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A wide variety of biomaterials and bioactive molecules have been applied as scaffolds in
neuronal tissue engineering. However, creating devices that enhance the regeneration of
nervous system injuries is still a challenge, due the difficulty in providing an appropriate
environment for cell growth and differentiation and active stimulation of nerve regeneration.
In recent years, bacterial cellulose (BC) has emerged as a promising biomaterial for bio-
medical applications because of its properties such as high crystallinity, an ultrafine fiber
network, high tensile strength, and biocompatibility. The small signaling peptides found in
the proteins of extracellular matrix are described in the literature as promoters of adhesion
and proliferation for several cell lineages on different surfaces. In this work, the peptide
IKVAV was fused to a carbohydrate-binding module (CBM3) and used to modify BC surfa-
ces, with the goal of promoting neuronal and mesenchymal stem cell (MSC) adhesion. The
recombinant proteins IKVAV-CBM3 and (19)IKVAV-CBM3 were successfully expressed in
E. coli, purified through affinity chromatography, and stably adsorbed to the BC membranes.
The effect of these recombinant proteins, as well as RGD-CBM3, on cell adhesion was eval-
uated by MTS colorimetric assay. The results showed that the (19)IKVAV-CBM3 was able to
significantly improve the adhesion of both neuronal and mesenchymal cells and had no effect
on the other cell lineages tested. The MSC neurotrophin expression in cells grown
on BC membranes modified with the recombinant proteins was also analyzed.
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Introduction

Nerve tissue engineering is a rapidly expanding area of
research providing a new and promising approach to nerve
repair and regeneration.1 A key challenge in nerve regenera-
tion resides in the identification of biomaterials able to pro-
vide a continuous path for regeneration, promoting the
infiltration of cells and the secretion of inductive factors for
axonal elongation.1 In addition, an understanding of neuronal
mechanisms and cell behavior in contact with different bio-
materials is essential for implementation of advanced
prostheses.2

A wide variety of biomaterials and bioactive molecules
have been exploited in the field of tissue engineering.3–9 A
great number of cell adhesion motifs have been identified
and used in biopolymer structures to mediate cell attach-
ment, such as RGD (Arg-Gly-Asp) and IKVAV (Ile-Lys-
Val-Ala-Val), which are bioactive cell adhesion motifs found
in extracellular matrix (ECM) proteins such as fibronectin
and laminin.10–17 Among the biomaterials, biological scaf-
folds, composed of natural polymers combined with ECM
molecules, have been shown to facilitate the constructive
remodeling of several tissues by the establishment of an

appropriate environment essential for the regulation of cell
processes.18,19 In recent years, bacterial cellulose (BC) has
emerged as a promising biomaterial in tissue engineering.
BC is a linear glucose polymer secreted by Gluconaceto-
bacter xylinus composed of a nanofiber network, with
appealing properties that include high crystallinity, wettabil-
ity, high tensile strength, and moldability in situ, and can be
produced relatively simply.20 Despite having chemical prop-
erties identical to those of plant cellulose, BC is produced in
a pure form, free of other polymers and its macromolecular
properties and structure are also different.21,22 These charac-
teristics, in combination with its biocompatibility, make BC
an ideal material for tissue engineering constructs.

Previous studies reported the surface modification of bio-
materials by immobilization of proteins as a strategy to con-
trol and guide, with high selectivity, the interactions between
cells and materials.10,23,24 One approach to achieve this goal
involves the incorporation of small cell-binding peptides into
biomaterials via chemical or physical modification.25 As an
alternative to peptide chemical grafts, the use of recombinant
proteins containing carbohydrate binding domains (CBMs)
fused to the bioactive peptides represents an attractive way
to specifically adsorb these peptides onto cellulose sur-
face.11,26 The CBM3 from the cellulosomal-scaffolding pro-
tein A of Clostridium thermocellum has high affinity for
cellulose, particularly crystalline cellulose.27
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Besides increasing the cell–material interaction, an ideal
scaffold should maintain the cells in viable and functional
condition; in addition, cells should be capable of secreting
growth factors that enhance tissue regeneration. Neural tissue
engineering strategies focusing on the development of scaf-
folds that artificially generate favorable cellular microenvir-
onments, promoting regeneration, particularly in conjunction
with stem cells, have generated promising results.28 The use
of stem cells in tissue engineering constructs is a promising
strategy, because these cells can express a variety of growth
factors important for tissue regeneration and cell differentia-
tion. The transplantation of stem cells can provide a neuro-
protective environment by secreting cytokines and
neurotrophic factors.29 For example, neurotrophins such as
nerve growth factor (NGF) are a family of proteins that
induce the survival, development, and function of neu-
rons.30,31 Clinical improvement was reported when MSCs
were administered into animal models of various neurologic
disorders, and the therapeutic effect was related to the secre-
tion of neurotrophic factors such as NGF and brain-derived
neurotrophic factor (BDNF), along with other factors
secreted by these cells.29

