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Abstract 

Coating the walls with reinforced concrete layers is a conventional method of strengthening 

masonry structures in Iran. However, due to the lack of analytical and experimental information 

about the behavior of strengthened masonry wall with this method, the design of these walls is 

generally conducted based on empirical relations and decisions which may result in uneconomical 

or under-designed strengthening details. This paper aims at developing a rational method for design 

and seismic evaluation of unreinforced masonry walls strengthened with reinforced concrete (RC) 

layers. In the proposed method four failure modes are considered for these walls and the strength 

relations and acceptance criteria for each of them are provided in accordance with FEMA 356 and 

ASCE 41 relations for reinforced concrete and masonry walls. The accuracy of the proposed 

method in predicting the nonlinear behavior and governing failure modes of the strengthened walls 

is validated by comparing the results with available experimental and performed numerical results. 
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1. Introduction 

Most of the residential and historical buildings in Iran such as many other places in the world are 

made of unreinforced masonry. These structures consist of a large number of hospitals and schools, 

which their destruction due to the earthquakes has resulted in massive death of people. Recent 

earthquakes, such as Bam earthquake in Iran, have shown the severe vulnerability of this type of 

structures against seismic loads. This indicates the urgent need of strengthening these structures. 

During the last years a large amount of funds have been set up and extensive effort has started to 

improve the seismic behavior of masonry structures using different strengthening methods. These 

methods can be classified as: surface treatment (Ferrocement, FRP layer, shotcrete layer), grout and 

epoxy injection, external reinforcement, confining, and post-tensioning (ElGawady  et al. 2004; 

Oliveira et al. 2011; Borri et al. 2011; Moon et al. 2007; Vintzileou 2008; Khan 1984; Abrams et al. 

2007; Corradi et al. 2008). 

Although a variety of techniques are being used for strengthening of masonry buildings and the 

advantages and disadvantages of them have been discussed in the technical literature, the 

information and technical guidelines which can help an engineer to judge the relative merits of 

these methods, are rare. An extensive effort has been devoted for proposing analytical methods to 

evaluate the seismic resistance and performance of strengthened masonry structures with different 

strengthening techniques in the recent years, see e.g. Abrams et al. 2007; Alok Madan et al. 2008.  

Coating the walls with reinforced concrete layers is the most popular strengthening method for 

masonry structures in Iran. In this method a mesh of reinforcing bars is first placed on the face of 

the wall and then it is covered with a concrete layer. This layer may be placed on one or both sides 

of the wall. To assure the consistency of the deformations of the wall and concrete layers, the 

concrete and reinforcing bars should be appropriately anchored to the wall. Due to the lack of 

experimental and analytical information on this method, design and rehabilitation procedures are 

always based on empirical judgments or assuming the strengthened wall acts as a combination of 

unreinforced masonry and reinforced concrete layers. In these procedures the strength of the 
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strengthened wall is calculated by the summation of the shear strength of each or some of the 

components of the strengthened wall (masonry wall, reinforcing bars, and concrete layers). These 

approaches have resulted in uneconomical and massive strengthening details and consequently 

expensive rehabilitation projects due to neglecting the following facts: 

- Behavior of strengthened masonry wall is different from unreinforced masonry and 

consequently the cracking mechanism, the strength, and ductility of the wall change after 

strengthening.  

- Using the available design relations of unreinforced masonry is not appropriate for 

computing the capacity of strengthened masonry walls.  

- The strengthened masonry wall may fail under different failure modes in comparison with 

unreinforced masonry. Moreover, different strengthening details may result in different 

governing failure modes in the strengthened wall. Therefore, considering shear failure as the 

governing behavior in a strengthened wall, as it is assumed usually, may not be correct for 

all cases. 

To overcome this problem, four failure modes are proposed for masonry walls strengthened with 

reinforced concrete layers in this paper based on the performed nonlinear analysis and the observed 

behavior in available experimental and analytical studies. The design relations, required parameters 

for linear and nonlinear seismic evaluation procedures, and bilinear curves for each failure mode 

are also given according to the observed behavior of these walls in accordance with FEMA 356 

(2000) and ASCE 41 (2006) analysis procedures. The accuracy of the proposed relations and force-

deformation bilinear curves, and the ability of the proposed method to predict the governing 

behavior of strengthened walls are investigated by comparing the results with available 

experimental and analytical results. The results show that the proposed relations can predict the 

capacity, governing failure mode and nonlinear behavior of the strengthened walls with a 

reasonable accuracy. The main difference between the proposed method and experimental 

observations lies in predicting the ductility of the walls which should be modified and corrected by 
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performing an extensive experimental program. Using the proposed design relations and acceptance 

criteria, the masonry structures strengthened with reinforced concrete layers can be simply 

designed and evaluated according to FEMA 356 (2000) and ASCE 41 (2006) linear and nonlinear 

analysis procedures.  

2. Strengthening method 

Strengthening masonry walls with reinforced concrete layers is a conventional method of 

strengthening in Iran. In this method a mesh of reinforcing bars is first placed in one or both sides 

of the wall and then it is covered with a thin concrete layer (Fig. 1). The concrete layer and 

reinforcing bars should be anchored to the wall to assure that the wall and reinforced concrete 

layers work together. 

Figure 1 

Due to the lack of analytical and experimental information on the seismic behavior of strengthened 

masonry walls, the evaluation and design procedures are usually conducted based on empirical 

approaches which may be un-conservative or uneconomical. These methods can be classified into 

three groups. In all of these methods, it is assumed that the failure in the strengthened wall occurs 

due to diagonal shear failure and the capacity of the wall is calculated according to this failure 

mode. Moreover, the capacity of the strengthened wall in these methods is usually obtained by the 

summation of the capacity of all or some components in the strengthened wall.  

