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Abstract

Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent
transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a
variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on
the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly
interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets with
human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include
reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding
genes, and transcription factors with significant enrichment of binding sites in the promoter regions of these genes. In
addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with
T2DM), we identified several reporter metabolites representing novel biomarker candidates. For example, the highly
connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially
contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the
promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network
connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR
family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a
holistic picture of key metabolic and regulatory nodes potentially involved in the pathogenesis of T2DM.
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Introduction

Type 2 diabetes mellitus (T2DM) is emerging as one of the main

threats to human health in the 21st century with an estimated 300

million individuals with T2DM by the year 2025 [1,2]. T2DM is

characterized by both insulin resistance (as manifested by reduced

insulin-stimulated glucose uptake in skeletal muscle and adipose

tissue and inappropriately high hepatic glucose output [3,4]) and

reduced insulin secretion by pancreatic b-cells [3,5]. Although the

specific molecular pathophysiology remains unclear, many risk

factors have been identified for T2DM, including family history of

diabetes and prominent environmental factors such as alterations

in early life development, excessive food intake, obesity, decreased

physical activity and aging [2,3,5]. At the cellular level, multiple

regulatory mechanisms and metabolic pathways may contribute to

the pathogenesis of insulin resistance, potentially mediated by

alterations in insulin signaling [6], mitochondrial oxidative

metabolism and ATP production [7–9], fatty acid oxidation

[10], or proinflammatory signaling [11]. Similarly, alterations in b-

cell development and metabolism [5] may contribute to decreased

insulin secretion.

Available human tissue transcriptome data related to T2DM

[12,13] provide an opportunity for identification of novel molecular

mechanisms underlying the metabolic phenotype of T2DM. This

task is challenging due to the need to account for the inherent high

connectivity of bio-molecular interaction networks. We have

utilized a network-centered methodology to link diabetes-related

alterations in gene expression to metabolic hot spots and

transcription factors potentially responsible for gene expression

changes.

Rationale and methodology
Metabolic phenotypes at a cellular level are essentially charac-

terized by concentrations of metabolites and fluxes through the

reactions that make up the metabolic network. Fluxes, in turn, are

dependent on metabolite levels, enzyme activities, abundance of

effectors and possibly other variables. Measurement of fluxes and

metabolite concentrations at the entire metabolic network-scale is,

however, a difficult task in humans due to a variety of technological

and experimental limitations. By contrast, methods for measure-

ment of expression of genes encoding metabolic enzymes are

relatively well-established. Thus, the primary goal of this study is to
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use informatics approaches to integrate available gene expression

data with metabolic networks, in order to predict metabolic

phenotypes of skeletal muscle linked to the pathogenesis of type 2

diabetes. Such an approach will help not only to gain insight into the

organization of transcriptional regulation in human tissues, but also

provide guidance for improved design of experimental strategies for

obtaining metabolite and flux data, which can be further integrated

into metabolic models.

To achieve these goals, we applied an extension of the algorithm

described in [14] (for various applications of this algorithm see

[14–18]), which enables identification of so-called reporter

metabolites, or metabolic hot spots around which transcriptional

regulation is centered (Figure 1A). This analysis is based on the

assumption that under most conditions of physiological interest,

fluxes through enzymes connected to a metabolite are coordinated

in order to maintain physiological homeostasis, or to eventually

reach a new (pseudo-) steady state. Moreover, transcriptional

regulation of expression of genes encoding critical enzymes in

metabolic flux pathways facilitates concordance with the metabolic

demands of the cell and corresponding stoichiometric and

thermodynamic constraints on fluxes. For this analysis, we used

two recently published human metabolic network models: i) Homo

sapiens Recon1 [19], and ii) Edinburgh Human Metabolic Network

(EHMN) [20].

We further hypothesized that the observed coordinated changes

around reporter metabolites can be, at least in some cases,

attributed to common transcriptional regulatory mechanisms.

