in the CryoSEM a
micropore structure is shown by this gel which is quite sim-
ilar to that of the pore walls of PCL scaffold. The arrows in
Figure 1(b) indicate the HA structure filling one of the

FIGURE 1. SEM picture of bare PCL–HA scaffold (a) and CryoSEM micrographs of HA-coated scaffolds previously swollen in water: PCL-HA1s

(b) and PCL-HA2s (c). While PCL-HA2s structure is left empty and only a thin coating is seen (see detail with white arrows on picture 1b where

the coating appears to hide micropore structure), PCL-HA1s is filled with a gel phase that surrounds the PCL scaffold (white arrows, 1a).
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macropores. After coating in two steps HA only covers the
pore walls, sometimes hiding the microporosity [white
arrows in Fig. 1(c)] while leaving the macropore space
empty.

Hyaluronic acid content and water uptake
As a result of thermogravimetric analysis, it was determined
that PCL-HA1s contained 4.6% 6 2.3% and PCL-HA2s
5.8% 6 2.8% hyaluronic acid by weight. The amount of hy-
aluronic acid is not significantly different depending on the
coating procedures. As can be seen in Figure 2, HA coating
leads to increased equilibrium water content, with a water
uptake of nearly 3.5 for both samples regardless of the coat-
ing type (3.6 6 0.4 for PCL-HA1s and 3.4 6 0.1 for PCL-
HA2s).

Compression properties
Compressive elastic modulus E of the samples is not signifi-
cantly influenced by the modification with HA as can be
seen in Figure 3, although PCL-HA1s have higher mean stiff-
ness, probably due to the filling of the pores. The only sig-
nificant difference in seen between wet PCL-HA1s and wet
PCL-HA2s. In general all wet samples have lower mean
moduli.

Immunofluorescent staining
In Figures 4 and 5, light microscopy pictures of the con-
struct slices (100 lm) have been combined with the immu-
nofluorescent pictures from confocal laser scanning micro-
scope to allow for simultaneous visualization of the cells
and the construct structure. Scaffold material appears as
black, pore space as gray; in PCL-HA1s samples, the HA
phase appears as translucid fibers that cross the pore space.
In Figure 4 constructs are marked for collagen I and II, in
Figure 5 for aggrecan and actin cytosqueleton. Cell distribu-
tion is different depending on the material type. Whereas in
bare PCL cells are very homogenously distributed, in PCL-
HA1s (and to a less extent in PCL-HA2s) cells tend to form
aggregates. In general, in HA containing samples, cells tend
to grow in three dimensions, whereas in bare PCL scaffold,
except in a few cases, cells are spread on the pore walls,

and grow in volume only after locally reaching confluency.
In PCL-HA1s, different areas of the sample cells show
diverse behavior, whereas in control samples and PCL-HA2s
the behavior is more homogenous. All samples show
markers of collagen I and II. For instance, in bare PCL colla-
gen I and II are localized in the same parts of the construct
and appear mostly intracellularly (Fig. 4). In HA-coated sam-
ples there are domains with predominance of either one
collagen type or the other, localized in different parts; in
general, collagen type II is predominant in the areas of high
cell density and cell aggregates, whereas collagen type I is
predominant in the cells that are directly spread on the
pore walls (also see Supporting Information Fig. 4). The
only exception to this behavior is seen in PCL-HA2s at 21
days, where collagen I and II appear in a homogenous man-
ner within the pore space. Most collagen is intracellular,
excepted for PCL-HA1s where some collagen deposition out-
side the cell is observed.

Developed actin cytoskeleton is seen for an overwhelm-
ing majority of cells in all constructs; cells are generally
spread on the pore surface or crossing the pore space;
nevertheless, in PCL-HA1s, nearby the spread cells on pore
walls, one can observe that in the cell clusters some cells
lack the actin stress fiber network and their presence is
only revealed by DAPI nucleus staining (see e.g., the two
cells at the center of the picture at day 7).

As can be seen in Figure 5, there is nearly no presence
of aggrecan in the PCL construct at any time. Aggrecan is
most marked in PCL-HA1s samples; in these samples, it
appears mainly in the cell aggregates although not every
cell cluster is marked for sGAG as can be seen for day 14
(right side of the picture). Only in these samples aggrecan
seems to appear out of the cells, while in PCL-HA2s, it is
mostly stained within the cell bodies or close to nucleus. In
some cases, the arrangement of the aggrecan as a sphere
surrounding the cell resembles a pericellular matrix (same
cells as mentioned before, day 7). In the case of the clusters
unfortunately the cell density leads to very high signal

FIGURE 3. Elastic compressive modulus (E) of the samples in dry and

wet state. Error bars represent standard deviation. (Statistically signifi-

cant differences are noted with * for p < 0.05).

