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a b s t r a c t

A convenient approach to performing stability analysis of concrete gravity dams is the so-called two-
dimensional ‘‘gravity method.’’ However, concrete gravity dams located in valleys with sloped rock foun-
dation abutments behave as three-dimensional (3D) structures and are often able to share compressive
and shear loads between adjacent monoliths, especially when shear keys are present. A general 3D limit
equilibrium method was developed in this study to compute global sliding safety factors (SSFg) by con-
sidering sequential load redistribution among adjacent monoliths when individual monoliths have mobi-
lized their sliding strength. Two validation examples of the sliding safety assessment of existing dams are
presented to illustrate the accuracy and efficiency of the proposed approach compared to that of the full
3D numerical analyses conducted using the distinct element method. It is shown that gravity dams may
be formed by individual monoliths on sloped rock foundations that will slide if considered as isolated
structures but will constitute a stable assembly when the load-sharing capabilities of monoliths are rec-
ognized in the analysis.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Two-dimensional structural models are currently widely used
for the sliding stability analysis of straight gravity dams. The tallest
section, usually located on the valley bottom, is typically selected
for evaluation because it is usually the most critical part of the
structure. The sliding failure mechanism considers motion only
in the upstream–downstream direction [1,2].

In some cases, the conventional 2D analysis method, also
known as the gravity method, is not the most adequate analysis
method. Three dimensional behavior is most often the case of
dams in narrow valleys, in which the height of the blocks can vary
significantly, even between adjacent blocks that will experience
different displacements. The blocks are subject to different hydro-
static pressures and have different stiffnesses. This is true, for
example, when the blocks of the dam possess significant geometric
variations that could induce torsional moments across the contrac-
tion joint due to the interaction between the concrete monoliths. A
change of cross section may occur not only in dams constructed in
sloping valleys, but they may also occur in dams constructed in
planar valleys, such as in the transition from a non-overflow
section to a discharge profile. If vertical joints are provided with

shear keys, regardless of whether or not they are grouted, consec-
utive blocks will probably share some of the load.

Some reports of gravity dam failures demonstrate the appropri-
ateness of considering the dam as a three-dimensional body [3]. An
example is the failure of the Khadakwasla Dam, a masonry dam lo-
cated in India, which has a maximum height of 33 m. The rupture
occurred in July 1961 following a flood caused by the rupture of an
earth dam upstream of this dam. The rupture of the Khadakwasla
Dam was partial and took place in a section that was only 2/3 of
the maximum height based on an area of the foundation that
had a major discontinuity [4]. Another case, perhaps the best
known, is the rupture of the St. Francis Dam, which has a height
of 64 m and is located near Los Angeles, USA. The rupture occurred
in March 1928 and killed 450 people. Apart from a few problems
with the foundation, it was some cracking that appeared at the up-
stream heel of the structure that led to failure of the abutment sec-
tions, leaving only the central section intact [5].

The three-dimensional behavior of gravity dams is well de-
scribed and documented in the technical literature related to their
sliding safety assessment [6–14]. In addition to horizontal shear
forces, normal and vertical forces are also transmitted through
the contraction joints; however, full mechanical interaction is en-
sured only when shear keys are present.

For example, Osterle et al. [12] applied the ‘‘trial-load-twist’’
method proposed by the USBR [13] to conduct a stability analysis
of the Carpenter Dam (height of 36 m) by means of a simplified
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3D finite element model composed of vertical cantilever beams,
which represented each block, connected with horizontal beams
capable of transferring shear forces and torsional moments. Osterle
et al. [12] compared these results with those obtained using the
gravity method and concluded that for Carpenter Dam, the gravity
method is overly conservative.

Lombardi [14], using a parameter referred to as a ‘‘local factor,’’
examined a partial model of a dam consisting of nine blocks, with a
maximum height of 96 m, resting in a deep valley. According to his
method, an individual analysis of each block is first made, and if a
block is found to be unstable with respect to sliding, the unbal-
anced force is transmitted to the adjacent block. In the example
presented [14], the gravity method considering the individual
blocks on a horizontal foundation plane indicated a sliding safety
factor larger (1.85) than that of the connected blocks (1.50). This
result is in contrast to the results obtained for the example ana-
lyzed by Osterle et al. [12].

