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Abstract

In this paper, we propose a new visualization approach based on a Sen-
sitivity Analysis (SA) to extract human understandable knowledge from su-
pervised learning black box data mining models, such as Neural Networks
(NN), Support Vector Machines (SVM) and ensembles, including Random
Forests (RF). Five SA methods (three of which are purely new) and four mea-
sures of input importance (one novel) are presented. Also, the SA approach
is adapted to handle discrete variables and to aggregate multiple sensitivity
responses. Moreover, several visualizations for the SA results are introduced,
such as input pair importance color matrix and variable effect characteristic
surface. A wide range of experiments was performed in order to test the
SA methods and measures by fitting four well-known models (NN, SVM, RF
and decision trees) to synthetic datasets (five regression and five classification
tasks). In addition, the visualization capabilities of the SA are demonstrated
using four real-world datasets (e.g., bank direct marketing and white wine
quality).
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1. Introduction

Data Mining (DM) aims to extract useful knowledge from raw data. In-
terest in this field arose due to the advances of Information Technology and
rapid growth of business and scientific databases [15]. These data hold valu-
able information such as trends and patterns, which can be used to improve
decision making [30]. Two important DM tasks are classification and regres-
sion. Both tasks use a supervised learning paradigm, where the intention
is to build a data-driven model that learns an unknown underlying function
that maps several input variables to one output target.

Several learning models/algorithms are available for these tasks, each one
with its own advantages. In a real-world setting, the value of a supervised DM
model may depend on several factors, such as predictive capability, compu-
tational requirements and explanatory power. Often, it is important to have
DM models with high predictive capabilities on unseen data. Computational
effort and memory requirements are particularly relevant when dealing with
vast datasets or real-time systems. This work focuses primarily on the ex-
planatory power aspect, which relates to the possibility of extracting human
understandable knowledge from the DM model. Such knowledge is impor-
tant to determine if the obtained model makes sense to the domain experts
and if it unveils potentially useful, interesting or novel information [15][4].
Increasing model interpretability allows for better understanding and trust
of the DM results by the domain users [28] and this is particularly relevant
in critical applications, such as control or medicine.

There is a wide range of “black box” supervised DM methods, which are
capable of accurate predictions, but where obtained models are too complex
to be easily understood by humans. This includes methods such as: Neural
Networks (NN) (e.g., multilayer perceptrons and radial basis-functions) [18],
Support Vector Machines (SVM) and other kernel-based methods [10], and
ensembles, including Random Forests (RF) [2], where multiple models are
combined to achieve a better predictive performance [11]. Recent examples
of successful applications of these black box methods are: network intrusion
detection using NN [16], wine quality prediction using SVM [7] and text
sentiment classification (e.g., positive/negative movie-review identification)
using ensembles of SVM and other DM methods [34].

To increase interpretability from black box DM models, there are two
main strategies: extraction of rules and visualization techniques. The ex-
traction of rules is the most popular solution [29][26][23]. However, such
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extraction is often based on a simplification of the model complexity, hence
leading to rules that do not accurately represent the original model. For in-
stance, a pedagogical technique was adopted in [27] within the intensive-care
medicine domain to extract the relationships between the inputs and outputs
of a NN classifier using a decision tree. While producing more understand-
able rules, decision trees discretize the classifier separating hyperplane, thus
leading to information loss. Regarding the use of visualization techniques,
the majority of these methods address aspects related to the multidimen-
sionality of data and the use of visualization for black box DM models is
more scarce [21]. Regarding the latter approach, some graphical methods
were proposed, such as: Hinton and Bond diagrams for NN [9]; showing NN
weights and classification uncertainty [31]; and improving the interpretabil-
ity of kernel-based classification methods [5]. Yet, most of these graphical
techniques are specific to a given learning method or DM task.

Our visualization approach to open DM models is based on a Sensitivity
Analysis (SA), which is a simple method that performs a pure black box use
of the fitted models by querying the fitted models with sensitivity samples
and recording the obtained responses [25]. Thus, no information obtained
during the fitting procedure is used, such as the gradient of the NN training or
importance attributed to the splitting variable of a RF, allowing its universal
application. In effect, while initially proposed for NN, SA can be used with
virtually any supervised learning method, such as partial least squares [12]
and SVM [7].

In [20], a computationally efficient one-dimensional SA (1D-SA) was pro-
posed, where only one input is changed at the time, holding the remaining
ones at their average values. Later, in [13] a two-dimensional SA (2D-SA)
variant was presented. In both studies, only numerical inputs and regression
tasks were modeled. Moreover, SA has been mostly used as a variable/feature
selection method, where the method is used to select the least relevant feature
that is deleted in each iteration of a backward selection [25][12][5][7].

The use of SA to open black box models was recognized in [20] but more
explored in [13], [21] and [8]. In [13], the proposed 2D-SA was used to show
the effects of two input variables on the DM model, with the importance of
these pair of inputs being measured by the simple output range measure. In
[21], a genetic algorithm was used to search for interesting output responses
related with one (2D plot) or two input (3D plot) variables. Yet, the study
was focused on visualizing the individual predictions of an ensemble of mod-
els, where the intention was to check if the distinct individual predictions
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were similar, in conjunction with other criteria, such as the simpler output
range measure. More recently, a Global SA (GSA) algorithm was presented
in [8], capable of performing a F -dimensional SA for both regression and
classification tasks, although with a high computational cost.

In this paper, we extend and improve our previous work [8], leading
to a coherent SA framework capable of handing any black box supervised
model, including ensembles, and applicable to both classification and regres-
sion tasks. The main contributions are:
i) we present three novel and computationally efficient SA methods (DSA,

MSA and CSA), comparing these with previous SA algorithms (1D-SA
[20] and GSA [8]);

ii) we propose a new SA measure of input importance (AAD), test it against
three other measures, and present a more informative sensitivity mea-
sure pair for detecting 2D input relevance;

iii) we adapt the SA methods and measures for handling discrete variables
and classification tasks;

iv) we propose novel functions for aggregating multiple sensitivity responses,
including a 3-metric aggregation for 1D regression analysis and a fast
aggregation strategy for input pair (2D) analysis;

v) we present new synthetic datasets (four regression and five classification
tasks) for evaluating input importance;

vi) we present useful visualization plots for the SA results: input impor-
tance bars, color matrix, variable effect characteristic curve, surface
and contour;

vii) we explore three black box (NN, SVM and RF) and one white box
(decision tree) models to test the SA capabilities and show examples
of how SA can open the black box in four real-world tasks.

The paper is organized as follows. First, we present the SA approaches,
visualization techniques, learning methods and datasets adopted in Section
2. Then, in Section 3 the proposed methods are tested in both synthetic and
real-world datasets. Finally, conclusions are summarized in Section 4.

