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Mathematical modelling of anaerobic digestion process has been used to give new insights

regarding dynamics of the long chain fatty acids (LCFA) inhibition. Previously published

experimental data, including batch tests with clay mineral bentonite additions, were used

for parameter identification. New kinetics were considered to describe the bio-physics of

the inhibitory process, including: i) adsorption of LCFA over granular biomass and

ii) specific LCFA substrate (saturated/unsaturated) and LCFA-degrading populations.

Furthermore, iii) a new variable was introduced to describe the state of damage of the

acetoclastic methanogens in order to account for the loss of cell-functionality (inhibition)

induced by the adsorbed LCFAs. The proposed model modifications are state compatible

and easy to be integrated into the International Water Association’s Anaerobic Digestion

Model N�1 (ADM1) framework. Practical identifiability of model parameters was assessed

with a global sensitivity analysis, while calibration and model structure validation were

performed on independent data sets. A reliable simulation of the LCFA-inhibition process

can be achieved, if the model includes the description of the adsorptive nature of the LCFAs

and the LCFA-damage over specific biomass. The importance of microbial population

structure (saturated/unsaturated LCFA-degraders) and the high sensitivity of acetoclastic

population to LCFA are evidenced, providing a plausible explanation of experimental based

hypothesis.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction described LCFA inhibitory effects over anaerobic biomass.
Long chain fatty acids (LCFAs) are the main intermediate by-

product of the lipid degradation process, and their accumu-

lation in anaerobic digesters has been related with problems

of sludge flotation, biomass washout and inhibition of the

microbial activity (Rinzema et al., 1994). The cell-membrane

seems to be the prime common target for most of the
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According to Kim and Gadd (2008), cell-membrane exposure to

high concentrations of LCFA promotes macromolecular

crowding and disruption of mechanisms such as proton-

motive-force, DNA-docking and ATP-chemosynthesis.

Impairment in nutrient uptake or inhibition of specific

enzyme activity was also reported (Desbois and Smith, 2010).

Pereira et al. (2004, 2005) have proven that the LCFA inhibition
.
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was reversible and also that the LCFA inhibitionwas related to

physical transport limitation effects. The irreversible cell-

damage, due to the adsorption of LCFA, was discarded after

this evidence and new technological perspectives emerged for

the high-rate anaerobic treatment of wastewater containing

lipids (Alves et al., 2009).

Several studies have discussed the addition of competing

adsorbents into systems treating grease and fats as a possible

strategy to limit LCFA inhibitory effects (Angelidaki et al.,

1999; Beccari et al., 1999; Nielsen and Ahring, 2006; Palatsi

et al., 2009). However, the dynamics of the solideliquid

adsorption process were not included in those studies and

approximations to the LCFA-inhibition process (ratio inhib-

itor/biomass) were considered only (Pereira et al., 2004; Palatsi

et al., 2010).

Up to day, Hwu et al. (1998) have proposed one of the most

detailed descriptions of the LCFA’s bio-sorption, degradation

and inhibition processes. The LCFA inhibitory process was

described based on a four-phase theoretical model. First, after

a LCFA-pulse or biomass exposure, the LCFA rapidly disap-

pears from the aqueous phase and is adsorbed onto the solid

phase. Because of the LCFA-toxicity effect, the methane

production is negligible during this phase. Second, depending

on the initial LCFA-pulse concentration, the LCFA-

concentration could increase in the aqueous phase, as

a consequence of desorption mediated by the initial methane

produced. Third, the LCFA-concentration decreases in the

aqueous phase as a consequence of the biological degradation

of the adsorbed LCFA. Finally, methane is ultimately recov-

ered once the remaining LCFA-adsorbed concentration is low.

Also, recent advances in molecular microbial ecology have

brought new insights on the specific microorganisms that are

involved in the ß-oxidation process and the syntrophic

methanogens interactions (Hatamoto et al., 2007; Sousa et al.,

2007). Thosemicroorganisms are not always abundant in non-

adapted systems and their dynamics are not easy to follow. In

this context, mathematical models are a valuable tool to be

used to interpret collected data and to test new hypotheses.

Despite the fact that LCFA-inhibition is well documented

and has a significant impact on the anaerobic digestion

process, this phenomenon has not been included still in the

ADM1 reference model (Batstone et al., 2002). In other devel-

oped models, LCFA inhibition is mainly modelled as

a non-competitive process on the lipolytic, acidogenic or

methanogenic activities (Angelidaki et al., 1999; Salminen

et al., 2000; Lokshina et al., 2003). The commonly used non-

competitive inhibition functions (Angelidaki et al., 1999;

Palatsi et al., 2010) implicitly assume that, after a LCFA-shock,

the time to restore cell-functionality is negligible. It has been

demonstrated that methanogens can adapt in several ways

the structure and dynamics of their damaged membranes

after an inhibitory effect (Valentine, 2007), but not immedi-

ately. Consequently, those classical model approximations

may result inappropriate to simulate heavily LCFA-inhibited

systems. Furthermore, the physical adsorption of LCFA

and its inhibitory effect, or the microbiological aspects of

LCFA-degradation, remain poorly characterized for modelling

purposes. To the best of our knowledge, a mathematical

model that includes adsorption-inhibition-degradation

processes remains still to be defined and tested.
This paper aims to propose a LCFA-inhibition sub-model

with the condition to be easily integrated into the ADM1-

model. This new approach tries to integrate all the previ-

ously reported knowledge about LCFA inhibitory process,

regarding the adsorptive nature and transport limitations of

LCFA, the new insights on microorganisms involved in

ß-oxidation process and the possible membrane damage

caused by LCFA exposure. Proposed model will be tested with

two independent data sets obtained in previous batch exper-

iments (Palatsi et al., 2012).
2. Material and methods

2.1. Experimental observations

Previously published experimental data were used for

parameter identification. The experimental set-up consisted

of several specific batch tests performed with two different

anaerobic granular sludges (sludge-A and sludge-B, or inde-

pendent data sets), including bentonite addition as a synthetic

adsorbent, and synthetic sodium oleate as substrate. The

experimental set-up and analytical methods are extensively

described in Palatsi et al. (2012). The experimental observa-

tions were grouped in three main data-sets, summarized as

follows:

Data set D1: LCFA-adsorption batch tests with chemically

inactivated biomass (sludge-A) and bentonite, monitoring the

time evolution of soluble-LCFA concentrations (LCFAl).

Data set D2: Methanogenic activity test (SMA) with sludge-

A (D2,A) and sludge-B (D2,B) with acetate (Ac) and hydrogen (H2)

as biogas formation substrates, monitoring the accumulated

methane production in vials head-space (CH4). In addition,

blank assays with sludge-A and sludge-B (vials with biomass

but without added substrates) were also monitored.

