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Cardiovascular diseases are traditionally related to well known risk factors like dyslipidemia, smoking, diabetes
and hypertension. More recently, stress, anxiety and depression have been proposed as risk factors for
cardiovascular diseases including heart failure, ischemic disease, hypertension and arrhythmias. Interestingly,
this association has been established largely on the basis of epidemiological data, due to insufficient knowledge
on the underlying pathophysiologic mechanisms. This review will revisit evidence on the interaction between
the cardiovascular and nervous systems, highlighting the perspective on how the central nervous system is
involved in the pathogenesis of cardiovascular diseases. Such knowledge is likely to be of relevance for the
development of better strategies to treat patients in a holistic perspective.

© 2012 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Cardiovascular diseases (CVD) are the leading cause of death
worldwide, being responsible for almost 32% of all deaths in women
and 27% inmen in 2004 and expected to kill 23.4 million people by 2030
if current trends remain [1]. While elevated blood levels of cholesterol,
hypertension, diabetes mellitus and smoking are well-known risk-
factors for CVD [2], understanding how other factors contribute to this
burden is essential to develop new strategies to combat and/or prevent
it. Among these, the central nervous system (CNS), in particular the
stress response seems to be of relevance in the pathogenesis of CVD.

This review focuses on neurocardiology, highlighting the effects of
central circuits over the control of cardiovascular system and on how
peripheral mediators acting on specific brain regions influence
neurocardiac conditions.

2. Neurocardiology: the facts

Psychiatric and neurologic diseases are positively associated with
CVD. Epidemiological data clearly suggests that depression is an
independent risk factor for myocardial infarction (AMI) and heart
diseases in general [3,4]. Prospective studies with depressed individuals
showed that a history of a major depressive episode was associated with
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a higher risk of AMI, even after correction for major coronary risk factors
[5–7]. Of interest, the samewas observed for bothmen andwomen [7]. In
fact, ameta-analysis of 11 longitudinal studies revealed that depression is
associated with a 1.64 relative risk (ranging from 1.50 to 4.16 in original
studies) for development of coronary heart disease (CHD) [8]. Unfortu-
nately, most of the studies measured depression at a single time-point
during the follow-upperiod,which precludes the analysis onhow timeof
exposure to depression was associated with CHD.

The impact of depression is also important in patients with already
establishedCHD. Long-termmortalitywas higher (cardiac and all-causes)
in patients who presented depression on hospital admission and/or on
follow up [9,10]. This outcome persisted, although less powerfully, after
correction for socio-demographic and biobehavioral characteristics, use
of antidepressants and CVDmedications [10]. Interestingly, patients only
with depression displayed a higher risk of mortality (OR 2.10) than those
only with CHD (OR 1.67) while those with both conditions displayed an
additive risk ofmortality (OR4.99) reinforcing the importance of affective
disorders on CVD [10]. The consequence of depression on heart diseases
extends to other conditions including sudden cardiac death [11,12] and
heart failure (HF) [13,14]. Neurologic conditions are also implicated in the
pathophysiology of several cardiac conditions: e.g. both acute stroke and
epilepsy are associated with sudden death and de novo ECG alterations
[15–18].