The main purpose of this work was to produce recombi-
nant proteins containing a bioactive peptide fused to the
CBM3 to functionalize BC surfaces and improve biocompat-
ibility. Neuronal and MSCs adhesion and viability were eval-
uated on these modified surfaces. The MSC neurotrophin
expression by cells growth on BC membranes modified with
the recombinant proteins was also verified, to identify poten-
tial factors contributing to a microenvironment that promotes
neuronal regeneration.

Materials and Methods

Production of BC

The pellicles of BC were produced by the G. xylinus
(ATCC 53582) cultured in Hestrin & Schramm medium, into
24-wells polystyrene plates (800 lL per well), for 4 days at
30�C, in static culture. The membranes were purified with
2% sodium dodecyl sulfate (SDS) overnight, then washed
with distilled water until the complete removal of SDS, and
immersed in a 4% NaOH solution, shaking for 90 min at
60�C. After adjusting the medium to neutral pH, the pellicles
were autoclaved in phosphate buffered saline (PBS) and
stored at 4�C.

Cloning, expression, and purification of recombinant
proteins

In this work, we produced two recombinant proteins con-
sisting of different peptides fused to CBM3, including the
native glycanase linker: IKVAV-Linker-CBM3 and
(19)IKVAV-Linker-CBM3 (CSRARKQAASIKVAVSADR-
Linker-CBM3) corresponding to the extended amino acid
sequence based on the proteolytic laminin fragment PA-22
containing the sequence IKVAV.32–36 The linker sequence

contains 40 amino acids. The cloning, expression, and purifi-
cation of recombinant proteins were developed following the
protocol described by Andrade et al.11 Briefly, coding
sequences were obtained by PCR using the pET21a-CBM3
vector and the primers shown in Table 1, including NheI and
XhoI restriction sites (in bold). The PCRs conditions used
were: preheating at 95�C for 2 min, 40 cycles at 95�C for 45
s, 56�C for 45 s, and 72�C for 45 s, followed by an elonga-
tion cycle at 72�C for 10 min. The PCR products were ana-
lyzed by agarose gel, purified (Quiagen), digested with NheI
and XhoI restriction enzymes, and cloned into the expression
vector pET21a (Novagen), previously digested with the same
restriction enzymes. This vector includes a C-terminal His6-
tag in the recombinant proteins to allow the purification by
immobilized metal ion affinity chromatography (IMAC)
using a 5 mL nickel His-Trap column (GE Healthcare). The
E. coli XL1 Blue (Stratagene) was used as cloning strain,
and the integrity of cloned PCR products was verified by
DNA sequencing.37

Production and purification of recombinant proteins

Recombinant proteins were produced using E. coli BL21
(DE3) cells transformed with the expression vectors contain-
ing the different coding sequences, pET21a-CSRARKQAA-
SIKVAVSADR-Linker-CBM3, pET21a-IKVAV-Linker-
CBM3, and pET21a-KHIFSDDSSE-Linker-CBM3, grown at
37�C in LB medium supplemented with ampicillin (100 lg/
mL). The RGD-Linker-CBM3 recombinant protein, cloned
by Andrade et al.,20 was also produced and used in the cell
cultivation studies. Cultures were induced with isoPropyl b-
D-1-thiogalactopyranoside (IPTG, Invitrogen) at 1 mM. Five
hours after induction, the cells were separated from the cul-
ture medium by centrifugation (13,000g, 10 min), resus-
pended in buffer A (20 mM Tris, 20 mM NaCl, 5 mM
CaCl2, pH 7.4), and then lysed by sonication. The soluble
and insoluble fractions were separated by centrifugation
(15,000g, 4�C, 30 min). The purification was made by affin-
ity chromatography, using a HisTrapTM HP (GE Healthcare).
Imidazole was added to the cell lysate (40 mM final concen-
tration), and the pH was adjusted to 7.4 before its application
on the nickel column. After purification, proteins were dia-
lyzed against the buffer A, sterilized by filtration (0.22 lm),
and stored at �20�C before use. Recombinant proteins were
analyzed by 12% SDS-PAGE (SDS–polyacrylamide gel elec-
trophoresis)38 stained with Coomassie blue.