In the first method the wall capacity is obtained by the summation of shear capacity of the concrete 

layer, cV , and shear reinforcements, sV , (Eq. 1). In this method, it is assumed that the masonry 

contribution in shear capacity of the strengthened wall is small and it can be neglected. Also it is 

assumed that the concrete fails due to diagonal tension cracking and the shear capacity of the 

concrete layer is calculated according to this failure mode using conventional ACI-318 (2008) 

relation (Eq. 2). The steel contribution in this method is calculated according to Eq. 3. 

scRM VVV                                                                                                                                   (1) 
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LtfV ccc 17.0   (in N mm)                                                                                                          (2) 

s

h
AfV vys 5.0                                                                                                                              (3) 

where cf  is the concrete compressive strength, ct  is the concrete thickness, L is the wall length, yf  

is the yield strength of reinforcing bars, vA  is the area of transverse reinforcement within a distance 

s , and h  is the wall height.  

In the second method, it is assumed that the shear capacity of the strengthened wall can be obtained 

by the summation of the capacity of masonry wall, mV , and the reinforcing bars (Eq. 4). In this 

method the contribution of masonry in shear capacity of the wall may be calculated in two different 

ways. One is to calculate the capacity of the masonry by assuming the shear sliding behavior and 

the other is to obtain it considering the governing behavior among four failure modes of masonry 

according to FEMA 356 (2000) or ASCE 41 (2006) (Rocking behavior, bed-joint sliding, diagonal 

tension, toe crushing). Neglecting the shear capacity of concrete in this method, being inconsistent 

with the engineering and mechanics principles, results in providing massive reinforcement details 

in retrofitting projects. 

smRM VVV                                                                                                                                    (4) 

In the third method, the capacity of the strengthened masonry wall is obtained by the summation of 

masonry, concrete, and reinforcing bars contribution (Eq. 5). In this method the concrete shear 

capacity is calculated according to conventional design relations (diagonal cracking, Eq. 3) and the 

masonry shear capacity is calculated according to four FEMA 356 (2000) failure modes. Following 

this approach it is possible that the governing behavior of the masonry is different with the concrete 

layer which is assumed to be diagonal cracking.  

scmRM VVVV                                                                                                                             (5) 

The fact that the strengthened wall, when there is enough anchorage between concrete layer and 

masonry wall, acts as a new composite member is neglected in all these methods. The strengthened 
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wall acting as a composite material will have the cracking behavior and failure modes 

corresponding to its properties which may be different from the unreinforced masonry. This 

important fact has been considered in design relations proposed in this study which are described in 

the next sections. 

3. A review of unreinforced masonry behavior 

Masonry is a composite material with orthotropic behavior which causes this material to have 

different failure modes. Four failure modes are usually considered for unreinforced masonry walls 

in the seismic evaluation procedures (e.g FEMA 356 (2000) and ASCE 41 (2006)) based on the 

observed actual behavior of these structures in earthquakes and experimental tests. The governing 

behavior of the masonry wall is assumed to be the failure mode in which the wall has the lowest 

capacity. These failure modes are classified as deformation-controlled (bed-joint sliding and 

rocking behavior) or force-controlled (diagonal tension cracking and toe compression failure) 

actions (Fig. 2). The deformation-controlled actions are the ones that after occurrence, a ductile 

behavior is expected in the member without considerable loss of strength. The force-controlled 

actions are oppositely the ones in which brittle behavior with sudden loss of strength is expected. 

Reaching the yield stress is not permitted for force-controlled members in earthquake resistant 

design procedures. In seismic evaluation guidelines, such as FEMA 356 (2000) and ASCE 41 

(2006), the lower bound strengths and expected strengths of materials are used for obtaining the 

capacity of force-controlled and deformation-controlled actions, respectively.  

Figure 2 

The bed-joint sliding failure is considered as a deformation-controlled action in FEMA 356 (2000), 

while in the ASCE 41 (2006) it has been classified as force-controlled action (Discussions are 

underway with the ASCE 41 Standards Committee that will likely lead to a ballot proposal to 

redesignate bed-joint sliding as a deformation-controlled action in the next edition of ASCE 41). 

 However, as a ductile behavior has been observed in the single masonry walls with this failure 

mode in experimental tests, and as the seismic evaluation code of existing structures in Iran (Code 
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360, 2007) assumes this failure mode as a deformation-controlled action, it has been considered 

deformation-controlled in this study. In this failure mode, slipping occurs in the bed-joints and may 

be in a straight or diagonal stepped pattern. The masonry shear strength against this failure mode 

can be calculated with the aim of friction theories and is proposed by FEMA 356 (2000) as follows: 

nmebjs AvV                                                                                                                                       (6) 

where bjsV  is the masonry wall bed-joint sliding capacity, nA  is the area of mortared section, and 

mev  is expected masonry shear strength. The term mev  has been substitute with mlv  , lower bound 

masonry shear strength in ASCE 41 (2006) as it is assumed a force-controlled action in this 

standard. 