Specifically, we hypothesize that the neighbor enzymes of reporter

metabolites may share one or more transcription factor binding

sites in the promoter regions of the corresponding genes. In order

to identify such potential regulatory players, we tested promoter

sequences of the genes associated with the reporter metabolites for

enrichment of known transcription factor binding motifs

(Figure 1B). Transcription factors identified in this fashion provide

Author Summary

Type 2 diabetes mellitus is a complex metabolic disease
recognized as one of the main threats to human health in
the 21st century. Recent studies of gene expression levels
in human tissue samples have indicated that multiple
metabolic pathways are dysregulated in diabetes and in
individuals at risk for diabetes; which of these are primary,
or central to disease pathogenesis, remains a key question.
Cellular metabolic networks are highly interconnected and
often tightly regulated; any perturbations at a single node
can thus rapidly diffuse to the rest of the network. Such
complexity presents a considerable challenge in pinpoint-
ing key molecular mechanisms and biomarkers associated
with insulin resistance and type 2 diabetes. In this study,
we address this problem by using a methodology that
integrates gene expression data with the human cellular
metabolic network. We demonstrate our approach by
analyzing gene expression patterns in skeletal muscle. The
analysis identified transcription factors and metabolites
that represent potential targets for therapeutic agents and
future clinical diagnostics for type 2 diabetes and impaired
glucose metabolism. In a broader perspective, the study
provides a framework for analysis of gene expression
datasets from complex diseases in the context of changes
in cellular metabolism.

Figure 1. Schematic overview of the methodology used for the identification of reporter metabolites and associated putative
regulatory sequence motifs. A) Scoring system for identification of reporter metabolites. Each metabolite is scored based on the scores of the
associated enzyme-catalyzed reactions. Each enzyme, in turn, is assigned a score based on median of the p-values of the probes representing the
corresponding gene. In case of a reaction catalyzed by an enzyme complex or a set of isozymes, minimum of the p-values of the corresponding
enzymes is chosen. Numbers in bold are Z-scores for each reaction, the rest of the numbers represent p-values (significance of differential
expression). B) Identification of transcription factor binding motifs. For a reporter metabolite, a set of up/down regulated neighbor (enzyme-coding)
genes is selected. Promoter regions, upstream of transcription start site (TSS) of each of the selected genes are assessed for the enrichment of known
transcription factor (TF) binding sequence motifs.
doi:10.1371/journal.pcbi.1000729.g001
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clues to the regulatory mechanisms that lead to observed gene

expression changes in the metabolic network.

Since our goal is to identify reporter metabolites and

transcription factors potentially involved in diabetes pathogenesis

and progression, we analyzed two independent studies of skeletal

muscle transcriptomics in individuals with established type 2

diabetes or insulin resistance [8,9] (Text S1). In the first study [8],

biopsies were obtained following insulin stimulation from a cohort

of 43 Swedish men of Caucasian ethnicity with a spectrum of

glucose tolerance, including 17 with normal glucose tolerance

(NGT), 8 with impaired glucose tolerance (IGT), and 18 with

established T2DM. The second dataset [9] was derived from a

cohort of 15 subjects of Mexican American ethnicity, in whom

muscle biopsies were performed in the fasting state. Importantly,

this cohort included individuals with not only established diabetes

(5 subjects, T2DM), but also individuals with completely normal

glucose tolerance but a spectrum of insulin resistance; normal

glucose tolerant subjects were subdivided by family history-linked

diabetes risk (4 family history positive, more insulin resistant

subjects, FH+; and 6 family history negative, more insulin sensitive

subjects, FH2). With this approach, the individual contributions

of isolated insulin resistance and diabetes risk (in the setting of

normoglycemia, FH+), mild elevations in postprandial glucose

(IGT), and established diabetes can be individually assessed.

Moreover, the possible contribution of family history, potentially

mediated by genetics or shared environment, can be assessed.

Thus, we predict that analysis of the common patterns resulting

from the two datasets will identify regulatory signatures potentially

independent of study cohort and design variation but common to

the pathophysiology of insulin resistance and diabetes.

Results

In present study, we performed reporter metabolite analysis

based on pair-wise comparisons within each dataset; differential

expression and its significance were assessed with robust multi-

array average (RMA) and empirical Bayes testing. Significance of

differential expression for each gene was used as a scoring metric

(Materials and Methods). The results are summarized as metabolic

signatures (reporter metabolites) and regulatory signatures (tran-

scription factors) for T2DM.

