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GEP has been employed in this work to model the compressive strength of different types of geopolymers
through six different schemes. The differences between the models were in their linking functions, num-
ber of genes, chromosomes and head sizes. The curing time, Ca(OH)2 content, the amount of superplast-
icizer, NaOH concentration, mold type, aluminosilicate source and H2O/Na2O molar ratio were the seven
input parameters considered in the construction of the models to evaluate the compressive strength of
geopolymers. A total number of 399 input-target pairs were collected from the literature, randomly
divided into 299 and 100 sets and were trained and tested, respectively. The best performance model
had 6 genes, 14 head size, 40 chromosomes and multiplication as linking function. This was shown by
the absolute fraction of variance, the absolute percentage error and the root mean square error. These
were of 0.9556, 2.4601 and 3.4716 for training phase, respectively and 0.9483, 2.8456 and 3.7959 for test-
ing phase, respectively. However, another model with 7 genes, 12 head size, 30 chromosomes and addi-
tion as linking function showed suitable results with the absolute fraction of variance, the absolute
percentage error and the root mean square of 0.9547, 2.5665 and 3.4360 for training phase, respectively
and 0.9466, 2.8020 and 3.8047 for testing phase, respectively. These models showed that gene expression
programming has a strong potential for predicting the compressive strength of different types of geopoly-
mers in the considered range.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Geopolymers have attracted a lot of attention as a result of their
excellent mechanical properties, durability and cost-efficiency
(Duxson, Provis, Van Lukey, & Deventer, 2007; Pacheco-Torgal,
Castro-Gomes, & Jalali, 2008a). Different alkali activators play a
major role in producing geopolymers by dissolving silica and alu-
mina from the raw material and thus forming aluminosilicate
structures (Pacheco Torgal, Gomes, & Jalali, 2008). Raw materials
include, ordinary Portland cement (Tailby & MacKenzie, 2010),
metakaolin (Muñiz-Villarreal et al., 2011), rice husk-bark ash (Naz-
ari, Bagheri, & Riahi, 2011), different types of fly ash (Chindaprasirt,
Chareerat, & Sirivivatnanon, 2007; Temuujin, Minjigmaa, Lee,
Chen-Tan, & van Riessen, 2011; Wang, Jia, He, & Zhou, 2011),
ground granulated blast furnace slags (Bernal, Gutierrez, Delvasto,
& Rodriguez, 2010), volcanic ashes (Lemougna, MacKenzie, & Melo,
2011), red mud (He, Zhang, Yu, & Zhang, 2012) and the other slags
(Onisei et al., 2012).
Artificial intelligence (AI) approaches are applied in artificial
neural networks (ANNs), fuzzy logic, support vector machines,
genetic algorithms (GA), genetic programming (GP) and so on. Each
approach offers merits in particular applications (Tsai, 2011).
Although there are several experimental studies performed as
stated above, there is still lack of explicit formulation for the
compressive strength of different types of geopolymers. The use
of genetic programming for formulation of the compressive
strength of geopolymers has in fact rarely been reported (Nazari,
2012a, 2012b; Nazari, Riahi, Khalaj, Bohlooli, & Kaykha, 2011). In
comparison, besides classical regression techniques, soft comput-
ing applications such as genetic programming (GP) for the explicit
formulation of the properties and the performances of concrete
have begun to arise (Cevik & Sonebi, 2009; Sarıdemir, 2010; Tany-
ildizi & Cevik, 2010). Tanyildizi and Cevik (2010) applied GP for
modeling the mechanical performance of lightweight concrete
containing silica fume exposed to high temperature. Cevik and So-
nebi (2009) modeled fresh and hardened properties of self-com-
pacting concrete containing pulverised fuel ash through the use
of GP. For predicting the compressive strength of concretes con-
taining rice husk ash, (Sarıdemir, 2010) applied GP, as well. GP is
more advantageous than classical regression techniques. While
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regression techniques are often based on predefined functions, on
the other hand, in genetic programming there is no predefined
function to be considered. The latter adds or deletes various com-
binations of parameters so they can be considered for the formula-
tion that best fits the experimental results. GP has proven to be an
effective tool to model and obtain explicit formulations of experi-
mental studies (Tanyildizi & Cevik, 2010).The aim of this work is to
develop suitable GP models for evaluating the compressive
strength of different type of geopolymers and arises as a result of
the limited works on the prediction of geopolymers properties
with soft-computing techniques. A total number of 399 pairs of in-
put-target values were collected from the previous works (Pach-
eco-Torgal, Castro-Gomes, & Jalali, 2007, 2008b; Pacheco-Torgal,
Moura, Yining Ding, & Jalali, 2011). The curing time, Ca(OH)2 con-
tent, the amount of superplasticizer, NaOH concentration, mold
type, aluminosilicate source and H2O/Na2O molar ratio were con-
sidered as input parameters to predict the compressive strength
of geopolymers as output. Six different GP models were proposed
for the prediction of the compressive strength of geopolymers in
which their linking functions, number of genes, chromosomes
and head sizes were different. The entire models were trained
and tested by randomly divided 299 and 100 input-target pairs,
respectively.
2. Data collection

