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ABSTRACT 

A macro computational model is presented in this study for simulating the nonlinear static 

behavior of masonry walls. The adopted strategy is based on modeling the nonlinear behavior 

of masonry elements considering it as an orthotropic material and then extending it with a 

simple method to masonry walls. The model is capable of considering shear and flexural 

deformations in the global behavior. It can also predict all possible failure modes in masonry 

such as compressive crushing, bed-joint sliding, rocking, diagonal tension cracking and 

diagonal stepped cracking. Suitable material constitutive models and failure criteria are 

adopted for each failure mode under biaxial stress states. The contact density model has been 

modified and used for simulating the shear behavior in the masonry joints. It is shown that the 

analysis results are in good agreement with experimental observations, while the analysis time 

is significantly lower comparing to the usual numerical approaches such as finite element 

methods. Moreover, the proposed model can be used as a macro-model for analysis of large 

structures and provides reasonable accuracy.  
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1. Introduction 

Unreinforced masonry structures are widely used and constructed throughout the world. 

These structures were mostly vulnerable to the past earthquakes. However, in cases that they 
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are designed accurately, acceptable nonlinear behavior and seismic resistance were observed 

from them. Therefore, an accurate prediction of the unreinforced masonry nonlinear behavior 

is necessary for investigating its seismic performance in design procedures. 

Masonry is a composite material, consisting of brick and mortar, which makes its behavior 

difficult to be predicted. This difficulty is due to the different probable failure modes, 

complex material constitutive models, and non-uniformities in construction quality. In this 

regard, two main approaches known as micro-modeling and macro-modeling are usually used 

for simulating the nonlinear behavior of masonry structures. Micro-modeling includes the 

representation of bricks, mortar, and brick/mortar interfaces and is used in detailed or 

simplified form [1]. This modeling approach requires performing several experimental tests 

for calibration of material parameters. Moreover, a large number of elements should be used 

even for small structures. However, micro-modeling studies are necessary to give a better 

understanding about the local behavior of masonry structures [2]. The early efforts for micro-

modeling started by Page [3] and it has been continued by other authors adopting different 

techniques and assumptions, e.g. [4-7]. In macro-modeling, there is no distinction between 

brick, mortar and brick/mortar interface and masonry is modeled as a continuum anisotropic 

or orthotropic material. Average stresses in the continuum masonry are related to the average 

strains in this modeling approach. This modeling approach is simple to use and applicable to 

study the behavior of large elements and fewer experimental tests are needed for calibration 

of the material properties (e.g. [8-11]).  

Despite the adopted modeling approach, a suitable predictive model should be able to capture 

all the possible failure modes in masonry such as tensile cracking, shear sliding, and diagonal 

tension cracking [1, 3, 12, 13], see Fig. 1. Moreover, adopting a general failure criterion for 

biaxial stress states is of crucial importance and has been the subject of many studies, see e.g. 

[8, 10, 13-19]. A practical method in this field is extending the isotropic constitutive laws to 
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orthotropic behavior. In this approach, usually different failure criteria are used for tensile, 

compressive and shear behavior, see e.g. [9, 20]. 

This study presents a macro-modeling computational framework for nonlinear analysis of 

masonry walls under combined in-plane loads. The adopted strategy is based on modeling the 

behavior of masonry elements and extending it to the wall behavior following a simple 

method. Masonry element is the basic component of masonry members such as masonry 

walls, beams, and columns. Therefore, understanding the nonlinear behavior of masonry 

element is an important step in predicting the response of masonry members. 

The model is capable of considering shear and flexural deformations in the global behavior 

and can predict all possible failure modes in masonry such as compressive crushing, bed-joint 

sliding, rocking, diagonal tension cracking and diagonal stepped cracking. Smeared crack 

approach is used for modeling the post-cracking behavior, considering masonry as an 

orthotropic homogenous material and taking into account all stress transfer mechanisms in 

average state. The possible failure modes have been considered in the analysis by adopting 

suitable material constitutive models and failure criteria in biaxial stress states. Also the 

nonlinear shear behavior in the joints due to the bed-joint sliding or diagonal stepped cracking 

has been modeled by modifying the contact density model.  

The masonry element analysis framework has been combined with a flexural analysis 

procedure to predict the nonlinear behavior of masonry walls under combined in-plane 

actions. Following this approach, the model is able to consider all possible failure modes, 

predict the post cracking behavior of masonry, and their effects in global response of masonry 

walls. While the analysis time is significantly short in comparison with other micro or macro-

modeling approaches, the results have a good agreement with experimental observations. 