3. The relevance of stress in neurocardiology

Stress is a state of threatened homeostasis. For re-establishment of
the equilibrium a repertoire of physiologic and behavioral responses
: A review on the pathophysiologic mechanisms of neurocardiology,
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Fig. 1. Simplified schematic representation of the anatomical organization of autonomous
nervous system inmammals. The regulation of sympathetic and parasympathetic systems
involves a complex interaction between cortical and subcortical and medullary loci and
peripheral organs. Apart from the more established efferent and afferent pathways (full
lines), there are multiple interconnections between the different loci involved in the
modulation of the autonomous nervous system (dot gray lines). In many cases their
functional significance is still largely unknown but is likely to be relevant for the proper
integration of the multiple inputs that control brain–periphery interactions. DVN-dorsal
vagal nucleus; LHA-lateral hypothalamic area; NTS-nucleus of the solitary tract; PB-
parabrachial; PVN-paraventricular nucleus; RVLM-rostroventral lateral medulla.
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is rapidly mobilized, constituting the adaptive stress response [19].
The adverse consequences of stress result from the inability of the
individual to cope with the stressful stimuli or from maladaptive
responses that may restore the homeostasis in short-term but may
impose damage at different body systems in the long-term. It is a
common belief that daily stressful situations predispose individuals to
adverse cardiovascular events. The first reports of cardiac deaths
related with stress date from 1942 Cannon's paper “voodoo death” in
which the author suggested that an extreme condition of frighten
inflicted to the victim might explain the multiple cases of tribal
voodoo death [20]. Acute stress, elicited by natural disasters like
earthquakes is likewise related with an increase in cardiac events and
sudden death [21].

Takotsubo cardiomyopathy (or “stress cardiomyopathy”) is prob-
ably the most remarkable example of how stress promotes direct
heart injuries and will be discussed in further sections. More recently,
the INTERHEART study investigated the associations of several
psychosocial stressors with the risk of AMI [22]. This study compared
11,119 patients with a previous event of AMI with 13,648 patients
free of clinical heart disease. Psychosocial stress was assessed by four
simple questions about stress at work and at home, financial stress,
and major life events in the past year; results estimated a 1.38 fold
greater risk of AMI for patients who went through several periods of
work stress and 2.14 for those who experienced periods of permanent
stress at work [22].

In laboratory settings, the effects of chronic stress have been
widely studied in rodents mainly using the chronic mild stress (CMS)
model in which animals are exposed during 4 to 6 weeks to an
unpredictable sequence of mild stressors [23]. CMS rodents not only
display depressive-like behavior but also increased anxiety and
impaired cognition, highlighting the fact that the co-morbid effects
of human depression can also be observed in rodents [24]. Of notice,
these animals present other anomalies, namely elevated heart rate
(HR), reduced HR variability (HRV), elevated sympathetic tone and
exacerbated cardiovascular reactivity when submitted to external
stressors, suggesting that stress promotes an autonomic imbalance in
favor of sympathetic system [25,26].

4. Neuronal networks implicated in cardiovascular regulation: the
effects of stress

Cardiovascular regulation by CNS has been widely discussed in the
literature. Cardiovascular function is regulated by the autonomic nervous
system, which encompasses two major divisions: the sympathetic and
the parasympathetic system; the appropriate balance (autonomic tone)
between the two is fundamental to the pathophysiology of CVD.

The organization of the autonomic nervous system (Fig. 1) is complex
(for a review see [27]). It is widely recognized that regulation of cardiac
function is dependent on medullary centers, namely the nucleus of the
solitary tract (NST) and the rostroventrolateral medulla (RVLM) [27,28].
While the former receives afferents from baroreceptors and the visceral
sensorial information derived from cranial nerves (including the vagus),
theRVLM ismainly composed by excitatory neurons that are responsible
for the generation of the sympathetic response. Although these regions
generate reflex responses that may orchestrate timing cardiac adapta-
tions, it is now clear that cardiac regulation is also dependent on
supramedullary regions.

The insular cortex (IC) is a critical area in controlling the parasym-
pathetic and the sympathetic tones. Not surprisingly, middle cerebral
artery stroke victims, with insular damage, are prone to cardiovascular
sudden death and autonomic alterations [29]. Studies with synchronized
electric stimulation in animal models uncovered a chronotropic map in
the IC [30]. While pure tachycardia was produced by stimulation of the
rostral posterior insula, bradycardia was produced from the caudal
posterior insula. Interestingly, there is evidence for a lateralization of
cardiac control in this brain region: while the sympathetic tone is
Please cite this article as: Pereira VH, et al, Stressed brain, diseased heart
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predominantly regulated by right insular regions, parasympathetic
cardiac manifestations are regulated by the left insula [31,32]. Clinical
data collected in stroke patients showed that cardiac arrhythmia
produced by unbalanced cardiac autonomic activity favoring the
sympathetic system was more common after cerebral infarction on the
right hemisphere [33]. Therefore the mechanism of cardiovascular
instability following stroke seems to result from loss of the inhibition
exerted by the right IC over inferior areas of cardiac control that
predisposes to rhythm instability [34].