FIGURE 2. Equilibrium water content in PCL and PCL–HA samples.

Error bars represent standard deviation.
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intensity, making interpretation difficult. Pictures at larger
scale are found in Supporting Information (Figs. 4 and 5).

As can be seen in Figure 6, staining for CD44 has very
low intensity in PCL samples at 21 days, with many cells
showing little or no expression of CD44. On the other hand,
there is staining for CD44 in PCL-HA1s and PCL-HA2s sam-
ples in most cells of the constructs. This shows a higher

CD44 expression in cells that were cultured in the presence
of hyaluronic acid.

Quantitative biochemical assays
The total DNA is always higher in bare PCL samples than in
HA modified samples regardless of the type of modification
(Fig. 7). To simplify the presentation of results, significant

FIGURE 5. Immunofluorescent staining for proteoglycan (red) and actin (green) (scale bar 100 lm). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

FIGURE 4. Composition of light microscopy and immunofluorescent staining for collagen I (green) and II (red) (scale bar 100 lm). The black

areas of the pictures correspond to the scaffold. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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differences are only pointed out between different materials
at the same time or between day 21 and day 7. There are
some clues pointing towards a low seeding efficiency in
PCL-HA scaffolds, particularly PCL-HA1s (Supporting Infor-
mation Fig. 6).

In the case of PCL and PCL-HA1s, cell number grows
with time, whereas in PCL-HA2s at 14 days there is a
decrease in cell number and then cell number increases
again at day 21 and becomes higher than in PCL-HA1s. All
samples can be described as biocompatible and supporting
cell adhesion and cell growth; no cytotoxicity due to DVS is
observed. The proliferation ratio between day 21 and day 7
is highest for PCL-HA2s (2.4 6 0.5), followed by PCL-HA1s
(1.9 6 1.7) (increase in cell number is not significant due
to high dispersion); the minor ratio is observed for PCL (1.7
6 0.6).

Sulfated glycosaminoglycan (sGAG) content in the con-
structs is presented in Figure 8. To simplify the presentation
of results, significant differences are only noticed between
different materials at the same time or between day 21 and
day 7. As can be seen, sGAG absolute content is higher in
PCL control samples than in other samples, (statistically sig-
nificant at day 14 with p < 0.05). Significant differences are
found between day 21 and 7 for both PCL and PCL-HA2s

samples (p < 0.05). Based on the observation that sGAG con-
tent follows roughly the tendency of DNA content in the
samples, we decided to compare the ratio of sGAG to DNA as
a qualification of the sGAG production per cell. Results
are shown in Figure 9. As can be seen, at all times the glycos-
aminoglycan production per cell is significantly higher
(p < 0.05) in PCL-HA1s than in bare PCL; sGAG content nor-
malized to cell number is not statistically different at day 21
when compared to day 7 in none of the samples, although an
increasing trend is seen in PCL-HA1s and decreasing trend
in other samples. PCL-HA2s shows a similar trend to PCL,
with no significant difference unless at day 14 where the
sGAG content is significantly lower than in PCL. At day 21
the most sGAG per cell is found in PCL-HA 1step samples,
with significant differences regarding PCL and PCL-HA2s
(p < 0.05); this difference is not due to decreasing cell num-
ber in PCL-HA1s sample, as mean DNA content in PCL-HA1s
samples increases with time as seen in Figure 7.

DISCUSSION

In this work we aimed to verify the hypothesis that modify-
ing PCL scaffolds with HA could improve the three-dimen-
sional substrates with respect to the proposed application,
that is, articular cartilage tissue engineering. The effect of

FIGURE 6. Inmunofluorescent staining for CD44 receptors (green) and nuclei (blue). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

FIGURE 7. DNA content in the cultures. Error bars represent standard

deviation. (Statistically significant differences are indicated by * for

p < 0.05).

FIGURE 8. sGAG content [total, (lg)]. Error bars represent standard

deviation. (Statistically significant differences are noted with ** for

p < 0.05).
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HA on chondrocyte behavior was tested in unfavorable con-
ditions where dedifferentiation is likely to occur due to the
use of fetal bovine serum20 (which is employed to favor cell
adhesion due to protein adsorption and to boost cell growth
due to the presence of growth factors)24 and to the low cell
densities used due to the use of human primary cell line.