This paper presents a simplified limit equilibrium method for
performing a 3D structural safety assessment for straight or slightly
curved gravity dams on sloped rock foundations. This method takes
into account the interaction between monolith blocks through
contraction joints. The results were validated using the discrete ele-
ment code 3DEC [15], which has previously been applied to both
static and dynamic analyses of dams, particularly for the assess-
ment of failure mechanisms involving the foundation [16–18].

2. 3D limit equilibrium method for sliding stability

2.1. 3D block interaction and sliding direction

An important issue related to the effective contact between
blocks leading to three-dimensional behavior is the individual slid-
ing trajectory induced by a loading scenario. The sliding trajectory
could be unfavorable to this interaction, whereby the base-plane
geometry of each block, faults and superficial irregularities on
the foundation play an important role. Goodman and Bro [19] con-
ducted a small-scale physical model test of a monolith of Folsom
Dam in the USA. Considering the effects of the topography of the
contact dam-foundation plane, they conducted two series of direct
shear tests, the first with the upper block completely free (an
unconstrained case) and the second with the upper block subjected
to lateral supports (a constrained case), thereby simulating the
presence of adjacent blocks with the wall of the adjacent monolith
in contact with the right side of the specimen. The results of the
tests were different. When the block was constrained, the shear
strength was larger than it was for the unconstrained case. In the
unconstrained case, the block exhibited a small rotation along a

vertical axis. When the load was increased, the shear resistance
of the model reached a peak and then abruptly decreased. The
roughness and boundary conditions of the sliding plane was trea-
ted numerically using a model developed in [20,21].

As a simple illustration of the problem under consideration,
Fig. 1 shows a model of three blocks created with 3DEC [15]. The
blocks are deformable, with a modulus of elasticity (E) equal to
50 GPa and a Poisson’s ratio (t) of 0.2. The dam foundation contact
joints and interblock joints were assumed to have typical values,
namely a normal stiffness (Kn) of 40.5 GPa/m and a shear stiffness
(Ks) of 16.2 GPa/m with no cohesion and a 45� friction angle. The
blocks were subjected to self-weight, hydrostatic pressure (corre-
sponding to the crest height) and uplift pressure using a bilinear
spatial distribution with a 2/3 reduction at the drainage curtain.
Sliding was induced by progressively reducing the friction angle.
Individual displacement directions were plotted for each block
for the cases of independent and interacting behaviors (Fig. 1). In
this latter case, the trajectories became parallel. The structure com-
posed of interacting blocks behaved as a whole structure, with the
smaller blocks (Nos. 1 and 2) on the steeper slope pushing against
the third block.

Another important issue in stability assessment is the arching
effect that takes place, even in the case of straight gravity dams
[22,23], which is an aspect that has long been the subject of contro-
versy [24]. The arch effect improves the behavior of the structure
when the foundation can withstand the resultant thrust.

Another issue that should be addressed is the resistance of
shear keys and their capacity to overcome high concentrated stres-
ses. Curtis and Lum [25] suggested a no-tension Mohr–Coulomb
model to assess the strength of shear keys. Although no tensile
stresses can be transmitted across shear keys, these keys can main-
tain a residual shear resistance due to a cohesive component. In the
case of a large strength of the shear keys, the ultimate load may be
controlled by weakness at the abutments.

Finally, for dams located in northern regions where seasonal
temperature variations are important, contraction joints might be
tightly closed in the summer, corresponding to a monolithic 3D
behavior. However, contraction joint opening in winter may limit
the ability to transfer forces from one block to another [26,27].

2.2. Proposed method: introductory two-block example

The 3D limit equilibrium method proposed in this paper follows
a sequential scheme through the analysis of each block as an indi-
vidual element. The interaction between blocks in each step is
established on the basis of the potential sliding failure mechanism
that is accepted as the most probable. This method is somewhat
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Fig. 1. Displacement directions for each independent block computed using individual and global models (obtained using a 3DEC model).
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similar to the method devised by Lombardi [14], but it is able to
analyze the full sliding of each block in three dimensions rather
than only in the abutment–valley direction. In addition, it accepts
the transmission of tangential and normal components of contact
forces through contraction joints, rather than just the tangential
component as proposed in [14].