Adsorption assay

The wells of a 24-well polystyrene plate were covered
with BC pellicles; the recombinant proteins were added to
the wells (0.25 mg protein per well) and were left to adsorb
at 4�C, overnight. The nonadsorbed proteins were collected,
and the membranes washed three times with Buffer A to
remove the nonadsorbed protein. Then, the membranes were
washed three times with Buffer A containing 1% SDS to
remove the adsorbed protein and collected. The initial

Table 1. Primers Used for Cloning the DNA Sequences Encoding the Peptides fused To CBM3

Construct Primers

Forward (19)IKVAV-Linker-CBM3 50 CTA GCT AGC TGT TCA AGG GCT AGG AAG CAG GCT GCT TCA ATA AAG GTA GCT
GTA TCA GCT GAT AGG ACA CCG ACC AAG GGA G 30

Forward IKVAV-Linker-CBM3 50 CTA GCT AGC ATA AAG GTA GCT GTA ACA CCG ACC AAG GGA G 30
Reverse (for all) 50 CAC CTC GAG TTC TTT ACC CCA TAC AAG AAC 30
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protein solution, the nonadsorbed proteins (supernatant frac-
tion), and the adsorbed protein fraction were analyzed by
SDS-PAGE.

Cell culture

SH-SY5Y human neuroblasts, N1E-115 rat neuroblasts, rat
Pheochromocytoma (PC12), and rat Mesenchymal stem cells
(MSCs) were maintained under standard tissue culture condi-
tions, at 37�C in humidified atmosphere (5% CO2 and 95%
air). SH-SY5Y cells were cultured in a complete medium
containing 1:1 Dulbecco’s Modified Eagle Medium (DMEM;
Gibco) and Ham Nutrient Mixture (Ham F-12; Sigma) sup-
plemented with 10% fetal bovine serum (FBS; Gibco) and
1% penicillin/streptomycin; N1E-115 were cultured in
DMEM supplemented with 10% FBS and 1% penicillin/
streptomycin. PC12 were cultured in RPMI with 10% and
15% of FBS (inactivated), respectively, and 1% penicillin/
streptomycin. Rat MSCs (rMSCs) were isolated from femur
and tibias of adult Wistar rats as previously described39 and
cultured in DMEM supplemented with 20% FBS and 1%
penicillin/streptomycin. The culture medium was replaced
every 2–3 days.

Cell adhesion and viability on recombinant proteins
coated surfaces

Cell adhesion was determined by mitochondrial activity
through a MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-
methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] colori-
metric assay, performed as follows: the proteins were added
to a 24-well polystyrene plate (0.25 mg protein per well)
covered with the BC pellicles. Plates were incubated over-
night at 4�C. The unbound proteins were removed, and the
BC pellicles washed with PBS. Cells were then seeded in se-
rum-free medium (excepted for SH-SY5Y cells) at a density
of 6 � 104 cells/well on BC pellicles. After 2 h, the medium
containing nonadhered cells was removed; BC pellicles were
washed with PBS and transferred to new wells; then, 300 lL
of complete medium and 60 lL of MTS reagent were added.
The plates were incubated for 2 h with MTS reagent, and
then 100 lL of each well were transferred to a new 96-well
plate and read on a Micro Elisa reader (Biotech Synergy
HT), with a wavelength of 490 nm. The control used was

the BC membranes treated only with buffer A. The cell ad-
hesion experiments were run in triplicate at two separate
times.