As described in the results section, although both HA-
modified samples contains similar amounts of HA, the incor-
porated HA shows a different microstructure depending on
the methodology used, with homogenous crosslinking lead-
ing to a gel phase that fills the pores, whereas crosslinking
of HA in two steps (PCL-HA2s) leads to a thin coating on
the scaffolds’ pore walls. Both samples are more hydrophilic
than the bare PCL sample due to the presence of hyaluronic
acid. When the hydrophobic PCL scaffold was immersed in
liquid water, the swelling ratio was only around 1.4 (Fig. 2)
as high hydrophobicity and surface tension impedes water
penetration inside the scaffold, which can be a drawback
when implanted in vivo. HA coating improves wettability
and allows for water penetration inside the pore structure,
regardless of the coating strategy used. Nevertheless, as
seen by CryoSEM, microenvironment inside the hydrated
scaffold is different, with presence of a gel phase in PCL-
HA1s and thin coating on the wall in PCL-HA2s, low swel-
ling degree was observed in thin films made using the same
two-step procedure (see Supporting Information Fig. 3)
what explains that the HA coating in PCL-HA2s does not fill
the pores when swollen.

Mechanical properties of the scaffolds tested were similar
and show nearly no statistically significant differences. There
were initially some concerns about the effect of treatment
because of use of sodium hydroxide (which can cause a cleavage
of the ester bonds). As can be seen in Figure 3 there is no statis-
tically significant difference in the moduli in dry or wet state;
the effect of the treatment on PCL scaffolds mechanical proper-
ties is minimal and should not compromise the further use of
the scaffold as a chondral implant. In the wet state, modulus
decreases as described by other groups even when testing poly-
caprolactone based materials.25,26 Despite the high hydropho-
bicity, water diffusion inside the amorphous and crystalline part

of PCL is very fast,27 and may lower stiffness by decreasing
interchain and intrachain interaction due to electrostatic interac-
tion between water dipoles and carbonyl groups of PCL.

The elastic compressive moduli shown are in the range
of moduli described for human articular cartilage by Atha-
nasiou et al.28 (0.5–1.82 MPa) although other groups have
obtained higher values of 8–13.5 MPa29 depending on the
joint observed, when measuring with higher loading rate,
described as ‘‘instantaneous modulus.’’ In a previous work,
we implanted macroporous PCL scaffolds (with similar mod-
uli) in a rabbit knee model10; after 3 months, scaffolds
seeded with allogenic chondrocytes were invaded by neo-
formed tissue; indentation measurements showed that the
elastic modulus of the tissue–scaffold construct was the
same than that of native cartilage controls (and significantly
higher than pellet control). The values of the moduli meas-
ured here are similar and should grant adequate mechanical
properties in vivo if the pore structure is successfully
invaded by tissue. Higher initial modulus could be easily
reached by varying the PCL content in the solution during
the scaffold preparation (equilibrium modulus up to 4–5
MPa). Sample stiffness is an important factor in articular
cartilage tissue engineering as articular cartilage is sub-
jected to high dynamic compression loading ‘‘in vivo.’’ It has
been shown that cartilage cells change their secretion pro-
file30 when exposed to an excessive load: catabolic activity
becomes faster than anabolic activity, which provokes a loss
of proteoglycans,31 matrix degradation and consequently a
further decrease in mechanical properties. This usually
leads to a repair tissue with inferior biochemical and biome-
chanical properties.8 Matching rigidity of cartilage tissue
using only a hydrogel is very difficult, and moreover the
high chain density and network crosslinking necessary to
obtain such rigidities using hydrogels has been shown to in-
hibit ECM production.32 This type of structure (particularly
PCL-HA1s) is thus interesting as the polyester scaffolding
guarantees adequate macroscopic mechanical behavior,
yielding a rigidity similar to cartilage while the microenvir-
onment as sensed by the cells is a kind of dilute jelly, thus
favoring cell migration, ECM production and diffusion.

Cells adhered to the material and proliferated in all materi-
als. Seeding efficiency was lower in PCL–HA1s, which could be
related to the presence of gel phase inside the pores as seen in
Figure 1(b). This explains also the low densities found at day 7
in confocal microscopy; heterogeneous cell distribution may be
due to limited diffusion throughout the gel. HA may also be re-
sponsible for reduced initial adhesion and seeding efficiency
due to its hydrophilic character that does not permit non-spe-
cific adsorption of proteins.11 As shown in the confocal micros-
copy images, the first and obvious differences in chondrocyte
behavior is the cell arrangement within the scaffold. Whereas
in PCL scaffolds the cells tend to grow scattered on the pore
walls, in presence of hyaluronic acid cells are seen filling the
pore space, in case of PCL–HA1s with less homogeneous distri-
bution and cell clustering. It has been described in literature
that scaffolding materials, although presenting a 3D structure,
do not necessarily encourage 3D growth in vitro, and that the
behavior in scaffolds may be very similar to that of 2D cultures