To properly explain the principles adopted in this study, a sim-
ple example in a 2D plane (Fig. 2) is first presented. In this exam-
ple, two blocks are shown to withstand the horizontal load H
applied to block 1. Block 1 will initially bear this load alone
through a horizontal friction force (HF1) according to its self-weight
(W1) and the friction angle (/) at its base:

HF1 ¼W1tg/ ð1Þ

A sliding safety factor (SSF1) may be defined, where values
above 1.0 indicate that block 1 can withstand the horizontal load
H by itself.

SSF1 ¼
HF1

H
ð2Þ

Consider now the case where SSF1 < 1.0, such that HF1 < H. This
means that block 1 is not able to bear the load H alone and will
share this responsibility with block 2. To determine the overall
safety factor (SSFg), an interactive process is proposed. For each
step i, an increasing factor fi is adopted and applied to reduce the
resistance force. The cycle begins with the determination of the
force that is transmitted from block 1 to block 2 (R1,i), in accor-
dance with the current fi:

R1;i ¼
HF1

fi
� H ð3Þ

Because block 1 does not withstand the load H alone, the value
of R1,i is negative. The resultant of the forces acting on block 2 (R2,i)
is determined by

R2;i ¼
HF2

fi
� jR1;ij ð4Þ

where HF2 is the horizontal friction force of block 2, given by

HF2 ¼W2tg/ ð5Þ

where W2 is the self-weight of block 2. When, for a given value of fi,
R2,i is negative, the two-block system is no longer stable with re-
spect to the global sliding mechanism, so the previous value of fi,
fi�1, should be taken as the global sliding safety factor (SSFg). This
principle is extended in the 3D analysis, in which the treatment
of applied loads is obviously much more complicated.

2.3. Analysis of an individual block

Each block, assumed to behave as a rigid body, is geometrically
defined by 12 points (Fig. 3). This assumption is valid in most prac-
tical cases, but the method may of course be applied to more gen-
eral geometries. The following loads, defined in a global coordinate
system (Fxyz), are considered: self-weight (W); hydrostatic pressure
(HP) acting in the upstream–downstream, vertical and horizontal
directions; uplift force (U); and ice load (I). Depending on the effec-
tiveness of the drainage system in the foundation and the position
of the gallery, the uplift force can be applied with a reduction fac-
tor. The total load Fxyz is composed of three components, Fx, Fy and
Fz, according to the global coordinate system xyz. The shear
strength of the foundation joint is governed by the Mohr–Coulomb
criterion, defined by a friction angle and cohesion value, while ten-
sion is not allowed to develop along the dam foundation interface.

The loads are then computed using a local coordinate system
(F123), according to Eqs. (6) and (7), established along the base sur-
face of the block, defined by the upstream–downstream (b) and
abutment/valley (a) inclinations (Fig. 4). The total load F123 is com-
posed of three components, F1, F2 and F3, according to the local
coordinate system 123.

F123 ¼ MFxyz ð6Þ

M ¼
cos b sina sin b � cos a sin b

0 cos a sin a
sin b � sina cos b cos a cos b

2
64

3
75 ð7Þ

Following this scheme, two safety factors can be determined.
The first (Eq. (8)) is related herein to a single block moving in the
direction of the loads resultant on the foundation surface, leading

Block 1 Block 2

W1 W2

H

H F1 H F2

Fig. 2. Limit equilibrium of two adjacent blocks.
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11 ;label

42.9434 ;headwater level

6.7556 ;gallery position

0.667 ;drainage effectiveness

0 ;ice load

1.5817 15.8500 42.9434 ;point 1

1.5817 0.0000 42.9434 ;point 2

8.6937 0.0000 42.9434 ;point 3

8.6937 15.8500 42.9434 ;point 4

1.5817 15.8500 3.1634 ;point 5

1.5817 0.0000 3.1634 ;point 6

8.6937 0.0000 34.8634 ;point 7

8.6937 15.8500 34.8634 ;point 8

-6.8092 15.8500 -13.6184 ;point 9

0.0000 0.0000 0.0000 ;point 10

36.5901 0.0000 -2.3318 ;point 11

48.0956 15.8500 -17.6724 ;point 12x
y

z

Fig. 3. Block geometry.