The involvement of the IC in stroke patients is easily documented by
imaging methods; on the contrary, documenting a relation between
stress and IC dysfunction, although important in light of the previous
section, is not straightforward and is scarce [35]. Preliminary data in
animals from our lab revealed that the IC is indeed a target of chronic
stress (Pereira VH et al., unpublished observations).

The medial prefrontal cortex (mPFC) is a subdivision of the rodent's
prefrontal cortex composed by several cortical areas (e.g. frontal area 2,
dorsal and ventral anterior cingulate areas, prelimbic, infralimbic and
medial orbital areas) [36]. Besides its implication in several cognitive
functions [37] the mPFC is also involved in the regulation of
cardiovascular functions [38,39]. The mPFC is a well-known target of
stress. It has been shown that chronic stress leads to volume loss and
dendritic atrophy of themPFC;more prominently in the left hemisphere
[36,37], which may, by decreasing left-to-right mPFC inhibition, cause
an autonomic imbalance in favor of the sympathetic system. In this
sense, the shift of a predominant parasympathetic tone in the normal
functioning mPFC toward a predominant sympathetic tone in the
“stressed”mPFC may be of major importance in the pathophysiology of
: A review on the pathophysiologic mechanisms of neurocardiology,
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stress-related CVD. This is corroborated by lesion studies in humans in
which reduced parasympathetic modulation in patients with ventral
mPFC lesionswas suggested to increase the risk of anxiety, hypertension
and arrhythmias [40].

The hypothalamus, namely through posterolateral hypothalamus
(PLH) and paraventricular nucleus (PVN), is also a crucial center of
integration of different visceral stimulus [41,42]. The PVNwas shown to
be functionally involved in cardiovascular reactivity. Rats stressed with
acute air jet-stress did not display the usual increase in blood pressure
when a synaptic inhibitorwas injected in the PVN [43].Moreover, when
electrically stimulated, this nucleus was shown to be involved in the
regulation of sympathetic activity [44]. The PVN is also themain effector
of the hormonal stress response, secreting corticotropin releasing factor
that activates the hypothalamic–pituitary–adrenal (HPA) axis [45].

5. The role of the sympathetic system

As previously mentioned, chronic activation of the sympathetic
system and/or decreased parasympathetic (vagal) is a remarkable
feature of CVD [46–48]. In fact the sympathetic system contributes to
endothelial dysfunction, hypertension and atherosclerosis; promotes
insulin resistance and dyslipidemia; induces left ventricular hyper-
trophy; increases the incidence of arrhythmia; and promotes renal
dysfunction by stimulating sodium and fluid retention, glomerulo-
sclerosis and the activation of the renin–angiotensin–aldosterone
system (RAAS) (for review see [49]).

The neurohormonal hypothesis of HF states that the sympathetic
system is persistently activated in patientswith HF, playing amajor role
on its progression and establishment [50,51]. Interestingly, norepi-
nephrine spillover, an important marker of sympathetic activity, is
increased in HF, suggesting that the cause of sympathetic activation is
not peripheral impaired neuronal uptake but instead an increased
sympathetic neural discharge [52]. Accordingly, studies in an animal
model of myocardial ischemia revealed that brain administration of
beta-blockers is more effective than in the periphery [53]. Similarly,
activation or blockade of NMDA receptors within the PVN (by local
injection of an agonist) induced a greater change in sympathetic
excitatory responses in HF rats than in sham animals (suggesting that
renal sympathetic activity was elevated only in the HF condition) [54],
which is in line with the finding of markedly increased expression of
NMDANR1 receptors at bothmRNA and protein levels in the PVN of HF
rats [54]. These data support the concept that central circuits of
autonomous regulation are altered in pathological conditions. An
interesting finding is the observation that B-type natriuretic peptide
was firstly isolated in the brain. Whether this peptide is involved in the
regulation of heart physiology through action in the central nervous
system is still not known.