The input-target values were collected from the previous works
(Pacheco-Torgal et al., 2007, 2008b, 2011). The aluminosilicate
sources in these works were tungstenpa mine wastes (Pacheco-
Torgal et al., 2007, 2008b) and metakaolin (Pacheco-Torgal et al.,
Fig. 1. Genetic programming fl
2011). The tungsten mine waste mud used was subjected to a ther-
mal treatment at 950 �C during 2 h (Pacheco-Torgal et al., 2007,
2008b). The metakaolin used in the study was subjected to a ther-
mal treatment at 650 �C during a few seconds using a flash calcina-
tion apparatus (Pacheco-Torgal et al., 2011). Distilled water was
used to dissolve the sodium hydroxide flakes to avoid the effect
of unknown contaminants in the mixing water. The alkaline activa-
tor was prepared prior to use. The sand, mine waste mud (or
metakaolin) and calcium hydroxide were dry mixed before adding
the activator. Compressive strength data was obtained using
50 � 50 � 50 mm3 cubic specimens according to ASTM C109
for tungsten mine wastes-based geopolymers and 160 � 40 �
40 mm3 cubic specimens according to EN 1015-11 for metakao-
lin-based ones. The fresh mortar was cast and allowed to set at
room temperature for 24 h before being removed from the molds
and kept at room temperature for other days until tested in com-
pression. Compressive strength for each mortar mixture was ob-
tained from an average of three cubic specimens. The full
experimental procedure for obtaining strength values can be
achieved from Refs. Pacheco-Torgal et al. (2007, 2008b, 2011).
3. Genetic programming and gene expression programming
theory

Sarıdemir (2010) mentions that GP is an extension of the genet-
ic algorithms proposed by Koza (1992). The latter defines GP ‘‘as a
domain independent problem solving approach in which computer
programs are evolved to solve, or approximately solve, the prob-
lems based on the Darwinian principle of reproduction and analogs
of naturally occurring genetic operations such as reproduction,
owchart (Sarıdemir, 2010).



Fig. 2. Expression tree with 5 gens and addition as linking function for predicting
compressive strength values of different geopolymers in GEP1 model.
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crossover and mutation’’. Fig. 1 shows how GP can reproduce
computer programs to solve problems. This figure is a flowchart
showing the executional steps of a GP run. According to Sarıdemir
(2010) the GP approach evolves through the action of three basic
genetic operators: ‘‘reproduction, crossover and mutation. In the
reproduction stage, a strategy must be adopted to the selection
of which programs should ‘‘die’’. In the implementation, a small
percentage of the trees with the worst fitness are ‘‘killed’’. The pop-
ulation is then filled with the surviving trees according to accepted
selection mechanisms‘‘.
Sandemir describes the GP problem solving in five steps:

(1) The set of terminals: A set of input variables or constants.
(2) The set of primitive functions: A set of domain specific func-

tions used in conjunction with the terminal set to construct
potential solutions to a given problem. For symbolic regres-
sion this could consist of a set of basic mathematical func-
tions, while Boolean and conditional operators could be
included for classification problems.

(3) The fitness measure: Fitness is a numeric value assigned to
each member of a population to provide a measure of the
appropriateness of a solution to the problem in question.