2. Materials and methods

2.1. Sensitivity methods

A supervised DM model is fit to a dataset, or training data, made up of
N examples of M input variables and one output target (y). Let ŷ denote
the value predicted by the model for one example or data sample (x) and
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let P be the function used to build the model’s responses, i.e., ŷ = P (x). In
general, the sensitivity methods work by varying an input variable xa through
its range with L levels, under a regular sequence from the minimum to the
maximum value. Let xaj

denote the j-th level of input xa. For example,
if L = 5 and xa ranges within [0, 1], then xaj

∈ {0.0, 0.25, 0.5, 0.75, 1.0}. In
this paper, we analyze five sensitivity methods, where the last three are novel
algorithms:

1D-SA [20] – This method works by considering a given baseline vector
b. Typically, b contains the mean or median values of each input,
although any other vector can be used. For instance, input values of
an interesting example or mean values for a particular cluster, such
as patients younger than eighteen. Then, it cycles through all {xa :
a ∈ {1, ...,M}} inputs. For each input, L input examples are built
using all b values except {xaj

: j ∈ {1, ..., L}}. Let the respective
model responses be denoted by ŷa = {ŷaj

: j ∈ {1, ..., L}}, where ŷaj

represents the response for xaj
. These responses are stored and used to

compute a sensitivity measure of the input or for visualization purposes.
The computational complexity is O(M × L× P ).

GSA [8] – Similar to 1D-SA, except that this method uses a set of F features
that simultaneously vary with L levels. The number of simultaneous
sensitivity variables (#F ) can range from 1 (equal to 1D-SA) to M (in
such case a M -th SA dimensionality, denoted here as MD, is used).
When compared with 1D-SA, GSA (#F > 1) is more suited to capture
interactions of inputs. However, GSA requires more computation, with
a complexity of O(L#F × P ).

Data-based SA (DSA) – Similar to 1D-SA, except that this method uses
several training samples instead of the baseline vector. The idea is
to capture input interactions (as GSA) but with less computational
effort. First, the SA dataset is composed of Ns random samples taken
from the original dataset. In the SA dataset, all xa values are replaced
by xaj

and the respective responses are stored. Then, the previous
step is repeated using a different j value. This procedure is repeated
for all input variables, thereby resulting in a complexity of the order
O(M × L×Ns × P ), where Ns is the length of the training samples.

Monte-Carlo SA (MSA) – Similar to DSA, except that the Ns random
samples are not taken from the dataset but are instead built from a
uniform distribution, in a continuous (MSAc) or discrete space (MSAd,
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where L different levels are considered for all inputs). The computation
effort is same as DSA: O(M × L×Ns × P ).

Cluster-based SA (CSA) – First, this method stores all predicted val-
ues for the whole dataset, and then cycles through all inputs. For
each input xa, L clusters are defined, according to a very fast proce-
dure, where a regular sequence with L + 1 levels, from the minimum
to maximum of the xa values is created. Next, L ordered clusters are
defined, where each cluster contains all data samples whose xa val-
ues are within two levels of the regular sequence. For example, when
L = 5 and xa ∈ [0, 1] the sequence {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} is used
to create 5 clusters, where the first cluster contains the data samples
whose xa values are within [0.0, 0.2[. Finally, the sensitivity values
(ŷaj

) are set as the predictions related with the examples that belong
to cluster j. Typically, CSA is faster than DSA, since the complexity
is max(O(N × P ),O(M × L)).

2.2. Sensitivity measures of input importance

All SA methods described previously (Section 2.1) query a fitted DM
model in order to obtain a set of sensitivity responses (ŷa). These responses
can be used to measure input importance. The rational is that a relevant
input (xa) should produce substantial output changes when varying its input
levels. Such input relevance is quantified by using a sensitivity measure.

In [20], three sensitivity measures were presented for continuous outputs,
namely range (Sr), gradient (Sg) and variance (Sv). In this paper, we also
propose the purely new Average Absolute Deviation (AAD) from the median
(Sd), which is a measure of data dispersion that is less sensitive to outliers
when compared with the variance. For input xa, the four measures are:

Sr = max(ŷaj
: j ∈ {1, ..., L})−min(ŷaj

: j ∈ {1, ..., L}) (range)

Sg =
∑L

j=2 |ŷaj
− ŷaj−1

|/(L− 1) (gradient)

Sv =
∑L

j=1 (ŷaj
− ya)2/(L− 1) (variance)

Sd =
∑L

j=1 |ŷaj
− ỹa|/L (AAD)

(1)

where ya and ỹa denote the mean and median of the responses, respectively.
The gradient is the only measure that is dependent on the order of the
sensitivity responses. Such property may be a disadvantage when addressing
nominal input variables, whose level change values may lead to non-smooth
response changes, or random sample sensitive methods (e.g., MSA or DSA).
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For all measures, the higher the value, the more relevant is the input xa.
Thus, the relative importance (ra) can be given by [7]:

ra = ςa/
M∑
i=1

ςi (2)

where ςa is the sensitivity measure for xa (e.g., range). In this work, the
importance values are denoted by vector r = (r1, r2, ..., rM).

For demonstration purposes, Figure 1 shows sensitivity measures for five
hypothetical response curves: A, B, C, D and E. The flat curve (A) produces
a zero value for all measures. However, the graph shows different rankings
for the other curves. According to the range, B, C and D curves have an
equal influence in the responses and higher than curve E (”saw” shape). The
gradient ranks higher both D and E, followed by both C and B. The variance
favors B, C and D, followed by E. Finally, the average deviation ranks C and
D at first place, followed by B and E. Intuitively, curve D should denote an
higher influence than E. Also, the average effect of curve C should be higher
when compared with curve B. Under this rational, the absolute deviation is
the best choice.

In both [13] and [21], the importance of an input pair of variables was
measured using a simple measure: the global range of the output responses
produced by the pair. However, this simple measure may led to misleading
conclusions. For instance, when considering the synthetic psin regression
task (from Section 2.7, Equation 6), the overall range is the same for the
responses related to pairs (x2, x3) and (x1, x4) (Figure 2). Yet, x4 has a
null effect in psin and only x1 is contributing for the overall range (left of
Figure 2). In contrast, both x2 and x3 inputs affect the response (right of
Figure 2), thus this pair produces a more interesting response when compared
with the previous one.

Let {ŷ(ai,bj) : i ∈ {1, ..., L}, j ∈ {1, ..., L}} denote the sensitivity responses
related with L × L changes of input pair (xa,xb). Let ςai

and ςbj
represent

the sensitivity measures (e.g., range) computed over ŷai
and ŷbj

, respectively,
where ŷai

denotes all responses when xa is set to its i-th level. Instead of the
global range, we propose the novel and more informative pair (ςa, ςb):

(ςa, ςb) = (
∑L

j=1 ςbj
/L,

∑L
i=1 ςai

/L) (3)

In the psin example, the range due to x4 is ςx4 = 0.0 (left of Figure 2), thus
confirming the null effect of x4 variable.
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Figure 1: Example of the sensitivity measures for five response curves.

Sr=1.0

x1: Sr_x1=1.0
x4: Sr_x4=0.0

y

1.0

1.2

1.4

1.6

1.8

2.0

Sr=1.0

x2: Sr_x2=0.7
x3: Sr_x3=0.3

y

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Figure 2: Variable effect characteristic surface for the psin task and pairs (x1, x4) (left)
and (x2, x3) (right).
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2.3. Discrete attributes

The sensitivity methods and measures of Sections 2.1 and 2.2 were devised
for continuous variables. Since discrete variables are common in DM tasks
(e.g., classification) we address them in this section. A discrete variable is
often classified as ordered, if the variable values can be put in a scale (e.g.,
{low, medium, high}), or nominal, if there is no order in the values (e.g.,
{red, blue, yellow}). Dealing with ordered variables is simpler, as they can
be encoded into a numeric ordered scale {1, 2, ..., G} (G is the number of
classes), which is treated as the continuous case.

