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A significant number of therapeutics derived from natural polymers and plants have been developed to
replace or to be used in conjunction with existing dressing products. The use of the therapeutic properties
of aloe vera could be very useful in the creation of active wound dressing materials. The present work was
undertaken to examine issues concerning structural features, topography, enzymatic degradation behav-

ior, antibacterial activity and cellular response of chitosan/aloe vera-based membranes. The chitosan/aloe
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dressing materials.

vera-based membranes that were developed displayed satisfactory degradation, roughness, wettability
and mechanical properties. A higher antibacterial potency was displayed by the blended membranes.
Moreover, in vitro assays demonstrated that these blended membranes have good cell compatibility with
primary human dermal fibroblasts. The chitosan/aloe vera-based membranes might be promising wound

© 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In recent years the inclusion of medicinal plants in alternative
medicine has been increasing in our society as a way to improve
people’s quality of life [1]. This interest arises from the therapeutic
properties of plants, which are useful in healing various diseases,
with the advantage of being 100% natural. A good example is the
use of aloe vera (AV), a tropical plant belonging to the family Lili-
aceae, as a healing accelerator on small wounds and burns because
of its antimicrobial effect and epithelizing action on damaged skin
tissue [2]. The gel extracted from AV leaf has also been used as a
healing agent in cosmetic products and drugs [3]. The health ben-
efits associated with AV have been attributed to its compositional
heterogeneity, containing amino acids, enzymes, vitamins, poly-
saccharides (pectins, cellulose, hemicellulose, glucomannan,
acemannan and mannose derivatives) and other low molecular
weight substances [2]. An analysis of the effects of AV regarding
the requirements for wound healing, such as the maintenance of
nutrients, moisture, oxygenation, control of inflammation, immu-
nodulatory activity, epithelialization and fibroblast proliferation
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[4] indicated that AV products fulfill almost all these necessities.
For example, a whole gel extract was found to have anti-inflamma-
tory activity on carrageenan-induced edema in rat paws [5]. Other
studies have shown that AV increases collagen content within the
wound, supporting faster wound healing [6]. On the other hand,
chitosan, a natural polymer derived by the deacetylation of chitin
[7], has been widely used as a base material in the production of
matrices for wound management [8]. Chitosan-based membranes
have, for instance, been widely investigated as wound dressings
due to their easy production and long shelf life [9] as well as the
intrinsic properties of this polymer [7]. In this work the synergistic
association of chitosan and native AV gel was explored as an ap-
proach to create blended membranes which could be useful as ac-
tive wound dressings. Within this context issues concerning
topography, structural features, degradation behavior, antibacte-
rial activity and cellular response of chitosan/AV-based mem-
branes were evaluated.

2. Materials and methods
2.1. Materials
Fresh whole AV (Aloe barbadensis Miller) leaves obtained from a

Portuguese botanic shop were used as the raw material in all
experiments. The studied leaves, between 30 and 40 cm long, came
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from to 4-year-old plants. Reagent grade medium molecular
weight chitosan (Cht) (Sigma Aldrich, CAS 9012-76-4) was used,
with a 23.4% degree of acetylation and molecular weight of
166 kDa, determined by 'H NMR and SEC-MALLS, respectively.
Prior to use Cht was purified using a reprecipitation method, as de-
scribed previously [10]. All other chemicals were reagent grade
and were used as received.

2.2. Methods

2.2.1. Extraction of the gel

Whole leaves were washed with distilled water to remove dirt
from the surface. The skin was carefully separated from the paren-
chyma using a knife. The samples were extensively washed with
distilled water to remove exudate from their surfaces. The samples
were then homogenized in a blender and the homogenized mass
filtered. After that the AV gel was stabilized at 65 °C for 15 min
and stored at 4 °C prior to use.