Figure 1 
2. Material models 

2.1. Masonry in biaxial compression 
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Based on the experimental observations, Naraine and Sinha [21] proposed a constitutive 

model for unreinforced masonry panels subjected to uniaxial or biaxial compression as:  
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where c  is the masonry compressive strength, c  is the strain correspondent to c , and   

and  are the strain and stress in the current analysis step, respectively. This uniaxial 

constitutive model can be used in a biaxial stress state by using an equivalent strain concept, 

which was first proposed by Darwin and Pecknold [22] for concrete. In this method, the 

biaxial constitutive model is expressed from uniaxial curves by using equivalent strains as 

follows [9], see Fig. 2: 
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where i  is the principle compressive stress in the i direction, iu  is the equivalent strain in 

the i direction, ic  is the peak stress value in the i direction, and ic  is the strain 

corresponding to ic . The value of ic  should be calculated from the adopted failure 

criterion. Parameters i and j are correspondent for two principle stress directions. The 

equivalent strain can be calculated as follows: 
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where, iu  is the equivalent strain in the i direction, i  is the principle strain in the i direction, 

i  and j  are the principle stresses in the i and j directions respectively and   is the 

Poisson’s ratio. As the applicability of this model for masonry walls has been shown by 

Zhuge et al. [9], it is used in this study for biaxial compressive behavior. 

Figure 2 
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The compressive strength of masonry varies in different directions of load application which 

can be considered in the adopted failure criterion, see e.g. [10]. As a comprehensive example, 

Lourenço et al. [10] proposed a Hill-type failure criterion for masonry under biaxial stresses 

as follows: 

01222
2  xyyyxx DCBAf                                                                                  (4) 

where A, B, C, and D are four material parameters such that 042  ACB , 2/1 mxfA  , 

)/( mymx ffB  , 2/1 myfC  , )/( mymx ffD  . mxf  and myf
 
are uniaxial compressive strengths along 

the material axes x and y, x  is the applied stress in the x direction, y  is the applied stress in 

the y direction, and xy  is the applied shear stress. The parameter   controls the coupling 

between the normal stress values and for typical masonry is equal to 1. The parameter   

controls the shear stress contribution to failure. The variation of the masonry compressive 

strength with variation of the load direction, in this failure criterion, can be obtained by 

assuming 0y  and calculating mf  for different values of x  and xy  in Eq. 4. As an example, 

this variation is shown in Fig. 3 for 1  and two different values of  . In another study, 

Ganz [23] proposed the changes in compressive strength for different ratio of 21 /  , see Fig. 

4. This model is similar to the Lourenço et al. [10] model for high values of  . The Ganz’s 

proposed variation [23] is simplified and used here as it is shown in Fig. 5. In the simplified 

model, the uniaxial compressive strength of masonry is equal to fmx for the θ values between 0 

and π/4 and equal to fmy for the θ values between π/4 and π/2. Verification of the model 

presented in the following sections shows this simplification is acceptable. However, the 

original model can also be implemented in the developed program. Lang [24] used also a 

similar simplification in his studies, but he assumed zero compressive strength for angle of 

inclinations larger than the angle of friction. However, Fig. 3 shows that for a reasonable 
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value of , the variation of masonry compressive strength with variation of the load direction 

is between two curves shown in this figure, which is close to adopted model in this study. 

Figure 3 

Figure 4 

Figure 5 

2.2. Masonry in tension 

When masonry is subjected to tensile forces, depending on its properties, the cracks may form 

vertically through the head joints and units or with a stepped path through head and bed-joints 

[1], see Fig. 6. When the cracks occur in a stepped pattern, the strength reduction due to 

cracking is small and the element has a ductile response. On the other hand, the tensile 

behavior is brittle with sudden decrease in strength when the cracks pass through the wall in a 

straight pattern. The behavior of masonry element in both failure modes is shown in Fig. 7.  

Figure 6 

Figure 7 

For straight cracking behavior, an exponential post cracking softening model proposed by 

Okamura et al. [25], for concrete, is used. As the behavior of plain concrete is similar to 

unreinforced masonry, same material models can be used for modeling the tensile behavior. 

The nonlinear behavior has been assumed similar in different material axes with considering 

the changes in mechanical properties. This model expresses a relationship between average 

stresses and strains as (Fig. 8): 
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where   is the average tensile stress, tf  is the masonry tensile strength, t  is the cracking 

strain,   is the average tensile strain, and c  is a stiffening parameter that defines the post 

cracking sharpness of the model (0.4 for deformed bars and 0.2 for welded wire mesh). The 
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tension stiffening parameter, c , is size dependent in plain concrete and unreinforced masonry 

and can be obtained based on the fracture energy and crack band width. The crack band width 

is the crack length in the element in which the average softening stress-strain relation is 

defined and can be obtained from the element size and crack direction. 