To handle nominal input variables, we propose the following. For methods
that require a baseline vector (i.e., 1D-SA and GSA), use the mode, i.e., most
common value, as the baseline value. Also, when varying input xa and for
all sensitivity methods, all levels (Lxa = G) or only the most frequent ones
(Lxa = min (G,L)) can be used, where Lxa denotes the number of levels used
for the input xa.

When the target is nominal, there are two main modeling possibilities:
outputting class labels ({c1, ..., cG}) or probabilities, where ŷ = (p1, ..., pG)
such that

∑G
i=1 pi = 1 and pc denotes the probability of class c. To compute

the sensitivity measures, our methods make use of the latter approach. Thus,
in case of pure classification, we propose the transformation of the class la-
bels into probabilities using the popular One-of-G transformation, where one
binary variable is assigned to each class. For the color example, the transfor-
mation is: red→(1,0,0); blue→(0,1,0); yellow→(0,0,1). Similarly to the total
Area Under of the receiver operating characteristic Curve (AUC) calculation
for multi-class tasks [14], the sensitivity measures are first computed for each
individual class (c) and then a weighted average is performed in order to
compute the global sensitivity measure:

ςa =
∑

c∈{c1,...,cG}

f(c)ςa(c) (4)

where ςa(c) is the sensitivity measure (e.g., AAD) for attribute xa and output
class c, and f(c) is the class c frequency in the dataset.

2.4. Sensitivity response aggregation functions

For 1-SA, there is only one sensitivity value for a given input variable
level (xaj

). Thus, the sensitivity measures of Section 2.2 can be directly ap-
plied over the sensitivity responses (ŷa). However, the remaining sensitivity
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methods (e.g., GSA) produce several sensitivity values (ŷaj
) for each input

level. In such cases, an aggregation function needs to be set prior to the
computation of the sensitivity measures.

In [8], all GSA sensitivity responses were first averaged according to each
input level, i.e., only j ∈ {1, ..., L} distinct ŷaj

values were stored and then
fed into the importance calculations (Equation 1). Yet, this simple aggrega-
tion function can lead to information loss. For instance, the left of Figure 3
demonstrates the sensitivity responses when using a full 4D SA for a regres-
sion task. When changing the input levels, the average sensitivity values
(diamond points) are kept constant, although other statistics (e.g., maxi-
mum and minimum) undergo a substantial change. This phenomenon is less
likely to occur in classification, as shown in the right of Figure 3, since the
minimum and maximum values tend to be stable (set at minimum of 0.0 and
maximum of 1.0 values).
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Figure 3: Variable effect characteristic curves for the regression int2 (left) and classification
int2-2c (right) tasks (described in Section 2.7). The x-axis denotes the 7 different levels
for the first input x1 and the y−axis shows the sensitivity responses, in terms of: diamond
points – average values; box plots – e.g., minimum and maximum values; and grey lines –
individual data point sensitivity values).

To solve this problem, we propose a novel multi-statistic aggregation
method for regression tasks, which averages three sensitivity measures, re-
lated with the statistics: minimum (min), average (avg) and maximum
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(max), over the ŷaj
values:

ŷmin(a) = (min(ŷa1), ...,min(ŷaL
))

ŷavg(a) = (avg(ŷa1), ..., avg(ŷaL
))

ŷmax(a) = (max(ŷa1), ...,max(ŷaL
))

ςa = (ςŷmin(a)
+ ςŷavg(a)

+ ςŷmax(a)
)/3

(5)

where ςŷ denotes the sensitivity measure for each statistic (min, avg and
max). For classification, we adopt the simpler average (1-metric) aggregation
method over the sensitivity measure (using Equation 4).

Aggregation is also required when several responses are available for the
sensitivity of an input pair (xa,xb). For example, this can occur with GSA
when #F > 2. In such case, and for classification, we adopt the average
aggregation function, over ŷ(ai,bj), while the similar three statistic (min, avg
and max) approach is proposed for regression.

A 2D (L × L) SA can also be applied to the DSA or MSA methods,
although it can require a substantial computational effort. As a fast alterna-
tive, we propose a simpler aggregation strategy that combines CSA with the
previous methods. We denote such strategy as (xa,x

′
b), where the x′b values

are estimated but not taken directly from the sensitivity dataset. First, Ns re-
sponses values that are related with the first input xa are selected. Next, the
estimated input levels for the remaining input are set to x′b = (x′b1 , ..., x

′
bL

).
Then, the responses for a given pair of values, ŷ(ai,bj), are set to all the re-
sponses related with the first input level (xai

) and whose xb values, as they
occur in the DSA or MSA dataset, are closer to x′bj

, within a threshold of

tb × (x′b2 − x
′
b1

), where tb is a tolerance constant. After obtaining the ŷ(ai,bj)

responses, then we can apply the same aggregation methods suggested for
GSA.

2.5. Visualization techniques

Consider that a supervised learning model that was designed to achieve a
satisfactory prediction accuracy under the smallest set of M input variables
(e.g., use of feature selection). After applying the SA methods, several 2D
and 3D visualization plots can be used to open the black box (examples of
these plots are shown in Section 3.3).

Regarding input relevance, the input importance bar plot, can be
used to show 1-D input importances (Equation 2), sorted from the highest
to the lowest values. We propose a color matrix for the visualization of the
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sensitivity measures related with an input pair. Such technique was initially
suggested in [13], where a dark coloring, denoting an interesting pair, was
applied proportionally to the overall pair sensitivity measure. Yet, since we
use a two dimension measure (Equation 3), the dark coloring is adapted to
be proportional to the sum of these measures (ςa + ςb), provided that both
ςa and ςb are above a given threshold (tcm).

To present the average impact of a given input xa in the model, we sug-
gest the use of the Variable Effect Characteristic (VEC) curve, which
plots the xaj

values (x-axis) versus the ŷaj
responses (y-axis). Between two

consecutive xaj
values, the VEC plot uses a line for continuous values and a

horizontal segment for categorical data. To enhance the visualization anal-
ysis, nominal xa values can be sorted according to the average ŷaj

response.
Also, several VEC curves can be plotted in the same graph. In such case, the
x-axis should be scaled (e.g., within [0,1]) for all xa values. For regression,
and when there are several sensitivity responses for a given input level (ŷj),
a box plot can be used for each xaj

level, as shown in Figure 3. For classifica-
tion, and similarly to the Receiver Operating Characteristic (ROC) analysis,
a VEC plot can be built for each target class (right of Figure 3). Moreover,
when using multiple runs, the distinct VEC curves can be averaged vertically.

Finally, to show the impact of a pair of inputs (xa,xb), we propose the
use of a VEC surface (e.g., Figure 2) and contour plot. The VEC sur-
face provides more detail when compared with the contour plot, yet, a good
interpretability is dependent on a correct adjustment of the 3D axis/angle
representation. For regression, and when multiple responses are obtained for
two input levels (ŷ(ai,bj)), three VEC surfaces or contour plot can be drawn,
related with the min, avg and max aggregation functions. For classification,
a VEC surface or contour plot can be drawn for each class.