2.2.2. Preparation of the membranes

Chitosan flakes were dissolved in 0.2 M aqueous acetic acid at a
concentration of 2 wt.% to obtain a homogeneous solution. Then
the solution was filtered to remove impurities. The extracted AV
gel was added to the Cht solution at ratios of 2:1 and 1:1 vjw
Cht/AV, termed CAV and CAV1, respectively. Glycerol, a known
plasticizer (water/glycerol 2.5 vol.%) was also added to the blended
mixture. The blended systems were kept under stirring at 4 °C for
at least 3 h. After homogenization the blended solutions were cast
in Petri dishes and dried at room temperature for 4 days. Subse-
quently neutralization of the membranes was performed by soak-
ing them in 4% NaOH/ethanol 1:1 for 10 min, followed by washing
with ethanol and then with distilled water until pH 7 was reached.
This neutralization process was used in order to avoid leaching out
of the AV due to its high solubility in water. The Cht membranes
were neutralized using only 4% NaOH [11].

2.3. Characterization

2.3.1. Fourier transform infrared spectroscopy

The infrared spectra of the powdered membranes were re-
corded in a FTIR spectrometer (Perkin-Elmer 1600 series). Prior
to analysis the powdered membranes were mixed with potassium
bromide at a ratio of 1:100 (by weight), followed by uniaxially
pressing into a disk. All spectra were obtained between 4000 and
400 cm ™.

2.3.2. Atomic force microscopy

The samples were observed at at least three spots using tapping
mode with a MultiMode sensor connected to a NanoScope, both
supplied by Veeco, with non-contacting silicon nanoprobes
(~300kHz, set point 2-3V) from Nanosensors. All images
(10 um wide) were fitted to a plane using the third degree flatten
procedure included in the NanoScope software v. 4.43r8. The sur-
face roughness was calculated as S, (root mean square from an
average flat surface) and S, (average absolute distance from an
average flat surface). The values are presented as means + standard
deviations.

2.3.3. Contact angle measurements

The surface properties of the membranes were also investigated
by means of static contact angle (6) measurements using the
sessile drop method with glycerol (polar) and diiodomethane
(non-polar) (OCA, with SCA-20 software). Six measurements were
carried out for each sample. The presented data is the average of
six measurements. The surface energy was calculated using the
Owens, Wendt, Rabel and Kaelble (OWRK) equation [12].

2.3.4. Dynamical mechanical analysis (DMA)

Viscoelastic measurements were performed using a TRI-
TEC8000B dynamic mechanical analyzer (Triton Technology) in
tensile mode. The measurements were carried out at 37 °C. Sam-
ples were cut into 1 cm square x 1.5 cm thick (measured with a
micrometer) blocks. The membranes were analyzed while im-
mersed in a liquid bath in a Teflon reservoir. The samples were
clamped in the DMA apparatus and immersed in phosphate-buf-
fered saline (PBS). The DMA spectra were obtained during a fre-
quency scan between 0.1 and 10 Hz at 37 °C. The experiments
were performed under constant strain amplitude (50 pm). A min-
imum of three samples was used for each condition.

2.3.5. Swelling and enzymatic degradation

Swelling and degradation tests were performed by immersing
all membranes in PBS containing 13.6 mg 17! lysozyme (Sigma Al-
drich) and PBS without enzyme at 37 °C for up to 30 days. All
experiments were conducted in triplicate and the solutions were
changed every 7 days to guarantee enzyme activity during the
study period. The swollen sample weights were measured after
removing excess surface water by gently tapping the surface with
filter paper. Water uptake was determined from the swollen state
(after equilibration and eventual degradation or partial solubiliza-
tion) ws and the final dried weight w using Eq. (1). Each experi-
ment was repeated three times, and the average value was
considered to be the water uptake value.

water uptake(%) = ((ws — wy)/wy) x 100 (1)

The weight loss was calculated from the initial dried weight w; and
final dried weight wy, using Eq. (2).

weight loss(%) = ((w; — wy)/w;) x 100 (2)