Figure 8 

The variation of tensile strength of masonry with direction of loading is considered using a 

simple relation as: 


22 sincos tytxt fff                                                                                                            (6) 

where tf  is the masonry tensile strength in   direction, txf  is the tensile strength of masonry 

in x direction (parallel to horizontal mortar), tyf is the tensile strength of masonry in y 

direction and   is the angle of inclination of loading.  

Diagonal stepped cracking is taken into account by using the nonlinear shear model 

considering the effective length of masonry panel in shear. The adopted shear model in this 

study is explained in the next section. An as example, Fig. 9 shows the results of two masonry 

panels under the same loading conditions analyzed with different material properties such that 

one fails due to straight diagonal tension cracking and one fails due to stepped diagonal 

tension cracking.  

Figure 9 

2.3. Masonry under shear stress 

The contact density model developed by Li et al. [26] for concrete elements is modified and 

used for modeling the nonlinear behavior of masonry elements under shear stresses.  

When shear cracks appear in an element, nonlinear shear displacement and crack opening 

occur in the surface and the crack surfaces touch each other. This results in transferring the 

shear and normal compressive stresses among them, see Fig. 10. The crack surface roughness 

has a strong influence on the transferred stresses and the direction of the contact stress. 
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Therefore, the crack surface should be idealized appropriately for formulizing the stress 

transfer mechanisms. The crack surface can be divided into finite parts called contact unit 

being known by its direction. Li et al. [26] proposed a contact density function for 

representing the area of contact units, dA , that have inclination angle between   and  d  

as: 

 dAdA t )(                                                                                                                            (7) 

where tA  is the whole surface area per unit crack plane and )(  is the probabilistic contact 

density function representing the distribution of crack surface directions. The contact density 

function should satisfy the following condition: 
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According to the geometrical compatibility, the integration of the projection area of all 

contact units on the horizontal plane should be equal to unity: 
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Substituting Eq. 7 into Eq. 9 gives: 
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In order to formulate the constitutive equations, appropriate functions should be assumed for 

the contact density, contact stress, and effective contact area [26].  

Figure 10 

2.3.1. Contact density 

Li et al. [26] used two-dimensional projection of crack planes experimentally scanned to 

develop a simple formulation for the contact density function. They obtained the histograms 

of contact unit length per length corresponding to each inclination. Based on the smoothed 
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form of these histograms along different scanning lines, they proposed the contact density 

function as:  

 cos5.0)(                                                                                                                           (11) 

where )(  is the contact density function and   is the crack surface direction. Having the 

contact density function, tA  can be obtained by substituting Eq. 11 into Eq. 10 ( /4 ). 

The shear failure in masonry elements usually starts in the mortar joints as a plane of 

weakness. Since mortar and concrete are similar, the contact density model [26] can be used 

for mortars using a suitable density function. Salehi [27] proposed a contact density function 

for mortars to overcome this problem, see Eq. 12. This function includes a parameter,  , for 

controlling the cracked surface smoothness. Decrease in   results in smoothing the crack 

surface which represents a mortar with lower friction angle. 

))(exp()21(18.0)( 25.0                                                                                       (12) 

A disadvantage of this contact density function is that   is not related to the mortar type and 

it should be obtained through a parametric study. To overcome this problem, a formula is 

proposed in this study for obtaining   based on the masonry angle of friction,  (in degree), 

see Eq. 13. This relation has been obtained by performing a parametric study on the nonlinear 

shear behavior of different elements with different values of  , see Fig. 11. The 

corresponding friction angle for each value of   is the initial stiffness of the    curves. 

Base on these results, the following relation is proposed for obtaining   from mortar friction 

angle, see Fig. 12:  

2

3000


                                                                                                                                (13) 

Figure 11 

Figure 12 

2.3.2. Contact stress 
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The stress state at the contact area is different from uniaxial compressive behavior. The 

mortar around the contact area would be elastically and highly plastically deformed under the 

confinement. Considering the high plasticity in the shear transfer behavior, the compressive 

stress in contact area is assumed elasto-perfectly plastic in this model (Fig. 13) which can be 

formulated as follows: 
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where  '  is the compressive contact displacement, p '  is the plastic compressive contact 

displacement, and sR  is the elastic rigidity per unit length. These parameters can be 

calculated as: 

  cossin'                                                                                                                     (15) 
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where max'  is the maximum compressive contact displacement ever experienced, lim'  is 

the elastic limit of compressive contact displacement equal to 0.04 mm, yf '  is the contact 

yielding strength equal to 3/1'7.13 cf  in MPa units. The values of lim'  and yf '  are obtained 

based on the curve fitting of experimental results performed on concrete specimens [26]. 