(4) The parameters for controlling the run: This includes the pop-
ulation size and the crossover and mutation probabilities.

(5) The method for designating a result and the criterion for ter-
minating a run: This is generally a predefined number of gen-
erations or an error tolerance on the fitness (Koza, 1992). It
should be noted that the first three components determine
the algorithm search space, while the final two components
affect the quality and speed of search (Sarıdemir, 2010).

4. Artificial neural networks parameters and structure

In the present work, as seen in Figs. 2–7, the expression trees of
six different GEP approach models named GEP1 to GEP6 were con-
structed for compressive strength (FS) values of the considered
geopolymers. d0, d1, d2, d3, d4, d5 and d6 in Figs. 2–7 represent
the values for curing time (T), Ca(OH)2 content (C), the amount of
superplasticizer (S), NaOH concentration (N), mold type (M), alumi-
nosilicate source (A) and H2O/Na2O molar ratio (H), respectively in
accordance to the type of collected data from the previous works
(Pacheco-Torgal et al., 2007, 2008b, 2011).

Table 1 also shows the range of each input parameters and that
of the output parameter. In GEP1–GEP6 models, the number of
genes (Sub-ETs), chromosomes and head size together with linking
functions were different. 5 Sub-ETs were used for GEP1 and GEP4,
six for GEP2 and GEP5 and six for GEP3 and GEP6 models. In GEP1–
GEP3 models, addition was employed as linking function while
multiplication was used for GEP4–GEP6 approach models. In train-
ing and testing of GEP1–GEP6 models constituted with different
Sub-ETs and linking functions, T, C, S, N, M, A and H were utilized
as input data and FS as independent output data. Among 399 exper-
imental sets collected from the literature, 299 sets were randomly
chosen as a training set for GEP1–GEP6 modeling and the remain-
ing 100 sets were used for the testing of the generalization capacity
of the proposed models.

According to Sarıdemir (2010) for this problem, firstly, the fit-
ness, fi, of an individual program, i, is measured by:

fi ¼
XCt

j¼1

ðM � jCðijÞ � TjjÞ ð1Þ

where M is the range of selection, C(i,j) is the value returned by the
individual chromosome i for fitness case j (out of Ct fitness cases)
and Tj is the target value for fitness case j. If jCðijÞ � Tjj (the precision)
is less than or equal to 0.01, then the precision is equal to zero, and
fi = fmax = CtM. In this case, M = 100 was used, therefore, fmax = 1000.
The advantage of this kind of fitness functions is that the system can
find the optimal solution by itself (Sarıdemir, 2010). All of the mod-
els were allowed to experience more than 100,000 iterations to en-
sure maximum fitness was gained.

‘‘The set of terminals T and the set of functions F to create the
chromosomes are preferred, namely, T = {T, C, S, N, M, A, H} and four
basic arithmetic operators (+, �, ⁄, /). Some basic mathematical
functions (Sqrt, third root, x2, x3, ln, Exp, sin, cos, Arctan) were also
used. Another major step is to choose the chromosomal tree, i.e.,



Fig. 3. Expression tree with 6 gens and addition as linking function for predicting compressive strength values of different geopolymers in GEP2 model.
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the length of the head and the number of genes’’ (Sarıdemir, 2010).
For all of GEP1–GEP6 approach models, initially a single gene and
two lengths of heads were used, and the number of genes and
heads were increased one after another during each run. The train-
ing and testing sets performance of each model were monitored.
For GEP1–GEP3 approach models, the length of heads of 12 and
for GEP4–GEP6 that of 14 was observed the best value. Parameters
of the training of GEP1–GEP6 models are given in Table 2. For
GEP1–GEP3 models, 30 and for GEP4–GEP6 models, 40 chromo-
somes were observed to be the best of generation individuals for
predicting the compressive strength of different considered geo-
polymers. Explicit formulations based on the GEP1–GEP6 models
for compressive strength were obtained by:

i ¼ f ðT;C; S;N;M;A;HÞ ð2Þ
5. Results and discussion

In this study, the error arose during the training, validating and
testing. In GEP1–GEP6 models it can be expressed as absolute