Rocking usually occurs when the wall shear strength is high, the wall is slender, and the 

compressive forces are low (FEMA 306, 1998). It is usually accompanied by a large deformation 

capacity limited by toe compression failure or wall instability. When rocking behavior continues in 

several cycles, it may be followed by the toe crushing. FEMA 356 (2000) and ASCE 41 (2006) 

propose Eq. 7 for computing the shear strength of unreinforced masonry for rocking and Eq. 8 for 

toe crushing. 

eff
Er h

L
PV 9.0                                                                                                                               (7) 

)
'7.0

1(
m

a

eff
Ltc f

f

h

L
PV                                                                                                                   (8) 

where rV  is the wall rocking capacity,   is a factor equal to 0.5 for cantilever walls or 1.0 for 

fixed-fixed walls, EP  is the expected axial compressive force due to gravity loads, effh  is the height 

to resultant force, tcV  is the wall toe crushing capacity, LP  is the lower bound axial compressive 

force due to gravity loads, af  is the axial compressive stress due to gravity loads, and mf '  is the 

lower bound compressive strength of masonry. 

In diagonal tension behavior, a diagonal crack distributes over the wall. This behavior usually 

occurs in walls with strong mortar, weak units, and high compressive stresses (FEMA 306, 1998). 
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In this behavior, small nonlinear deformations are expected. In most cases cracking occurs 

suddenly and the wall strength drops fast. The following equation is proposed in FEMA 356 (2000) 

to calculate the diagonal tension capacity of the wall: 

1
dteff

dtndt f

fa

h

L
fAV                                                                                                                   (9) 

where dtV  is the wall diagonal tension capacity, and dtf  is the lower bound masonry diagonal 

tension strength. 

4. Strengthened masonry behavior 

A masonry wall strengthened with reinforced concrete layer behaves as a new composite material 

when the RC layers are adequately anchored to the wall. In other words, the behavior of the 

masonry part is affected due to the presence of reinforced concrete layers. The strength and 

ductility of the strengthened wall are different from the unreinforced masonry, not only due to the 

excessive capacity of the concrete layer and reinforcing bars, but also because of the bond effect of 

reinforcing bars which affects the crack distribution in the masonry wall. In unreinforced masonry, 

the cracks are wide and concentrated in a small region of the wall, but in the strengthened masonry 

walls the bond forces due to reinforcing bars distribute the cracks over the wall. This results in 

different failure modes and capacity in the strengthened walls in comparison with unreinforced 

masonry. 

Another important issue is that the different strengthening details may cause different nonlinear 

behavior and governing failure modes which are not considered in conventional design procedures. 

For example, the behavior of a masonry wall with rocking failure mode (ductile behavior) may be 

changed to diagonal tension (brittle behavior) after strengthening which results in a significant 

change in the ductility and strength of the wall. If this change in governing behavior is not 

considered in the design and evaluation procedures, as it is not in the conventional methods, it may 

result in an inaccurate retrofitting plan. 
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For more clarification of the changes in the nonlinear behavior of masonry walls after 

strengthening, the nonlinear analytical program WCOMD (WCOMD-SJ User’s Manual 2009) 

developed at University of Tokyo is used in this study. WCOMD is an analytical tool for two-

dimensional static and dynamic nonlinear analysis of reinforced concrete structures based on fixed 

smeared crack approach. This program is modified by Barimani et al. (2007) on the basis of the 

orthotropic material models developed by Lourenço et al. (1998) for nonlinear macro analysis of 

masonry structures. Also mortar joint model developed by Salehi (2010) has been modified and 

implemented in WCOMD for micro level modeling of masonry walls by Ghiassi (2009). 

To check the reliability of the program in nonlinear analysis of masonry walls, two masonry walls 

tested at ETH Zurich (Ganz and Thurlimann 1984) are modeled and analyzed in WCOMD 

framework. The properties of the selected walls are shown in Table 1. The walls are tested under 

constant axial force and incremental shear displacements. The only difference between the walls 

W1 and W2 is the initial axial force applied to the walls which has resulted in different behavior 

and failure modes. The wall W1 is subjected to 0.61 N/mm2 and W2 is subjected to 1.91 N/mm2 

axial forces. In the wall W1 extensive diagonal cracking was found accompanied by flexural cracks 

in the left flange with ductile behavior, but the wall W2 exhibited a brittle behavior due to 

compression failure. The walls are modeled based on a macro-modeling approach considering the 

masonry as a continuum media and using 8-node plane stress elements (Fig. 4).  

Table 1  

Figure 3 

Figure 4 

The analysis results are shown in Fig. 5 in comparison with the experimental behavior of the walls. 

The small difference between the analysis and experimental results is due to the fact that in the 

macro modeling approach a variety of parameters should be used and validated in each case. Also 

the assumptions that are usually made in macro modeling can be the reason for this difference. 

Using micro models results in a more accurate prediction of cracking and nonlinear behavior but 
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the number of elements and the analysis time increases significantly (Lourenço 1996). Moreover, 

suitable material constitutive models for each component should be adopted for obtaining 

reasonable results in this modeling approach. For investigating different effects of chosen methods 

in the analysis results, the wall W1 is modeled following both macro and micro-modeling 

approaches. It can be seen in Fig. 6 that the nonlinear behavior obtained by micro modeling follows 

the experimental result with a better accuracy in comparison to macro modeling approach. 

However, as the results obtained from the macro-modeling approach (Fig. 5) have a reasonable 

accuracy, this approach is followed for modeling the strengthened walls.  

Figure 5  

Figure 6 

In order to investigate the changes in the behavior of the walls after strengthening, the walls W1 

and W2 are modeled with different strengthening details, RET1 and RET2 (Table 2). The 

strengthened masonry is modeled by adding a reinforced concrete layer to the finite element model 

of the wall using overlap elements. The load-displacement curves of strengthened walls are shown 

in Fig. 7. The changes in the nonlinear behavior and failure modes of the walls due to different 

strengthening details are obvious in this figure. The wall W1 has a flexural behavior together with 

diagonal cracks. After strengthening with the first detail, RET1, an increase in the capacity of the 

wall is observed without any change in the failure mode and ductility, while the second 

strengthening detail resulted in a brittle behavior (diagonal tension behavior) in the strengthened 

wall.  