Maekawa et al. [28] showed that the crack configuration for mortar is similar to that in high 

strength concrete. Since mortar contains no coarse aggregates, the cracks are formed naturally 

flat similar to cracks in high-strength concrete. They also showed that other parameters 

including “the elastic limit of compressive contact displacement”, “contact yielding strength” 

and “effective ratio of contact area” which originally developed for normal concrete can also 

be used for cracked mortar. Therefore, these values are used in this study although performing 

comprehensive experimental tests are required for a better verification. 
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Figure 13 

2.3.3. Contact effective area 

The contact density function includes the effect of crack surface shape without considering 

the contact size. The contact area decreases with increase in crack width and there will be no 

contact if the crack width is large enough in comparison to the crack’s roughness. Based on 

the experimental observations of crack surfaces in concrete elements, an effective ratio of 

contact area denoted by K is defined in this model as [26]: 

)/5.01exp(1 max GK                                                                                                            (18) 

where maxG  is the maximum aggregate size.  

2.3.4. Constitutive equations 

The integral of the components of the contact compressive force within an infinite small range 

must be balanced with shear and normal stresses transferred to the plane [26]: 
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where 'Z is the compressive stress acting on a contact unit which can be calculated as: 

)(''   tcon KAZ                                                                                                                    (20) 

where con'  is the contact compressive stress (Eq. 14) and K  is the effective ratio of contact 

(Eq. 18).  

The contact density model is applicable for modeling the shear behavior after cracking. 

Therefore, cohesion is not considered in the cracked surfaces in this model. This assumption 

is accurate when the plastic deformations reach a minimum value in which the material 

cohesion has been vanished. The cohesion starts to decrease after initiation of cracks until it 

vanishes when the cracks are formed completely. The crack usually follows the weak 

interfaces between the aggregates and hardened cement in the mortar or concrete. Depending 
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on the loading conditions and material properties two failure modes occur [29], see Fig. 14. In 

Mode I, both sides of the crack separate from each other in the normal direction to the crack 

surface. Considerable roughness may still be present in the crack surface in this failure mode. 

Mode II occurs when the shear displacement is applied on the crack surface while no 

dilatancy is allowed. This failure usually happens in the elements under high axial loads or 

confined elements. 

Figure 14 

The decrease of cohesion due to the formation cracks is considered in this study as follows: 
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where C  is the mortar cohesion coefficient, mG  is the mortar shear modulus, mt  is the mortar 

thickness,   is the shear displacement, m  is the elastic limit of shear displacement, mohr  is 

the shear strength according to Mohr-Coulomb criterion and   controls the rate of decrease in 

the cohesion ( 1  in this study). 

This model consists of two main parts. The first part is the shear behavior until reaching the 

peak shear stress which is assumed linear elastic, see first relation in Eq. 21. Therefore, the 

elastic limit of shear displacement, m , can been obtained as follows: 

m
m

mohr
m t

G

                                                                                                                             (22) 

The second part represents the softening behavior in the cohesion after shear peak stress and 

is proposed similar to the model proposed in [29], second relation in Eq. 21. In this equation, 

the term 




)( m  is used to simply account for the softening behavior similar to the proposed 

trend in [29]. The term )
20

1(
m

m


 

  is an interpolation between the elastic limit of shear 

displacement, m , and the shear displacement in which the cohesion vanishes completely. The 
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shear displacement corresponding to complete disappearance of cohesion is assumed equal to 

m20  in this study. However, performing an extensive investigation and obtaining the shear 

fracture energy of masonry are necessary for verification of this value.  

The total shear behavior of masonry element is the summation of the two discussed 

phenomena, see Fig. 15.  

Figure 15 

To control the accuracy of the proposed model, one of the tests conducted by Atkinson et al. 

[30] is selected here. These tests consist of direct shear tests on old and new masonry bed-

joints. The mortar properties and loading condition of the selceted specimen are shown in 

Table 1. The reasonable agreement found between the analysis and experimental results can 

be observed in Fig. 16. 