Data set D3: Batch-tests with increasing LCFA-

concentrations and specific batch-tests including prevent-

ing/recovering LCFA inhibition strategies, where bentonite

was added as an exogenous adsorbent. The experiments with

sludge-A (D3,A) included vials with bentonite addition after the

LCFA-pulse (TA vials). The experiments with sludge-B (D3,B)

included vials with a bentonite-LCFAmixed compound added

to the LCFA-free biomass (TB vials), to prevent inhibition.

Control vials with LCFA, but without bentonite, were also

considered for both tested biomass (CA and CB vials). Solid-

LCFA (LCFAs), liquid-LCFA (LCFAl), volatile fatty acids (VFA)

and methane production (CH4) measurements were adopted

for system monitoring.

2.2. Model development

The developed models were based on a simplification of the

anaerobic digestion process as described in the ADM1 model.

The same structure, nomenclature and units of the ADM1

model were used (Batstone et al., 2002). The first proposed

model, LCFA-M1, included the LCFA-adsorption process and

non-competitive inhibition functions. The second model,

LCFA-M2, also included a new variable called healthy-state that

considers the LCFA-inhibitory stageofmethanogenic biomass.

The models were implemented in MatLab (The Mathworks,

http://dx.doi.org/10.1016/j.watres.2012.12.007
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Table 1e Stoichiometricmatrix for the proposed LCFA-inhibitionmodels. Processes Pk, k[ 1, 2,., 15, are reported in Table
2.

State P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Sc18,l �1 �1

Sc18,s 1 (1 � Yfa)

(1 � bacebh2)

�1

Sc18,ben 1 �1

Sc16,l �1 �1

Sc16,s (1 � Yfa)

(1 � bacebh2)

1 (1 � Yfa)

(1 � bacebh2)

�1

Sc16,ben 1 �1

Sac,l (1 � Yfa)bac (1 � Yfa)bac (1 � Yfa)bac (1 � a)

(1 � Yfa)

�1 0.8 (1 � fxi)

Sh2,l (1 � Yfa)bh2 (1 � Yfa)bh2 (1 � Yfa)bh2 a (1 � Yfa) �1 0.2 (1 � fxi)

Sch4,l (1 � Yac) (1 � Yh2)

Xc18 Yfa Yfa �1

Xc16 Yfa Yfa �1

Xac Yac �1

Xh2 Yh2 �1

Xdec 1 1 1 1 �1

Xi fxi
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USA) within the Simulink Cmex-coded environment. The

stoichiometricmatrix and the process-associated kinetic rates

are indicated in Tables 1 and 2, respectively. A scheme of the

simplified anaerobic digestion model is presented in Fig. 1,

based on the following assumptions:

LCFA (Sfa), acetate (Sac), hydrogen (Sh2) and methane (Sch4)

were considered as the main model components, in order to

keep the structure of the model simple. Thus, Sac and Sh2 were

the only products of the ß-oxidation process of LCFA (P4 and P8
in Tables 1 and 2). No other particulate substrates such as

lipids (Xli), proteins (Xpr) and carbohydrates (Xch), or process

intermediates such as butyrate (Sbu), valerate (Sva) or propio-

nate (Spro) were considered, in accordance with the experi-

mental results (low detected values by Palatsi et al., 2012).
Table 2 e Processes Pk associated with the stoichiometric mat

k Process, Pk

1 Sc18,l adsorption over biomass

2 Sc18,l adsorption over bentonite

3 Sc18,ben biological desorption from bentonite

4 Sc18,s degradation

5 Sc16,l adsorption over biomass

6 Sc16,l adsorption over bentonite

7 Sc16,ben biological desorption from bentonite

8 Sc16,s degradation

9 Sac degradation

10 Sh2 degradation

11 Xc18 decay

12 Xc16 decay

13 Xac decay

14 Xh2 decay

15 Xdec slowly-biodegradable recirculation
Consequently, particulate decayed biomass Xdec was consid-

ered as storage for all minor intermediates and other possible

slowly biodegradable-substrates. Xdec was estimated for each

experimental design by the COD mass balance of the system.

It was assumed that 1 gCOD of Xdec is converted through

hydrolysis, considering that acidogenesis is a fast process and

hydrolysis the rate limiting step, to 0.56 gCOD of acetate (Sac),

0.14 gCOD of hydrogen (Sh2), and to 0.30 gCOD of inerts (Xi). A

first-order reaction was assumed for the hydrolysis process of

Xdec (P15, in Tables 1 and 2), being khyd the hydrolysis constant.

The total LCFA concentration, Sfa, was split into oleate, Sc18,

and palmitate, Sc16, since palmitate has been proposed to be

the main intermediate during the anaerobic degradation of

oleate (Lalman and Bagley, 2001; Pereira et al., 2002). Moreover,
rix of Table 1.

Rates, rk (kgCOD m�3 d�1)

kads;bio$Sc18;l$ðqsat;bio$Xbio � Sc18;sÞ � kdes;bio$Sc18;s
kads;ben$Sc18;l$ðqsat;ben$Xben � Sc18;benÞ � kdes;ben$Sc18;ben

km;fa$
Sc18;ben

KS;fa þ Sc18;ben
$Xc18$Ih2$IXfa

km;fa$
Sc18;bio

KS;fa þ Sc18;bio
$Xc18$Ih2$IXfa

kads;bio$Sc16;l$ðqsat;bio$Xbio � Sc16;sÞ � kdes;ben$Sc18;ben
kads;ben$Sc16;l$ðqsat;ben$Xben � Sc16;benÞ � kdes;ben$Sc16;ben

km;fa$
Sc16;ben

KS;fa þ Sc16;ben
$Xc16$Ih2$IXfa

km;fa$
Sc16;bio

KS;fa þ Sc16;bio
$Xc16$Ih2$IXfa

km;ac$
Sac

KS;ac þ Sac
$Xac$IXac

km;h2$
Sh2

KS;h2 þ Sh2
$Xh2

kdec$Xc18

kdec$Xc16

kdec$Xac

kdec$Xh2

khyd$Xdec$IXfa
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Fig. 1 e Process scheme of the assumed LCFA-adsorption

and degradation pathway with/without clay mineral

(bentonite) addition as an exogenous adsorbent. Processes

Pk are represented, where Xc18/Xc16 are the oleate/palmitate

degraders, Xac/Xh2 are the methanogens and Xdec is the

decayed biomass and the considered slowly bio-

degradable substrate. The LCFA-substrates are the oleate/

palmitate present in the liquid (Sc18,l/Sc16,l), adsorbed on

biomass (Sc18,bio/Sc16,bio) and on bentonite (Sc18,ben/Sc16,ben).
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during oleate degradation (P4) in the present experiments,

palmitate was detected accumulating onto biomass (Palatsi

et al., 2012). Consequently, oleate and palmitate can be

found free in liquid media (Sc18,l or Sc16,l) or adsorbed onto

biomass (Sc18,bio or Sc16,bio) and bentonite (Sc18,ben or Sc16,ben),

when this clay-mineral is added to themedia as an exogenous

adsorbent (Palatsi et al., 2012).