Fig. 4. Expression tree with 7 gens and addition as linking function for predicting compressive strength values of different geopolymers in GEP3 model.
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fraction of variance (R2), the absolute percentage error (MAPE) and
the root mean square error (RMSE) which are calculated by Eqs.
(3)-(5), respectively Sarıdemir, 2010:

R2 ¼ 1�
P

iðti � oiÞ2P
iðoiÞ2

 !
ð3Þ

MAPE ¼ 1
n

X
i

ti � oi

ti

����
����� 100 ð4Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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X
i

ðti � oiÞ2
s

ð5Þ

where t is the target value, o is the output value and n is the number
of data sets in each of the training and testing phases.

All of the results obtained from the experimental studies gath-
ered from the literature and those predicted by using the training
and testing results of GEP1–GEP6 models, are given in Figs. 8–13,
respectively.

The equation of the constructed network obtained from Figs. 2–
7, respectively for GEP1–GEP6 models can be stated as Eqs. (6)–
(11):
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Fig. 5. Expression tree with 5 gens and multiplication as linking function for
predicting compressive strength values of different geopolymers in GEP4 model.
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R2, MAPE and RMSE values of GEP1–GEP6 models are shown in
Table 3 for the training and testing data.

The interesting point is that utilizing addition as linking func-
tion between Sub-ETs does not result in a high performance model



Fig. 6. Expression tree with 6 gens and multiplication as linking function for predicting compressive strength values of different geopolymers in GEP5 model.

A. Nazari, F. Pacheco Torgal / Expert Systems with Applications 40 (2013) 5427–5438 5433
(in comparison to all of the models with multiplication as linking
function). Although all of the obtained results using selecting addi-
tion as linking function are good enough to be used, one may em-
ploy multiplication as linking function, with smaller number of
Sub-ETs, and with higher performance.

This is visible in Figs. 8–13 where the values obtained from the
training and testing in GEP1–GEP6 models are very close to those
of the experimental results.

The highest performance model between GEP1 and GEP3 mod-
els with addition as linking function, is related to GEP3 model with
R2, MAPE and RMSE values of 0.9556, 2.4601 and 3.4716 for train-
ing phase, respectively and 0.9483, 2.8456 and 3.7959 for testing
phase, respectively.

Our attempts to construct a model with higher number of genes
resulted in lower performance models. Therefore, one may suggest
that by utilizing addition as linking function, employing 7 Sub-ETs
could result in the best performance network. On the other hand,
between GEP4 and GEP6 models, with multiplication as linking
function, the best performance model is GEP5 model with R2,
MAPE and RMSE values of 0.9547, 2.5665 and 3.4360 for training
phase, respectively and 0.9466, 2.8020 and 3.8047 for testing
phase, respectively. After that, the performance of the models de-
creases. In conclusion, one may suggest that by employing multi-
plication as linking function, 6 Sub-ETs use could result in the
highest performance approach model.

As shown in Figs. 8–13, the predicted results from the mod-
els are compared to the experimental results for training and
testing sets, respectively. The training set results proved that
the proposed models have (impressively well) learned the
non-linear relationship between the input and the output vari-
ables, with high correlation and comparatively low error values.
Comparing the GEP1–GEP6 approach models predictions with
the experimental results for the testing and training stages dem-
onstrates a high generalization capacity of the proposed models
and comparatively low error values. All of these findings exhibit
a successful performance of the models for predicting compres-
sive strength values of the considered geopolymers in training
and testing stages.



Fig. 7. Expression tree with 7 gens and multiplication as linking function for predicting compressive strength values of different geopolymers in GEP6 model.
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The result of the testing phase in Figs. 8–13 shows that GEP1–
GEP6 models are capable of generalizing between input and output
variables with reasonably good predictions. The performance of
the GEP1–GEP6 models is shown in Table 3.