Table 1 

Figure 16 

3. Failure criteria 

Proposing a general failure criterion for masonry has been the subject of many studies for 

many years [13-19]. An accurate analysis of masonry structures in a macro-modeling 

approach, requires a comprehensive failure criterion able to predict all the possible failure 

modes in biaxial stress state. However, a combination of different failure criteria can be also 

used. Depending on the stresses state acting on the joints, the failure occur in the joints or in a 

combination of brick and mortar.  

Naraine and Sinha [21] conducted experimental tests on masonry panels and found the 

following failure criterion has the best fit to the experimental data: 

 1)1( 212  CIICCJ                                                                                                               (23) 

where 2J  , 1I , and 2I are principal stress invariants defined as: 
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where 1 , 2  are principle compressive stresses, 1mf , 2mf  are average uniaxial compressive 

strengths in the direction of principle stresses, and C  is a constant that controls the failure 

interaction curve and is equal to 1.6 in this study as is porposed by Naraine and Sinha [21]. 

Using a value of 1 for this parameter reduces this failure criterion to Von Mises yeild 

criterion. This failure criterion is used in this study for biaxial compressive failure of masonry 

elements. 

To control the shear failure in masonry joints, the Coulomb failure criterion is used: 

m
xyxy                                                                                                                                  (27) 

y
m

xy                                                                                                                          (28) 

where xy  is the applied shear stress,   is the shear bond strength (masonry cohesion),   is 

friction coefficient of the brick mortar interface, and y  is the applied stress normal to bed-

joints.  

For tension-compression range, the failure criterion developed at the University of Tokyo [31] 

for concrete is used. In this failure criterion the tensile strength can be obtained as: 

3

1

1
22 1

m
t f

f


                                                                                                                      (29) 

where 2tf  is the uniaxial tensile strength in the direction of investigation. The element 

cracking under tensile stresses results in decrement of compressive strength in the transverse 

direction. Niwa et al. [31] proposed Eq. 30 to consider this reduction in RC elements, see Fig. 

17. Due to the lack of experimental data, the same relation is used in this study. 
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where mf '  is the reduced compressive strength, mf  is the uniaxial compressive strength, t  

is the tensile strain normal to the compressive stress, and maxc  is the peak compressive 

strain. 

The complete shape of the adopted failure critera is shown Fig. 18 in terms of principle 

stresses. It should be noted that the shape of the failure criteria may change by changing   

due to the changes in material properties in different material axes. 

Figure 17 

Figure 18 

For better illustrating the adopted failure criteria, it has been transformed from the principle 

stresses state (Fig. 18) to stresses normal and parallel to the bed-joints, xyy  , , see Fig. 19. In 

this figure the Coulomb failure criterion which is used for assessment of shear failure is also 

recognizable. It can be seen that with increasing the degree of inclination of the applied 

stresses,  , the horizontal axis, y , rotates towards the vertical axis, xy . Due to this rotation, 

the shear failure governing region increases. After 45 degrees, the shear failure will be the 

controlling behavior in all the stress states. This fact has been also approved in [3]. 

Figure 19 

4. Unreinforced masonry element analysis 

Different approaches have been used for modeling the post cracking behavior of concrete and 

masonry. These approaches are usually classified into two main groups called discrete and 

smeared crack models.  

In the discrete crack models, cracking is assumed to occur as soon as the nodal force normal 

to the element boundaries exceeds the maximum tensile force that can be sustained. Once the 
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crack is occurred, the node is separated into two nodes and the crack extends along the 

element which requires continuous remeshing. However, continuous remeshing can be 

avoided following new algorithms.  

In the smeared crack models, the cracks and reinforcing bars are smeared over the element. 

The cracks, once generated, are not modeled directly but their effects are considered by 

changing the material constitutive models. The smeared crack approach can be divided into 

rotating and fixed crack approaches. The rotating crack model assumes that the crack 

direction coincides with the principal direction of average strain. Therefore, it can be changed 

or rotated following the stress condition. Since there is no shear stress on the continually 

updated principle planes, no shear model is required in this method. Therefore, this approach 

does not explicitly account for shear slip and shear stress transfer due to aggregate interlock. 

In the fixed crack approach, the crack direction does not change during the analysis until it 

changes more than a specific value. Therefore, shear stresses develop in the crack surface due 

to aggregate interlock which can be modeled by means of a suitable constitutive model. The 

rotating crack approach is used in this study for simulating the nonlinear behavior of 

unreinforced masonry elements. 

The masonry element is assumed to have a uniform thickness and relatively small size, see 

Fig. 20. The deformations occur such that the edges remain straight and parallel and the 

applied in-plane stresses or strains cause in-plane strains or stresses in the element.  