In a different perspective, autonomic imbalance has been also
documented in mood disorders and proposed as a common mediator
for mood disorders and CVD [55–57]. As an example, depressed girls
display a decreased HRV, indicating increased sympathetic drive [58].
However, although evidence clearly supports the presence of auto-
nomic cardiovascular deregulation in depressed and stressed patients, it
is yet not certain whether the altered activity of the autonomic nervous
system is responsible for the increased risk of mortality and medical
morbidity associated with depression.

6. The renin–angiotensin–adosterone system

The RAAS has an important role in maintaining circulatory
homeostasis. Angiotensin II stimulates aldosterone release by the
adrenal cortex, leading to an increase of sodium andwater reabsorption
in the kidney, thus influencing blood pressure levels [59]. Therefore, it is
not surprising that RAAS activation plays a central role in the
development of hypertension and in the pathogenesis of HF. In fact,
Please cite this article as: Pereira VH, et al, Stressed brain, diseased heart
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its pharmacological inhibition is one of themost successful strategies in
the treatment of these diseases.

Although the role of aldosterone has been traditionally seen as
confined to the kidney, several findings suggest that centrally activated
RAAS participates in the development of hypertension and HF [60]. In
fact, the intracerebroventricular infusion of aldosterone in salt-sensitive
rats promoted the development of hypertension while the intracer-
ebroventricular infusion of amineralocorticoid receptor antagonist, like
spironolactone, prevented that phenotype [61].

In addition to the effects on blood pressure, the RAAS also regulates
metabolic signaling and heart rhythm. In a transgenic TG(mRen2)27 rat,
which manifests increased tissue RAAS activity, renin inhibition im-
proved systemic insulin sensitivity, insulin metabolic signaling and
glucose transport [62]. Aldosterone, as well, regulates peripheral insulin
resistance, which further supports its involvement in CVD (for review see
[63]). Moreover, RAAS activation modulates membrane and sarcoplas-
matic reticulum ion channels whose activation has proarrhythmic effects
[64].

Studies in depressed patients showed that hyperaldosteronism
was common among depressed patients, suggesting that increased
aldosterone levels may be a mediator linking depression to unfavor-
able vascular events [65]. These findings suggest that RAAS action in
the brain may be more important than initially thought and the better
understanding of this pathway may help to comprehend how chronic
stress and depression may trigger CVD.

7. Hypothalamus–pituitary–adrenal axis

The HPA axis is generally considered one of the principal effectors of
stress response through the release of glucocorticoid hormones (GC;
mainly cortisol in humans and corticosterone in rodents). These
hormones contribute to restore homeostasis and to promote coping
strategies to the initial insult through a series of actions both in the
periphery and in the brain. GC promote gluconeogenesis, increasing the
accessibility of energy to the exercisingmuscle; enhance cardiovascular
tone; decrease feeding and appetite and optimize cognitive functions by
increasing cerebral perfusion rates and local cerebral glucose utilization
(for review see [66]). Moreover, through cellular receptors, namely in
the mPFC and in the hippocampus, GC are powerful modulators of the
structure and function of many regions of the CNS, exerting a powerful
influence on the performance of coping behaviors in response to acute
stress [67]. In spite of its beneficial effects, chronic elevation of GC
contributes to a disadvantageous phenotype, namely by promoting:
visceral obesity, insulin resistance and glucose intolerance, endothelial
dysfunction, higher levels of low-density lipoprotein cholesterol and
triglycerides, and RAAS activation (for review see [68]). In addition,
together with insulin, GC stimulates the ingestion of “comfort-foods” as
a compensatory hedonic mechanism [69]. This shift in caloric intake,
together with elevated cortisol and insulin, increases CVD risk, showing
that increased cortisol contributes for the adverse metabolic effects
associated with stress [70,71].