The best value of R2, and the minimum value of MAPE and RMSE
are 0.9556, 2.4601 and 3.4360, respectively all in training phase of
GEP5, GEP5 and GEP3 models, in that order. The minimum value of
R2 and the maximum value of MAPE and RMSE are 0.8792, 3.6597
and 5.6945, respectively, all for testing set in GEP2 model. All of R2,
MAPE and RMSE values show that the proposed GEP1–GEP6 mod-
els are suitable and can predict compressive strength values of geo-
polymers close to the experimental ones.
Finally, Fig. 14 shows fitness factor vs. generation iteration for
GEP1–GEP6 models, respectively. This figure shows that GEP1–
GEP6 models are suitably trained and the final results in the stud-
ied range are of such reliability that one may consider these mod-
els for predicting compressive strength of the considered
geopolymers.
6. Conclusions

This study investigates the compressive strength of different
geopolymers by GEP models. Six different models named



Table 1
The range of input and output variables considered for GEP1 to GEP6 models.

Variable Range

Curing time (days) 1–90
Ca(OH)2 content (Wt%) 0–22.5
The amount of superplasticizer (Wt%) 0–3
NaOH concentration (M) 6–24
Mold type 1–2
Aluminosilicate source 1–3
H2O/Na2O molar ratio 8.9–19.1
Compressive strength (MPa) 1.5–75.2

Table 2
Parameters of GEP approach models.

Parameter definition GEP-I GEP-II

P1 Chromosomes 30 40
P2 Head size 12 14
P3 Linking function Addition Multiplication
P4 Mutation rate 0.044 0.044
P5 Inversion rate 0.1 0.1
P6 One-point recombination rate 0.3 0.3
P7 Two-point recombination rate 0.3 0.3
P8 Gene recombination rate 0.1 0.1
P9 Gene transposition rate 0.1 0.1
P10 Constants per gene 5 5
P11 Weight of functions 7 7
P12 Upper bound 10 10
P13 Lower bound �10 �10

Fig. 8. The correlation of the measured and predicted compressive strength values
in (a) training and (b) testing phase for GEP1 model.

Fig. 9. The correlation of the measured and predicted compressive strength values
in (a) training and (b) testing phase for GEP2 model.

Fig. 10. The correlation of the measured and predicted compressive strength values
in (a) training and (b) testing phase for GEP3 model.
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Fig. 11. The correlation of the measured and predicted compressive strength values
in (a) training and (b) testing phase for GEP4 model.

Fig. 12. The correlation of the measured and predicted compressive strength values
in (a) training and (b) testing phase for GEP5 model.

Fig. 13. The correlation of the measured and predicted compressive strength values
in (a) training and (b) testing phase for GEP6 model.

Table 3
Statistical calculations from GEP1 to GEP6 training and testing phases.

Models R2 MAPE RMSE

Training Testing Training Testing Training Testing

GEP1 0.9375 0.9230 2.8479 3.3501 4.0446 4.5867
GEP2 0.9018 0.8792 3.3623 3.6597 5.0521 5.6945
GEP3 0.9547 0.9466 2.5665 2.8020 3.4360 3.8047
GEP4 0.9395 0.9345 2.9338 3.2796 3.9942 4.2276
GEP5 0.9556 0.9483 2.4601 2.8456 3.4716 3.7959
GEP6 0.9509 0.9441 2.6387 2.9270 3.6027 4.0093
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GEP1–GEP6 were proposed, where the number of Sub-ETs and
linking functions are changed from 5 to 7 and from addition to
multiplication, respectively. In addition, the number of chromo-
somes and head sizes were different. The proposed models are
empirical and based on experimental results collected from the
previous works. All of the results obtained from the models show
suitable agreement with experimental results. The statistical val-
ues of R2, MAPE and RMSE have revealed this situation. However,
the best performance network was obtained by utilizing 6 Sub-
ETs and multiplication as linking function where R2, MAPE and
RMSE values of 0.9547, 2.5665 and 3.4360 for training phase,
respectively and 0.9466, 2.8020 and 3.8047 for testing phase,
respectively were acquired. It was found that GEP can be an alter-
native approach for the evaluation of the compressive strength of
the considered geopolymers. Comparison between GEP in terms
of R2, MAPE and RMSE showed that GEP models are capable to pre-
dict suitable results for the compressive strength values as they are
very close to the experimental ones.



Fig. 14. Fitness factor vs. generation iteration for (a) GEP1, (b) GEP2, (c) GEP3, (d) GEP4, (e) GEP5 and (f) GEP6 models.
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