2.3.6. Antibacterial activity

Staphylococcus aureus ATCC 25923 were first grown for 24 h in
Tryptic Soy Agar (TSA) (Merck, Darmstadt, Germany) at 37 °C. After
this period 50 pul of cell suspension were transferred to 30 ml of
fresh Tryptic Soy Broth (TSB) and incubated for 18 h (late exponen-
tial phase) at 37 °C and 120 r.p.m. Then the cells were centrifuged
(Sigma 4K10, B. Braun) for 5 min at 8000 r.p.m. and 4 °C and
washed twice with saline solution (0.9% NaCl) in distilled water.
The cell suspension was adjusted to a final concentration of
approximately 1 x 10® S. aureus cells ml~!, determined from the
optical density at 640 nm. Prior to use the membranes were steril-
ized with ethylene oxide. Each membrane was placed in an indi-
vidual well of a 24-well tissue culture plate (Sarstedt, Newton,
NC) containing 1 ml of the cell suspension with 1 x 108 cells ml~!
in each well. The plates were incubated for 24 h at 37 °C in an orbi-
tal shaker (120 r.p.m.). Assays were performed in triplicate and re-
peated three times. The number of colony-forming units
(CFU ml™!) in suspension (cells not adherent on the membranes)
was determined by the serial dilution method. Viable cell numbers
were determined by performing 10-fold serial dilutions of the cell
suspension in each well in saline blanks and plating on TSA. Colo-
nies were counted after 24 h at 37 °C. Only plates containing be-
tween 30 and 300 colonies were counted. The results are
presented as log;o CFU ml~! after challenge. Bactericidal activity
was defined as a 3 log;o CFU ml~! (—99.9%) reduction in bacterial
numbers.

2.3.6.1. Agar disk diffusion method. In the agar diffusion technique
30 ml of Plate Count Agar (PCA) was added to a Petri dish and then
0.1 ml of bacterial solution (1 x 108 cells ml~') was placed in the
center the dish and spread. After drying the membranes were
punched into the agar at the center of each Petri dish. After 24,

Acta Biomater (2013), http://dx.doi.org/10.1016/j.actbio.2013.02.027

Please cite this article in press as: Silva SS et al. An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine.



http://dx.doi.org/10.1016/j.actbio.2013.02.027

S.S. Silva et al./Acta Biomaterialia xxx (2013) xXx-xXX 3

48 and 72 h incubation at 37 °C the bacterial growth inhibition
zones was measured. This test was repeated three times in
triplicate.

2.3.7. Isolation and culture of human dermal fibroblasts

Human dermal fibroblasts (hDFs) were isolated from adult skin,
normally discarded tissue after routine plastic surgery of healthy
patients, in collaboration with Hospital da Prelada, Porto, Portugal,
and after patient informed consent. After cutting the skin into
small pieces it was incubated in 2.4 um 1! dispase II (Sigma) over-
night, allowing separation of the dermis from the epidermis. The
dermis was then incubated with 0.1% collagenase type IA (Sigma)
at 37 °C for 3 h. The resulting single cell suspension was filtered
using a 100 pm cell strainer (BD Biosciences), centrifuged and, fi-
nally, the pellet was resuspended in o minimum essential medium
(o-MEM) (Invitrogen), supplemented with 10% fetal bovine serum
(FBS) and 1% antibiotic/antimycotic (1% A/B) (both Gibco, Invitro-
gen). the medium was changed three times a week and cells were
used until passage 5.

2.3.7.1. Cell culture. Prior to cell culture studies all membranes
were sterilized using ethylene oxide. In vitro cell tests were per-
formed using a cell suspension of hDFbs at a concentration of
2 x 10* cells per membrane. Cell membranes were incubated at
37 °C in a humidified 95% air and 5% CO, atmosphere in o-MEM,
supplemented with 10% FBS, 2 mM L-glutamine and 1% A/B. The
culture medium was replaced twice a week. Three independent
experiments were performed. Triplicates were used for each time
point in each different test. After 1, 3, 7 and 15 days culture the
medium was removed and the samples were washed with PBS
and processed for alamar blue assay, calcein-AM staining and
DNA quantification.