As expected, the effects of chronic stress on HPA axis tend to
mimic those observed in depressed individuals, inducing elevated GC
levels or altered circadian patterns, as a consequence of changes in
higher control centers that blunt the negative feedback response. In
animal models, chronic stress also triggers changes in brain centers
that control PVN activity, namely the mPFC and the hippocampus,
whose net result is an overactivation of the HPA [72].

8. The crosstalk between the nervous and the adipose tissues

Classic risk factors for CVD tend to coexist in the same individual,
thus exponentially increasing the risk of ischemic heart disease and
other adverse outcomes. The existence of such clustering suggests a
common pathophysiological mechanism for all these metabolic
conditions and led to the proposal, in the 80s, of Syndrome X [more
: A review on the pathophysiologic mechanisms of neurocardiology,
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recently coined as metabolic syndrome (MSynd)]: “a state of insulin
resistance that results in hypertriglyceridemia, low high-density
lipoprotein (HDL)-cholesterol levels and hypertension” [73].

The brain is known to play a role in the development of MSynd by
influencing the activity of visceral adipose tissue. In fact, sympathetic
system activation, reduced serotoninergic responsivity and endocan-
nabinoid overactivation were proposed as important neuroendocrine
determinants in the pathogenesis of MSynd [74]. Among these
mechanisms, the role of endocannabinoid has gained increasing
interest. Briefly, the endocannabinoid system is composed of two
receptors: CB-1 and CB-2 and two endogenous ligands: anandamide
and 2-arachidonoyl-glycerol [75]. Through actions mediated by CB-1
receptors this system operates in: i) the hypothalamus, regulating
energy balance by promoting appetite and motivation to eat; ii) the
adipose tissue, modulating fat distribution, enhancing lipogenesis and
regulating adipokines expression; iii) the liver, increasing free fatty
production and insulin resistance; and iv) the muscle, decreasing
glucose uptake and, thus, contributing to insulin resistance [76,77]. In
accordance, knockout mice for CB-1 receptors are more prone to
leanness, are more resistant to diet-induced obesity and show
increased central sensitivity to leptin [78]. Following this evidence,
an antagonist (rimonabant) of endocannabinoid receptors, combined
with an appropriated hypocaloric diet was released as a therapy to
reduce weight in obese patients [79]. Rimonabant increase levels of
high-density lipoproteins, decrease triglycerides and increase adipo-
nectin. These effects were attributed not only to the central blockade
of orexigenic signals mediated by CB-1 receptors but also to its
peripheral actions in different tissues [78]. Of notice here, it should be
highlighted that rimonabant acts directly in the heart preventing the
decrease in contractile performance of human atrial muscle mediated
by endocannabinoids [80]. Thus, blockage of CB-1 receptors, both
centrally and peripherally, seems to be a good approach for a wide
range of patients. However the CRESCENDO trial designed to observe
the effect of rimonabant in over 18,000 patients was terminated due
to an increase incidence of suicide and an absence of cardiovascular
benefits [81]. An option to circumvent this conundrum would be the
development of a specific peripheral CB-receptor antagonist.

Although the endocannabinoid system is overactivated in MSynd,
the exogenous stimuli responsible for this deregulation are still
unknown. Recent data suggested that the endocannabinoid system
plays a critical role in regulating activation of stress responsive systems
and subsequent behavioral manifestations [82]. The deregulation of
endocannabinoid signaling may originate maladaptive processes with
implications over energy expenditure and food consumption. Interest-
ingly some studies show that social stress in animals alters feeding
behavior in the direction of hyperphagia [83]. Whether this is
dependent on endocannabinoid signaling is still to be demonstrated.