E.M. Bretas et al. / Computers and Geotechnics 44 (2012) 147–156 149



Author's personal copy

to the unconstrained condition (SSFu). The second safety factor (Eq.
(9)) is related to a single block moving in the upstream–down-
stream direction and constrained by adjacent monoliths (SSFc):

SSFu ¼
�F3tg/þ cAcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
1 þ F2

2

q ð8Þ

SSFc ¼
ð�F3 cos a� F2 sin aÞtg/þ cAc

F1
ð9Þ

where c is the cohesion and Ac is the compressed area of the base.
The effects of the foundation surface orientation, defined by the

parameters a and b, on the safety factors given by Eqs. (8) and (9)
may be illustrated by performing parametric analyses. The initial
model, whose dimensions are defined in the data file attached to
the figure, corresponds to the example shown in Fig. 3. When a
and b are changed, the initial geometry also changes. The forces
considered include the self-weight, the hydrostatic pressure on

the upstream face and the uplift pressure. The drainage system is
located next to the upstream face and imposes a 2/3 reduction in
the value of the uplift pressure.

The friction angle and cohesion at the concrete–rock interface
are indicated in Fig. 5. Regarding the variation in the upstream–
downstream direction, increasing the angle b causes a reduction
of SSFu and SSFc, both for the model with cohesion (Fig. 5b) and
for the model without cohesion (Fig. 5a). For the other direction,
namely the abutment-valley inclination, increasing the a angle
while maintaining a constant b angle (10�) causes a reduction in
SSFu, but SSFc increases (Fig. 5c and d). When a is changed, the ini-
tial geometry is changed, and both the self-weight and hydrostatic
pressure increase. The SSFc is more sensitive to the self-weight than
to the hydrostatic pressure. The addition of the uplift force does
not play any role in this constrained case because the projection
in the plane that takes the upstream–downstream direction into
account is unchanged.

α

x
y

z

1

1

2

3

3

2

View
(upstream)

Cross sectionPerspective

Fig. 4. Coordinate transformation between the global system (xyz) and the local system (123).
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Fig. 5. Parametric analysis of b [�] for (a) a = 10�, cohesion = 0, and / = 45� and for (b) a = 10�, cohesion = 329 kPa, and / = 45�. Parametric analysis of a [�] for (c) b = 10�,
cohesion = 0, and / = 45� and for (d) b = 10�, cohesion = 329 kPa, and / = 45�.
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2.4. Analysis of a set of blocks

To conduct a global analysis of a set of blocks, an iterative com-
putation scheme was implemented, similar to the wedge method
proposed in [28,29], and is illustrated using the introductory exam-
ple (Fig. 2). According to a predicted failure sequence, which often
occurs from the abutment to the valley, the blocks were analyzed
based on the unconstrained condition and by considering a reduc-
tion factor (RF) of the strength parameters of the current calcula-
tion step. This factor plays the same role as that played by the fi

factor in the introductory example (Fig. 2). For narrow valleys,
the natural load transmission occurs in the abutment-valley direc-
tion, but this significant factor should be carefully examined for
each particular case.

For each block, the applied forces are compared to the resis-
tance capacity of the dam-foundation interface. When the capacity
is greater than the driving loads, the block is considered stable by

itself, and no load is transmitted to the adjacent block. Otherwise,
if the driving loads reach the dam-foundation strength capacity,
the unbalanced force (UFxyz) from Eqs. (10) and (11) is transmitted
to the adjacent block on the valley side. The new conditions for the
stability of the block that received the overload are assessed. The
analysis continues by increasing RF until the last block fails.