Metabolic signatures of T2DM
Swedish male dataset. Reporter metabolite analysis for three

pair-wise comparisons, viz., T2DM vs NGT, T2DM vs IGT, and

IGT vs NGT, revealed significant reporter metabolites (p-

value#0.05) participating in lipid metabolism, TCA cycle,

oxidative phosphorylation (OXPHOS) and glycolysis (Table 1,

Table 2, Table S1 and Table S2). Among reporter metabolites

identified for the T2DM vs NGT comparison were lipid species 1,2-

diacyl-sn-glycerol (DAG), acetoacetyl-CoA, and the sphingolipid

sphinganine. These are interesting, as prior studies [3,21–23] have

demonstrated that the related lipid molecules diacylglycerols

(DAG), long-chain fatty acyl CoAs, and ceramides correlate

positively with triglyceride content and inversely with insulin

sensitivity [5] and have been shown to induce insulin resistance

[3]. Furthermore, given that saturated fatty acids appear to play a

particularly important pathogenic role in insulin resistance [24], it is

interesting that several metabolites of saturated fatty acids (such as

hexanoyl-CoA, palmitoyl-CoA, tetradecanoyl-CoA, lauroyl-CoA,

decanoyl-CoA and butanoyl-CoA) were found as reporter

metabolites with mostly up-regulated neighboring genes in the

IGT vs NGT comparison (Table 1 and S2), and thus may serve as

potential markers of insulin resistance and IGT.

TCA cycle metabolites citrate and 2-oxoglutarate, with down-

regulated neighboring genes, were also uncovered as reporter

metabolites in the T2DM vs NGT comparison (Table 1, S1 and S2).

These results are concordant with a study of human urine

metabolome profiles from patients with T2DM [25], in which

levels of citrate and 2-oxoglutarate were lower in T2DM compared

to healthy controls [26]. Among other mitochondrial metabolites,

reduced and oxidized forms of cytochrome c and ubiquinol were

identified as reporter metabolites (T2DM vs NGT, Table S1) with

down-regulated expression of the associated genes.

Impaired glucose tolerance typically reflects an important

transition between normoglycemia and overt diabetes, reporter

metabolites which are identified in both IGT vs NGT and T2DM

vs NGT, but not significantly different in the T2DM vs IGT

comparison (e.g. phosphatidylethanolamine, 2-hydroxyglutarate,

2-oxoglutarate, 39,59-cyclic AMP, ATP, Table S1 and S2) may be

considered novel biomarkers of early-stage glucose intolerance.

Mexican-American dataset. We similarly performed reporter

metabolite analysis using both Recon1 and EHMN metabolic models

in the Mexican-American dataset. This analysis revealed significant

transcriptional regulation in metabolite nodes in TCA cycle,

oxidative phosphorylation, and lipid metabolism, for both T2DM

vs FH2 and FH+ vs FH2 comparisons (Table 2). Similar to the

Swedish Caucasian dataset, metabolites involved in oxidative

phosphorylation (e.g. ferrocytochrome c, H+, and fumarate) were

among the top-ranking reporter metabolites, identified in both the

T2DM vs FH2 and FH+ vs FH2 comparisons (Table 2, Table S3).

Interestingly, urinary levels of fumarate, an important link between

the TCA cycle and oxidative phosphorylation, were recently found to

be decreased in T2DM patients [25].

Analysis using the EHMN model revealed TCA cycle-related

metabolites, including 3-carboxy-1-hydroxypropyl-ThPP, aconi-

tate, succinyl-CoA, malate and fumarate, as significant reporter

metabolites (p-value#0.05), with mostly down-regulated expres-

sion of the genes encoding their neighboring enzymes. Ubiquinol

was found as reporter metabolite representative of electron

transfer chain. Several molecules within b-oxidation pathways,

such as 3-cis-dodecenoyl-CoA, glutaryl-CoA, trans-3-decenoyl-

CoA, 3-methylbutanoyl-CoA and 3-methylcrotonyl-CoA, as well

as in amino acid (leucine, lysine) metabolism were also identified as

reporters (Table 2, Table S4). Moreover, glutamate, glycerol

derivatives, phosphocreatine, a number of hormone derivatives

and many others (Table S3 and S4) were found as significant

reporter metabolites in the T2DM vs FH2 comparison.