The alamarBlue® assay was performed to assess the metabolic
activity of hDFs in contact with the test membranes. For this assay
an alamar blue solution (alamarBlue® Cell Viability Assay Protocol,
Life Technologies) was prepared, added to the medium and incu-
bated for 4 h at 37 °C. The optical density (OD) was read at 570
and 600 nm in a multiwell microplate reader (Synergy HT, Bio-
Tek Instruments). All tests were performed using six replicates.

2.3.7.2. DNA quantification. hDFb proliferation in the membranes
was determined using a fluorimetric double-stranded DNA
(dsDNA) quantification assay (PicoGreen®, Molecular Probes, Invit-
rogen). At each time point samples were transferred to 1.5 ml
microtubes containing 1 ml of ultra-pure water, incubated for 1 h
at 37 °C in a water-bath and then stored in a —80 °C freezer until
use. Prior to dsDNA quantification samples were thawed and son-
icated for 15 min. Samples and standards (ranging from 0 to
1.5 mgml~') were prepared and mixed with PicoGreen solution
at a 200:1 ratio, and placed in a white 96-well plate. Triplicates
were prepared for each sample and standard. The plate was incu-
bated for 10 min in the dark and fluorescence was measured in a
microplate reader (BioTek) using excitation and emission wave-
lengths of 485/20 nm and 528/20 nm, respectively. A standard
curve was created and sample dsDNA values were read from the
standard curve.

2.3.7.3. Calcein-AM. The viability of hDFs adherent on the
membranes was analyzed after calcein-AM staining. 2 pl of calce-
in-AM and 1 ml of Dulbecco’s modified Eagle’s medium without
phenol red and FBS were added to each sample, followed by
10 min incubation at 37 °C. Live cells were stained green due to
enzymatic conversion of the non-fluorescent cell permeant calce-
in-AM to fluorescent calcein. Fluorescent cells were visualized with
a Imager-Z1M fluorescence microscope (Zeiss, Germany).

2.4. Statistical analysis

Statistical analysis of the quantitative data was conducted using
two-way ANOVA with Bonferroni’s post test using GraphPadPrism
v. 5.0 for Windows (GraphPad Software, San Diego, CA). Differences
between the groups at p < 0.05 were considered to be statistically
significant.

3. Results and discussion

Chitosan/AV-based membranes were successfully produced
using of 2:1 and 1:1 v/w ratios of Cht to native AV. Table 1 shows
the physical properties of the membranes. The blended mem-
branes obtained had a yellowish color, and good homogeneity
and mechanical stability. Structural differences between Cht and
AV as well as the changes that occurred in the developed mem-
branes were analyzed by FTIR analysis. In the Cht spectrum
(Fig. 1a) the main characteristic absorption bands of this polymer
appear at 1657 (C=0O stretching), 1582 (NH, stretching) and
1090-1050 cm™! (C-0-C glycosidic bond) [13]. The main peaks
of AV (Fig. 1b) can be observed at 1731 (O-acetyl esters), 1642
(asymmetrical COO~ stretching), 1258 (glucan units), 1090-1051
(glycosidic bond) and 879 cm~' (C-H ring vibration) [14,15]. Spec-
tra of both CAV membranes (Fig. 1c-d) indicated that the charac-
teristic bands of Cht and AV were proportional to the ratio
between the components in the blends. However, the NH and CO
absorption bands that occur in the range 1654-1670 cm™~! were
covered by a single band at 1659 cm™! in the CAV spectrum
(Fig. 1c) and 1672 cm™! in the CAV1 spectrum (Fig. 1d), which sug-
gests that Cht and AV could present specific interactions. Different
authors have shown that Cht interacts with selected negatively
charged molecules such as proteins, anionic polysaccharides and
nucleic acids [16,17]. As AV is composed of a complex mixture of
polysaccharides and proteins, among other compounds [2], specific
interactions such as, for example, hydrogen bonding can occur be-
tween Cht and AV, which could explain the observed bond
displacement.