According to Hwu et al. (1998), the LCFA adsorption onto

anaerobic biomass (Sfa,s) is described as a pre-requisite for its

biological degradation (P1 and P5 in Tables 1 and 2). As previ-

ously stated, the LCFA-adsorption process over bentonite was

also considered (P2 and P6 in Tables 1 and 2). For simplicity,

desorption from solid to liquid was assumed only dependent

on the adsorbed LCFA-concentration, Sfa,s. The liquidesolid

transport dynamics were approximated by a Langmuir

adsorption isotherm kinetic (Mouneimne et al., 2004), which

was expressed by the following general process rate (equation

(1)), for the processes P1, P2, P5 and P6 (in Table 2):

rk ¼ kadsSfa;l

�
qsatXads � Sfa;s

�� kdesSfa;s; k ¼ 1;2;4; 6; (1)

where Sfa,s and Sfa,l are respectively the LCFA concentration in

the solid and the liquid phase, kads is the adsorption rate, kdes
is the desorption rate,Xads is the adsorbent concentration, and

qsat is the sorbate over adsorbent saturation coefficient. The

considered adsorbents (Xads) were bentonite (Xben) and gran-

ular sludge (Xbio). The notation of LCFA concentration adsor-

bed only on bentonite (or biomass) is Sfa,ben (or Sfa,bio), while

the LCFA adsorbed over all the present solids is written as Sfa,s.

Adsorption interaction effects between bentoniteebiomass

(XbioeXben) or between the multiple components present in

the liquidesolid system (XbioeXbeneSfa,s) were not considered

in the current adsorption-model. The concentration of the

overall biomass-adsorbent Xbio was considered time-variable,

since it is the sum of specific substrate-degraders (e.g.,Xfa, Xac,

Xh2, etc.), inerts (Xi) and the slowly-biodegradable matter

(Xdec). On the other hand, Xben was assumed constant when-

ever it was used.

Biological ß-oxidation process was also considered

(process P3 and P7 in Tables 1 and 2) in order to model the

transference of the adsorbed LCFA on bentonite (Sfa,ben) to

biomass (Sfa,bio). Exo-enzymatic activity was assumed to be

mediated by the LCFA-degraders, since they may grow on the

outermost shell of the biomass granule (Picioreanu et al.,

2005), in direct contact with the surface of bentonite.

Two different groups of specific LCFA-degrader microor-

ganisms (Xfa) were considered: i) the oleate-degraders, Xc18,

and ii) the palmitate-degraders, Xc16. Sousa et al. (2008)

reported that oleate/palmitate-degrading cultures showed

different microbial composition, concluding that the

community structure in a reactor might depend on the satu-

ration degree of the LCFA-feed and that not all the ß-oxidative

degraders have the ability to degrade both saturated (e.g., Sc16)

and unsaturated (e.g., Sc18) fatty acids.

A non-competitive inhibition function of LCFA over the

ß-oxidizing population (Xc18 or Xc16) was considered, defined

as (equation (2)):

IXfa ¼ KXfa

�
KXfa þ Sfa;bio

��1
; (2)

where Kxfa is the inhibitory concentration coefficient and

Sfa,bio is the LCFA adsorbed onto the biomass. It was assumed

that only Sfa,bio causes LCFA-inhibition, since other possible

LCFA-species such as Sfa,l or Sfa,ben are not involved in the

disruption of the cell-functionality. The non-competitive

LCFA-inhibition function Ixfa (equation (2)) was also consid-

ered as an inhibitory function for the hydrolysis process (P15 in

Table 2), as suggested by Angelidaki et al. (1999).

According to Hanaki et al. (1981), aceticlastic methanogens

(process P10 in Tables 1 and 2) are probably the most

LCFA-affected microorganisms. Thus, for the aceticlastic

population, a secondary non-competitive LCFA-inhibition

function was assumed (Salminen et al., 2000; Lokshina et al.,

2003), defined as (equation (3)):

IXac ¼ IXac;noncomp ¼ KXac

�
KXac þ Sfa;bio

��1
; (3)

where Kxac is the corresponding inhibitory concentration

coefficient. Here, the LCFA-inhibition function Ixac (equation

(3)) was used in the first proposed version of the LCFA-

inhibition model (LCFA-M1).

As an alternative to the standard LCFA-inhibition function

of equation (3), a second model for the LCFA-inhibition

process of the aceticlastic population (LCFA-M2) was

http://dx.doi.org/10.1016/j.watres.2012.12.007
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proposed. In LCFA-M2 a new variable was introduced, Hxac,

called healthy-state of the aceticlastic population (Xac), which is

defined with the following differential equation and an initial

condition, being Hxac ¼ 1 at t ¼ 0 if biomass has not been

previously in touch with LCFA (equation (4)):

dHXac

dt
¼ rmax$ð1�HXacÞ � Sfa;bio$HXac; HXac ¼ 1; t ¼ 0; (4)

where rmax is the maximum cell recovery rate. The healthy

state Hxac is defined within a finite range [0, 1]: i) if Hxac equals

one, the average functionality of the cell is then optimal

(methanogenic pathway is active); while ii) if Hxac equals zero

then the cell is severely damaged and the methanogenic

pathway is interrupted (diverted to other cell-maintenance/

recovery pathways). The cell-damage, Dxac, can be quantified

as Dxac ¼ 1 � Hxac. The rate of recovery depends on the level of

damage of the cell (first term on the right-hand side of equa-

tion (4)). If the cell is badly damaged, the recovery rate is then

maximal. The damage (second term on the right-hand side of

equation (4)) depends directly on the present value of Sfa,bio
and Hxac. If the LCFA-adsorbed concentration on the biomass

is high, then the damage to the cell is also high. However, if

Hxac is close to zero, no further damage is then possible. When

the healthy-state equals zero (Hxac ¼ 0) it does not mean that

biomass has reached a state of decay. In the present study, the

rate of decay of the biomass is independent of Hxac. It was

assumed that under extreme environmental pressure (high-

LCFA concentrations) the acetoclastic population becomes

resilient to LCFA-damages because of its possible biochemical

adaptation (Shin et al., 2003; Valentine, 2007) and its increased

effort to restore the cell functionality (i.e., increase of the

recovery rate term). Acetoclastic microorganisms are

assumed to switch from “survival-mode” to “methanogenic-

mode” only when its cell-functionality is restored to a given

level. However, the LCFA-inhibition function should be

a smooth function, since it is an averaged measure of the

overall acetoclastic population transition from the survival to

the normal functionality mode. Among many possible

switching smooth functions, we propose the simple power-

law function as the LCFA-inhibition function for the aceto-

clastic, defined as (equation (5)):