Overlapping reporter metabolites between two study

populations. In order to determine the extent of overlap

between the two study populations, we performed a cluster

analysis of the pair-wise comparisons within the Swedish and

Mexican-American datasets (Figure 2). Jaccard distance metric

between two pair-wise comparisons (e.g. T2DM vs FH2 and FH+
vs FH2) was calculated based on the overlap of reporter metabolites

between the two comparisons. Jaccard distance provides a measure

of dissimilarity between two sets of reporter metabolites, and is

quantified as the fraction of non-overlapping reporter metabolites

between the two sets. While similar clustering patterns were

observed (Figure 2A and Figure S1A) independent of the use of

either EHMN or Recon1 metabolic model, Swedish and Mexican-

American studies clustered separately, perhaps related to differences

in study population, study design (e.g. fasting studies in Mexican-

Americans, insulin-stimulated studies in Swedish) or differences in

microarrays used (thus differing in the coverage of metabolic

enzymes). We observed substantial overlap between the T2DM vs

FH2 and FH+ vs FH2 comparisons, suggesting that insulin

resistance patterns could contribute to these findings.

Metabolic Regulatory Signatures of Type 2 Diabetes
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We next examined the overlap of reporter metabolites between

the two case studies (Figure 2B, Figure S1B, Table S5 and Table

S6). Owing to differences in the metabolite-gene connectivity

between EHMN and Recon1, the number of overlapping reporter

metabolites is generally higher for the EHMN analysis. To a large

extent, this difference is due to the groups of metabolites in

EHMN that share the same gene neighbors (whether two

metabolites share the same gene neighbors depends not only on

the network used, i.e. number of distinct biochemical reactions

associated with a particular enzyme, but also on the coverage of

genes on the particular microarray chip used). In addition to many

other metabolites, phosphocreatine appeared as a significant

Table 1. Reporter metabolites for Swedish male dataset.

Reporter Metabolite P-values
Enzyme neighbors
(Up-regulated:Down-regulated)

T2DM/NGT IGT/NGT T2DM/NGT IGT/NGT

Citrate 0.047 0.646 1:0 1:0 TCA cycle

Succinyl-CoA 0.013 0.285 2:3 2:3

2-Hydroxyglutarate* 0.002 0.023 0:1 0:1

2-Oxoglutarate* 0.049 0.047 8:11 8:11

Ferrocytochrome C; Ferricytochrome C 0.006 0.032 1:2 0:3 Oxidative phosphorylation