Boyan et al. [18] reported that the surface properties of bioma-
terials, namely the chemistry, topography and/or surface energy
can influence cell adhesion and proliferation and consequently
the performance (rejection or acceptance) of a potential device.
Therefore, changes in the surface topography of the membranes
at the nanometer level were evaluated by AFM. The surface rough-
ness of the blended membranes at the nanoscale level was higher
than that of Cht (Table 1). Similar results have been observed pre-
viously [19], suggesting that the presence of AV can promote a
rearrangement of the macromolecules in the blended system,
which is reflected in changes in surface roughness.

The measured contact angles and, the calculated surface ener-
gies of the studied membranes are summarized in Table 1. The re-
sults indicated that CAV was slightly more hydrophilic than Cht,
while CAV1 was more hydrophobic. As mentioned before, AV con-
tains a number of polysaccharides, proteins and other compounds
[2]. Mixing with Cht could promote structural rearrangement,
which could expose hydrophobic or hydrophilic groups on the
material surface that could help explain the obtained findings.
From the surface energy calculated using the OWR K method
[12] it can be seen that both CAV and CAV1 presented significantly
higher superficial energy values (7y) in comparison with Cht, sug-
gesting that these membranes have reactive surfaces. Additionally,
the polar component () value can be used as an estimation of the
concentration of polar groups on the polymer surface [20]. The
alteration in vy, of both CAV and CAV1 indicated different densities
of polar groups on the material surfaces, which can be used to tai-
lor the wettability.

Acta Biomater (2013), http://dx.doi.org/10.1016/j.actbio.2013.02.027

Please cite this article in press as: Silva SS et al. An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine.



http://dx.doi.org/10.1016/j.actbio.2013.02.027

4 S.S. Silva et al./Acta Biomaterialia xxx (2013) xXx-xXX

Table 1
Summary of the physical properties of the developed membranes.
Membrane Thickness (jtm) Roughness (nm) Bgiycerol (°) y(mNm™) Yo (MNm™) Yp (MNm™)
Cht 178 +4.5 3.8£05 88.4+0.9 19.3£0.02 13.3£0.02 6.0£0.01
CAV 248227 54%1.0 86.4+2.8 24.8 £0.01 21.7 £0.01 3.1+0.01
CAV1 180+2.5 18.4+6.0 93.9+29 30.4 +0.01 30.0 +0.02 0.41+0.01
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Fig. 1. FTIR spectra of the samples: (a) Cht; (b) AV; (c) CAV; (d) CAV1. (b) (4
An ideal wound dressing material should show gradual degra- 5-_
dation and reabsorption of the matrix by the host [4,21]. Enzymatic 104 < &
degradation of the developed membranes was investigated using ] \i‘ ><§ + \"‘--\.__L ;
lysozyme, an enzyme present in human serum [22] that could be = 154 = é\\___ 1
responsible for enzymatic hydrolysis of Cht-based materials & ] n
in vivo [23]. This enzyme is present in human serum at concentra- o 20 4 .
tions in the range 7-13 mg1~!. All membranes were incubated in f ] [
PBS (control) and PBS containing lysozyme for up to 30 days. 5 25 ok \
Fig. 2 displays the water uptake (Fig. 2a) and degradation profiles o ]
of the membranes (Fig. 2b) during the study period. Both CAV = 30 J
and CAV1 showed higher water uptake in comparison with the |—m—cht
Cht membrane. This result is probably a consequence of the in- 354 —A— CAV
crease in hydrophilic groups in the blended system due to the addi- |—>—cAv1
tion of AV. Some studies have revealed that the water uptake 40
behavior of Cht-based-systems depends on the blend composition. 0 5 10 15 20 05 30