In wall W2, the second detail of strengthening, RET2, with twice as much vertical reinforcing steel 

than horizontal reinforcing steel resulted in an increase in the capacity of the wall with the same 

failure mode (toe compression) and almost the same ductility as the unretrofitted wall, while the 

first detail, RET1, resulted in more capacity and ductility in the wall. These comparisons clearly 

show the importance of choosing appropriate strengthening details for the walls and their 

significant influence on the nonlinear behavior of the strengthened walls.  



11 
 

Table 2 

Figure 7 

For more investigation, two unreinforced masonry walls with rocking and shear sliding behavior 

are strengthened and modeled in WCOMD program. To assure the occurrence of appropriate 

failure modes in unreinforced walls, joint elements are used in selected places. For example in the 

wall with bed-joint sliding, the joints are placed in the middle height of the wall to be sure that the 

sliding behavior occurs in that region (Fig. 8). Wall thickness is 220 mm and the axial load equal to 

40 KN is applied at the top of the wall. Firstly, the unreinforced masonry wall is analyzed and the 

nonlinear behavior and crack propagation are obtained. After that, the walls are strengthened, 

analyzed, and the results are compared with the unreinforced walls. The strengthening details and 

obtained governing failure mode of the walls are shown in Table 3. It can be seen that the 

strengthening details in B3, B4, R2 and R3 walls resulted in changing the failure mode to a brittle 

behavior followed by diagonal cracks. The diagonal cracks formed in wall B3 in masonry and 

concrete layers are shown in Fig. 9 separately as an example. 

Figure 8 

Table 3 

Figure 9 

The shear-displacement curves of the walls are also shown in Figs. 10, 11. The results show that 

besides the increase in capacity of the walls after strengthening, the ductility may be increased or 

decreased according to the strengthening detail. In other words, the strengthened wall may have a 

brittle or ductile behavior depending on the strengthening detail.  

Figure 10 

Figure 11 

5. Proposed failure modes for strengthened wall  

Seismic evaluation of existing structures is usually conducted following linear or nonlinear analysis 

procedures by dividing the members failure modes to force-controlled and deformation-controlled 
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actions. The members should have enough capacity against the applied loads without yielding and 

plastic deformations in force-controlled actions. Therefore, force demands in force-controlled 

actions should be less than the member capacity. In deformation-controlled actions, the member is 

expected to show suitable ductility without considerable strength reduction. Moreover the plastic 

deformations are usually divided by some limits defining the performance levels of the member 

(such as immediate occupancy or life safety level). Considering the observed nonlinear behavior of 

masonry walls, these limitations are given in seismic evaluation guidelines (such as FEMA 356 

(2000) and ASCE 41 (2006)) and can be obtained based on the nonlinear behavior, stability, and 

boundary conditions of the wall. In nonlinear analysis procedures, the simplified force-deformation 

curves (Fig. 12) and acceptance criteria for each performance level are defined. These curves can 

be used for defining nonlinear hinges in nonlinear analysis procedures. The member is assumed 

acceptable when its nonlinear deformations are less than the acceptance criteria of suitable 

performance level. For linear analysis procedures a capacity modification factor, m-factor, is 

defined for each deformation-controlled action which is expected to account the nonlinear behavior 

of the member. In this analysis procedure the member is assumed accepted when the production of 

the capacity of the wall to the appropriate m factor is larger than the applied forces. For a more in-

depth discussion of these concepts FEMA 356 (2000) and ASCE 41 (2006) can be referred.  

Figure 12 

In this section, the proposed failure modes and strength relations in each failure mode for 

strengthened masonry walls with reinforced concrete layers are presented. Also the proposed force-

deformation parameters and acceptance criteria for nonlinear analysis and the m-factors for linear 

analysis procedures (according to FEMA 356 (2000) and ASCE 41 (2006) analysis methods) are 

presented. As the behavior of the strengthened masonry wall can be similar to the reinforced 

masonry and reinforced concrete walls, the probable failure modes and strength relations are 

proposed considering the available relations in FEMA 356 (2000) and ASCE 41 (2006) for these 

walls. Based on the available experimental and conducted analytical studies, four failure modes are 
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proposed for strengthened masonry walls: flexural behavior (rocking), shear failure (diagonal 

tension), shear sliding failure, and compressive failure. 

5.1. Flexural behavior 

5.1.1. Strength 

The shear-displacement curve of a RC wall under flexural actions (Fig. 13) has three primary points 

representing the concrete cracking, reinforcing bars yielding, and concrete compressive crushing. In 

the RC shear walls, usually the concrete cracking occurs first, followed by reinforcement yielding 

which govern the capacity of the wall, and the concrete crushing which limits the wall ductility. In 

the walls with low reinforcement ratio, the wall may show a sudden decrease in strength after the 

cracking point which is due to having a lower reinforcement yielding capacity than the cracking 

capacity. The flexural mechanism in strengthened masonry walls is similar to RC shear walls. 