Live and dead assay

The viability of the cells cultured on BC membranes
coated with the recombinant proteins for 13 days was deter-
mined through the live/dead assay. The LIVE/DEADVR Via-
bility/Cytotoxicity Kit for mammalian cells (Invitrogen)
provides two-color fluorescence cell viability assay based on
the determination of live and dead cells with two probes that
measure intracellular esterase activity and plasma membrane
integrity. A total of 100 lL of a solution of calcein and ethi-
dium homodimer-1 in sterile PBS were added to the wells
and incubated for 30 to 45 min at 37�C and 5% carbon diox-
ide atmosphere. The BC membranes were visualized on a
fluorescence microscope.

Enzyme-linked immunosorbant assay

To determine the levels of NGF neurotrophin secreted by
rMSCs in the medium, a commercial ELISA kit (NGF
EmaxVR ImmunoAssay System, Promega) was used, accord-
ing to the manufacturer’s instructions. The cells were cul-
tured in DMEM 2% FBS on BC membranes treated with
recombinant proteins. BC without recombinant proteins and
polystyrene plate were used as assays controls. The superna-
tant was removed at 3, 6, and 13 days and kept under
�80�C, and fresh medium was added to the wells. NGF
standards in the range 3.9–250 pg/mL were used to generate
a linear calibration curve used to estimate the neurotrophin
concentrations. Samples were run in duplicate. The interas-
say variability was less than 8.5% for 3 days, 22% for 6
days, and 12% for 13 days.

Statistical analysis

All results are presented as mean � standard deviation,
determined using the GraphPad software. Multiple compari-
sons were performed by nonparametric ANOVA analysis fol-
lowed by Bonferroni’s secondary test for significance
between experimental conditions and control. Significant dif-
ferences between BC with protein coating and control condi-
tions are given *P\ 0.05.

Results

In this study, recombinant proteins were expressed using
an E. coli expression system and were purified to functional-
ize BC membranes, improving the adhesion of neuronal and
mesenchymal cells. The peptides used, described in the liter-
ature as promoters of adhesion and proliferation of different
cell lineages, were fused to a carbohydrate-binding module,
which performs as a biosticker, promptly adsorbing to BC
and bearing functional fused peptides.

The (19)IKVAV-CBM3 and IKVAV-CBM3 proteins were
successfully expressed in the soluble fraction of E. coli and
purified through affinity chromatography. Figure 1 shows the
SDS-PAGE analysis of the samples obtained after the purifi-
cation procedure.

Figure 1. SDS-PAGE analysis of expressed and purified
recombinant proteins.

MW-Molecular weight marker (Biorad); (a) (19)IKVAV-CBM3
and (b) IKVAV-CBM3. 1, Pellet; 2, supernatant; 3, flow frac-
tion; 4, purified protein fraction 1; 5, purified protein fraction
2; 6, cleaning solution.
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Adsorption assay

The modification of BC surface was achieved through
adsorption of CBM3. This interaction is stable and desorp-
tion occurred only in the presence of buffer containing 1%
SDS, as shown in Figure 2.

Cell adhesion and viability

Figure 3 shows the MTS results. The recombinant protein
(19)IKVAV-CBM3 significantly increased the adhesion of
all cell lineages tested, an effect that was dependent on the
cell type. This protein improved by almost 100% the adhe-
sion of PC12 cells. The RGD-CBM3 protein also improved
the adhesion of N1E-115 and mesenchymal cells, revealing a
cell specific behavior. On the other hand, the IKVAV-CBM3
only presented a marginal effect on mesenchymal cell adhe-
sion. The presence of serum in the culture medium repre-
sented a relevant factor in cell attachment. The SH-SY5Y
cell adhesion occurred only in medium-containing serum,
whereas the adhesion of other cell types was significantly
increased in serum-free medium.

Figure 4 shows fluorescence images of PC12 and mesen-
chymal cells on BC membranes coated with the recombinant
protein (19)IKVAV-CBM3, after 13 days in culture. The
results showed that both cell types remained adhered and
alive (green stained) on the BC, with practically no dead
cells (stained in red), but still cells presented a rounded mor-
phology. It can be seen that, in control wells, fewer cells are
attached, mainly in PC12 culture. These results are in agree-
ment with adhesion results, where (19)IKVAV-CBM3
improved strongly the adhesion of PC12 cells, improving
mesenchymal cell adhesion too, when compared with
control.