Ubiquinone-10 0.017 0.769 0:5 1:4

Ubiquinol-10 0.022 0.484 0:4 1:3

Phosphoenolpyruvate* 0.196 0.037 1:3 1:3 Glycolysis

D-Glyceraldehyde* 0.083 0.017 2:1 3:0

D-Alanine 0.016 0.330 0:3 0:3 Amino acid metabolism

L-Alanine 0.047 0.319 3:7 3:7

3-Methylglutaconyl-CoA{ 0.038 0.816 0:2 1:1

L-Leucine* 0.047 0.109 1:3 1:3

1,2-Diacyl-sn-glycerol (DAG)* 0.022 0.049 2:5 2:5 Lipid metabolism

1D-myo-Inositol 1,4-bisphosphate{ 0.060 0.151 0:3 2:1

3-Dehydrosphinganine* 0.232 0.035 1:1 2:0

Acetoacetyl-CoA* 0.009 0.462 1:4 2:3

Butanoyl-CoA{ 0.365 0.038 0:2 1:1

Decanoyl-CoA; Lauroyl-CoA* 0.268 0.033 1:2 2:1

Fatty acid* 0.021 0.756 3:4 3:4

Lophenol*1 0.007 0.749 0:1 0:1

Palmitoleoyl-CoA* 0.238 0.019 1:3 2:2

Palmitoyl-CoA* 0.179 0.014 3:4 6:1

Phosphatidyl glycerol phosphate 0.047 0.316 0:1 0:1

Phosphatidylinositol 4,5-bisphosphate 0.097 0.001 1:5 2:4

Propanoyl-CoA* 0.259 0.016 2:5 2:5

Prostaglandin E2 0.036 0.032 0:3 1:2

Sphinganine* 0.038 0.283 1:3 2:2

(Gal)3 (GalNAc)1 (Glc)1 (Cer)1* 0.023 0.034 1:2 1:2 Other

AMP{ 0.041 0.218 7:17 6:17

ATP{ 0.003 0.010 28:60 27:60

cAMP{ 0.033 0.049 2:0 2:0

CDPcholine 0.020 0.122 0:2 0:2

Choline phosphate 0.030 0.573 0:2 1:1

NAD+* 0.333 0.020 29:34 34:34

Phosphocreatine 0.025 0.176 0:1 1:0

Trichloroethanol* 0.020 0.038 1:2 3:0

*Reporter metabolites identified using EHMN metabolic network.
{Reporter metabolites identified in both networks.
1Plant metabolite, likely to be present in the EHMN due to incorrect annotation.
Reporter metabolites with p#0.05 in at least one of the comparisons showed in bold. Columns with enzyme neighbors show the number of up- and down-regulated
enzyme neighbors in the first condition (e.g. T2DM/NGT up- and down-regulated in T2DM comparing with NGT) for each of comparisons. Reporter metabolites without
marks were identified using Recon1 metabolic network. Metabolites written in italics are known to be directly/indirectly related to T2DM, see main text and Table S8.
doi:10.1371/journal.pcbi.1000729.t001
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reporter in both case studies, viz., for T2DM vs NGT and T2DM vs

FH2 comparisons. Phosphocreatine is an important energy

reservoir metabolite in skeletal muscle, and defects in recovery of

phosphocreatine have been identified in vivo in humans with insulin

resistance [27] and diabetes [28]. Interestingly, low levels of urinary

creatine have also been found in patients with T2DM [25].

Regulatory signatures of T2DM
In order to link the identified reporter metabolites to regulatory

pathways controlling gene expression, we hypothesized that en-

zymes associated with reporter metabolites would be regulated by

common transcription factors. As potential candidates subjected to

such regulation, we selected all reporter metabolites with at least 5

Table 2. Reporter metabolites for Mexican-American dataset.

Reporter metabolite P-values
Enzyme neighbors
(Up-regulated:Down-regulated)

T2DM/FH2 FH+/FH2 T2DM/FH2 FH+/FH2

2-Oxoglutarate 0.001 0.001 2:7 2:7 TCA cycle

L-Malate 0.098 0.029 1:4 2:3

Succinyl-CoA{ 0.011 0.009 0:5 0:5

Ferrocytochrome C;Ferricytochrome C 0.008 0.007 0:3 0:3 Oxidative phosphorylation