Figure 13 

The flexural strength of a strengthened masonry wall can be calculated by means of simple flexure 

theory, based on the assumption that the plane sections remain plane after bending. Using a 

rectangular compression stress block with a stress level of rmf '85.0  and with a depth of “a” and 

writing the equilibrium equations, the flexural strength can be computed as follows (Fig. 14): 
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where wl  is the wall effective length equal to 0.8 of the wall actual length, rN  is the wall axial 

force, sA  is the area of vertical reinforcing bars, sbA  is the total area of reinforcing bars in 

boundary zone, wt  is the wall thickness, and rmf '  is the strengthened masonry compressive 



14 
 

strength which can be obtained from compressive test results. Since experimental results on 

compressive behavior of strengthened masonry walls are not available yet, the equivalent 

compressive strength can be calculated as (Fig. 15): 

sec' rmurm Ef                                                                                                                             (14) 

where u  is the peak strain and can be used equal to 0.003, and secrmE  is the secant modulus of 

elasticity that is equal to half of the initial modulus of elasticity of the strengthened masonry. The 

initial modulus of elasticity of the strengthened masonry can be computed as (Ghiassi 2009): 

c
c
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c

m

c

m
rm E

E

E

E

E

t

t
E )335.045.0243.0)(068.1068.0(                                                             (15) 

where mt  is the masonry wall thickness, ct  is the concrete layer thickness, mE  is the mortar 

modulus of elasticity, bE  is the brick modulus of elasticity and cE  is the concrete modulus of 

elasticity. 

Figure 14 

Figure 15 

5.1.2. Deformation 

Flexural failure is a ductile behavior in which a large amount of energy can be dissipated through 

reinforcement yielding. The ductility of the wall under this behavior is usually limited by concrete 

compressive crushing or shear failure of the wall. The displacement capacity of a flexural 

strengthened wall can be determined with reasonable accuracy by idealizing it as a cantilever beam 

and calculating the flexural and shear deformations. As the behavior of strengthened masonry walls 

is similar to reinforced concrete and masonry walls, it can be idealized as having a plastic hinge 

zone at the base and the ultimate displacement can be calculated using the methods presented in 

Lourenço 1996. FEMA 356 (2000) and ASCE 41 (2006) propose displacement acceptance criteria 

for reinforced masonry walls, which can be used for strengthened masonry walls due to the 

resemblance of nonlinear behavior and basics for selecting the performance levels. Therefore, due 

to the lack of experimental data on nonlinear behavior of strengthened masonry walls, the use of 
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acceptance criteria, force-displacement parameters (for nonlinear analysis) and m-factors (for static 

analysis) of reinforced masonry walls with some modifications is proposed (Table 4). However 

these values should be verified by performing an extensive experimental program.  

5.2. Shear behavior (diagonal tension) 

5.2.1. Strength 

Diagonal tension cracking behavior in unreinforced masonry walls is accompanied by wide 

diagonal cracks concentrated in a small region of the wall. Depending on the wall properties, the 

diagonal cracks may occur in a straight path through the joints and units or with a stepped path 

through the head and bed joints (Fig. 16). When the cracks form in a stepped pattern, the masonry 

shows little ductility and strength reduction (Lourenço 1996). The strength of the wall against 

diagonal stepped cracking can be obtained using bed-joint sliding relations. In straight crack 

pattern, the response of unreinforced masonry wall to its failure mode is considered brittle and is 

categorized as a force-controlled behavior in FEMA 356 (2000) and ASCE 41 (2006) as described 

before.  

Figure 16 

In reinforced masonry walls the cracks are smaller and distributed over the entire surface of the 

wall due to the bond stress of reinforcing bars (Fig. 17). In these walls, the reinforcing bars affect 

the surrounding material and prevent separation of the wall’s cracked parts and therefore the cracks 

propagate over the entire surface of the element resulting in an increase in strength and ductility of 

the wall. FEMA 356 (2000) and ASCE 41 (2006) categorize this failure mode in reinforced 

masonry as a ductile behavior with small ductility and propose the following relation for 

calculating the strength of the wall under this failure mode: 

psmCL VVVV                                                                                                                          (16) 

25.0'6 
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M
forAfV   (in N mm)                                                                                (17) 
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0.1'4 
v

nmCL Vd

M
forAfV   (in N mm)                                                                                 (18) 

where CLV  is the lower bound shear strength of the reinforced masonry wall, M  is the applied 

moment on the masonry section, V  is the shear force applied to the masonry section, and vd  is the 

wall length in direction of the applied shear. In Eq. 16, sV  can be obtained using Eq. 3, and mV  and 

pV  are masonry and axial force contribution in shear strength of the wall respectively and can be 

obtained as follows: 

mn
v

m fA
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M
V ')

.
75.14(083.0    (in N mm)                                                                           (19) 

up PV 25.0                                                                                                                                  (20) 

where, nA  is the area of net mortared/grout section and uP  is the lower bound compressive force 

due to gravity forces. 

Figure 17 

Due to the different nonlinear behavior and cracking mechanisms in reinforced and unreinforced 

masonry, different shear failure and mechanisms occur in them, which is obvious in the design 

relations in Eqs. 12 , 16. This difference is because of the bond effect of reinforcing bars in 

reinforced masonry that prevent the formation of wide cracks concentrated in a small region. This 

results in activation of the aggregate interlock between two faces of the crack and consequently 

increasing the capacity of the masonry. It should be noted that in Eq. 16, it is assumed that the 

entire thickness of the wall is under the bond effect of reinforcing bars which can be obtained by 

the placement of a minimum reinforcement ratio at the center of the wall (Fig. 18, top). In the cases 

that the reinforcing bars are not enough to affect the whole thickness of the wall, the bond zone will 

be smaller than the wall thickness, and the parts of the wall which are out of the bond zone of 

reinforcing bars bond, act as unreinforced masonry (Fig. 18, bottom).  