2.6. Supervised learning methods

We explore three black box and popular DM models: NN, SVM and RF,
as implemented in the rminer library of the R tool [6].

The NN is based on an ensemble that computes the average of the predic-
tions of Nr multilayer perceptrons, all with different initial random weights
and a hidden layer of H neurons with logistic functions. For regression, the
output neuron uses a linear function. For a binary classification, there is one
output neuron with a logistic function. Under multi-class tasks (G > 2),
there are G linear output neurons and the softmax function is used to trans-
form these outputs into class probabilities. The predicted class is given by
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the highest probability. The training (BFGS algorithm) of each network is
stopped when the error slope approaches zero or after a maximum of Me

epochs.
The SVM uses a Gaussian (or RBF) kernel with the parameter γ. The

SVM is fit using the sequential minimal optimization (SMO) learning algo-
rithm. When modeling regression datasets, the ε-insensitive cost function
adopted. For classification, the model can be set to estimate classes or class
probabilities. For multi-class tasks, the one-against-one approach is used
[33].

RF is an ensemble of a large number of T unpruned decision trees [2].
Each tree is based in a random feature selection from bootstrap training
samples and the RF predictions are built by averaging the outputs of the T
trees. For RF, rminer adopts the randomForest R package with all its default
values (e.g., T = 500) except m, the number of inputs randomly selected at
each decision tree node.

Before feeding the NN and SVM models, the nominal inputs are encoded
using a One-of-G transformation, while the real inputs are standardized to a
zero mean and one standard devision. The NN and RF hyperparameters, H
and m, are set using a simple grid search. Regarding SVM, a more sophis-
ticated search was adopted for the two (classification) or three (regression)
hyperparameters, by using a two-level uniform design search [19]. For a given
hyperparameter set of values, a cross-validation is applied over the training
data and the value with the lowest estimation error is selected.

2.7. Data

We address synthetic and real-world datasets. Synthetic data from well
defined benchmark functions are used to evaluate the sensitivity perfor-
mances, because in real-world applications it is difficult to know in advance
how a given input truly affects the target variable. Real-world data are used
to demonstrate the sensitivity visualization capabilities and consists of two
classification and two regression datasets from the UCI repository [1]: bank
marketing, contraceptive method choice (cmc), servo and white wine quality
(wwq). The bank data consists of 4521 samples related to a direct market-
ing campaign of a Portuguese bank [24]. The goal is to predict ({yes,no}) if
a client will subscribe to a term deposit based on 16 continuous (e.g., age)
and categorical (e.g., marital status) attributes. The cmc goal is to predict
the contraceptive method type ({no use, long-term, short-term}) based on 9
socio-economic characteristics of Indonesian women (e.g. wife’s age) and it
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includes 1473 instances. The servo dataset corresponds to a nonlinear task
related to rise time of a servomechanism, including 167 examples and 4 in-
puts (2 nominal and 2 continuous). Finally, the wwq dataset contains 4898
wine entries and the regression goal is to predict human taste preferences,
within a scale ranging from 3 – poor quality to 9 – excellent quality, based on
11 analytical continuous inputs (e.g., alcohol) [7]. All datasets are publicly
available at: http://www3.dsi.uminho.pt/pcortez/data.

Regarding the synthetic data, four synthetic functions are proposed to-
gether with an adaptation of the Friedman #1 model [17]. These benchmark
functions are realistic nonlinear targets and each one captures a different
characteristic that is to be tested. Let x1, x2, ..., xM denote a set of indepen-
dent input variables, from a specified random distribution, y the dependent
target and N = 1000 is the number of training samples. The five synthetic
functions are listed below:

y = 1/2 sin (π x1

2N
) + 1/4 sin (π x2

2N
) + 1/6 sin (π x3

2N
) (ssin)

y = (1 + sin (π x1

N
))(1 + 0.25 sin (π 2x2

N
))(1 + 0.125 sin (π 3x3

N
)) (psin)

y = x2
1 sin (π 2x2

N
) + 2x3 (int2)

y = q(x1 > 0.5)(5 + 2.5q(x2 > 0.5) + 1.25q(x3 > 0.5)) (tree)
+q(x1 ≤ 0.5)(2.5q(x4 > 0.5) + 1.25q(x5 > 0.5))

y = 10 sin (πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (fri1)

(6)

where q(Q) is a function that returns 1 if the query Q is true, else q(Q)
returns 0. In preliminary experiments, we tested three different distributions
for the random number generation: uniform, normal and beta. Because all
distributions led to similar sensitivity results, we only use the simpler random
uniform function, to simplify the analysis. The five synthetic regression tasks
are:

Sum of sin (ssin) – The aim is to mimic an additive response of inde-
pendent nonlinear inputs. The dataset contains M = 4 inputs, each
uniform in [0, 1000]. Only 3 inputs influence the target, under the
theoretical relative importances of (0.55, 0.27, 0.18, 0.00), e.g., 0.55 =
0.5/(0.5 + 0.25 + 0.125).

Product of sin (psin) – This is a multiplicative model with nonlinear in-
puts, with a decreasing influence and thus should be more challenging
than ssin. Similarly to ssin, there are M = 4 inputs uniform in [0, 1000].
Due to the multiplicative effect, it is harder to infer about the true input
relative importances. The first input produces a response within [1, 2]
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and range=1, which is multiplied by the effect of x2 (within [0.75, 1.25],
range=0.5) and then multiplied by x3 (range=0.25). Under this ratio-
nal, x1 is more relevant than x2, which is more relevant than x3.

Interaction of two variables (int2) – This function was specifically de-
signed to challenge the a 1D-SA, since it uses a nonlinear interaction
of the first two variables. A total of M = 4 inputs are used, where
x1, x3, x4 are uniform in [1, 2] and x2 is uniform in [0, 1000]. Moreover,
x2 produces a wave (up and down) effect, with an average value of 0.
Again, it is difficult to assess the true input relevances, although the
pair (x1, x2) produces a range of 8, and thus should be more relevant
than x3 (range=2).

Decision tree (tree) – The intention is to mimic a simple regression tree,
with a total ofM = 10 inputs uniform in [0, 1]. This dataset was also set
to defy the 1D-SA, since the first input (x1) sets two different branches
and the remaining inputs only are used in one of these branches. The
theoretical input importances are (0.57,0.14,0.07,0.14,0.07,0,0,0,0,0).
For instance, for x2, 0.14 = (2.5 · 0.5)/(5 + 2.5 · 0.5 + 1.25 · 0.5 +
2.5 · 0.5 + 1.25 · 0.5)).

Friedman #1 (fri) – There are M = 10 inputs (uniform in [0, 1]), although
only the first five are relevant. This function contains some interesting
properties: there is an interaction between x1 and x2 and both have
the same importance; x1, x2 and x3 produce a nonlinear effect; and x4

is twice as important as x5. Similarly to psin and int2, the true input
importances are difficult to be estimated, although the pair (x1,x2),
with a range of 10, should affect the target more than x3 (range of 5).