In fact, the AV gel is rich in hydroscopic polysaccharides such as
acemannan [2], which, together with the hydrophilicity of Cht, re-
sults in greater swelling of the blended membranes in comparison
with the Cht membrane. Furthermore, the high swelling ability of
the membranes over a longer period not only provides a high mois-
ture level at the wound-dressing interface but also allows absorp-
tion of any excess exudate. An analysis of the degradation profiles
(Fig. 2b) indicated that Cht membranes show less weight loss com-
pared with both CAV and CAV1 with time. Statistical analysis of the
weight loss data showed significant differences (p < 0.05) on day
21 between the pairs Cht/CAV1 and CAV/CAV1. Differences were
also found on day 28 for Cht relative to both CAV and CAV1. It
has been reported that the degradation rate of Cht depends on
the crystallinity, morphology and molecular weight, among other
factors [24]. In fact, the degradation kinetics of Cht appear to be in-
versely related to the degree of deacetylation [25,26]. Thus, the
high degree of deacetylation (76%) of the Cht used in this work
could lead to slower degradation. Moreover, both CAV and CAV1
showed highest weight loss (22% and 25%, respectively) after

Immersion time (days)

Fig. 2. (a) Water uptake and (b) weight loss of the Cht, CAV and CAV1 membranes
as a function of immersion time in PBS containing 13.6 mg 1! lysozyme at 37 °C.
Data represent means * standard deviations (p < 0.05, two-way ANOVA).

longer incubation times (21 and 28 days). The high solubility of
AV in aqueous media associated with different Cht/AV ratios could
be reasons for these findings.

Characterization of the mechanical properties of dressing mate-
rials is important since film dressings should be durable, stress-
resistant and flexible to facilitate routine handling [4]. The
mechanical properties of the developed membranes were investi-
gated by DMA. Fig. 3 presents the viscoelastic behavior of the
membranes in terms of the storage (elastic) modulus E’' and the
loss factor tand. Mechanical analysis of the membrane made of
AV gel alone was not conducted as the film was too fragile to han-
dle. As shown in Fig. 3a, E’ of all membranes tended to increase
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Fig. 3. Evaluation of the viscoelastic properties of all the developed membranes by
DMA. Frequency scans were performed in the range 0.1-10Hz under wet
conditions at 37 °C. (a) E' of Cht, CAV and CAV1 membranes; (b) tans of Cht, CAV
and CAV1 membranes.

with increasing frequency. The results reveal that both CAV and
CAV1 were stiffer than Cht alone membranes, exhibiting the high-
est E’' values. Statistical differences (p <0.05) were observed for
CAV in relation to CAV1 and Cht. A comparison between CAV and
CAV1 indicated that the CAV1 membrane (cht/AV ratio 1:1) has
the lowest E’ value, which could be related to the greater amount
of AV involved in the preparation of this membrane. Fig. 3b pre-
sents the variation in tand with frequency. The loss factor measures
the damping properties of the samples and provides an indication
of its viscoelastic characteristics [27]. Such behavior indicates that
the molecules in the membranes present long relaxation times,
which allow recovery of such materials. Human skin tissue is a
complex viscoelastic composite with a rigidly elastic upper epider-
mal layer and an underlying viscoelastic dermal layer [28,29]. Thus
the mechanical responses of both CAV and CAV1 associated with
their viscoelastic nature could be suitable for skin healing
applications.

Wounds are frequently contaminated with a variety of bacteria,
so the potential for infection is always present. This has encour-
aged the development of improved wound dressings that show
an antimicrobial effect through the incorporation or not of

antimicrobial agents. Evaluation of the antimicrobial activity of
the developed membranes against S. aureus, a Gram-negative
wound pathogen, was carried out using two methods: the bacterial
cell suspension and agar diffusion methods. Staphylococcus aureus
was chosen for this study due to its frequent presence in skin
wounds [30]. The findings from the bacterial cell suspension meth-
od (Fig. 4) indicate that the antibacterial activities of CAV and CAV1
are better than that of Cht membranes, suggesting that the addi-
tion of AV to Cht enhanced the antimicrobial potential of the
resulting membranes. However, statistical differences (p < 0.05)
were not found between the CAV and CAV1 membranes.