IXac ¼ IXac;healthy ¼ Hg
Xac; (5)

where g is the scaling exponent coefficient, which is restricted

over the interval [1, þN). Note that after a LCFA-shock, for

a value of g higher than 1, the recovery of the methanogenic

activity is fully re-activated only when the average cell-

damage is considerably reduced. Thus, the scaling exponent

coefficient g gives an idea of how “healthy” the acetoclastic

degraders should be in order to “switch” again to the “meth-

anogenic-mode”. Since Hxac is defined in the finite range [0, 1],

Ixac,healthy takes values in the finite range [0, 1].

Summarizing, the differences between LCFA-M1 and LCFA-

M2 are only in how the inhibition function Ixac is defined:

LCFA-M1 is characterized by Ixac,noncomp defined by equation

(3) (non-competitive inhibition), while LCFA-M2 is character-

ized by Ixac,healthy defined by equation (5) (inhibition expressed

as function of the healthy state variable).

Contrary to other proposed models (Palatsi et al., 2010), no

LCFA-inhibitory effect was considered for hydrogenotrophic
methanogens (process P9 in Table 1 and 2). This decision is

supported by experimental evidence from activity tests over

an LCFA-adsorbed (inhibited) biomass on vials fed with H2

(Pereira et al., 2005). These authors suggested that the diffu-

sion of H2, through the LCFA-layer, was faster than for other

substrates, because the low molecular weight. Thus, even if

a concentration of LCFA was adsorbed over the biomass, vials

fed with the H2-substrate immediately transformed this

substrate into methane.

The following non-competitive inhibition function over the

LCFA-degraders population by hydrogen accumulation was

assumed (equation (6))

Ih2 ¼ KI;h2

�
KI;h2 þ Sfa;bio

��1
; (6)

where KI,h2 is the corresponding inhibition constant, in order

to account for the effect of a possible high partial pressure of

hydrogen (Batstone et al., 2002).

2.3. Practical identification and global sensitivity
analysis

The practical identifiability of parameters of a given model

depends on the model-structure and on the evidence D

(available data) with which the model is compared. A

parameter’s practical identifiably can be precisely assessed,

within a global sensitivity analysis (SA), by studying how

model-parameters affect amisfit function, ‘J’. Performing a SA

of J involves the decomposition of its variance over the

parameter-space. Variance-based methods (Sobol’, 1976) are

well suited to account for the parameter interactions when

non-linear models are considered (Saltelli et al., 2010). A

variance-based main effect for a generic parameter

qi (i ¼ 1,.,k) can be written as (equation (7)).

Vqi

�
Eqwi

fJjqig
�
; (7)

where qi is the i-th parameter and qwi denotes the vector of all

parameters but qi. The meaning of the inner expectation

operator, E, is that the mean of J is taken, overall possible

values of qwi, while keeping qi fixed. The outer variance, V, is

taken overall possible values of qi. When the main effect is

normalized by the unconditional variance, V(J ), we obtain the

associated sensitivity measure (main effect index, Si) written

as equation (8), according to Saltelli et al. (2010):

Si ¼
Vqi

�
Eqwi

fJjqig
�

VðJÞ : (8)

In a similar way, the first-order interaction effect index (Si,j)

can be written as (equation (9)):

Si;j ¼
Vqi;j

�
Eqwi;j

�
J
��qi;j

��

VðJÞ : (9)

Another popular variance based measure is the total effect

index (STi), defined as (equation (10))

STi ¼
Eqwi

�
Vqi

fJjqwig
�

VðJÞ ¼ 1� Vqwi

�
Eqi

fJjqwig
�

VðJÞ ; (10)

which measures the first and higher order effects (interac-

tions) of the parameter qi. In probabilistic SA, the parameter q

is a stochastic variable characterized by a distribution g(q) that

http://dx.doi.org/10.1016/j.watres.2012.12.007
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describes our prior assumptions over q. In the present work,

two types of uncertainty parameter distributions g(q), with its

respective parameters a and b, were used as needed:

a uniform distribution, Unif(a,b), and a normal distribution,

Norm(a,b2). When g(qi) was of an uniform-type, during model-

calibration (i.e., least-square function J minimization), the

parameter qi was constrained over a finite range interval given

the relative uniform parameter interval [ai,bi], whilst when it

was of a normal-type, q was constraint positive with a six-

sigma (i.e. 6 � bi) variation around its location parameter, ai.

In the present study, a sum-of-squares misfit function J(q;

D) was assumed. Weights relative to the number of samples

and measurement-errors were not applied. Given that the

number of CH4 samples was very high in relation to other

measurements (e.g., Ac, LCFAs and LCFAl) the fit to the

methane production samples was implicitly prioritized. The

SA was performed by a Bayesian sensitivity analysis tool for

estimating the main, first-order and total effect indexes

(Oakley and O’Hagan, 2004).

In order to give a quantitative estimation of parameter

uncertainty, the parameter estimation error covariance

matrix (Dochain and Vanrolleghem, 2001) was numerically

approximated, from which confidence intervals (CI) were

estimated and the Student statistical significance t-test were

performed for Kxfa, Kxac, rmax, g, Xc18 and Xc16, since those

parameters are the most relevant in our discussion. The

commonly used assumption of normally distributed and

independent measurement errors was assumed.

2.4. Sequential model calibration

The model-parameters vector q was estimated by least-

squares (LS-estimates) using a “scatter-search” global opti-

mization routine (Rodriguez-Fernandez et al., 2006). Since

many different data sets were available (data set D1, D2,A, D2,B,

D3,A and D3,B), the calibrations of the proposed models were

performed in a sequential mode as explained below:

2.4.1. LCFA-M1 model

Step 1. Data set D1 was used to determine the LS-estimate

q1 ¼ [kads, qsat, kdis] ð¼ ½q11; q12; q13�Þ for the LCFA-adsorption

model of equation (1), since the experimental design was

such that the adsorption process was independent from the

biological process (inactivated biomass). The relative SA

indices for q1 were obtained conditional to a uniform distribu-

tion g(q1) where the i-th parameter was assumed independent.