FIGURE 9. sGAG content normalized with respect to total DNA (lg
lg�1). Error bars represent standard deviation. (Statistically significant

differences are noted with ** for p < 0.05).
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if at the cell’s scale, the pore wall appears as a flat surface.33

This fact has motivated the use of cell carrier together with
scaffolds,34 or secondary gel phases inside the pores,35 to get a
three-dimensional tissue growth as occurs in vivo mainly due
to the formation of a fibrin clot inside the implant. Here it
appears that the modification of PCL with a hydrogel, in this
case HA, can change this behavior, although it is not clear why.
Lower modulus of HA may allow for greater mobility of cells; it
is known that on materials with rigidity gradients, cells tend to
accumulate on the stiffer parts,36 and that focal adhesions are
strengthened by the increased rigidity.37 As a matter of fact, for-
mation of marked stress fibers in the actin cytoskeleton, which
is associated with dedifferentiated phenotype,38,39 is more
prominent in PCL control than in other samples. This difference
in growth mode may account for some of the effects observed
in the immunofluorescent marking for collagen I, II and aggre-
can. Another clue feature may be the activation of intracellular
pathways due to the binding of cells to hyaluronic acid through
CD44; as a matter of fact CD44 expression at the end of culture
time is higher in samples that contain HA, regardless of the
structure of HA in the samples (Fig. 6). High levels of CD44
expression have been described as a clue for increased chon-
drogenic capacity in chondrocytes subpopulations and high
expression of CD44 and integrin a3 was associated with more
GAG production per cell and more m-RNA of collagen type II.40

The formation of a pericellular matrix like coating
marked for aggrecan observed occasionally in PCL-HA1s
samples may be triggered by the interaction of hyaluronic
acid with CD44 and to the better retention of small proteo-
glycans due to constructive interaction with exogenous hyal-
uronic acid at specific binding sites.41 Both in PCL-HA1s
and PCL-HA2s, molecular weights between crosslinks are
far higher than the number of HA saccharides necessary for
CD44 binding (observed already with hexasaccharides).42

Nevertheless intracellular cascades that depend on CD44
may react in a different way upon binding; for instance clus-
tering of CD44 with other membrane components may be
hampered if CD 44 receptor is anchored to HA chain with
very low mobility and high stiffness, as may be the case in
PCL-HA2s. This may explain why there are scarce quantita-
tive differences observed between PCL-HA2s samples and
PCL controls despite the qualitative differences observed by
immunofluorescent staining. Another mechanism implied in
the different response in PCL-HA1s and PCL-HA2s could be
the influence of molecular crowding and of HA chain mobil-
ity on behavior, that is, ECM synthesis.43 It is also likely that
albeit due to restricted diffusion through the gel phase or
due to an enhancement in the specific interaction between
aggrecan and HA binding sites due to chain mobility sGAG
retention inside the construct is easier in PCL-HA1s. Higher
normalized sGAG content could be due to better retention
or to higher synthesis of sGAG; quantitative analysis of gene
expression or analysis of sGAG secreted in the medium
could help clarify this point in further studies.

CONCLUSIONS

Primary articular chondrocytes were cultured in dedifferen-
tiating conditions and the effect of two types of hyaluronic

acid coating on cell proliferation, cell morphology, sGAG syn-
thesis, ECM and cell markers was studied. Cells in PCL con-
trols show signs of dedifferentiation as reduced biosynthetic
capacity, low staining for collagen type II and aggrecan and
increased staining for collagen type I. In control samples the
cells grow stuck on the pores walls, cells show a fibroblastic
shape, and their behavior can be assimilated to 2D behavior.
In samples modified with HA, cell distribution is more het-
erogeneous and different cell subpopulations are found in
the construct, with the formation of cell clusters that
depending on localization or cell organization show either
positive markers for collagen type I or collagen type II and
aggrecan. In some zones behavior is similar to that observed
in PCL control (cells spread on pore wall), while in other
zones formation of cell clusters and three dimensional
growth is observed; in these zones there is more presence
of cartilage specific ECM like COL II and aggrecan. In both
HA containing samples, markers for CD44 are detected on
most cells whereas in pure PCL samples there is hardly any
presence of CD44. ECM production per cell is higher in PCL-
HA1s than in both PCL and PCL-HA2s samples.

All the mentioned results point towards a better pheno-
typic conservation in PCL-HA samples, with promising
results when using PCL-HA1s. Enhanced hydrophilicity of
the constructs and increased CD44 expression of chondro-
cytes in presence of HA shows that the strategy followed
could be useful for cartilage tissue engineering in a cell-free
approach if the increased hydrophilicity favors cell invasion
and the presence of HA permits to home CD44 positive
cells, which will be the subject of future works.
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