For a synthetic classification, we use variants of the ssin and int2 func-
tions. The aim is to test different: outputs (class labels or probabilities),
number of classes (2, 3 or 8) and inputs (real and nominal). The five syn-
thetic classification tasks are:

ssin-2c and ssin-2p – similar to ssin, except that the target is transformed
into the class labels {“A”,“B”}, under the rule “A” if y < 0.6, else “B”.
In total, this leads to 477 “A” and 523 “B” samples and the same data
is used by ssin-2c and ssin-2p. The difference is that ssin-2c models
pure class labels while ssin-2p handles class probabilities.

ssin-n2p – similar to ssin-2p, except that the aim is to test nominal inputs,
thus all inputs suffer a leveling transform into 10 random shuffled labels
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within {“A”,“B”,...,“J”}. For instance, all input values of x1 < 100 are
labeled “B” and all 100 ≤ x1 < 200 values are labeled “J”.

int2-3c and int2-8p – similar to int2, except that the target is transformed
into: int2-3c – output label modeling with three classes {“A”,“B”,”C”},
under the rule “A” if y < 0.2 (310 samples), else “B” if y < 3.8 (341
samples), else “C” (349 samples); int2-8p – probability modeling with
eight classes, using the vector (0, 1, 2, 3, 4, 5, 6) as the separation limit
values to assign the classes. The int2-8b classes are biased, e.g., class
“A” contains 200 samples while class “E” contains 49.

Given the rules applied, it is difficult to assess the true theoretical input
importances for the synthetic classification tasks. Thus, we opt for the fol-
lowing criteria: ssin based tasks – the input importance ranking should be
first x1, second x2, third x3; int2 based tasks – the same as int2, i.e., the pair
(x1, x2) should be more relevant than x3, also all x1, x2 and x3 should affect
the target. In both ssin and int2, x4 should have a null impact.

3. Experiments and results

3.1. Predictive results

All reported experiments were conducted using the rminer library1 (e.g.,
function Importance) and the R tool [6]. For NN, the settings are Nr = 7
and Me = 100. The grid search ranges are: H ∈ {1, 2, . . . , 10} (NN); γ ∈
{2−15, . . . , 23} and C ∈ {2−5, . . . , 215} (SVM classification), γ ∈ {2−8, . . . , 20},
C ∈ {2−1, . . . , 26} and ε ∈ {2−8, . . . , 2−1} (SVM regression); m ∈ {1, ..., 10}
(RF). A total of 10 searches were used for NN and RF, while the SVM uni-
form design method required 13 searches. An internal 3-fold cross-validation
was applied (using only training data) to obtain the estimation error. To
assess the predictive capabilities for each method (i.e., test error), 10 runs of
a k-fold cross-validation procedure were applied. For the smaller datasets,
related to all synthetic data and servo, a k=10 fold validation was applied.
For the larger real-world datasets (bank, cmc and wwq), and similar to [7],
the more computationally reasonable 5-fold setup was adopted. For pure
multi-class classification, the error metric is the overall classification accu-
racy (ACC) [32]. When modeling class probabilities, we adopt the global

1http://cran.r-project.org/web/packages/rminer/
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Area Under the Curve (AUC), which weights the area of each ROC class ac-
cording to its prevalence in the data [14]. For regression, the Mean Absolute
error (MAE) was used [32].

Table 1 shows the best models for the synthetic datasets, according to
the average test error (last column, shown in terms of the mean value and
respective 95% t-student confidence intervals). For each model, the median
hyperparameter is also shown in brackets. Overall, high quality predictive
results were achieved. For all synthetic tasks except fri1, the results are
almost perfect, with MAE near 0.0 and ACC/AUC near 1.0. For the real-
world data, interesting performances were obtained. For the bank data, the
average AUC is higher than 0.9, which is often considered a high quality
discrimination. The average global AUC, for the three cmc classes, is higher
than 0.7, corresponding to a good discrimination, and this performance is
similar to what was achieved in [6]. For servo, the MAE value is low (0.22)
and corresponds to a Relative Absolute Error (RAE) of 19% (i.e., around
five times better than the error given by the naive average predictor). For
wwq, the MAE value of 0.450 is quite small when considering the range of
6.0 for the output target and identical to the value that was obtained in [7].

Table 1: Best models and predictive test errors for synthetic (regression, classification)
and real-world datasets.

Task Model Test Error

ssin SVM (γ̃ = 2−3.0,C̃ = 20.75,ε̃ = 2−8.0) MAE=0.001±0.000

psin SVM (γ̃ = 2−2.0,C̃ = 26.87,ε̃ = 2−8.0) MAE=0.014±0.000

int2 SVM (γ̃ = 2−2.0,C̃ = 26.87,ε̃ = 2−8.0) MAE=0.011±0.000
tree RF (m̃ = 10) MAE=0.019±0.001

fri1 NN (H̃ = 10) MAE=0.296±0.009

ssin-2c SVM (γ̃ = 2−6,C̃ = 210) ACC=0.987±0.001

ssin-2p SVM (γ̃ = 2−6,C̃ = 210) AUC=0.999±0.000

ssin-n2p SVM (γ̃ = 2−8.25,C̃ = 210) AUC=0.994±0.000

int2-3c NN (H̃ = 7) ACC=0.969±0.002

int2-8p NN (H̃ = 9) AUC=0.994±0.000
bank RF (m̃ = 5) AUC=0.916±0.001

cmc NN (H̃ = 7) AUC=0.735±0.002

servo NN (H̃ = 7) MAE=0.220±0.014

wwq SVM (γ̃ = 20.0,C̃ = 21.63,ε̃ = 2−2.75) MAE=0.450±0.004
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3.2. Sensitivity results

In this section, we evaluate the sensitivity methods. To simplify the
explanation and analysis, just one model for each task was considered. In
order to do so, the best models of Table 1 were retrained using all data
and the median hyperparameter values (e.g., H = 10 for fri1). Then, the
sensitivity methods and visualization techniques (Section 3.3) were applied
to the retrained models.

We start by testing the simpler 1D-SA on the ssin dataset. Table 2 shows
the respective relative input importance values. For this dataset, although
the number of levels (L) varied from 2 to 20, the same importance values were
obtained. In the input importance tables shown in this paper, bold denotes
empirical (ra) values that confirm the theoretical analysis (rta) performed in
Section 2.7. Thus, bold is used when |rta − ra| < 0.05 and/or if ranking of
the inputs makes sense.

Table 2: 1D-SA importance values (Ra) for ssin task.

Measure Levels Input Importances
range L ∈ 2, 3, ..., 20 (0.55,0.27,0.18,0.00)

gradient L ∈ 2, 3, ..., 20 (0.54,0.27,0.18,0.00)
variance L ∈ 2, 3, ..., 20 (0.74,0.18,0.08,0.00)

AAD L ∈ 2, 3, ..., 20 (0.55,0.27,0.18,0.00)

All sensitivity measures perfectly capture the theoretical importance val-
ues, except for the variance (Sv), which assigns more weight to the first input
(x1). Since a similar behavior was found for other synthetic datasets, we dis-
card the analysis of the variance measure for the remainder of this paper.

In 1D-SA, the influence of the number of levels (L) depends on the dataset
tested. Often, there is a flat effect after a few levels, i.e., increasing the value
of L produces only a slight change in the input importance values [20]. This
effect is shown in Figure 4 (when L ≥ 6), which plots the relative importance
values, according to three sensitivity measures, of the most relevant input for
psin (x1). Since it makes sense to use an odd number of levels, to capture the
average xa value, and as a reasonable trade-off between the obtained effect
and computational complexity, L = 7 is used in the remainder of this paper.

