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Abstract

Previous developments from the first author and other researchers were made on devising models for the total cost
optimization of projects described by activity networks under stochastic conditions. Those models only covered
the single resource case.

The present paper will discuss the case of multiple resources. More precisely, we introduce a strategy of allocation
of those resources in order to minimize the waste arising from their latent idleness on their consumption within
the same activity. On this strategy we elect one resource as “pivot” and write equations that describe all the
quantities for the other resources, on the same activity.
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List of Acronyms

RCPSP: Resource Constraint Project Scheduling Prob-
lem
AoA: Activity-on-Arc
DP: Dynamic Programming
EMA: Electromagnetic Algorithm

EVA: Evolutionary Algorithm
SRpco: Single Resource Project Cost Optimization
MRpco: Multiple Resources Project Cost Optimization
QOras: Quantity Oriented Resource Allocation Strategy
WBras: Waste Balance Resource Allocation Strategy

1 Introduction

This paper follows the researches made by several contributors starting from the first research made by
the first author (see [1]). Those works address a RCPSP (Resource Constraint Project Scheduling Prob-
lem) where we want to minimize the total project cost involving multimodal activities under stochastic
conditions. More precisely, given an project on its planning phase, where all its activities and related
requirements are established, we want to determine which is the optimal allocation of resources. This
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allocation yields the minimum total project cost, which is composed by the sum of the allocation cost
and the delay cost.

All the researches so far, work with AoA (Activity-on-Arc) network representation of the project activities
and their precedences. By treating multimodal activities, we deal with activities which their duration time
is measured as a function of the resource allocation. As an example, if a certain activity requires 6 days
with 1 man allocated, it should require only 2 days when the allocation is 3 men. However, in the stochastic
context, that relation between allocation and duration is not deterministic. This requires that we take
the Work Content of an activity as a probabilistic distribution. In particular, we have been using the
exponential distribution for that matter.

Since the first approach to this problem, on Matlab using DP (Dynamic Programming) [2], the subse-
quent researches improved the computational approach by migrating the initial work to Java [6]. Another
Matlab implementation, but using a global optimization algorithm [3], the EMA (Electromagnetic Algo-
rithm), was also migrated to Java [7]. Then, the use of the EVA (Evolutionary Algorithm) was applied to
the same problem [5]. All of these implementations, only cover the SRpco (Single Resource Project Cost
Optimization) models where the total project cost C is obtained by

C = E

[∑
a∈A

(c × xa ×Wa) + cL ×max
0,Υn − T

] (1)

where the following notation applies:

A: Set of project activities;

c: Quantity (of resource) cost per unit

cL: Project delay cost per time unit

xa ∈ IR+: Allocated quantity of resource on activity

a such la 6 xa 6 ua

Wa ∼ Exp (λa): Work content of activity a

Υn: Evaluated realization time of last node

T : Schedule project realization time

This paper addresses the more general case – the MRpco (Multiple Resources Project Cost Optimization)
problem. In this case, the project has a set of resources and each activity may require several of them
instead of just one. On the SRpco models, the behavior of an activity was fully described by its single
resource. However, on the new MRpco models we need to describe that behavior for several resources. Each
resource will have its own work content and allocation constraints according to each activity’s needs.

1.1 The Impact of Resource Multiplicity

The extension of the project cost evaluation from the SRpco model is quite straightforward. The multi-
plicity of resources simply induces a sum of the allocation cost of each resource of each activity. Thus,
the total project cost C is

C = E

[∑
a∈A

∑
r∈Ra

(cr × xa
r ×W a

r ) + cL ×max
0,Υn − T

] (2)

where the extended notation applies (refer to Eq. (1)):

Ra: project resources subset needed by activity a

cr: quantity cost per unit of resource r

xa
r ∈ IR+: allocated quantity of resource r on activ-

ity a such la
r 6 xa

r 6 ua
r

W a
r ∼ Exp (λa

r): Work content of resource r on ac-
tivity a

To each resource allocation to an activity is associated an individual duration Y a
r evaluated similar to

the SRpco model.
Y a

r =
W a

r

xa
r

(3)

The actual activity duration – Ya – is, therefore, the maximum of those individual ones.

Ya = max
r∈Ra

Y a
r

 (4)
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Clearly it makes little sense to expend more of a resource (and incur a higher cost) to have the activity
duration under this resource less than its duration under any other resource. Thus, it is desired to have
(in expectation)

E [Y a
i ] = E

[
Y a

j

]
, ∀i, j ∈ Ra (5)

To ensure allocation vectors leading to the desired equality we devise the following strategy.