Figure 20 

By applying in-plane incremental stresses or strains, the nonlinear behavior of the masonry 

element can be obtained following an iterative solution method, see Fig. 21. In each step of 

the analysis the shear strain increases. Assuming the strains in x and y direction, the 

corresponding stresses can be obtained by transferring the strains to the principle directions 

and using the adopted constitutive models. The obtained principle stresses can then be 
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transferred to the global x and y directions. The assumed strain values in x and y direction are 

adjusted through an iterative solution method until satisfying the stress equilibrium 

conditions. The modified Newton-Raphson method is used in this study for performing the 

iterative procedure.  

Figure 21 

Most of the available experimental data on the behavior of masonry elements are focused on 

determining the failure surfaces and less effort has been devoted to the full range nonlinear 

behavior under biaxial stresses. Therefore, the accuracy of the adopted methodology is 

controlled through verification of the analysis results for masonry walls.  

5. Wall analytical model 

Accurate simulation of the nonlinear behavior of masonry walls requires considering the 

flexural and shear deformations and all the possible failure modes. Shear deformations, which 

are usually neglected in the simplified analysis procedures, have an important role in total 

nonlinear displacements in masonry walls. For this reason, the effects of flexural and shear 

stresses and their corresponding deformations on the global behavior of the masonry walls are 

considered here. Moreover, all the possible failure modes such as rocking, diagonal tension, 

diagonal stepped cracking, toe compression, and bed-joint sliding can be captured.  

The flexural behavior is computed considering a macro fiber model and performing a 

moment-curvature analysis which is described later in this section. For considering the shear 

behavior of the wall, the following procedure is applied, see Fig. 22: 

In each step of the moment-curvature analysis, the corresponding shear force and 

displacement (as it is described in sec. 5.1) and the wall uncracked length are calculated. Then 

the shear displacement of the wall corresponding to the shear force obtained in each step of 

the moment-curvature analysis is calculated. This shear displacement is calculated by 

analyzing the wall as a masonry element under in-plane stresses with the height and length 
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equal to the height and uncracked length of the wall (as it is described in sec. 5.2), 

respectively. The total displacement of the wall is then calculated as the summation of the 

shear displacement calculated in the moment-curvature analysis and the shear displacement 

obtained in the shear analysis. In cases in which the masonry element cannot reach the shear 

stress obtained in the moment-curvature analysis, the shear failure becomes the governing 

behavior of the wall from that step. Therefore, the next steps will be followed by shear 

analysis. 

Figure 22 

5.1. Flexural modeling 

5.1.1. Moment-curvature analysis 

Adopted method here for flexural analysis of masonry wall resembles a macro fiber model. In 

this model the wall is divided into a series of uniaxial elements, see Fig. 23. 

Figure 23 

Considering the applied axial force on the wall, the moment-curvature analysis can be 

conducted by assuming a linear strain distribution across the wall cross section and 

calculating the stresses in each fiber using the material constitutive models, see Fig. 24. The 

assumed strain distribution is adjusted in an iterative procedure until obtaining the resultant 

axial force equal to the applied axial force, N (Eq. 32 should be satisfied). This adjustment is 

performed by changing the strain values in the first and last fibers and assuming a linear 

distribution of strains between them. After obtaining the correct strain distribution in each 

step of the analysis, the moment and curvature in the section can be computed using Eqs. 33, 

34. 

Figure 24 

  NAii                                                                                                                             (32) 

  MyA iii                                                                                                                         (33) 
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                                                                                                                               (34) 

where, i  is the stress in each fiber, iA  is the area of each fiber, N is the constant axial force 

applied to the wall, iy  is the fiber distance to the neutral axis of the section,  is the curvature 

of the section, t  is the first layer strain, c  is the last layer strain and l is the section length. 

5.1.2. Shear-displacement curve due to flexural behavior 

Using the Eq. 35, the shear force corresponding to the applied moment can be computed in 

each step, see Fig. 25. The curvature is also convertible to the wall base rotation,
 
 , using Eq. 

36. Then, the top displacement of the wall can be calculated from the wall base rotation, see 

Eq. 37.  

h

M
V                                                                                                                                      (35) 


h

dx
h

x

0

.                                                                                                                             (36) 

h

l                                                                                                                                     (37) 

where h  is the wall height. Therefore, by computing the shear force and displacement 

corresponding to the applied moment and curvature in each step of the analysis, the shear-

displacement curve of the wall due to flexural behavior can be obtained.  