There are datasets which do not present differences in terms of relative
importance when different sensitivity measures are applied (e.g., ssin, tree).
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Figure 4: Effect of increasing the number of levels on psin for the relative importance of
x1 (r1).
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In other cases, such as shown in Table 3, the sensitivity measure leads to
distinct importance values. For psin, AAD gives a higher importance for
x1 when compared with range or the gradient. More interesting is that for
the classification tasks (ssin-2c and ssin-2p), AAD is the only measure that
ranks x1 as the most important input. Taking into account Table 3 and the
theoretical advantages exposed in Section 1, we opt for using AAD through
the remainder of this paper.

Table 3: 1D-SA (L = 7) importance values (Ra) for psin, ssin-2c and ssin-2p tasks.

Task Measure Input Importances
range (0.41,0.36,0.23,0.01)

psin gradient (0.36,0.32,0.31,0.01)
AAD (0.46,0.36,0.18,0.01)
range (0.33,0.33,0.33,0.00)

ssin-2c gradient (0.33,0.33,0.33,0.00)
AAD (0.43,0.29,0.29,0.00)
range (0.33,0.33,0.33,0.00)

ssin-2p gradient (0.33,0.33,0.33,0.00)
AAD (0.40,0.32,0.28,0.00)

To study the influence of the DM model, Table 4 shows the input impor-
tance values for two synthetic datasets (ssin and psin) and distinct models.
We tested three DM models (SVM, NN and RF) and two slight variations
of the best hyperparameters for SVM and NN. The obtained results show
that, once a good predictive capability is achieved, the quality of the sensi-
tivity approach is robust and not dependent on a particular model type or
hyperparameter configuration, since similar importances were achieved.

The performance of the SA methods over all synthetic tasks is analyzed
in Tables 5 and 6). For the multiple response SA methods (e.g., GSA)
and the regression tasks, the three-metric aggregation method described in
Section 2.4 is used, while for the remaining cases the simpler average aggre-
gation is adopted. For task int2-n3p, the number of input levels is set to
Lxa = min (10, 7) = 7, thus the three least frequent levels from each input
were discarded from the analysis. Two different DSA versions were tested,
DSA using all training data (N = 1000) and using only 1% random samples
(Ns = 10) from the data. The same Ns = 10 value was adopted for MSAd

(MSA with discrete random sampling). For the stochastic sampling methods
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Table 4: 1SA (L = 7, AAD) importance values (Ra) for the ssin and psin tasks.

Task Model Error Input
(MAE) Importances

SVM (γ = 2−3.0,C = 20.75,ε = 2−8.0) 0.001±0.000 (0.55,0.27,0.18,0.00)
SVM (γ = 2−5.0,C = 21.75,ε = 2−7.0) 0.001±0.000 (0.54,0.27,0.18,0.00)

ssin NN (H = 10) 0.001±0.000 (0.55,0.27,0.18,0.00)
NN (H = 8) 0.001±0.000 (0.55,0.27,0.18,0.00)
RF (m = 3) 0.012±0.000 (0.58,0.27,0.15,0.00)
SVM (γ = 2−2.0,C = 26.87,ε = 2−8.0) 0.014±0.000 (0.46,0.36,0.18,0.00)
SVM (γ = 2−4.0,C = 25.87,ε = 2−7.0) 0.067±0.000 (0.46,0.39,0.13,0.02)

psin NN (H = 10) 0.047±0.001 (0.49,0.38,0.13,0.01)
NN (H = 8) 0.055±0.002 (0.49,0.41,0.09,0.01)
RF (m = 3) 0.075±0.000 (0.43,0.41,0.16,0.01)

the average value of 20 runs is shown. Due to the high memory and compu-
tational requirements of GSA, the analysis is limited to the first seven inputs
(#F = 7) for tree and fri1.

The 1D-SA performance is of high quality for three regression tasks (ssin,
psin and fri1) and also captures the performance criteria defined for two
classification problems (ssin-2p and int2-8p). Yet, in the remaining cases,
1D-SA presents several flaws: the importance of x1 is not detected for the
int2 tasks (the only exception is int2-8p), both x4 and x5 have a null effect
on tree; x2 and x3 have an equal importance in ssin-2c; and x3 has a null
effect on ssin-n2p. Turning to the cluster-based method (CSA), it presents
some interesting results, in particular for classification, outperforming 1D-SA
for int2 (when measuring the importance of x1), tree (for x4 and x5), and
several classification tasks (e.g., ssin-2c). However, CSA fails in detecting
the most relevant input in psin. Also, CSA tends to give a considerable (e.g.,
≥ 0.05) impact to the null effect inputs. All remaining methods (GSA, DSA
and MSA), capture the theoretical analysis of the input importances. In
particular, it should be stressed that even when only Ns =1% of the samples
are used, both stochastic methods (DSA and MSA) obtained high quality
results. Moreover, in general, the results obtained by these three methods
(GSA, DSA and MSA) are quite similar, confirming that the true input
importances were captured.

The proposed sensitivity methods also work for “white box” models. To
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Table 5: Importance values for the regression synthetic tasks and best models from Table 1.

Task Method Input Importances

ssin

1D-SA (0.55,0.27,0.18,0.00)
GSA (#F = 4) (0.54,0.27,0.18,0.02)
DSA (N = 1000) (0.54,0.27,0.18,0.01)
DSA (Ns = 10) (0.54,0.27,0.18,0.0)?

MSAd (Ns = 10) (0.54,0.27,0.18,0.01)?

CSA (0.52,0.24,0.18,0.05)

psin

1D-SA (0.46,0.36,0.18,0.01)
GSA (#F = 4) (0.53,0.32,0.14,0.00)
DSA (N = 1000) (0.52,0.33,0.15,0.01)
DSA (Ns = 10) (0.52,0.33,0.15,0.01)?

MSAd (Ns = 10) (0.53,0.32,0.15,0.01)?

CSA (0.39,0.40,0.16,0.05)

int2

1D-SA (0.04,0.63,0.32,0.00)
GSA (#F = 4) (0.21,0.53,0.24,0.02)
DSA (N = 1000) (0.24,0.52,0.23,0.01)
DSA (Ns = 10) (0.24,0.51,0.25,0.00)?

MSAd (Ns = 10) (0.23,0.51,0.26,0.01)?

CSA (0.19,0.57,0.16,0.07)

tree

1D-SA (0.64,0.23,0.13,0.00,0.00,0.00,0.00)
GSA (#F = 7) (0.57,0.15,0.07,0.14,0.07,0.00,0.00)
DSA (N = 1000) (0.57,0.14,0.07,0.14,0.07,0.00,0.00)
DSA (Ns = 10) (0.57,0.15,0.07,0.14,0.07,0.00,0.00)?

MSAd (Ns = 10) (0.57,0.15,0.08,0.13,0.07,0.00,0.00)?

CSA (0.52,0.13,0.07,0.13,0.06,0.02,0.02)

fri1

1D-SA (0.25,0.25,0.13,0.24,0.13,0.00,0.00)
GSA (#F = 7) (0.17,0.16,0.18,0.33,0.15,0.00,0.01)
DSA (N = 1000) (0.17,0.18,0.17,0.32,0.14,0.00,0.01)
DSA (Ns = 10) (0.20,0.21,0.15,0.29,0.14,0.00,0.00)?