Furthermore, the membranes exhibited various sizes of inhibi-
tory halo in vitro, as verified by the agar diffusion method. CAV1
(inhibition zone diameter 4.9 cm) had the highest antibacterial po-
tential compared with the other formulations (Cht 0cm, CAV
4.7 cm) (see Fig. 5). Although CAV and CAV1 showed similar inhi-
bition zone diameters, it can be seen in Fig. 5 that CAV1 presented
a much better defined and clearer halo. This demonstrates the
greater effectiveness of CAV1 as a bactericide. The higher antibac-
terial potential displayed by the CAV1 membranes could be a result
of the higher greater content of AV in the membrane, which conse-
quently increases its inhibitory potency. Additionally, no signifi-
cant antimicrobial activity was found for Cht membranes. The
mechanism of antimicrobial activity of Cht has not yet been fully
elucidated, but the most feasible hypothesis is a change in cell per-
meability due to interactions between the net positive charge of
Cht and the negatively charged bacterial cell walls, resulting in cell
wall breakage and cell death [31,32]. According to the literature,
the antimicrobial activity of Cht depends on its molecular weight,
degree of deacetylation, chitosan derivatization, pH of the solution
and the target microorganism [32,33]. Zheng et al. [33] found that
antibacterial activity increased with increasing molecular weight
of Cht (305 kDA). Thus it is possible that the characteristics of
the Cht used in this work (degree of deacetylation 76.6%, molecular
weight 115 kDA) could have influenced the results obtained. In
turn, AV gel has been shown to be an effective antimicrobial agent
against Gram-positive and Gram-negative bacteria, including S.
aureus, Escherichia coli and Klebsiella pneumonia [34,35]. Also, top-
ical application of AV has been shown to be effective in the treat-
ment of various skin problems such as, for example, burns and
eczema [36]. The mechanism of action of AV is still not fully under-
stood, but some studies [34] have suggested that certain com-
pounds such as acemannan, anthroquinones and salicylic acid,
present in AV, may be responsible for its antimicrobial activity.
Further in vivo assays will be necessary to gain a better under-
standing of the antimicrobial efficacies of these membranes.

The wound healing process is complex and involves the interac-
tion of many different types of cells and matrix components to
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Fig. 4. Cell viability tests obtained after bacterial cell suspension assay (24 h).
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Fig. 5. Photographic image of the developed membranes (Cht, CAV and CAV1) on culture plates inoculated with S. aureus after 72 h.

establish a provisional and eventually a complete regenerated tis-
sue [37]. Thus hDFs were used in vitro to assess the cell response to
the developed membranes. The alamar blue results (Fig. 6) reveal
that the hDFs were less metabolically active when cultured on
Cht. Interestingly, significantly higher cell metabolic activity
(p < 0.05) was found for CAV compared with the other membranes
on days 7 and 15. The DNA results (Fig. 7) showed a significantly
higher number of cells (p < 0.05) attached to CAV membranes on
days 7 and 15 compared with CAV1 and Cht, indicating that hDFs
were unable to proliferate on these membranes. These findings
are in agreement with cell metabolic activity results (Fig. 6).
Furthermore, the calcein-AM results (Fig. 8) are in agreement
with the findings obtained from the alamar blue assay and DNA
quantification, suggesting that they are viable independent of the
cell number present on the membrane surface. On the Cht mem-
brane (Fig. 8a) hDFs exhibited a round morphology with cell
agglomeration throughout the study period. Cells seeded on the
CAV membrane showed better spreading and a higher number of
cells attached to the surface. From days 1 to 7 the cells were uni-
formly distributed on the surface of the CAV membrane, exhibiting
a spindle-like shape typical of fibroblasts, suggesting good adher-
ence to this surface. Moreover, on day 7 hDFs were well spread
on and were able to adhere to both sides of the CAV membrane
surface. Despite the good cell adhesion and proliferation observed
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Fig. 6. Alamar blue results for hDFb cells cultured on the developed membranes as
a function of time. The values were normalized to results obtained on TCPS, which
was used as a positive control. Data are presented as means * standard deviations
(p < 0.05, two-way ANOVA).
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Fig. 7. dsDNA content of hDFb cells adherent on the developed membranes as a
function of culture time. Data are presented as means * standard deviations
(p < 0.05, two-way ANOVA).