Fumarate 0.019 0.025 0:2 0:2

Ubiquinone-10{;Ubiquinol-10{ 0.040 0.021 1:3 1:3

2,3-Disphospho-D-glycerate{ 0.021 0.004 0:1 0:1 Glycolysis

2-Phospho-D-glycerate* 0.038 0.006 0:2 1:1

beta-D-Fructose* 0.049 0.038 0:2 0:2

D-Fructose 2,6-bisphosphate 0.037 0.136 0:2 0:1

D-Fructose 6-phosphate 0.013 0.119 4:6 3:7

D-Glucose* 0.037 0.066 0:7 1:5

D-Glucose 6-phosphate 0.009 0.014 1:3 1:3

D-Glycerate 2-phosphate 0.026 0.003 0:2 1:1

L-Lactate 0.048 0.067 1:2 1:2

Phosphoenolpyruvate 0.079 0.048 2:2 3:1

Pyruvate 0.042 0.202 1:6 1:6

2-Oxoadipate* 0.002 0.004 0:1 0:1 Amino acid metabolism

beta-Alanine 0.031 0.027 1:1 1:1

L-Glutamate{ 0.025 0.009 1:1 1:1

(R)-2-Methyl-3-oxopropanoyl-CoA* 0.043 0.118 0:2 0:1 Lipid metabolism

1,2-Diacyl-sn-glycerol (DAG)* 0.036 0.117 3:2 5:1

1D-myo-Inositol 1,4-bisphosphate 0.025 0.054 1:2 1:2

3-cis-Dodecenoyl-CoA* 0.009 0.039 0:3 0:3

Acylglycerol*; 2-Acylglycerol* 0.035 0.018 1:1 1:1

Glutaryl-CoA{ 0.007 0.015 0:2 0:2

Glycerol 0.020 0.001 1:1 1:1

Glycerol 3-phosphate 0.051 0.005 2:1 2:1

Lipoamide* 0.014 0.006 0:5 0:5

Phosphatidylinositol 0.017 0.128 1:5 1:5

trans-3-decenoyl-CoA* 0.026 0.076 0:2 0:2

ADP 0.047 0.174 16:31 20:27 Other

CO2 0.041 0.004 1:11 3:9

Coenzyme A{ 0.007 0.014 4:8 3 10

Creatine;Phosphocreatine{ 0.032 0.048 0:1 0:1

NAD+{; NADH{ 0.003 0.095 3:17 17:4

Trichloroethanol* 0.021 0.006 2:1 3:0

*Reporter metabolites identified using EHMN metabolic network.
{Reporter metabolites identified in both networks.
Reporter metabolites with p#0.05 in at least one of the comparisons showed in bold. Columns with enzyme neighbors show the number of up- and down-regulated
enzyme neighbors in the first condition (e.g. T2DM/FH2 up- and down-regulated in T2DM comparing with FH2). Reporter metabolites without marks were identified
using Recon1 metabolic network. Metabolites written in italics are known to be directly/indirectly related to T2DM, see main text and Table S8.
doi:10.1371/journal.pcbi.1000729.t002
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up- or down-regulated neighboring genes (Materials and Methods).

Up- and down-regulated gene sets were then analyzed separately

in order to assess whether their promoter regions were enriched

for known transcription factor binding sequence motifs. P-values

for enrichment were estimated by using a hypergeometric test,

which compared the proportion of promoters from a given gene

set containing a particular motif with the frequency of occurrence

of that motif in promoter regions of all other metabolic genes.

Correction for multiple-testing was done by using q-value [29]

and motifs with q-value#0.05 were considered as significantly

enriched.

In accord with our hypothesis, several transcription factor

binding sites were overrepresented in the promoter regions of the

enzymes associated with reporter metabolites. A summary of the

main results from this analysis is illustrated in Figure 3A. Many

transcription factors were found to be common across the two case

studies (Figure 3B), albeit in connection with different reporter

metabolites. PPAR family motifs (PPARc and PPARa:RXRa)

were enriched in seven downregulated enzyme sets including ATP.

Tax/CREB motifs were enriched in promoters of downregulated

enzymes associated with ATP, ADP and phosphate. Additional

down-regulated neighbors of ATP were enriched for the binding

sites of NF-kB, MEF-2, UF1-H3b, Pax-9 and NKX6.2, while the

NRF-1 motif was enriched in the set of up-regulated enzymes

neighboring ADP. Another potential regulatory signature was

identified around the down-regulated neighbors of phosphatidy-

linositol and phosphatidylinositol 4,5-bisphospate (important

phospholipids which participate in insulin and other signaling

reactions), which were significantly enriched for binding sites of

p53, PPARc, SRF, SEF-1, v-Jun, GCNF, AR and many others

(Table S7). These and other highly connected reporter metabolites

in the metabolite-TF network (Figure 3A) demonstrate the concept

that associated metabolic pathways can be transcriptionally

regulated in multiple ways in response to environmental stimuli

or metabolic perturbation.

Discussion

Maintenance of whole-body glucose metabolism is reliant on a

delicately balanced dynamic interaction between tissue sensitivity to

insulin (including muscle, adipose and liver) and insulin secretion

[5,30]. Unfortunately, the molecular mechanisms responsible for

diabetes risk remain unknown. A key metabolic phenotype

associated with insulin resistance in humans is inappropriate lipid

accumulation in tissues outside of adipose tissue, suggesting defects

in fatty acid uptake, synthesis, and/or oxidation. With lipid excess

and/or impaired oxidation, as observed in obesity and/or inactivity,

flux of long-chain acyl CoAs (LC-CoA) may be redirected into

cytosolic lipid species such as diacylglycerols (DAG), triacylglycerols

(TG) and ceramides (derivatives of sphingosine and fatty acid

metabolism) [5] that are correlated with reductions in insulin

signaling and insulin resistance [3,21–23,31]. Whether alterations in

mitochondrial oxidative function in humans with insulin resistance

and diabetes contribute to, or are a consequence of these defects,

remains unclear [32].

Recognizing these important gaps in our knowledge of diabetes

pathophysiology, we have integrated transcriptomic data with

metabolic networks to systematically identify, in an unbiased

fashion, regulatory hot spots (reporter metabolites and associated

transcription factors) associated with insulin resistance and T2DM.