MSAd (Ns = 10) (0.19,0.19,0.16,0.30,0.14,0.00,0.00)?

CSA (0.14,0.14,0.12,0.22,0.12,0.05,0.05)

? - mean values over 20 runs (all confidence intervals are within [0.00, 0.02]).
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Table 6: Importance values for the classification synthetic tasks and best models from
Table 1.

Tasks Method Input Importances

ssin-2c

1D-SA (0.43,0.29,0.29,0.00)
GSA (#F = 4) (0.74,0.16,0.10,0.00)
DSA (N = 1000) (0.60,0.24,0.16,0.00)
DSA (Ns = 10) (0.61,0.23,0.16,0.0)?

MSAd (Ns = 10) (0.61,0.23,0.15,0.01)?

CSA (0.6,0.21,0.14,0.06)

ssin-2p

1D-SA (0.40,0.32,0.28,0.00)
GSA (#F = 4) (0.74,0.16,0.10,0.00)
DSA (N = 1000) (0.60,0.24,0.16,0.00)
DSA (Ns = 10) (0.59,0.26,0.15,0.01)?

MSAd (Ns = 10) (0.62,0.24,0.13,0.01)?

CSA (0.60,0.20,0.14,0.05)

ssin-n2p

1D-SA (0.97,0.03,0.00,0.00)
GSA (#F = 4) (0.78,0.12,0.08,0.02)
DSA (N = 1000) (0.64,0.20,0.14,0.02)
DSA (Ns = 10) (0.64,0.19,0.15,0.02)?

MSAd (Ns = 10) (0.66,0.19,0.12,0.02)?

CSA (0.59,0.20,0.13,0.07)

int2-3c

1D-SA (0.00,0.64,0.36,0.00)
GSA (#F = 4) (0.12,0.78,0.10,0.00)
DSA (N = 1000) (0.20,0.63,0.17,0.01)
DSA (Ns = 10) (0.17,0.63,0.20,0.00)?

MSAd (Ns = 10) (0.21,0.60,0.17,0.01)?

CSA (0.16,0.60,0.16,0.08)

int2-8p

1D-SA (0.16,0.42,0.41,0.01)
GSA (#F = 4) (0.20,0.67,0.13,0.00)
DSA (N = 1000) (0.26,0.60,0.14,0.00)
DSA (Ns = 10) (0.27,0.49,0.21,0.02)?

MSAd (Ns = 10) (0.23,0.51,0.24,0.02)?

CSA (0.22,0.55,0.14,0.09)

? - mean values over 20 runs (all confidence intervals are within [0.00, 0.05]).
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illustrate this, we used a decision tree model to fit the tree (regression) and
sin-2c (classification) datasets. The model was trained using the CART al-
gorithm [3], as implemented in the R tool. Table 7 presents the average test
error for such model, when applying 10 runs of the 10-fold validation, reveal-
ing a good fit. The table also shows the input importance values, as given
by the DSA method when applied to a decision tree fit with all data. For
both datasets, the input importance measures captured by DSA confirm the
theoretical analysis. Moreover, the input ranking given by DSA matches the
same ranking, from top to bottom, as given by the decision trees (Figure 5).

Table 7: DSA (L = 7) importance values (Ra) for a decision tree model.

Task Test Error Input Importances
tree MAE=0.018±0.001 (0.57,0.14,0.07,0.14,0.07,0.00,0.00)

ssin-2c ACC=0.936±0.003 (0.72,0.20,0.08,0.00)

tree
|

x1< 0.5

x4< 0.5002

x5< 0.4981 x5< 0.5025

x2< 0.4993

x3< 0.498 x3< 0.5001

x1>=0.5

x4>=0.5002

x5>=0.4981 x5>=0.5025

x2>=0.4993

x3>=0.498 x3>=0.5001

0 1.25 2.5 3.75 5 6.25 7.5 8.75

ssin−2c
|

x1< 404.4

x1< 301.5

x2< 618.4

x3< 477.9

x2< 285.1

x1< 647.7

x3< 280

x1>=404.4

x1>=301.5

x2>=618.4

x3>=477.9

x2>=285.1

x1>=647.7

x3>=280

A

A

A B

A

A B

B

Figure 5: Decision tree model for the tree and ssin-2c datasets.

Turning to the sensitivity of a pair of inputs, Table 8 shows the AAD sen-
sitivity measures (ςa, ςb) for psin task. The psin was selected as an interesting
task for this analysis, since the output depends of nonlinear interactions be-
tween all the first three inputs (x1, x2 and x3). Two sensitivity approaches
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were used. The first approach uses the full 4D-GSA, while the second one
uses DSA with all training samples (Ns = 1000) and the estimated sensitiv-
ity (xa,x

′
b) pair. For the x′b estimation, we set a tolerance of tb = 0.1 (other

values were also tested, such as 0.2, but similar results were achieved). For
both approaches, the average of the three-metric aggregation function was
adopted (Section 2.4). Table 8 clearly shows the true input pair importances,
with the most interesting pairs being (x1, x2), (x1, x3), (x2, x3), for both sen-
sitivity approaches and under a decreasing ranking of interest. Also, for
GSA, the results are symmetric. For instance, the sensitivity for the pairs
(x1, x2) and (x2, x1) are (0.32,0.19) and (0.19,0.32), respectively. Moreover,
the results achieved for the computationally faster DSA method are quite
similar to the ones obtained by GSA. The main difference is that the null
effect input (x4), which is clearly detected by GSA but not by DSA for the
pairs (xa, x

′
4). This behavior is similar to what was measured by CSA under

the 1D-SA but in the 2D case it is not problematic. First, because the input
pair ranking for DSA is similar to the one given by GSA. Second, because
the null effect input is still detected under the (x4,x

′
b) sensitivity measures.

Table 8: Sensitivity measures for psin task and the pairs (xa,xb) and (xa,x′
b).

Method x1 x2 x3 x4

4D GSA (xa,xb)

x1 (0.32,0.19) (0.32,0.08) (0.32,0.00)
x2 (0.19,0.32) (0.19,0.08) (0.19,0.00)
x3 (0.08,0.32) (0.08,0.19) (0.08,0.00)
x4 (0.00,0.32) (0.00,0.19) (0.00,0.08)

DSA (xa,x
′
b)

x1 (0.32,0.20) (0.32,0.09) (0.33,0.04)
x2 (0.20,0.31) (0.20,0.10) (0.21,0.05)
x3 (0.09,0.31) (0.09,0.22) (0.09,0.08)
x4 (0.00,0.30) (0.00,0.23) (0.00,0.13)

3.3. Visualizations for the sensitivity analysis

In this section, we show several examples of the proposed visualization
techniques (Section 2.5) to open the black box for the real-world tasks. In
the experiments, we used a 2.66 GHz Intel Core i7 processor, under the
operating system Mac OS X 10.6.8. Due to computational limitations, the
full #FD GSA cannot be computed, since the number of input attributes is
too high. For example, the full 16D GSA requires the prediction of ≈ 716
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examples for the bank task. Therefore, a more reasonable DSA algorithm
was applied, using all the training samples, to avoid using multiple runs, and
all levels (e.g., Lmonth = 12 for bank). The DSA execution times were: 34
seconds for bank, 6 for cmc, 2 seconds for servo and 139 seconds for wwq.
The respective sensitivity results were aggregated as described in Section 2.4,
using the threshold tb=0.1 for the input pair (xa,x

′
b) sensitivity estimation.