Figure 25 

5.2. Shear behavior 

The nonlinear shear behavior of the masonry wall is modeled by assuming the wall as a 

masonry element (Fig. 26) with a height equal to the height and a length equal to the 

uncracked length of the wall. Since the cracked length of the wall is under tensile stresses and 

the crack surfaces are relatively smooth, the resistance of the cracked length of the wall 

against shear forces is negligible [24, 32-33]. The uncracked length of the wall can be 
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obtained in each step of the moment-curvature analysis by reducing the length of the cracked 

fibers from the total length of the wall. The assumed masonry element is then analyzed under 

the applied normal and shear stresses following the described method in sec. 4.  

Figure 26 

6. Structural verification 

The ability of the proposed method to predict the nonlinear behavior of the masonry walls is 

validated in this section by comparing the analytical and experimental results of the tests 

performed by Ganz and Thurlimann [34], Abrams and Shah [35], and Yaghoubifar [36]. 

The first series of the walls analyzed consists of the walls carried out by Ganz and 

Thurlimann [34] denoted by W1 and W2. These walls consist of hollow clay brick masonry 

with the geometries shown in Fig. 27. The material properties taken from Ganz and 

Thurlimann [34] are shown in Table 2 and Table 3. The walls are subjected to a uniform 

vertical load followed by an incremental horizontal load, F, to obtain the shear-displacement 

behavior. The initial vertical load, P, was equal to 415KN=0.61 MPa for wall W1 and 

1287KN=1.91 MPa for Wall W2. Wall W1 showed a ductile response with tensile and shear 

failure along the diagonal stepped cracks. Wall W2 behavior was started by a relatively 

ductility followed by brittle cracking. Similar failure modes and shear-displacement curves 

have been obtained in the analysis, see Fig. 28. The contribution of shear and flexural 

deformations in the global behavior of the wall is also shown in this figure.  

Figure 27 

Table 2 

Table 3 

Figure 28 

The first series of selected walls are tested by Abrams and Shah [35]. These experimental 

tests consist of three masonry walls with different height-to-length ratio and vertical 
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compressive stresses subjected to cyclic loading pattern. The geometry, material properties, 

and loading conditions of the walls are shown in Fig. 29 and Table 4. In terms of material 

properties, myf , c , and   were given in [35], while the other parameters are used based on 

available information with considering the best fitting of experimental results. The observed 

failure modes of the walls are also presented in Table 4. Wall W1 failed in shear showing 

diagonal cracks with no flexural cracking. Wall W2, subjected to a lower vertical compressive 

force, showed flexural cracks on the bed-joints followed by diagonal cracking at the ultimate 

stages of the test. Wall W3 had a flexural rocking behavior. 

The analysis results together with the contribution of shear and flexural deformations are 

shown in Fig. 30. A good agreement is found between the analytical and experimental results 

and the same failure modes have been predicted. It can be observed that the flexural 

deformations are small in wall W1 as it was expected from the experimental observations. 

The contribution of flexural deformations increases in wall W2. The analysis results show the 

behavior is governed by the flexural deformations at the initial stages and is followed by 

diagonal stepped cracking, similar to experimental observations. The analysis results for the 

wall W3 is also in complete agreement with the experimental results. The flexural 

deformations govern the behavior with contribution of small shear deformations.  

Figure 29 

Table 4 

Figure 30 

Yaghoubifar [36] studied the behavior of two unreinforced and four strengthened masonry 

walls by performing static-cyclic testes. The wall NSBW1 is selected here as another 

reference specimen for verification of the proposed analytical model. The geometry and 

material properties of the wall are shown in Fig. 31 and Table 5, respectively. The governing 

failure mode of this specimen was rocking behavior followed by sliding in the bed-joints, due 
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to the low applied vertical stress and tensile strength of the bed-joint mortar. The analysis and 

experimental results are compared in Fig. 31. The numerical results are in good agreement 

with experimental observations. The rocking behavior was observed in the simulations 

followed by sliding in the bed-joints as well as the experimental tests. 

Table 5 

Figure 31 

7. Conclusions 

A macro-modeling method is presented in this paper for predicting the nonlinear behavior of 

masonry walls with considering all the possible failure modes. Suitable constitutive models 

and biaxial failure criteria have been selected and masonry is assumed as an orthotropic 

material. Shear and flexural deformations, which play an important role in global response of 

the walls, has been considered in a simplified manner. The shear deformations are obtained by 

modeling the nonlinear behavior of masonry element and extending it to the masonry wall. 

The contact density model developed at the University of Tokyo is modified and used for 

modeling the shear failure in masonry elements. The presented computational framework can 

be used for predicting the nonlinear behavior of masonry walls with different geometries and 

material properties.  