As previously debated, the sympathetic system plays a direct role
in this scenario. Chronic stressed animals submitted to a high-fat and
high-sugar diet have increased neuropeptide Y release by sympa-
thetic terminals in adipose tissue favoring the appearance of obesity
and MSynd [84].

Although less extensively studied, reduced serotonergic responsiv-
ity has been proposed to play a role in the development of MSynd. The
central serotonergic responsivitymay bemeasured by themagnitude of
prolactin blood level increment in response to the administration of
drugs that enhance serotonergic neurotransmission. Cross-sectional
studies, in community settings, showed a blunted response of prolactin
to the administration of serotonergic drugs (like fenfluramine and
citalopram) in MSynd and in subjects with physical inactivity [85].
These data suggest that reduced serotoninergic responsivity is involved
in the pathophysiology of MSynd and in the link between depression
(that is associated with serotonergic disruption) and MSynd.

Besides insulin, the adipocyte-derived hormone leptin is also a
major regulator of MSynd and its importance worth being discussed.
Leptin is a protein expressed mainly by adipocytes, and is involved in
Please cite this article as: Pereira VH, et al, Stressed brain, diseased heart
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the regulation of food intake, energy expenditure and whole-body
energy balance [86]. It is hypothesized that leptin signals the status of
body energy stores to the brain (and perhaps other tissues),
contributing to energy balance by decreasing food intake [87]. In
obese individuals leptin levels tend to be increased, suggesting a
leptin resistance phenotype. Leptin effects go well beyond energy
regulation, acting directly and indirectly on heart and vessels (for
review see [88]). While leptin may be regarded as cardioprotective
due to its anti-apoptotic effect on myocytes, leptin excess also
promotes ventricular hypertrophy and activation of inflammatory
cells in the heart. At a vascular level, leptin excess promotes
hypertension and atherosclerosis due to its action of the endothelium,
stimulating intimal monocyte recruitment, macrophage-to-foam cell
transformation, proliferation of vascular smooth muscle cells, and
further secretion of pro-atherogenic cytokines [88]. Leptin resistance
and hyperleptinemia are common features in obesity and MSynd and
are associated with cardiovascular disease in humans.

9. Brain activation and stress induces myocytolysis

Until this point we have been discussing how brain injuries and
chronic stress increase the risk of CVD by the deregulation of complex
physiologic systems promoting hypertension, dyslipidemia, diabetes
and atherosclerosis. What remains to be discussed is whether the
brain–heart interaction may be more direct, by acting on the myocyte.

The most striking example of this direct interaction is the Takotsubo
cardiomyopathy (or “stress cardiomyopathy”) that consists of a transient
left ventricular dysfunction triggered by acute emotional or physical
stress, whose clinical presentation mimics AMI, with acute chest pain,
transient ST-elevation and apical ballooning on echocardiography.
Although its cause remains elusive, coronary artery vasospasm, coronary
microcirculation dysfunction, obstruction of the left ventricular outflow
tract (LVOT) and catecholamine overload have been proposed as
mechanisms for the injury [89]. In spite of being initially described as a
response to emotional and physical stress, recent findings demonstrated
an association between stress cardiomyopathy and several CNS diseases
like epilepsy [90], ischemic stroke (mainly if IC is affected) [91] and
subarachnoid hemorrhage [92]. This last condition is frequently
associatedwith troponin elevation even in the absence of cardiac history
and this fact is associated with worst prognosis [93]. Whether these
cardiac alterations result from stress inherent to the disease in itself or
from brain stimulation is a question that remains to be clarified.