UF123 ¼
�F3tg/

RF
þ cAc

RF
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

1 þ F2
2

q
ð10Þ

UFxyz ¼ M�1UF123 ð11Þ

The calculation cycle is shown in Fig. 6. In this figure, step [1]
represents the determination of the loads related to each block.
These loads are the self-weight (FW) due to the geometric and
material properties of the block, the hydrostatic pressure (FH),
the uplift (FU) and the ice thrust (FI). These forces are determined
in the global system and are added to compute the resultant force

Define properties and loads:

• 3D Geometry (α, β)

• Material properties (γ , φ, c)

• Loading (FW, FH, FU, FI)

Compute block results:

• Global xyz system (Fxyz)

• Local 123 system (F123)
F123 = M Fxyz

UF123 =
-F3 tg φ c AC

RF RF
+ F1 + F2

2

Check block self resistance for a
reduction factor RF:

• Unbalanced force (UF123)

UF123 > 0
Stable block

UF123 < 0
Instable block

• No force will be transmited to
adjacent block

• New interaction with next incremental
RF value

• Unbalanced force will be transmited
to adjacent block

• Compute unbalanced force in the
global xyz coordinate system

4b

UFxyz = M  UF123

4a

3

2

1

2

-1

RF = 0.01, 0.02, ...

Fxyz = Fxyz + UFxyz

Global failure:

• For all blocks UF123 < 0

• Final Sliding Safety Factor (SSFg):
SSFg=RF

5

-

α
β
γ
φ
c
AC

- u/s inclination
- abutment/valley inclination
- volumetric weight
- friction angle
- cohesion
- compressed area

FW

FH

FU

FI

Fxyz

F123

M

- self weight
- hydrostatic pressure
- uplift pressure
- ice load
- total forces in the xyz system
- total forces in the 123 system
- transformation matrix

RF
UF123

SSFg

- reduction factor
- unbalanced force
- global slading safety factor

Blocks interaction

Notation

Fig. 6. 3D limit equilibrium of gravity dam.
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(Fig. 6 [2]) for each block. This resultant force, Fxyz (Fx, Fy, Fz), will be
transformed to the local system associated with the base plane ori-
entation of each block, giving rise to the force F123 (F1, F2, F3). Based
on the local system of axes, the block will be checked in terms of
stability, and the unbalanced force (UF123) to be transmitted to
the adjacent block will be determined. If UF123 is positive, the block

is stable (Fig. 6 [4a]). In this case, UF123 represents the strength re-
serve for the sliding scenario. If UF123 is negative, the unbalanced
force must be transmitted to the adjacent block, according to the
sequence of failure established, after being transformed to the glo-
bal system (UFxyz) (Fig. 6 [4b]). The calculation continues until an
overall failure of the model occurs, in which case the unbalanced

Perspective

SectionElevation (dowstream side)

Plan

(dowstream)

(upstream)

95.1 m
95.1 m

22
.3

 m

68
.3

 m

28
.3

 m
68.3 m

69
.7

 m
95.1 m

Block (*)

Headwater
Level= 69.7 m

72.3 m

Uplift diagram
(Headwater level)

Drainage effectiveness 67%

Fig. 7. Geometric definition existing dam A.

SSF=1.52 SSF=0.59 SSF=1.43

SSF=0.5

SSF=1.0

SSF=1.5

SSF=2.0

2 4 6

Fig. 8. Individual sliding safety factors (SSFs) for dam A for the case in which
interblock interactions are not considered.

Failure
sequence

2 4 6

#5
SSF=1.43

• Possible global failure

• Failure of block a
• Block a transfer the unbalanced force to block b

• Block c was the last block to fail

c

Fig. 9. Individual and global sliding safety factors (SSFs) and failure sequence for
dam A when taking into account interblock interactions.
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force (UFxyz) for all of the blocks is negative. The RF corresponding
to the last stable value reached is designated as the sliding safety
factor (SSF), as in the initial example.

Some comments related to the method described are given
below:

(i) The foundation reaction force at the base of the block is
assumed to be in the same direction as the resultant of the
applied loads to the block such that the unbalanced force
is computed as the difference between them.