The accuracy of the adopted method is performed by comparing the analytical and 

experimental results. It is shown that the accuracy of the predicted results is acceptable while 

the analysis time is significantly less than finite element methods. Moreover, the contribution 

of shear and flexural deformations were also shown in global behavior of the reference 

specimens. 
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Figure 1: Different failure modes of masonry. 

 

 
Figure 2: Constitutive model for biaxial compression stress state. 
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Figure 3: Variation of compressive strength with θ for β=-1. 

 

 
Figure 4: Variation of compressive strength with θ proposed by Ganz [23]. 

 

 
Figure 5: Simplified model for variation of uniaxial compressive strength with θ. 
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Figure 6: Tensile cracking of masonry elements. 

 

 
Figure 7: Tensile behavior of masonry element. 
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Figure 8: Constitutive model for tensile stress state (straight cracking). 
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Figure 9: Analysis of two masonry panels with different diagonal tension behavior. 

 

 
Figure 10: Shear transfer model for a single crack. 

 

 
Figure 11: Parametric study on the effects of α on friction angle φ. 
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Figure 12: Variation of  with friction coefficient of masonry. 

 

 
Figure 13: Elasto-plastic model for contact compressive stress. 

 
 

 
Figure 14: Softening rule in crack surface. 
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Figure 15: Total shear model for masonry. 

 

 
Figure 16: Behavior of specimen with 7mm mortar thickness tested by Atkinson et al. [30]. 

 

 
Figure 17: Compressive strength reduction factor in biaxial compression-tension stress states. 
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Figure 18: The adopted failure criteria. 

 

 
Figure 19: Failure criteria in xyy    space. 

 

 
Figure 20: Applied in-plane stresses and corresponding strains in the element. 
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Figure 21: Analysis procedure flow chart for nonlinear analysis of masonry elements. 
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Figure 22: Adopted method for global behavior of Masonry walls. 

 

 
Figure 23: Masonry wall division into fibers. 

 

 
Figure 24: Moment-curvature analysis of the wall. 
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Figure 25: Moment and curvature distribution along the wall height. 

 

 
Figure 26: Modeling masonry wall under shear stresses. 
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Figure 27: Geometry of the ETH Zurich shear walls tested by Ganz and Thurlimann [34]. 

 

 
Figure 28: Shear-displacement curves of the walls tested by Ganz and Thurlimann [34]. 
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Figure 29: Geometry of the walls tested by Abrams and Shah [35]. 
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Figure 30: Shear-displacement diagram of the walls tested by Abrams and Shah [35]. 

 

 
Figure 31: Shear-displacement diagram of the wall tested by Yaghoubifar [36]. 
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Table 1: Properties of specimen tested by Atkinson et al. [30]. 

C
(MPa)

tanφ
C

(MPa)
tanφ

Old Clay Units (7mm) 1:2:9 0.213 0.64 0.038 0.693

Axial Load 49 KN

Peak Values Residual Values

MortarUnit

 
 

Table 2: Elastic properties of ETH Zurich walls. 
E x 

(MPa)
E y  

(MPa)
ν xy 

 (MPa)
G xy 

 (MPa)

2460 5460 0.18 1130
 

 
Table 3: Inelastic properties of ETH Zurich walls. 

f tx 

(MPa)

f ty  

(MPa)

f mx 

(MPa)

fmy 

(MPa)

c
(MPa)

φ
(°)

0.28 0.05 1.87 7.61 0.2 36
 

 
Table 4: Properties of Abrams and Shah [35] shear walls. 

Specimen
Length
(mm)

Height
(mm)

Thickness
(mm)

f tx 

(MPa)

f ty  

(MPa)

f mx 

(MPa)

f my 

(MPa)

c
(MPa)

φ
(°)

Vertical 
stress
(MPa)

Failure mode

W1 3567.6 1625.6 198 0.45 0.15 2.2 6.4 0.7 26.57 0.527 Diagonal shear cracking

W2 2743.2 1625.6 198 0.45 0.15 2.2 6.4 0.7 26.57 0.527 Flexural cracking/toe crushing

W3 1828.8 1625.6 198 0.45 0.15 2.2 6.4 0.7 26.57 0.527 Rocking
 

 
Table 5: Material properties of the tests performed by Yaghoubifar [36]. 

f tx 

(MPa)

f ty  

(MPa)

f mx 

(MPa)

f my 

(MPa)
C

(MPa)
φ

(°)

0.2 0.05 2 5.7 0.1 28
 

 