on the CAV membrane, the higher AV content of CAV1 did not re-
sult in the expected increase in cell spreading and proliferation.
According to the literature [38] unmodified Cht membranes are
unable to promote fibroblast cell attachment and proliferation,
perhaps as a result of the monopolar basic nature of Cht, which
does not interact well with the bipolar bovine serum extracellular
matrix proteins present in the culture medium. The findings ob-
tained in this work indicate that the surfaces of the blended mem-
branes varied not only in roughness but also in AV and Cht
functional groups and surface energy. Generally, the surface energy
and wettability of biomaterials significantly affect biological pro-
cesses at the subcellular (protein adsorption) and cellular (cell
attachment, spreading, proliferation, etc.) levels [39]. In Cht mem-
branes, for instance, surface modification by blood plasma has
demonstrated a significant improvement in fibroblast adhesion
and proliferation as a result of changes in both surface roughness
and energy [11]. In turn, the biological activity of Cht/AV-based
membranes can also be influenced by physical features such as
the surface energy, topography and stiffness, which directly influ-
ence protein adsorption and, subsequently, the cell response. Chi-
tra et al. [40] reported that an AV gel can accelerate wound healing
in diabetic rats due to its ability to stimulate fibroblasts and en-
hance the processes of wound healing, such as collagen synthesis
and maturation and wound contraction. The noted differences in
cell response on CAV became more evident with increasing culture
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Fig. 8. Calcein-AM staining of hDFb cells cultured for 1, 3 and 7 days on the membranes (Cht, CAV and CAV1).

time, suggesting that the incorporation of AV has a positive effect
on the long-term material response. Depending on the type of
wound, both membranes (CAV and CAV1) could be useful as
wound dressing materials. CAV, for example, shows good cell
adhesion and proliferation, and could be used for long-term wound
healing, during which the membranes will be resorbed by the body
during the healing process. On the other hand, the CAV1 mem-
brane could be used for short-term or acute wounds (1-4 days),
similarly to traditional wound dressings. Furthermore, the risk of
further damage during membrane removal is low, since cells did
not adhere well to this surface.

4. Conclusions

This work has demonstrated the potential of native AV gel
incorporated in Cht to create blended membranes. In the devel-
oped Cht/AV-based membranes the incorporation of even a small
amount of AL gel into Cht provided blended membranes with ade-
quate roughness, degradation rate, wettability and mechanical
properties. Moreover, the in vitro biological performance revealed
that Cht/AV-based membranes offer a good environment for hDF
attachment, spreading, proliferation and viability. Overall, the ef-
fect of Cht/AV-based membranes on bacterial growth and the rel-
atively good cellular response, together with suitable mechanical
and physical properties, suggest that these blended membranes
may be useful as wound dressings. Further studies should be pur-
sued to elucidate the mechanism of action in vivo of these blended
membranes.
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Appendix A. Figures with essential color discrimination

Certain figures in this article, particularly Figs. 5 and 8, are dif-
ficult to interpret in black and white. The full color images can be
found in the on-line version, at http://dx.doi.org/10.1016/j.
actbio.2013.02.027.
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