Independently of the initial insult, the histological alterations in
stress cardiomyopathy consist in mild inflammatory cell infiltration,
considerable increase in extracellular matrix protein levels, and
contraction band necrosis (a type of cellular alteration also known as
myocytolysis) [89]. Myocytolysis consists in amyofibrillar degeneration
in which the cell dies in a hypercontracted state with early myofibrillar
damage and anomalous irregular cross-band formations [94]. Interest-
ingly, this kind of histopathological lesion has been related with several
brain conditions not necessarily associated with Takotsubo cardiomy-
opathy. As revised by Samuels, this lesion is common to several
neurogenic mechanisms of cardiac disease like catecholamine infusion,
brain stimulation (namely the IC and hypothalamus) and stress.
Interestingly, evidence shows that heart lesions may occur even in
adrenalectomized animals (although less pronounced), which suggests
that these findings may be dependent on the direct action of nerve
terminals in the heart [94,95].

In this sense it seems that CNS may contribute to CVD in multiple
manners, including direct myocyte lesion and, indirectly, due to its
action in vessels, adipose tissue and hormonal milieu.

10. The periphery modulates brain areas implicated in CVD

As previously described, rodents submitted to CMS display
alterations in autonomic parameters, like decreased HRV, suggesting
: A review on the pathophysiologic mechanisms of neurocardiology,
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an overactive sympathetic system that may impact on cardiovascular
and metabolic functions. One would expect that once stress is over,
the autonomic imbalance disappears and accompanies the improve-
ment of the behavioral alterations seen in these animals. However,
interesting data showed that recovery of depressive-like behavior in
rats submitted to CMS protocol is not accompanied with a reciprocal
improvement in the cardiovascular parameters [96]. Accordingly,
depressed patients submitted to cognitive behavioral therapy improve
mood symptoms but not autonomic function [97]. Antidepressants also
seem to be ineffective in completely decreasing the exaggerated
autonomic tone and high incidence of cardiovascular events observed
in depressed patients (e.g. sertraline is effective in improving depression
in post-myocardial infarction depressed patients but fails to decrease
mortality by cardiovascular events) [98]. Therefore, although specific
brain regions are involved in the initiation of cardiovascular and
metabolic deregulation related to stress, other mechanisms perpetuate
this cycle; probably the altered hormonal milieu (hyperleptinemia,
hyperinsulinemia, hypercortisolemia and hyperaldosteronism) acts back
in the brain and maintains the activation of the sympathetic system.
Indeed, leptin has been widely described as a stimulus for exacerbated
sympathetic drive (for review see [99]). In addition, hyperinsulinemia
also promotes sympathetic activation and therefore contributes to
adverse cardiovascular conditions like hypertension [100]. Aldosterone
and Ang II are other mediators clearly involved in the regulation of
sympathetic response by their action in the RVLM [101]. Animal studies
showed that both circulating and brain Ang II promotes increased
Fig. 2. Pathophysiological mechanisms involved in stress related CVD. Stress activates specifi
systems. Consequently, these systems (either directly or indirectly) will activate RAAS, pro
negatively influence heart and vessels physiology. In turn, altered hormonal milieu with inc
structural alterations, perpetuating this cascade.
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sympathetic drive leading to a hypertension-like phenotype that is
reverted by the peripheral and central blockage of this system [102].

These interesting findings lead us to hypothesize (Fig. 2) that the
continuous activation of the sympathetic system may be dependent
on the metabolic dysfunction whose trigger is (in part) sympathetic
overactivation itself, in a perpetuating feed-forward mechanism.