Figure 18 
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The shear behavior of strengthened masonry wall is similar to reinforced masonry. The difference 

is that in strengthened masonry wall the reinforcements are placed in one or both sides of the wall 

and not in the center. In these walls, depending on the ratio and type of reinforcing the whole 

thickness of the wall may or may not be under the bond effect of reinforcing bars. Considering this 

fact, the following relation is proposed for calculating the shear strength of the strengthened 

masonry walls based on the existing relations for reinforced masonry: 

pscmsrm VVVVV                                                                                                              (22) 

rmg
v

m fA
dV

M
V ')

.
75.14(083.0    (in N mm)                                                                    (23) 

dtfV ccc '53.0                                                                                                                         (24) 

s

d
AfV v

vys 5.0                                                                                                                          (25) 

up PV 25.0                                                                                                                                  (26) 

where vd  is the wall effective length equal to 0.8 total length of the wall and   is the bond effect 

parameter. Many studies have been performed for investigating bond effect of reinforcing bars and 

bond zone calculation in reinforced concrete elements. The bond zone is defined as the area around 

a reinforcing bar that is under its bond effect. Several relations are proposed by different authors for 

calculating the bond zone. CEB-FIB model code (1990) and Collins and Mitchell (1991) proposed 

that the bond zone around a reinforcing bar in reinforced concrete elements is equal to a square 

with the lengths of 15 times the bar diameter (Fig. 19). Considering the bond zone of reinforcing 

bars, the parameter   is proposed as follows to compute the effective area of strengthened 

masonry: 

21                                                                                                                                       (27) 

1
15

1 



L

dn                                                                                                                              (28) 

1
5.7

2 



mt

d                                                                                                                               (29) 
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where d  is the reinforcing bars diameter, n  is the number of reinforcing bars. The parameter   can 

be assumed equal to 1 in cases in which the both sides of the wall are strengthened. 

Figure 19 

5.2.2. Deformation 

The diagonal crack behavior is a brittle failure mode in unreinforced masonry walls, but the 

reinforced masonry and concrete walls show little ductility when this failure mode occurs. Because 

of the similarity of this failure mechanism between strengthened masonry and reinforced masonry 

walls, it is proposed to use FEMA 356 (2000) or ASCE 41 (2006) acceptance criteria, force-

displacement parameters (for nonlinear analysis) and m-factors (for static analysis) of reinforced 

masonry walls (Table 4) for this failure mode.  

5.3. Shear sliding behavior 

5.3.1. Strength 

This behavior can be described with the aim of the friction theories. The strengthened walls with 

low vertical reinforcement ratio and light axial loads may be vulnerable to this behavior. Also in 

large curvature ductility in flexural behavior, the shear sliding strength degrades and shear failure 

after yielding of reinforcing bars is possible to happen. FEMA 306 (1998) proposes Eq. 30 for 

computing the reinforced masonry strength in shear sliding failure mode. 

yevfuseCE fAPVQ                                                                                                                     (30) 

where uP  is the wall axial load, vfA is the area of reinforcing bars perpendicular to the sliding plane, 

yef  is the expected yield strength of reinforcing bars, and  is the coefficient of friction that for 

mortar in brick masonry is expected to be equal to 0.7. This equation is modified for strengthened 

masonry as follows: 

yevfuseCE fAPVQ 21                                                                                                                  (31) 

where 1  is the coefficient of friction of brick masonry and 2  is the coefficient of friction of 

concrete that can be taken equal to 0.9. 
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5.3.2. Deformation 

The deformation capacity of the strengthened wall under shear sliding behavior may be limited 

with the fracture of reinforcing bars, crushing of the base, or degradation of the shear strength 

(FEMA 306, 1998). Since the available experimental results are rare for this behavior and because 

of the similarity in performance criteria in this behavior with bed-joint sliding in unreinforced 

masonry, the same values of m-factors and nonlinear parameters could be used in evaluation 

procedures (Table 4). 

5.4. Compressive behavior 

5.4.1. Strength 

FEMA 356 (2000) and ASCE 41 (2006) propose Eq. 32 for vertical compressive strength of 

reinforced masonry walls: 

])('85.0[8.0 yssnmCLCL fAAAfPQ                                                                                           (32)  

As this behavior in strengthened masonry walls is similar to reinforced masonry, the same equation 

can be used by using the strengthened masonry compressive strength (Eq. 14) instead of masonry 

compressive strength as follows: 

])('85.0[8.0 yssnrmCLCL fAAAfPQ                                                                                          (33)  

5.4.2. Deformation 

This behavior is proposed to be assumed as a force-controlled action and nonlinear deformations 

should be avoided to prevent strength and stability failure in this mode. 

Table 4  

6. Verification of the proposed method 

In this section, the validity of the proposed method is investigated by comparing the results with 

available experimental data. Since available experimental results are rare, an analytical study is also 

performed for investigating the accuracy of the proposed relations.  

6.1. Experimental Verification 
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Yaghoubifar (2008) investigated the effectiveness of this strengthening technique applied on one or 

both sides of the wall by performing static-cyclic testes. He used two unreinforced masonry walls, 

NSBW1 and NSBW2, with different failure modes as the basic specimens (Fig. 20). Two 

strengthening details on each of the basic specimens were used to study the changes in behavior 

after strengthening. The governing behavior of unreinforced walls was rocking in NSBW1 and bed-

joint sliding in NSBW2. The material properties and reinforcement details of the strengthened 

specimens are shown in Table 5. The SSBW1 and SSBW2 were strengthened on one side and 

DSBW1 and DSBW2 were strengthened on both sides of the wall. The capacity and failure mode 

of the strengthened walls predicted with the proposed evaluation procedure are compared with the 

tests results in Table 6. The proposed bilinear curves are also shown in Fig. 21 in comparison to the 

pushover curves of the tests results. It can be seen that the proposed bilinear curves are in good 

agreement with experimental results in this case. 