Our reporter metabolite results provide evidence for transcrip-

tional dysregulation of multiple metabolic pathways in skeletal

muscle. Interestingly, many of the reporter metabolites identified

in our analysis have been appreciated in prior experimental studies

in animal models (metabolites with italic font in Tables 1, 2 and

S8). A bird’s-eye view of selected metabolic and regulatory nodes

identified in our study is depicted in Figure 4.

Key metabolic regulatory nodes in T2DM pathogenesis
Lipid metabolism. In conditions of overnutrition and

physical inactivity, availability of cellular fatty acids stimulate

Figure 2. Hierarchical clustering of pair-wise comparisons within the Swedish male and Mexican-American datasets based on the
overlapping reporter metabolites (Recon1 model). Comparisons are colored according to the dataset; blue – Mexican-American; orange –
Swedish male dataset. A) Dendrogram of reporter metabolites identified in each of the comparisons based on Jaccard distance. B) Venn diagram
showing the overlap of the reporter metabolites identified in the different comparisons.
doi:10.1371/journal.pcbi.1000729.g002
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ligand–dependent PPARa/d transcription factors which, in turn,

induce transcription of genes responsible for b-oxidation [33,34].

Metabolic byproducts of incomplete b-oxidation, such as

acylcarnitines and reactive oxygen species, may accumulate in

mitochondria and contribute to insulin resistance [5]. Inter-

estingly, our analysis identified enrichment of PPAR family

transcription factor binding motifs in T2DM as compared with

insulin sensitive subjects, in both the Swedish and Mexican-

American datasets (T2DM vs NGT and T2DM vs FH2, re-

spectively). Moreover, reporter analysis revealed lipid metabolites

(Table S1), known to be natural ligands of PPARc (prostaglandins)

[34].

Another reporter metabolite identified in our analysis is

diacylglycerol (DAG), a lipid signaling molecule known to inversely

correlate with insulin sensitivity [3,21–23,31]. Our results suggest

that perturbations in DAG levels may be accompanied by changes

in the adjacent CDP-Choline branch of the Kennedy pathway of

phospholipid metabolism (Figure 4). Thus, DAG could potentially

affect insulin sensitivity via activation of serine/threonine kinases or

alterations in phospholipid membrane composition, both of which

could lead to defects in insulin signaling, reduced insulin-stimulated

glucose uptake, and glycogen synthesis – key metabolic features of

diabetes [5] (Figure 4). Together, identification of these lipid-linked

regulatory motifs and reporter metabolites known to be involved in

type 2 diabetes pathogenesis provides further support for the validity

of our approach.

Central carbon metabolism. Using our approach we found

several reporter metabolites from the TCA cycle (citrate, 2-

oxoglutarate, succinyl-CoA, fumarate and malate) (Figure 4). The

down-regulated genes associated with these metabolites support

the idea that TCA cycle and/or oxidative phosphorylation flux is

reduced in diabetes [9]. It is also interesting that ATP is one of the

reporter metabolites, as the majority of cellular ATP is generated via

respiration. Moreover, significant enrichment of binding motif for

NF-kb in the upregulated ATP neighbors is consistent with the

potential role of this transcription factor in mediating oxidative

stress responses triggered by by-products of incomplete b-oxidation

[35]. Another interesting finding is the enrichment of CREB family

and NRF-1 motifs in enzymes associated with ATP and ADP.

These results corroborate the role of CREB as an indirect regulator

of nuclear-encoded oxidative phosphorylation genes via PGC1-a
and other regulators linked to nuclear-encoded mitochondrial genes

(Figure 4) [9,36,37].

The appearance of highly connected metabolites, such as ATP

and NADH, among top-ranking reporter metabolites provides a

possible link to the observed network-wide transcriptional changes

in IGT and T2DM. Cellular levels of these co-factors are usually

constrained within relatively narrow ranges to maintain thermo-

dynamic stability. Oxidative phsophorylation, which is connected

to TCA cycle flux via succinate and fumarate, accounts for most of

the ATP (and NADH) turnover in a respiring cell. Our results

suggest reduction in the activity of both TCA cycle and oxidative

phosphorylation, in agreement with recent NMR data demon-

strating that mitochondrial ATP synthesis is reduced in humans

with insulin resistance [38–40]. Another major source of ATP and

NADH production in the cell is glycolysis. Reporter metabolites

representative of glycolysis (glucose, glucose-6-phosphate, glucose-

1-phosphate and pyruvate) also exhibited concordant down-

regulation of the neighboring genes.