Step 2. Data set D2 was used to estimate the initial meth-

anogenic populations (Xac and Xh2), the initial concentration of

decayed biomass (initial Xdec), and the first-order hydrolysis

constant (khyd) for sludge-A and sludge-B. Nominal values for

the remaining model parameters (km,j and KS,j) dsee sup-

porting information Table Ad were assumed according to

Rosen and Jeppsson (2006). The parameter vector q2 ¼ [Xdec,

Xac,Xh2, khyd] was constrained over a finite range interval given

by an assigned g(q2). Sensitivity indices were also calculated.

Since the SMA assays were performed without LCFA in the

vials, the parameters associated with the LCFA-inhibition
process (e.g., Kxfa, Kxac, Xc18 and Xc16) cannot influence the

misfit function J during this step.

Step 3. The SA was performed over data set D3,A and D3,B in

order to evaluate their relative quality for the estimation of

q3,M1 ¼ [Kxfa, Kxac] and q4,M1 ¼ [Xc18, Xc16]. The higher-

informative data set was used to calibrate q3,M1 and q4,M1

Step 4. The parameter vector q3,M1, estimated within the

higher-informative data set (Step 3), was used to decrease the

under-determination of the lower-informative calibration

scenario, that is, the SA was run in order to assess the

information-gain. The LCFA-degrader initial concentration

parameter vector q4,M1 was estimated within the improved

calibration scenario for the lower-informative data set. The

idea was that the high-informative data set was used to

calibrate the model, while the lower-informative data set was

used to “semi-validate” the structure of the proposed model.

When SAwas performed over one sub-models at a time, it was

possible to overlook interactions among parameters in

different sub-models (type II error, i.e. assessing as non-

important an important parameter).

2.4.2. LCFA-M2 model
The same sequential calibration mode was performed for the

second proposed model LCFA-M2, with the sole difference

that the parameter vectors q3,M2 ¼ [Kxfa rmax g] and q4,M2 ¼ [Xc18

Xc16] were calibrated only for the higher-informative data set

obtained in Step 3.
3. Results and discussion

3.1. Initial parameter estimation

The experimental design was such that data sets D1 and D2

were independent from the biological LCFA degradation-

inhibition process (focus of the present study), or indepen-

dent from any included ADM1modelmodifications (LCFA-M1/

LCFA-M2). Consequently, the calibration of q1 and q2 can be

performed in a batch-mode and their values can be used in

further data sets study. LS-estimates and the sensitivity

indices for parameter vectors q1 and q2 are summarized in

supporting information (Table B and C, respectively).

From adsorption/desorption estimated parameters (Table

B, in supporting information), it can be observed that the

saturation coefficient (qsat) for bentonite is higher than for

inactivated biomass, and of the same order of magnitude of

those estimated by Palatsi et al. (2012) fitting a Langmuir

isotherm model. Therefore, bentonite seems to be a better

adsorbent media than inactivated biomass, although with

estimated saturation coefficients with wide CIs. Few conclu-

sions can be obtained from the estimated adsorption/

desorption rate coefficients (kads and kdes respectively)

according to the sensitivity analysis results. Although the

obtained values are in accordance with other studies

(Mouneimne et al., 2004), it appears that there is not enough

data-information in order to accurately estimate the values of

kads and kdes, as a result of the comparison of main and total

effect indexes, Si and STi, and the wide CIs obtained in Table B.

http://dx.doi.org/10.1016/j.watres.2012.12.007
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Although those limitations, the effect of this under-

determination over further modelling (data sets D3) could be

considered negligible over LCFA degradation rates, since

physical adsorption-desorption process is very fast if

compared with the biological degradation, but important to

explain the bentonite addition effect.

Single methanogenic activity tests with acetate and

hydrogen (data set D2), including controls, are not providing

enough data for q2 parameter estimation, since estimated

initial population concentrations (Xi) are fully correlated with

process coefficients (km,i and KS,i). The problem of under-

determination was reduced by assuming the values of the

ADM1’s maximum uptake rates and the half saturation

constants of the involved anaerobic biomass populations

(Rosen and Jeppsson, 2006), as reported in the supporting

information (Table A). Resulting sensitivity indexes and LS-

estimates for parameter vector q2 are also summarized in

the supporting information section (Table C). As expected,

with the imposed assumptions, the main effect index, Si,

explains almost all the variance of the misfit function J, which

implies that the parameter vector q2 can be accurately deter-

mined. Estimated initial biomass concentration in SMA tests

for sludge-A was slightly higher than for sludge-B (see sup-

porting information, Table C). Contrarily, the residual slowly-

biodegradable organic-matter, Xdec, is significantly lower for

sludge-A than for sludge-B (see supporting information, Table

C), according to its different origin and storage conditions,

that is, stored or fresh granules obtained from running

brewery or fruit juice industry UASB reactors, respectively

(Palatsi et al., 2012).

3.2. Data set selection for LCFA-M1 calibration

The relative sensitivity analysis indices (Si and STi) for

parameters Kxfa, Kxac, Xc18 and Xc16 were reported in Table 3.

SA indices are conditional on their relative data sets D3,A and

D3,B. Ratto et al. (2001) proposed general guidelines to assess

the practical identifiability of model-parameters: i) parame-

ters with a high main effect (high Si) affect J singularly, irre-

spective of interactions and thus can be considered precisely

estimated; ii) parameterswith a smallmain (Si) and total effect

(STi) have a negligible effect over J and thus cannot be esti-

mated precisely; iii) parameters with a small main effect (Si)

but high total effect (STi) mainly affect J through interactions.

The main and the interaction effects respectively explain

91.6% and 92.5% of the total misfit-function variance for data
Table 3 e Sensitivity indices of parameter vectors q3,M1

and q4,M1 for sludge-A and sludge-B.