2 Quantity Oriented Strategy

The QOras (Quantity Oriented Resource Allocation Strategy) tries to secure equality on individual du-
rations, yielded by the resources within an activity, by electing one of those resources as the pivot. Then,
using the equality on Eq. (5), the quantities for all resources are, immediately, known.

For ease of explanation, we shall assume the existence of only two resources (indexed by 1 and 2) in the
context of an activity a ∈ A, i.e. #Ra = 2

Given the two resources, Eq. (4) becomes,

Ya = max
Y a

1 ,Y
a
2

 (6)

where, by Eq. (3)

Y a
1 =

W a
1

xa
1

Y a
2 =

W a
2

xa
2

(7)

From the equality condition, it follows

E [Y a
1 ] = E

[
W a

1

xa
1

]
=
E [W a

1 ]
xa

1

(8)

E [Y a
2 ] =

E [W a
2 ]

xa
2

(9)

(10)

Thus, the equality of the individual durations (in expectation) is

E [W a
1 ]

xa
1

=
E [W a

2 ]
xa

2

(11)

and putting all the allocated quantities, say, in terms of xa
1 , we obtain

xa
2 =
E [W a

2 ]
E [W a

1 ]
xa

1 (12)

From the last equation we can put the allocation discussion. The process is not yet complete since we
need to enforce that all the resulting allocated quantities lie within their feasible intervals.

In order to guide us throughout the allocation method, we start the following running example.

Example – Part 1 of 2

Assume that we have only two resources (indexed as 1 and 2) in an arbitrary fixed activity a. Suppose,
also, that

xa
1 ∈ [0.5, 2] E [W a

1 ] = 1 xa
2 ∈ [1.5, 3] E [W a

2 ] = 2 (13)

By using resource 1 as the pivot, we have from Eq. (12)

xa
2 = 2xa

1 (14)

In Table 1 there are four allocations resulting from the application of Eq. (14) to a set of four feasible
allocations of resource 1. As the table shows, some evaluated xa

2 are out of bounds.



IESM 2009, MONTRÉAL - CANADA, May 13 - 15

Table 1
QOras – Problems while allocating a resource by decision over another

xa
1 xa

2 = 2xa
1 xa

2 in bounds?

0.5 1.0 no (smaller)

1.0 2.0 yes

1.5 3.0 yes

2.0 4.0 no (greater)

In order to correct the invalid allocations we may simply truncate the values into the feasible region. So,
whenever the invalid allocation is smaller (greater) than the lower (upper) bound, we enforce the value to
be equal to the lower (upper) bound. Thus, let x̂a

2 be the corrected value of the allocation of the resource
2:

x̂a
2 = min

ua
2 ,max

la2 ,
E [W a

2 ]
E [W a

1 ]
xa

1

 (15)

But, while the values for resource 2 are corrected, we must observe that it is required to adjust xa
1 as

well.

Example – Part 2 of 2

Continuing our example, we must increase the xa
2 from 1.0 to 1.5 = la

2 and decrease from 4.0 to
3.0 = ua

2 , on the notable cases, respectively. Table 2 synthesizes these corrections and their implications
over the proportionality relation. When xa

2 increases (decreases) the correct value for xa
1 must decrease

Table 2
QOras – x̂a

2 correction

xa
2 x̂a

2 Correction Implication on xa
1

1.0 1.5 increase must decrease

2.0 2.0 not needed no

3.0 3.0 not needed no

4.0 3.0 decrease must increase

(increase) in proportion. By using a simple equation, derived from Eq. (14), we can evaluate the value
of xa

1 corresponding to the newly adjusted x̂a
2 . So, for x̂a

2 = 1.5 it follows

1.5 = 2x̂a
1 ⇔ x̂a

1 = 0.75 (16)

By similar reasoning, when x̂a
2 = 3.0, x̂a

1 = 1.5.

Both values of x̂a
1 are within the feasible region. Therefore, the proportion between the two resources

is successfully restored. On Table 3 are presented the final corrected allocations.