11. Treatment options for stress-related CVD

When considering all evidence and mechanisms herein revisited,
some considerations are worth mentioning regarding the treatment of
patients with neuropsychiatric and/or cardiovascular diseases. We
herein propose a shift in the therapeutic paradigm, considering
processes “from the periphery to the brain and back”. In this sense,
drugs that act not only in the periphery, but also in the CNS, can be of
major interest. Although it is well established that chronic stress,
depression and anxiety impose cardiovascular risk, it is yet to be defined
what is the best strategy to pursue in these patients (whether to treat
them aggressively or simply be conservative). It is of notice that some
currently used drugs have both antidepressant and cardiometabolic
actions. This is relevant since antidepressants were shown to be
insufficient to induce a clinically meaningful normalization of the
cardiovascular dysfunction associated with psychiatric conditions.
Among the drugs that promote both metabolic control and recovery
of depressive behavior are thiazolidinediones (or glitazones), a class of
oral anti-diabetic drugs acting as sensitizers of insulin action by
c brain regions leading to the activation of HPA axis, sympathetic and endocannabinoid
mote signaling in adipose tissues (predisposing to insulin and leptin resistance) and
reased levels of cortisol, insulin, leptin and aldosterone act back in the brain, inducing

: A review on the pathophysiologic mechanisms of neurocardiology,
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activating the gamma-peroxisome proliferator-activated receptors
[103]. Patients treated with rosiglitazone, as a supplement to the usual
antidepressant regimen, exhibited significant declines in depression
severity, thus encouraging the potential use of this agent in the
treatment of depressive disorders (in spite of some reported adverse
effects) [104].

Instead of reducing corticosteroid levels, the aldosterone antagonist
spironolactone, widely used for HF, acts by blocking its binding to
mineralocorticoid receptors. This fact puts aldosterone antagonists in a
good position to tackle both CVD, whose activation of the RAAS is a core
feature, and stress-related disorders. In practice, in patientswithHFwho
are taking conventional drugs, the addition of spironolactone induces a
favorable sympathovagal balance [105]. However, while the beneficial
effects are well documented in treating HF their use in depression may
not be so encouraging, given some CNS side effects [106,107].

Beta-blockers are another class of drugs widely used in several
CVD and ideally situated to bridge the brain and the cardiovascular
system. Indeed, recent studies showed that beta-blockers may be
safely used in depressed patients with heart disease. A recent meta-
analysis concluded that addition of pindolol to an antidepressant
(fluoxetine) significantly increased the percentage of patients that
attained remission of depressed symptoms [108]. This suggests that
beta-blockers may even be beneficial for both the behavioral and the
cardiovascular consequences of depression.

As it is well known, life stylemodifications, such as physical exercise
and diet, play an indispensible and crucial role in the management of
these diseases. Physical exercise favors cardiovascular conditioning,
improves functional capacity and increases HRV [109]. Exercise also has
a positive effect on metabolism, diminishing glucose intolerance and
insulin resistance [110]. Interestingly, the effects of physical activity are
not limited to CVD but also in recovery of the depression phenotype
[111]. Even though the mechanisms involved are unclear, enhanced
IGF-1 production seems to be involved [110]. The promotion of physical
activity should be in the mind of all physicians whether they are
cardiologists, neurologists or psychiatrists.

It is expected that upcoming new information will benefit
traditional treatment of CVD, most probably as a combination of
both lifestyle modifications and pharmaceutical agents.

12. Neurocardiology: final considerations

Recent data show that highly prevalent diseases like stress-related
pathology and depression, long considered as brain disorders, are
increasingly found to impose a heavy burden to the cardiovascular
system. Even though the heart–brain interaction is known to be
bidirectional, it seems, at this point, that regulation of the CNS over
heart and vessels is more prevalent as shown by the increased risk of
CVD in anxious, depressed, epileptic or stroke-victims patients. The
study of the regulation of cardiovascular functions (like cardiovascular
reactivity) and of how they are altered by stress, CNS pathology and
aging will certainly be one of the challenges of neurocardiology in the
years to come. Fortunately, functional neuroimaging and neuro- and
cardio-electrophysiology will help provide new insights on this matter.

From the discussion above it stands out that a better knowledge of
the common mediators of CNS and cardiovascular disorders will
significantly contribute to improve patient management and out-
comes. Critically, this may be dependent on the construction of
multidisciplinary teams and integrated approaches that direct the
attention and the appropriate methodologies, for the benefit of
patients.
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