(ii) The vertical component of the unbalanced force is not trans-
mitted to the adjacent block and is assumed to be transmit-
ted to the foundation. Otherwise, this component would
contribute to the sliding safety factor of the adjacent block.

(iii) It is assumed that the unbalanced load could be transferred
between the blocks either through friction or through the
presence of shear keys. This limitation should be verified
for the particular dam analyzed.

2.5. Example of a set of blocks

The method described above was applied to dam A in Fig. 7,
which is a partial model of an existing dam composed of six blocks
with a maximum height of 69.7 m. The blocks were subjected to
self-weight, hydrostatic pressure (corresponding to the crest
height) and uplift pressure using a bilinear spatial distribution
with a 2/3 uplift pressure reduction due to the drainage curtain.
The movement of block 1 was not restricted in any direction. The
block could move in the upstream–downstream direction as well
as in the abutment-valley direction.

As a reference method, a 3DEC (Fig. 10) analysis was conducted
by progressively reducing the joint (dam-foundation contact) fric-
tion angle from / = 45� and assuming a constant normal stiffness
(Kn = 40.5 GPa/m) and shear stiffness (Ks = 16.2 GPa/m). This model
uses deformable blocks, i.e., blocks discretized into a coarse inter-
nal mesh of elastic tetrahedra (E = 50 GPa, t = 0.2) subjected to
self-weight, hydrostatic pressure and uplift pressure. The boundary
conditions were applied to the foundation block, thereby restrain-
ing displacements of the external faces in the normal direction. The
global safety factor obtained with 3DEC was SSFg = 1.5.

Using the proposed methodology, the safety factors for individ-
ual blocks were first determined in the absence of any interaction
between blocks using a dam-foundation interface friction angle of
45�. The values obtained are shown in Fig. 8. The block with the
lowest safety factor was block 4 (SSFu = 0.59), and the block with
the highest safety factor was block 1 (SSFu = 1.83). Fig. 9 shows
the safety factors determined for the case in which there were

95.1 m

15
5.

2
m

95.1 m

69.7 m

Headwater level

Fig. 10. 3DEC model of dam A.

Fig. 11. Geometry of dam B for limit equilibrium validation.
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interactions between the blocks. The first block to reach its sliding
limit state was still block 4, with the same SSFu, indicating that fail-
ure occurs in the absence of interactions with any other block. This
is similar to what occurred with blocks 5 and 6, which also had the
same safety factors for the scenario in which no interactions were
present. The other blocks exhibited significant reductions in their
safety factors. For example, block 1, which had a SSFu of 1.83,
had a SSFu of 1.52 when interactions were considered.

Fig. 9 presents a summary of the values obtained as well as the
load transfer sequence. The first block to ‘‘collapse,’’ or reach its
limit state, was block 4 (SSFu of 0.59), followed by blocks 5
(SSFu = 0.75), 3 (SSFu = 1.00), 2 (SSFu = 1.26), 6 (SSFu = 1.43) and fi-
nally 1 (SSFu = 1.52). Based on these results, the possible failure
mechanism is the global sliding of all dam blocks (Fig. 9). The glo-
bal safety factor (SSFg) is assumed to be 1.52, which closely
matches the result obtained from the 3DEC analysis.

3. Case study

An existing concrete gravity dam (dam B, Fig. 11) located in Can-
ada, which is comprised of 19 monoliths and has a width of approx-
imately 15 m, a maximum height of 80 m and a crest length of
288 m, was analyzed using the proposed 3D limit equilibrium meth-
od. A water level corresponding to the dam height and a bilinear up-
lift pressure spatial distribution were assumed. The forces
considered were the self-weight, the hydrostatic pressure on the
upstream face and the uplift pressure. For the dam-interface con-
tact, a null cohesion and an initial friction angle of 45� were adopted.