Neurotrophin expression

To investigate the NGF neurotrophin expression of MSCs
on BC coated with the recombinant proteins, an ELISA kit
was used to quantify the NGF released to the culture me-
dium. The results showed that NGF is produced by the
MSCs and released to the culture medium, after 3 and 6
days (Figure 5). In agreement with the higher cell adhesion

observed on BC coated with the recombinant proteins, the
RGD-CBM3 and (19)IKVAV-CBM3 groups produced a
higher amount of NGF in the supernatant, when compared
with CBM3 and buffer controls. As expected, cells on poly-
styrene showed a higher amount of NGF in supernatant, also
caused by the number of adhered and proliferating cells on
this material (data not shown). Moreover, the quantity of
NGF in the supernatant was superior at the 13th day. At day
6, a slight decrease of the NGF in supernatant when com-
pared with day 3 was observed.

Discussion

One of the main challenges of tissue engineering technolo-
gies is the production of adequate scaffolds for the growing
of cells and tissues.40 Improvement of cell adhesion may be
achieved by the immobilization of ECM adhesion proteins or
of its signaling motifs, onto the biomaterial surface.24

Attempting to improve cell attachment and to elicit specific
cell responses, we produced different recombinant proteins
with the bioactive peptides IKVAV, (19)IKVAV, and RGD.
Different cell lineages were used to evaluate the efficacy of
these bioactive peptides fused to a CBM3 on the functionali-
zation of BC membranes for its application as a scaffold in
neuronal tissue engineering.

It is known that the use of short peptides containing the
signaling motifs instead of the whole adhesive proteins (lam-
inin, fibronectin) have advantages including the ease and
reproducibility of synthesizing peptides, when compared
with isolating ECM molecules from a natural source.41 How-
ever, this approach has limitations, as the biological activity
of short peptide sequences is often substantially lower when
compared with the complete protein, owing at least partially
to the absence of complementary domains that are involved
in cell receptor binding.42,43 In fact, in this work, the
recombinant protein (19)IKVAV-CBM3 significantly
increased the adhesion of all cell lineages tested, the effect
being dependent on the cell type. The MTS results showed
an improvement of almost 100% in cell adhesion for PC12
cells and 30% of mesenchymal stem cells. The RGD-CBM3
protein also improved the adhesion of N1E-115 and

Figure 3. MTS assays of PC12, SH-SY5Y, N1E-115, mesenchy-
mal cells.

The cells were seeded and able to adhere for 2 h on BC mem-
branes coated with recombinant proteins. The control was BC
pellicle treated with Buffer A without recombinant proteins.
Significant differences between BC with protein coating and
control conditions are given *P\ 0.05.

Figure 2. SDS-PAGE analysis of recombinant protein adsorp-
tion on BC membranes.

MW-Molecular weight marker (Biorad); I, initial recombinant
protein (0.5 mg/mL); S, supernatant containing the nonadsorbed
protein; E, elution fraction of recombinant proteins in buffer
containing SDS; W, washing fraction without SDS.
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mesenchymal cells, revealing a cell specific behavior. On the
other hand, the IKVAV-CBM3 only yielded a slight effect
on mesenchymal cell adhesion. It is possible that the use of
the smallest recognition sequence IKVAV on the protein
construction led to a weaker interaction with the receptors
on the cell surface. In this context, some studies showed
that, by using an extended peptide containing the IKVAV
sequence, such as CSRARKQAASIKVAVSADR, it is possi-
ble to increase the cell–protein interaction.3,15,44–48 Shaw
and Soichet46 compared the cell adhesion on modified surfa-
ces with the laminin-derived cell adhesive peptides CIKVAV
and CQAASIKVAV. The surfaces modified with extended
peptide sequences CQAASIKVAV demonstrated a greater
number of cells attached compared to those modified with

the shorter peptide sequences, indicating that the extended
peptides do better mimic the native three-dimensional con-
formation of the peptides in laminin.46 Andrade et al. also
described differences in cell adhesion dependent on amino
acids flanking the RGD sequence in recombinant proteins,
the RGD-CBM3 and GRGDY-CBM3 supporting differing
degrees of fibroblast cell adhesion.11

Moreover, the surface where the proteins are adsorbed can
influence the exposition of the bioactive site, leading to dif-
ferent patterns of cell attachment.11,49 Interestingly, we
observed no effect on the cell adhesion when the
(19)IKVAV-CBM3 protein was tested on polystyrene (data
not shown), while the RGD-CBM3 had a higher cell adhe-
sion on polystyrene. This may be explained by the interfer-
ence of the surface topology and roughness, which may
influence the effective density of exposed adhesive biomole-
cules accessible to the cell receptors as well as the affinity
of the receptor-ligand binding.44,50,51 It is known that in
physiological settings, cells interpret signals from the ECM
and different cell types interact with different matrix pro-
teins.52 Therefore, it is not surprising that the intrinsic condi-
tions of the in vitro system used, including cell line, culture
medium, presence of serum, roughness and topography of
material, and the structure and conformation of peptide, have
a strong influence on the pattern of cellular behavior, as
observed in this work.