Parameter Data set g(q) Si STi

Kxfa (kgCOD m�3) D3,A Unif [1e-4, 2] 38.4 53.8

Kxac (kgCOD m�3) D3,A Unif [1e-4, 2] 1.4 9.2

Xc18 (kgCOD m�3) D3,A Unif [1e-4, 5] 18.5 29.4

Xc16 (kgCOD m�3) D3,A Unif [1e-4, 5] 24.6 35.1

Kxfa (kgCOD m�3) D3,B Unif [1e-4, 2] 35.4 71.8

Kxac (kgCOD m�3) D3,B Unif [1e-4, 2] 0.2 2.8

Xc18 (kgCOD m�3) D3,B Unif [1e-4, 5] 11.8 27.9

Xc16 (kgCOD m�3) D3,B Unif [1e-4, 5] 15.0 43.2
set D3,A and D3,B. The remaining variance is explained by

higher-order interactions of parameters. We observe that the

main effect indices (Si) relative to the parameter vector q3,M1

are lower for data set D3,B than for data set D3,A. It was also

observed that for almost all the parameters the difference

between Si and STi was consistently higher for data set D3,B

than for data set D3,A, which implies that for data set D3,B the

interaction effects between parameters are stronger than for

data set D3,A. Thus, given the above guidelines, we concluded

that data set D3,A is more informative than data set D3,B and,

therefore, the data set D3,A was used for the estimation of

parameters associated with the LCFA-inhibition process Kxfa

and Kxac. The parameter vector q3,M1 estimated with data set

D3,B can be considered unidentifiable, but still important in

order to correctly fit data, since its total effect index is not

negligible. From the above SA-results, it was decided to use

the experimental design of sludge-A, in order to estimate the

parameter vector q3,M1 for the LCFA-M1 model. Here, the

discussion is limited by the model simulation outcomes and

by the goodness of the fit, since data set D3,A dand D3,Bd was

presented and discussed in detail in Palatsi et al. (2012).

3.3. LCFA-M1 model calibration. Sludge-A

Fig. 2 shows the simulation of the liquidesolid LCFA phases,

the Ac concentrations and the CH4 production for the vials

with bentonite addition TA (dash lines) and the control vial CA

(continuous lines). The goodness of the fit is quantified within

the root-mean squared-error (RMSE) statistic. Simulation

results of the batch experiments with an increasing oleate

concentration (also included in data set D3,A) are reported in

the supporting information, Figure A. The LS-estimated

parameters and the CIs are summarized in Table 4. The per-

formed Student’s t-test indicates that parameters are signifi-

cant in the model with a probability higher than 99%

It can be observed, from Fig. 2, that the oleate concentra-

tion in the liquid (C18l) is reasonably well described by the

adsorption model (i.e., Sc18,l model outcomes). The adsorption

process was very fast when compared with the biological-

mediated process, as reported by Hwu et al. (1998). The

sampling frequency of the measurements was insufficient to

follow the fast-adsorption dynamics at the beginning of the

experiment. The uncertainty of the adsorption-parameter

vector q1 can only slightly influence the misfit function

value. Note that the estimation of parameter vector q2 can be

achieved with great accuracy also. Thus, we expect that the

SA performed over parameter vectors q3 and q4 should lead to

a negligible type II error.

According to Fig. 2,the model was able to reproduce an

accumulation of oleate on the solid phase (C18s). Oleate

degradation was followed by a remarkable palmitate accu-

mulation in the solid phase (C16s). Pereira et al. (2002) also

identified palmitate as key intermediate species during oleate

degradation in not-adapted systems. The simulated palmitate

concentrations of LCFA-M1 were almost entirely found

adsorbed onto biomass (Sc16,s z Sc16,ben since Sc16,ben z 0),

confirming observations of granules, performed under the

microscope, on day 10 (Palatsi et al., 2012). According to the

model simulation of LCFA-M1 for strategy TA and control CA, it

was observed that the C16bio concentration time evolution

http://dx.doi.org/10.1016/j.watres.2012.12.007
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Fig. 2 e Calibration of the LCFA-M1 model with Sludge-A (data set D3,A). The bentonite addition (TA) model-outcome (dash

line) and observations (cross dots) are compared with the control-experiment (CA) model-outcome (continuous line) and

observations (circle dots).
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was approximately the same. This evidenced that the strategy

tested in TA vials (bentonite addition after LCFA pulse) was not

efficient in LCFA-inhibition prevention.

The main problem arising with the LCFA-M1 model was

the poor data-fit of the accumulation process of C16s (see

Fig. 2). In fact, the modelled degradation of C16s suffered

a delay of almost 10 days (i.e., approximately from day 25 to

day 35) if compared with experimental data. Note that the

misfit function favours the fit of the CH4 measurements,

according to more available data. Consequently, in order to

properly fit the CH4 measurements, the LCFA-M1 model arti-

ficially extends the LCFA-inhibition effect with a larger C16bio
accumulation. The problem is that the inhibition function for

the acetoclastic population Ixac (equation (3)) depends directly

on the LCFAs concentration present in the system.

It can be noted from Fig. 2 that residuals are quite auto-

correlated because of the model-structure limitation of

LCFA-M1. Since our error-model does not account for auto-

correlated errors, the estimated CIs tend to be under-

estimated. This problem is independent of the inferential

procedure used. In this case, future work is necessary in order

to build a suitable error-model if a better quantitative
Table 4 e . LS-estimates and CIs of parameter vectors
q3,M1 and q4,M1 for sludge-A (i.e. data set D3,A).

Parameter LS-value CI-95%

Kxfa (kgCOD m�3) 0.324 �0.245

Kxac (kgCOD m�3) 0.045 �0.010

Xc18 (kgCOD m�3) 0.496 �0.089

Xc16 (kgCOD m�3) 0.020 �0.010
estimation of parameter uncertainty is required. Despite

the model-structure limitation of LCFA-M1, it can be

concluded that it is still capable to reproduce the main trends

of the system reasonably well. The LS-estimate for the

LCFA-inhibition parameter of acidogenic-degraders, Kxfa,

was of 0.324 kgCOD m�3 (Table 4), whilst the LCFA-inhibition

parameter of acetoclastic-degraders, Kxac, was of

0.045 kgCOD m�3. These results suggest that the acidogenic

populationwasmore sensitive to the LCFA-inhibition than the

acetogenic population, in accordance with previous reports

(Salminen et al., 2000; Lokshina et al., 2003; Palatsi et al., 2010).

Also, according to the obtained model parameters, the initial

LCFA-degraders structure was dominated by oleate-degraders

Xc18, creating a potential condition for a palmitate-

accumulation which may lead to a long lasting LCFA inhibi-

tion of the system.