Figure 6 shows two examples of how the input importances can be plotted,
under a 1D (bank) and 2D (wwq) sensitivity. For bank data, the most rele-
vant input is the duration of the marketing phone/cellular contact, followed
by the number of days that passed from a previous campaign (pdays) and
the month of the marketing contact. The 2D analysis considers all (xa,xb)
input pairs, coloring each (a – x-axis, b – y−axis) square according to what is
proposed in Section 2.5, under the AAD measure and with tcm = 10%. From
the matrix, it is clear that the most interesting input pair is (x11 – alcohol,
x6 – free sulfur dioxide).
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Figure 6: Bar plot with the 1D input importances for the bank data (left) and color matrix
with 2D input pair sensitivity for the wwq dataset.

The individual effect of a given input is easily shown using VEC curves.
For bank, Figure 7 compares the average influence of the three most relevant
inputs. In the graph, the month levels were sorted in a decreasing order,
according to their average influence in the target. Intuitively, the VEC curves
for duration and pdays make sense: if a client keeps the call for more than
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17 minutes (third level for duration) or if the previous campaign call was
earlier than 400 days (third level), then the client is more willing to subscribe
the term deposit. Regarding the month influence, March and October are
associated with a higher probability for subscription.
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Figure 7: VEC curves for the three most relevant inputs for the bank task.

As another example of the VEC curve explanatory power, we applied the
DSA method to perform a 1D analysis to the cmc model, which revealed
the wife’s age as the most relevant input (importance of 30%). The effect
of this input on the choice of contraceptive method is shown in Figure 8,
revealing interesting findings. For instance, on average (diamond points),
younger women (up to 27 years old) tend to use short term methods, while
older women (older than 38) are more likely to not use contraception. Also,
age tends to produce a parabola shape effect on the probability for using long
term methods, reaching its maximum effect on a value around 32 years old.

Regarding the wwq task, Figure 9 plots the VEC curves with box plots for
the free sulfur dioxide (most relevant variable according to a 1D analysis) and
alcohol (least relevant variable under the same analysis). In both cases, the
average VEC curves (diamond points) have an almost flat shape. However,
the range of the sensitivity is high (as shown by the box plots), confirming
that the output depends more on input interactions rather than single input
effects. For demonstration purposes, the most relevant pair according to the
color matrix of Figure 6 was selected and the corresponding VEC surface

27



no use

16 22 27 32 38 44 49

0
.2

0
.4

0
.6

0
.8

1
.0

short term

16 22 27 32 38 44 49

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

long term

16 22 27 32 38 44 49

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 8: VEC curves with box plots for the wife’s age influence (x-axis) on cmc task
(y-axis) and classes “no use”, “short term” and “long term”.

and contour plots are shown in Figure 10. All three maximum, average and
minimum functions were used when computing the color matrix. Yet, to
simplify the visualization, the VEC surface and contour is only shown for
the average aggregation function. For fixed surfur dioxide there are only
five levels, since under the tcm = 0.1 tolerance there were two estimated
levels without data samples (x′5 and x′6). Figure 10 shows two interesting
and small clusters that are close to each other, related with high quality
(darkest area) and low quality (brightest area) wine. Such information is
useful for wine experts, since it reveals the impact of these key variables in
the tasting quality and, as argued in [7], these variables can be controlled in
the production process. (e.g., alcohol levels can be increased by monitoring
the grape sugar concentration before the harvest).

Another 2D analysis example is given for the servo task, with the intention
to show the effect of discrete inputs. After applying DSA and a 2D analy-
sis (under the three-metric aggregation method), we selected the input pair
(screw, motor), which includes only nominal variables (∈ {A,B,C,D,E})
and corresponds to the fifth most relevant pair: (ςmscrew, ςmotor) = (0.3, 0.3).
The respective VEC surface and contour plots for the average aggregation
function are shown in Figure 11. The plots reveal that, on average, the
combination screw=E and motor=D leads to the fastest rise time, closely
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Figure 9: VEC curves with box plots for free sulfur dioxide (left) and alcohol (right).
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followed by the screw=E and motor=E setup. The longest rise time is re-
lated with the combination screw=A and motor=E, which clearly stands out
when compared with its neighborhood (e.g., screw=A and motor=D).

screw (A,B,C,D,E)

motor (A,B,C,D,E)

y

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

A B C D E

A

B

C

D

E

screw

m
o

to
r

Figure 11: VEC surface and contour plots for the servo task.

4. Conclusions and future work

There are several supervised black box DM methods, such as NN, SVM
and ensembles (including RF), that are capable of high quality prediction
performances and thus are valuable to support decision making. Yet, the
obtained data-driven models are difficult to understand by humans. Improv-
ing interpretability enhances the acceptance and understanding of these DM
models by the domain users. In particular, interpretability is a key issue in
critical applications, such as medicine or control.

In this paper, we propose the combination of SA methods and visual-
ization techniques to open the black box. Since the data-driven models are
treated as black boxes, and no information obtained during the fitting pro-
cedure is used, the SA methods can be applied universally to any supervised
DM method. Several SA methods, measures, aggregation functions and vi-
sualization techniques (e.g., VEC surface) were proposed. The effectiveness
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of SA methods was assessed in several synthetic regression and classification
tasks. Moreover, the capabilities of the visualization techniques were demon-
strated using four real-world datasets: bank direct marketing (classification),
contraceptive method choice (classification), rise time of a servomechanism
(regression) and white wine quality (regression).

Given the obtained results, and as a standard approach for a real-world
application, we suggest the use of the novel DSA method using all data
samples, in conjunction with the AAD measure of importance. DSA is com-
putationally reasonable, when compared with GSA, and it provides better
results than the simpler 1D-SA, as it is capable of detecting input variable
interactions. Moreover, for real-world datasets, DSA performs a sensitiv-
ity that is closer to the real input data distributions, when compared with
MSA, which uses random uniform samples to build the sensitivity dataset.
If a high number training samples is available, then the computational effort
of DSA can reduced by using a smaller and random subset of the training
data. Moreover, when the number of inputs is too large, such as hundreds
or thousands, then, as a prior preprocessing step, a 1D-SA analysis could
be used to select a smaller subset of interesting inputs, as performed in [13].
Finally, there are some application scenarios where the fitted DM model is
available but not the training data, such as symbiotic data mining, which
shares fitted models but not the data (due to privacy issues) among distinct
users [22]. In such scenarios, the random sampling MSA method could be
used as an alternative to DSA.

In the future, we will enlarge the experiments to include more real-world
domains (e.g., clinical data). Also, the proposed approach will be integrated
into a graphical user interface system that incorporates an interactive visual-
ization of the SA results. For example, where users could change the selected
input variables and considered levels, zoom a particular interesting area or
change the orientation of a VEC 3D surface. Another promising research di-
rection is the application of a SA approach to clustering tasks. For instance,
by using a strategy similar to the classification case, where the cluster re-
sponse is considered as the “output”. Finally, there is a potential to improve
variable/feature selection algorithms by using the proposed measures of input
relevance to guide their search (i.e., select variables to be deleted).
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