In the absence of cell–matrix interactions, anchorage de-
pendent cells undergo apoptosis.53–55 Thus, when designing
hydrogel niches to serve as synthetic ECM environments,
preservation of matrix–cells receptor interactions is critical
to promote long-term cell survival and function.55 To con-
firm the survival of cells on BC modified with the recombi-
nant protein (19)IKVAV-CBM3, the live and dead assay was
performed. The results showed that PC12 and mesenchymal
cells remained adhered and viable after 13 days on BC
coated with (19)IKVAV-CBM3 protein. However, cells

Figure 4. Images showing the live/dead assay of PC12 and mesenchymal cells seeded on BC membranes.

(�100 original magnification) (a,b,c) PC12 cells (d,e,f) mesenchymal cells cultured for 13 days on BC coated with (19)IKVAV-CBM3 (a and d);
CBM3(b and e); Buffer (c and f).

Figure 5. ELISA results of NGF expression by rMSCs on BC
coated with recombinant proteins and polystyrene.

The cells seeded on BC membranes were able to release NGF
to the culture medium after 3, 6, and 13 days. Significant dif-
ferences between BC with protein coating and control condi-
tions are given *P\ 0.05.
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maintained a rounded morphology, without evidence of cell
spreading, in accordance with some results previously
described by other authors using different materials, such
hydrogels and nanofiber gel.56,57 Wu et al.56 showed that the
self-assembly peptide IKVAV promoted the cell adhesion
and viability of bone MSCs but exerted no influence on the
MSC proliferation. Also, IKVAV ligand on poly(ethylene
glycol) hydrogels increased MSC viability on nondegradable
hydrogel, but not in degradable hydrogel, and on its own
was not capable of influencing cell spreading.58

It has recently been demonstrated that MSCs, even with-
out any induction, are able to secrete neurotrophins, provid-
ing a natural source of these molecules that can be exploited
in tissue engineering applications.39 Our results showed that
NGF is produced by the MSCS seeded on BC membranes
and released to the culture medium after 3, 6, and 13 days.
The cells adhered on BC modified with RGD-CBM3 and
(19)IKVAV-CBM3 secreted a higher amount of NGF into
the supernatant compared to control, probably due to the
larger initial number of cells adhered on BC treated with
those proteins. Cells on polystyrene had a higher amount of
NGF detected in supernatant not only caused by the upper
initial number of adhered cells but also because of cell pro-
liferation on this material.

BC has already been tested on neuronal tissue regenera-
tion with promising results.59,60 Our data indicate that the
BC functionalized with recombinant proteins—bearing cell
adhesive peptides—further expands the potential of this bio-
material for neuronal tissue regeneration. The improvement
of MSCs adhesion, the support of cell viability, and release
of neurotrophins are important to create a suitable environ-
ment with adequate stimulus to tissue regeneration. Never-
theless, additional work, such as the comprehensive
characterization of the neurotrophins being released by
MSCs cultivated on BC, as well as in vivo studies, are
required for the full evaluation of this potential.

Conclusions

BC is a promising biomaterial to be used as scaffold in
tissue engineering applications but, as in most scaffolds, it is
still necessary to increase the interaction of cells with the
material to obtain a matrix that maintains the growth, viabil-
ity, and selectivity of different cell types. The recombinant
proteins were successfully expressed in E. coli and adsorbed
in a stable way onto BC membranes. The recombinant pro-
tein (19)IKVAV-CBM3 improved PC12 and mesenchymal
cell adhesion on BC membranes and also allowed the release
of NGF secreted by MSCs to the culture medium, indicating
that modified BC has the potential to be used in neuronal tis-
sue engineering applications.
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