3.4. LCFA-M1 model structure semi-validation. Sludge-B

Should the two data sets D3,A and D3,B be obtained within the

same sludge or biomass then a model validation would be

possible. Since this is not the case, the LS-estimates ofXc18 and

Xc16 for sludge-A cannot be used to validate the model over

sludge-B data. However, we will use the improper name of

“semi-validation” to refer the scenario where we calibrate

q4,M1 for sludge-B, conditional on the parameter vector q3,M1,

which was calibrated for sludge-A (data set D3,A). Hence,

a strong assumption stating that for sludges of different

origins the LCFA-inhibition effect depends only on the

LCFA-population structure distribution was made, since the

LCFA-resilience (Kxfa and Kxac) of the biomass is approximately

constant.

http://dx.doi.org/10.1016/j.watres.2012.12.007
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Table 5 e Sensitivity indices, LS-estimates and CIs of parameter vectors q3,M1 and q4,M1 for sludge-B (i.e. data set D3,B). An
informative SA scenario is considered, where parameter vector q3,M1 is known (Table 4 values adopted), with a low degree
of uncertainty, and modelled with a normal distribution g(q3,M1).

Parameter g(q) Si STi LS-value CI-95%

Kxfa (kgCOD m�3) Norm (0.324, 0.0232) 1.1 7.9 0.324 e

Kxac (kgCOD m�3) Norm (0.045, 0.0062) 0.0 0.0 0.045 e

Xc18 (kgCOD m�3) Unif [1e-4, 5] 48.6 67.7 0.067 �0.002

Xc16 (kgCOD m�3) Unif [1e-4, 5] 29.1 49.5 0.242 �0.019
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Besides from performing the semi-validation of LCFA-M1,

the lack of information of data set D3,B (sludge-B) can be

improved when a perfect knowledge over parameter vector

q3,M1 is assumed. Since the sensitivity indices relative to q3,M1

would be zero for this perfect-knowledge, SA-scenario, a small

amount of uncertainty was added to q3,M1. The uncertainty of

q3,M1 was modelled within a normal distribution. Table 5

summarizes the repeated SA for sludge-B observations and

the corresponding CI for the LS-estimates. The Student’s t-test

indicates the high significance of the estimated parameters,

with a probability higher than 99%. It can be observed that the

variance of the misfit function was mainly explained within

the initial concentration of the LCFA-degraders (Xc18 and Xc16).

Likewise, the Si index improves (Table 5), while the Kxfa

interaction first-order effect with Xc18 and Xc16 decreases to

just 2.9% (not shown in Table 5). If the values of Si relative to

data set D3,B, are compared between Tables 3 and 5, it can be

observed that the estimation-precision of parameters Xc18 and

Xc16 was improved, when the a-priori information about Kxfa

and Kxac rules out unrealistic possibilities. The model-fit to

data of LCFA-M1 for the semi-validation scenario (TB and CB

vials of D3,B) is represented in Fig. 3, while model-fit results of
Fig. 3 e Semi-validation of the LCFA-M1 model with Sludge-B (

(dash line) and observations (cross dots) are compared with the

and observations (circle dots).
LCFA-batch assays at increasing oleate concentrations are

presented in the supporting information (Figure B).

Similarly as for sludge-A, the adsorption model cannot be

evaluated because of the low sampling frequency; the low

RMSE values for C18l and C16l should be considered with

reserve. The simulated LCFAs, Sfa,s, was equivalent to the

LCFA-bentonite adsorbed concentration, Sfa,ben, since

bentonite was mixed with the LCFA-inhibitory concentration

before its addition to the anaerobic system (Palatsi et al., 2012).

If the control experiment (CB) is considered, the simulation

reproduces the C18s and C16s observations quite well, whilst if

we consider the prevention-strategy experiment (TB), the

model underestimates these data. Moreover, a relevant misfit

for Ac data can be observed if the prevention-strategy exper-

iment (TB) is considered: the Ac accumulation reproduced

within the LCFA-M1 model was not detected by the

measurements. The misfit of C18s and Ac were necessary in

order to correctly reproduce the methane production

measurements. Since the methane measurements were of

high-fidelity (more available data, including batch assays with

increasing oleate concentrations, D3) the experimental results

of C18s and Ac at day 7 can reasonably be suspected of being
data set D3,B). The bentonite addition (TB) model-outcome

control-experiment (CB) model-outcome (continuous line)
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erroneous (from COD balance). Note that C18s and Ac

measurements were conducted within a vial sacrifice (Palatsi

et al., 2012) and thus, some experimental results might

possibly be considered as outliers.

Considering sludge-B’s informative scenario (Table 5), the

LS-estimates for the initial concentration of Xc18 and Xc16 were

0.067 kgCODm�3 and 0.242 kgCODm�3, respectively. The high

concentration of palmitate-degraders population can explain

in part the absence of a palmitate accumulation, as observed

for sludge-A. During the molecular profiling of biomass A and

B, by means of PCR-DGGE techniques (Palatsi et al., 2012), it

was not possible to confirm this hypothesis. The results of

process modelling now provide a new insight into the

importance of the specific microbial structure of ß-oxidative

organisms. Note that the estimated Xdec concentration for

sludge-B was higher than the Xdec for sludge-A (supporting

information Table C). This fact was previously pointed out by

Pereira et al. (2004) and Palatsi et al. (2010) as a possible factor

influencing the LCFA-degradation dynamics, since the pres-

ence of other biodegradable substrates (considered in Xdec

pull)may enhance LCFA-degradation rates (Kuang et al., 2006).

The LCFA-M1 model was able to properly reproduce the

main system trends also for sludge-B, confirming the adsorp-

tive nature of the LCFA inhibitory process with the simulated

differences between TB and CB vials (Fig. 3). The ADM1 model,

not considering the adsorptive nature of LCFA inhibition, was

not able to simulate those differences. These results also

confirmed the appropriateness and the bio-physical basis of

using bentonite as a synthetic adsorbent (additive) to interfere

in the LCFA-adsorption- inhibition process (Palatsi et al., 2012).

Moreover, under a slight LCFA-inhibition of the system, the

LCFA-M1 model seems to confirm the hypothesis that the

acidogenic and the acetoclastic LCFA-inhibition coefficients

are invariant within different sludges. However, and in order

to predict the evolution of an anaerobic system, the relative

LCFA-degraders population structure distribution should be

known, or estimated, in advance.

3.5. LCFA-M2 model calibration. Sludge-A

The LCFA-M2model SA is resumed in Table 6, where themain

and the total indices are reported for the respective model-

parameters. Note that parameter vector q4,M2 ¼ [Xc18, Xc16]

alone, explainsalmost theentire varianceof themisfit function

J (i.e., 87%). This implies that q4,M2 can be estimated with great

accuracy within the LCFA-M2 model structure and data set

D3,A. On the other hand, model-parameter vector q3,M2 ¼ [Kxfa,

rmax, g] affected J only within the interactions and, thus, it
Table 6 e Sensitivity indexes, LS-estimates and CIs of
parameter vectors q3,M2 and q4,M2 for sludge-A (i.e. data
set D3,A).