A numerical analysis was carried out with a 3DEC model
(Fig. 12). The blocks were deformable (E = 50 GPa, t = 0.2) and char-
acterized by foundation-dam interactions and interblock joints
(Kn = 40.5 GPa/m, Ks = 16.2 GPa/m) with a frictional strength (/
= 45�) and no cohesive forces. The loads considered were self-
weight, hydrostatic pressure on the upstream face and uplift pres-
sure on the foundation joint. The boundary conditions were similar
to those of the previous 3DEC model; namely, vertical displace-
ments were restrained at the model base, and horizontal displace-
ments were restrained in the direction normal to the lateral
boundaries. This 3DEC model predicted a global safety factor of 1.40.

The results of the proposed method and the load transfer se-
quence are shown in Fig. 13. The ‘‘collapse’’ sequence is similar

for both abutments. In the right abutment, the collapse sequence
is blocks 19, 18, 17, 16, 15, 14, 13 and 12. In the left abutment, col-
lapse starts with block 4, followed by blocks 5, 6, 9, 7, 10 and 8. The
last block to fail is block 11 (SSF of 1.43). The possible failure mech-
anism corresponds to global sliding of all blocks. The SSF value of
1.43 was defined as the global safety factor of the full structure
(SSFg) and is in excellent agreement with the value obtained from
the 3DEC model (1.40).

Safety factors (SSF2D) were also determined using the conven-
tional gravity method. Sliding is only allowed to take place in the
upstream–downstream direction leading to a constrained condi-
tion. Because the dam presents similarities between the 2D versus
3D stability analysis in terms of its cross-sections, the SSF2D is
equal to 1.3 for the majority of blocks, with the exception of block
3 (SSF2D = 1.7) and block 19 (SSF2D = 1.7). For blocks with a marked
inclined foundation, it is possible to observe a significant disparity
between the results from the 2D analysis and those from the 3D
analysis. For example, the SSFu is 0.27 for block 4 (Fig. 13), and
the SSF2D is 1.3. For block 11, the last block to fail in the 3D analysis,
the SSF2D is also equal to 1.3. This is less than the value computed
in the 3D analysis, namely SSFu = 1.43. For block 11, the 2D gravity
method is more conservative, as would be expected for a simplified
method. For an unusual or extreme load combination, and assum-
ing that interactions between blocks are effective, the failure could
occur along the abutments through the most sensitive blocks.

4. Summary and conclusions

This paper presents a general 3D limit equilibrium method for
conducting a sliding safety assessment of concrete gravity dams
subjected to hydrostatic loads with monoliths resting on sloped
rock foundations. The method is able to take into account arbitrary
three-dimensional variations in cross-sections, with the dam-foun-
dation contact plane sloping in the upstream–downstream and
abutment-valley directions. The classical no-tension Mohr–Cou-
lomb model was adopted to compute the shear strength that could
be mobilized along the dam foundation interface. In its present
form, the method assumes that compressive and unbalanced shear
loads could be transferred between adjacent monoliths. The sliding
responses of two existing gravity dams were computed using the
proposed method, leading to the computation of global sliding

Fig. 12. 3DEC model of dam B.
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•
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Fig. 13. Stability analysis and failure sequence for dam B.
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safety factors (SSFg) that were nearly identical to those obtained
from more elaborate 3D analyses using the distinct element (DE)
method. The main conclusions of this study can be summarized
as follows:

(i) The proposed method is simple to implement, and compar-
isons with results from 3D numerical analyses indicate that
it produces accurate results. It is a powerful tool with which
practicing engineers can perform preliminary analyses prior
to conducting 3D numerical (FE or DE) analyses that require
significant resources and expertise.

(ii) For the two existing dams analyzed, the sequence of load
transfer to adjacent monoliths is initiated from the monolith
resting on the plane with the largest abutment-valley incli-
nation angle.

(iii) A dam composed of individual monoliths that do not possess
sufficient strength when considered as isolated structures
can be shown to be a stable assembly when load-sharing
capabilities of the monoliths are considered in the stability
analysis.

A limitation of the proposed method is that it assumed the pres-
ence of compressive and shear load transfer capabilities of the
monoliths. 3D studies that consider different initial contraction
joint openings are the next step in assessing the effect of kinematic
interactions among sliding blocks, which produce a potential
wedge effect that creates a new state of static equilibrium.
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