Table 3
QOras – Allocations before and after correction

xa
1 xa

2 x̂a
1 x̂a

2

0.50 1.00 0.75 1.50

1.00 2.00 1.00 2.00

1.50 3.00 1.50 3.00

2.00 4.00 1.50 3.00

As just seen on the example, the use of a simple equation was sufficient to restore the proportionality
relation. We will now formalize that correction and study its implications on the other allocations. We
will do that by observing the three possible scenarios:
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la
1 ua

1

la
2

ua
2

xa
2

xa
1

xa
2 =

E[W a
2 ]

E[W a
1 ]
xa

1

(a) Allocation interval of xa
2 is a subset of the

range of the function of Eq. (12)

la
1 ua

1

la
2

ua
2

xa
2

xa
1

xa
2 =

E[W a
2 ]

E[W a
1 ]
xa

1

(b) Range of function of Eq. (12) intersects
the allocation interval of xa

2 but does not in-
cludes it

la
1 ua

1

la
2

ua
2

xa
2

xa
1

xa
2 =

E[W a
2 ]

E[W a
1 ]
xa

1

(c) Range of function of Eq. (12) does not
intersect the allocation interval of xa

2

Fig. 1. QOras – Typical scenarios on the corrective mechanism on the context of two resources

Case xa
2 ∈

[
la
2 , ua

2

]
All allocated quantities are within their feasible space. Nothing is further required.

Case xa
2 < la

2 Requires correction by putting xa
2 = la2 . The pivot also needs correction in order to restore

the relation between the quantities. Thus,

x̂a
1 =
E [W a

1 ]
E [W a

2 ]
la2 (17)

Case xa
2 > ua

2 Analogously to the xa
2 < la2 case, it goes x̂a

2 = ua
2 and

x̂a
1 =
E [W a

1 ]
E [W a

2 ]
ua
2 (18)

After restoring the proportionality relation, there remains the possibility that the resulting x̂a
1 laying out

of its feasible region in which case we will need to truncate it, thus,

x̂a
1 = min

ua
1 ,max

la1 ,
E [W a

1 ]
E [W a

2 ]
α

 (19)

where α = la2 case x̂a
2 < la2 or α = ua

2 case x̂a
2 > ua

2 .

This truncation, however, may raise a second need for restoration of the proportionality relation. But,
this in turn will start a vicious cycle of corrections. Suffice it to say that this particular scenario only
occurs when the range of function on Eq. (12) does not intersect the feasible interval of xa

2 (see Fig. 1).
Which means that it is impossible to secure the equality between Y a

1 and Y a
2 .

3 Discussion and Conclusion

In the two resources only case scenario, it is still quite manageable to assess the impossibility of equal
individual durations. But, the generalization to an arbitrary number can be tricky as the corrective
mechanism itself brings unexpected complexity.
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xa1 xa2 x̂a2 x̂a1

decision truncation restoration

Fig. 2. QOras – Corrective mechanism scheme (two resources) with resource 1 as pivot

xa2 x̂a2 x̂a1

xa1

xa3 x̂a3 x̂a1 

Moment A

?

xa2 x̂a2

xa1 x̂a1

xa3 x̂a3 
Moment B

decision truncation restoration balancing

? balancing moment

Fig. 3. QOras – Corrective mechanism scheme (three resources) with resource 1 as pivot

Fig. 2 represents the corrective mechanism with only two resources, which may be satisfactory. However,
with three or more resources a new problem has to be addressed, namely that of incompatibility between
the results secured from the two non-pivotal resources.

The expansion of the decision equation is straightforward:

E [W a
1 ]

xa
1

=
E [W a

2 ]
xa

2

=
E [W a

3 ]
xa

3

(20)

from which we secure:

xa
2 =
E [W a

2 ]
E [W a

1 ]
xa

1 and xa
3 =
E [W a

3 ]
E [W a

1 ]
xa

1 (21)

When the corrective procedure is applied a new problem arises. Fig. 3 gives a schematic of what can
happen and the corrective action that may be taken. At first the two x̂a

1 ’s that result from applying the
correction to xa

2 and xa
3 independently are different, leading to inconsistency in the decision, which needs

to be treated. A new mechanism must evaluate a suitable allocation of the pivot resource in order to
achieve the desired result. Naturally, the issue becomes increasingly more complex as more resources are
involved.

Although the QOras is intuitive, it is incapable of enforcing equal durations and is difficult to generalize
to more than two resource.

Instead of pursuing ways to improve QOras, we decided to diverge our approach and look for other strate-
gies of multiple resources allocation, namely the WBras (Waste Balance Resource Allocation Strategy)
presented last year in EngOpt2008 [4].
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