Parameter g(q) Si STi LS-value CI-95%

Kxfa (kgCOD m�3) Unif [1e-4, 2] 1.14 4.92 0.260 �0.035

rmax (d�1) Unif [1e-4, 2] 3.07 8.98 0.066 �0.024

g (�) Unif [1, 5] 0.54 4.91 2.415 �0.196

Xc18 (kgCOD m�3) Unif [1e-4, 5] 41.16 45.51 0.300 �0.063

Xc16 (kgCOD m�3) Unif [1e-4, 5] 45.91 50.74 0.053 �0.006
cannot be accurately determined. However, an estimation of

parameter vector q3,M2 is still very important in order to prop-

erly fit the collected data. Moreover, for all the parameter-pairs

the first-order interaction index Si,j (not shown in Table 6) was

negligible. Thus, the presence of higher-order interactions

suggests that the interaction structure is quite complex.

The LS-estimates and CI for parameter vectors q3,M2 and

q4,M2, for sludge-A, are reported in Table 6. In all cases, the

performed Students t-test indicates a high statistical signifi-

cance of the estimated parameters. The LS-estimate for

parameter Kxfa was 0.260 kgCODm�3. This value is of the same

order of magnitude of the LS-estimate for the LCFA-M1model

(Table 4), and is within its CI. The LS-estimate of the param-

eter g is higher than one (g ¼ 2.41), indicating that, for

example, when the average damage of the cell-functionality

Dxac is 25% then we can expect that only 50% (¼ (1e0.25)2.41)

of the Ac-degraders will have fully re-activated their meth-

anogenic pathway.

Oleate-degraders are found to be the dominant population

in sludge-A (Tables 4 and 6), explaining the higher or longer

palmitate-accumulation respect to sludge-B. The model-fit of

data set D3,A within the LCFA-M2 model are reported in Fig. 4.

Simulation results of the batch experiments with an

increasing LCFA concentration (also included in data set D3,A)

are reported in the supporting information, Figure C. From

Fig. 4, it can be observed that the misfit of C18l is practically

the same as for the LCFA-M1 (Fig. 2), since the adsorption-

model is equivalent and the adsorption process was very

quick, when compared with the biological processes. If the

model-fits of LCFA-M2 and LCFA-M1 are compared, then the

LCFA-M2 model returns a slightly worse result for the oleate

concentration on the solid phase (Sc18,s z Sc18,ben since

Sc18,ben z 0). However, the LCFA-M2 model equally performed

very well, if C16s was considered. Note that the LCFA over-

accumulation artefact, observed when the LCFA-M1 model

was used to simulate the sludge-A experiment (Fig. 2), was not

presentwhen the LCFA-M2model is considered (Fig. 4). In fact,

from Fig. 4, it can be observed that the period starting from the

total C16s depletion to the re-start of the CH4-production

(delay of ten days) was correctly simulated with the LCFA-M2

model. This is because the LCFA-inhibition effect in the LCFA-

M2model is not directly dependent on the current value of the

concentration of the LCFA-adsorbed on the biomass. Thus, no

artificial delay of the LCFA-concentration was necessary in

order to correctly fit the methane production measurements.

In the present experiments, most the delay period was char-

acterized by an increase of the healthy-state Hxac. The only

active bacteria were the acetogens that promoted the Ac-

accumulation. The simulated Ac-accumulation was quite

pronounced in order to satisfy the COD balance (Fig. 4). In

particular, at the start-up of the experiment, the simulated

degradation of the acetate-pulse was faster than the

Ac-measurement seems to suggest. However, the start-up

CH4-production data was very well fitted. Because of the

highest confidence given to the CH4measurements (more data

available with a lowmeasurement error), the LCFA-M2model-

simulation probably evidenced a problem with the first few

Ac-samples. Note that the LCFA-M1 model was not able to

represent correctly the CH4 production at the start-up of the

experiment (Fig. 2).
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Fig. 4 e Calibration of the LCFA-M2 model with Sludge-A (data set D3,A). The bentonite addition (TA) model-outcome (dash

lines) and observations (cross dots) are compared with the control-experiment (CA) model-outcome (continuous lines) and

observations (circle dots).
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The LCFA-M2model was superior to the LCFA-M1model in

order to describe the CH4-production data from the toxicity

assays (also compare Figure A and C in the supporting infor-

mation) and the LCFA-monitored observations (compare Figs.

2 and 4). However, the LCFA-M2 model used one parameter

more than the LCFA-M1 model and, thus, it is expected to be

more flexible for data fitting.

Provided that the LCFA-M2 model was calibrated only on

data from the experimental set-up of sludge-A, its use (e.g.,

optimization and control routines) should be constrained only

over its calibration domain. Extrapolation with the LCFA-M2

model (calibrated over sludge-A) should be avoided due to

its over-parameterized structure. Therefore, if extrapolation is

considered, the LCFA-M1model seems to be more robust then

the LCFA-M2 model. However, the LCFA-M2 model performs

better with specific interpolation routines since its structure

can better describe the LCFA-inhibition process on a lower-

scale than the LCFA-M1 model structure.

LCFA-M2 was able to successfully model the impairment

between LCFA accumulation and methane production, giving

bio-physical explanation to the highmethanogenic sensitivity

to LCFA inhibition. This new model approximation, as LCFA-

M1, also confirmed the adsorptive nature of inhibition and

the importance of the specific structure of LCFA-degraders

population (saturated/unsaturated LCFA) for a successful

LCFA degradation process.
4. Conclusions

Two new LCFA-inhibitionmodels (i.e., LCFA-M1 and LCFA-M2)

were proposed, state-compatible and easy to be integrated
into the full ADM1 framework, as a sub-model plug-in. The

adsorptive nature of LCFA over granular biomass and specific

LCFA-degrader populations were included in both models.

The main distinction between the two models is defined by

how the LCFA-inhibitory phenomena on acetoclastic metha-

nogens is expressed: i) by a common non-competitive inhi-

bition function (LCFA-M1) or ii) by a new variable that

accounts directly for the damage of the cell functionality

(LCFA-M2). Both models were tested to reproduce the main

trends of a LCFA-inhibited system, operating with a wide

range of experimental designs. While the simpler LCFA-M1

model was not able to reproduce correctly the dynamics of

the LCFA-degradation, the LCFA-M2 model did. Results from

the application of the two proposed models confirmed that

the acetoclastic population is more sensitive to the LCFA-

inhibition than the acidogenic population. In addition, it was

evidenced that the distribution of saturated/unsaturated long

chain fatty acids degraders plays an important role on the

system evolution.
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