Figure 20 

Table 5  

Table 6 

Figure 21  

The tests performed on strengthened masonry walls by Elgawady et al. (2006), specimen S2-

1SHOT-ST, and Abrams et al. (2007), Specimen 4F, are also selected for more investigation of the 

accuracy of the proposed relations. Elgawady et al. (2006) performed static cyclic tests on masonry 

walls strengthened with shotcrete layer on both and single side of the wall and showed that 

strengthening the walls on both sides with the same reinforcement ratio will result in a more ductile 

behavior in comparison to strengthening on one side. The strengthening details and material 

properties of the selected walls are shown in Table 7. The experimental results together with the 

proposed bilinear curves are shown in Fig. 22 for both walls. It can be seen in this figure that the 

strength and governing failure mode in the walls are predicted accurately.  

Table 7 
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Figure 22 

6.2. Numerical Verification 

In this section some masonry walls are strengthened with different details and analyzed using 

WCOMD framework. The strength and nonlinear behavior of the walls are also predicted using the 

proposed relations and the bilinear curves are compared with the numerical results.  

Firstly, for more clarification about the changes in the behavior and failure modes of the walls after 

strengthening, the nonlinear behavior of the W1 and W2 walls tested in ETH Zurich (Ganz and 

Thurlimann 1984) is compared with the bilinear curves and the failure modes obtained using the 

FEMA 356 (2000) and ASCE 41 (2006) procedures (Fig. 23). It can be seen that the nonlinear 

behavior and failure mode of the wall W1 is predicted accurately, while in wall W2 even though 

the failure mode is predicted correctly, the nonlinear behavior is not accurately predicted. This 

difference shows the variety of parameters affecting the nonlinear behavior of masonry walls and 

the complexity of predicting their behavior following simplified procedures. 

Figure 23 

These walls are modeled in WCOMD with different strengthening details as shown in Table 8. The 

nonlinear behavior and strength of the walls are also predicted by using the proposed relations in 

this paper. It is found that the predicted strength and failure mode of the strengthened walls are in 

line with the analysis results as it is shown in Table 9. The changes in nonlinear behavior of the 

walls after strengthening for W1-1 and W2-1 specimens are shown in Fig. 24. The wall W1-1 

shows an increase in the capacity and a small increase in the ductility comparing to the bare wall, 

while in the wall W2-1 the failure mode has changed from a brittle to a ductile behavior. It can be 

seen that the proposed bilinear curves can predict the nonlinear behavior of strengthened walls with 

an acceptable degree of precision. 

Table 8 

Table 9 

Figure 24 
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7. Conclusions 

The conventional methods of design and evaluation of strengthened masonry walls with reinforced 

concrete layers have resulted in massive retrofitting details because of considering inaccurate 

failure modes and using improper relations. To account for this problem, a seismic evaluation 

method is proposed in this study according to available experimental data and conducted numerical 

analysis. In the proposed method, four failure modes are considered for strengthened masonry 

walls. The design relations, linear, and nonlinear static analysis parameters according to FEMA 

reports for each failure mode are also given.  

The accuracy of the proposed relations and bilinear curves is verified by comparing the results with 

available experimental and performed analytical results. It is shown that the proposed method is 

able to accurately predict the failure mode and capacity of the strengthened walls. It should be 

noted that the need for conducting more extensive experimental research is crucial for better 

understanding the nonlinear behavior of strengthened masonry walls with reinforced concrete layer 

and improvement of the proposed method precision especially in predicting the nonlinear 

deformation capacities.  
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Tables 
 

Table 1: W1 and W2 material properties. 

E x

 (MPa)
E y

 (MPa)
f tx  

(MPa)
f ty  

(MPa)
f mx  

(MPa)
f my  

(MPa)
α β γ

2460 5460 0.28 0.05 1.87 7.61 1.73 -1.05 1.2
  

 
Table 2: W1 and W2 strengthening details. 

Concrete 
thickness

t c

(mm)
ρ x ρ y

RET1 40 0.01 0.01

RET2 100 0.005 0.01

RET1 60 0.001 0.005

RET2 20 0.001 0.008

Reinforcement ratio

W1

W2

Strengthening 
Type

Base
Wall

  
 

Table 3: Strengthening details adopted for base walls. 

ρ x ρ y
Foundation

 joint

B1 40 0.003 0.003 0.003 Rocking

B2 40 0.003 0.003 0.006 Flexural Cracking

B3 40 0.003 0.001 0.003 Diagonal Tension

B4 40 0.001 0.005 0.005 Diagonal Tension

R1 40 0.003 0.003 0.003 Rocking

R2 40 0.006 0.001 0.006 Diagonal Tension

R3 40 0.003 0.001 0.003 Diagonal Tension

Rocking

Base wall
behavior

Wall
No.

t c

(mm)

Reinforcement ratio
Strengthened wall

behavior

Bed-joint sliding

  
 

Table 4: Nonlinear and linear static procedure parameters for strengthened walls. 

 

LS% CP% LS% CP% LS% CP% LS% CP%

≤0.07 1 1.5 0.7 0.3 0.75 1 1.1 1.5 4 7 8 8 10

≥0.07 0.5 1 0.7 0.1 0.37 0.5 0.75 1 1.5 2 2.5 4 5

≤0.07 0.6 1 0.5 0.2 0.45 0.6 0.75 1 2 3.5 4.5 7 9

≥0.07 0.4 0.8 0.5 0.1 0.3 0.4 0.6 0.8 1 2 2.5 4 5

0.75 1.2 0.4 0.4 0.6 0.75 0.75 1.2 2 2 3 2 3

0.4 0.8 0.6 0.1 0.3 0.4 0.6 0.8 1 3 4 6 8

Flexure

≤0.04

≥0.04

Shear (diagonal tension)

Shear sliding

m  factors
IO
%

Primary Secondary IO
%

Primary SecondaryCondition f ae /f me ρ g f ye /f me

Acceptance Criteria
ce %d %
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Table 5: Yaghoubifar (2008) strengthened specimens. 

l w

 (mm)

h w

(mm)

t m

(mm)

f' m

 (MPa)
P

(KN)
t c

(mm)

f' c

(MPa)
ρ y

d
(mm)

Dist.
(mm)

f y

(MPa)
ρ

d
(mm)

Dist.
(mm)

f y

(MPa)

SSBW2 1800 800 200 5 60 40 28 0.0063 4 50 309.6 0.0063 4 50 309.6

DSBW2 1800 800 200 5 60 40 28 0.0063 4 50 309.6 0.0063 4 50 309.6

SSBW1 1800 1200 200 5 40 40 28 0.0028 4 100 650 0.003 4 100 650

DSBW1 1800 1200 200 5 40 40 28 0.0028 4 100 650 0.003 4 100 650

Wall

Masonry wall characteristics
Strengthening detail

Concrete Vertical Reinforcement Horizontal Reinforcement

 
 

Table 6: Capacity prediction of Yaghoubifar (2008) strengthened specimens. 

V se

(KN)
V srm

(KN)
V f

(KN)
Experiment Predicted

SSBW2 168 139 216 139 135 Diagonal Tension Diagonal Tension

DSBW2 295 444 259 259 270 Flexural Flexural

SSBW1 146 152 43 43 42 Flexural Flexural

DSBW1 264 449 48 48 50 Flexural Flexural

Failure ModeExp.
Strength

(KN)

Total
strength

(KN)
Wall

Sliding
strength

Shear
strength

Flexural
strength

  
 

Table 7: Strengthening details in S2-1SHOT-ST wall. 

Concrete

l w

 (mm)

h w

(mm)

t m

(mm)

f' m

 (MPa)
P

(KN)
t c

(mm)
ρ y

d
(mm)

Dist.
(mm)

f y

(MPa)
ρ x

d
(mm)

Dist.
(mm)

f y

(MPa)

S2-1SHOT-ST 1600 730 75 4.8 39 20 0.006 4 100 745 0.006 4 100 745

4F 843 1490 200 7.86 23 100 0.002 9.5 700 420 0.004 9.5 220 420

Wall
Masonry wall characteristics

Strengthening detail

Vertical Reinforcement Horizontal Reinforcement

  
 

Table 8: Strengthening details adopted for wall W1. 

l w

 (mm)

h w

(mm)

t m

(mm)

f' m

 (MPa)
P

(KN)
t c

(mm)

f' c

(MPa)
ρ y

d
(mm)

Dist.
(mm)

f y

(MPa)
ρ x

d
(mm)

Dist.
(mm)

f y

(MPa)

W1-1 3600 2000 150 7.61 423.03 40 30 0.01 8 125 400 0.01 8 125 400

W1-3 3600 2000 150 7.61 423.03 40 30 0.008 8 160 400 0.003 8 420 400

W1-6 3600 2000 150 7.61 423.03 100 30 0.01 10 60 400 0.005 10 120 400

Wall
Masonry wall characteristics

Strengthening detail

Concrete Vertical Reinforcement Horizontal Reinforcement

 
 

Table 9: Comparison of analysis and proposed relations. 

Strength
(KN)

Failure mode
Strength

(KN)
Failure mode

W1-1 69 Flexural 60.2 Flexural

W1-3 60 Flexural 54 Flexural

W1-6 120 Diagonal Tension 104.5 Diagonal Tension

Analysis results Proposed relations

Wall
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Figures 
 

 
Figure 1: Typical detail of masonry wall strengthening with reinforced concrete layer. 

 

 
Figure 2: Failure modes in unreinforced masonry walls. 

 

 
Figure 3: Geometry of the ETH Zurich walls. 
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Figure 4: The generated mesh for macro modeling of the ETH Zurich walls. 

 

 
Figure 5: Analysis results for walls W1 and W2. 

 

 
Figure 6: Micro modeling results for wall W1. 
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Figure 7: W1 and W2 strengthened walls behavior. 

 

 
Figure 8: Finite element model of masonry wall with bed-joint sliding behavior. 
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Figure 9: Crack distribution in wall B3. 

 

 
Figure 10: Shear displacement curve of the strengthened walls with initial bed-joint-sliding 

behavior. 
 

 
Figure 11: Shear displacement curve of the strengthened walls with initial rocking behavior. 
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Figure 12: General force-deformation curve. 

 

 
Figure 13: Moment curvature behavior of a strengthened masonry wall. 

 

 
Figure 14: The wall section and assumed stress distribution. 
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Figure 15: Equivalent compressive strength. 

 

 
Figure 16: Crack distribution in unreinforced masonry. 

 

 
Figure 17: Crack distribution in reinforced masonry. 

 

 
Figure 18: Bond zone in reinforced masonry. 
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Figure 19: Definition of RC zone. 

 

 
Figure 20: Basic unreinforced masonry specimens tested by Yaghoubifar (2008). 

 

 
Figure 21: SSBW1 and DSBW2 bilinear curves. 
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Figure 22: Comparison of experimental result with proposed bilinear curves. 

 

 
Figure 23: Behavior of wall W1 and W2. 

 

 
Figure 24: Bilinear curves of the strengthened walls. 

 
 