The concordance between the changes in gene expression levels

for glycolysis, TCA cycle and oxidative phosphorylation in IGT

and T2DM suggests that transcriptional regulatory mechanisms

Figure 3. Summary of the main results from the motif enrichment analysis. A) Motif enrichment analysis for the genes associated with
reporter metabolites from the T2DM vs NGT comparison. Reporter metabolites with up-regulated neighboring gene set are shown as red circles,
whereas reporter metabolites with down-regulated neighboring gene set are represented as green circles. Transcription factor binding motifs (shown
as triangles) are colored according to the number of enzyme sets in which they are enriched, ranging from light yellow (enriched in few sets) to
orange (enriched in as many as 6 sets). Edges are scaled according to q-values signifying the confidence of the motif enrichment. B) Venn diagram
showing the overlap of transcription factor binding motifs across the comparisons of T2DM with non-T2DM cases. Comparisons are colored
according to the dataset; blue – Mexican-American; orange – Swedish male dataset.
doi:10.1371/journal.pcbi.1000729.g003
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may be a response to altered levels of ATP/NADH. Such response

may achieve two purposes: (1) regulation of metabolism on global

scale, as these co-factors are critical components of many metabolic

pathways, and (2) regulation of NADH levels may help in reducing

excessive (and potentially deleterious) oxidative stress resulting from

sustained oxidation of excessive nutrients [41]. Although the way

such regulatory control is mechanistically linked to the correspond-

ing metabolites cannot be deduced from the gene expression data

alone, there are several examples where metabolite co-factors are

directly involved in regulating gene expression, e.g. NADH(/+)

dependent regulation of genes in gram-positive bacteria [42], yeast

[43–45] and human [46,47]. NAD+ dependent changes in gene

expression levels could also be mediated by the action of PGC-1a
and SIRT1 complex, which have important roles in regulation of

glucose homeostasis [48]. Additional regulatory links, between

glycolytic flux, energy metabolism, TCA cycle flux and fatty acid

metabolism are also known in other eukaryotic systems such as

baker’s yeast [49–51]. Furthermore, several of the enzymes from

central carbon metabolism may be regulated to a large extent at the

post-transcriptional level [52,53]. Parallels of such regulatory

Figure 4. Metabolic and regulatory signatures of type 2 diabetes. Key metabolic and regulatory pathways associated with reporter
metabolites identified in this study (T2DM vs NGT and T2DM vs FH2 comparisons) are shown. Metabolites in bold black font are reporter metabolites.
Grey shapes and arrows represent facts/hypotheses from previous studies and are not directly based on the results from the present study. Broken
lines imply indirect effect while full lines denote direct effect. Chronic overfeeding and physical inactivity increase the influx of fatty acid, which
promotes b-oxidation through the activation of PPARa/d-mediated genes, without coordinated increase in TCA cycle flux. Reporter analysis supports
this idea by showing the decreased activity in TCA cycle enzymes associated with reporter metabolites. Eventually, this leads to mitochondrial
accumulation of metabolic by-products of incomplete b-oxidation (acylcarnitines ROS). These stresses might lead to mitochondrial overload which
together with intracellular lipid-signaling (such as DAG) molecules might trigger serine a serine/threonine (Ser/Thr) kinase (Ser/Thr) cascade initiated
by nPKCs. As a result, Ser/Thr phosphorylation of insulin receptor substrate 1 (IRS-1) sites is induced, thereby inhibiting IRS-1 tyrosine phosphorylation
and activation of PI 3-kinase, resulting in impeded GLUT4 translocation, reduced glucose transpor, and decreased glycogen synthesis. Increased
physical activity/fasting activates PGC1a and CREB (a potent inducer of PGC-1a). These actions combat lipid stress by increasing TCA cycle flux and by
coupling ligand-induced PPARa/d activity with PGC1a-mediated remodeling of downstream metabolic pathways such as respiration and b-oxidation.
CDP-choline, cytidine diphosphate choline; DAG, diacylglycerol; G1P, glucose 1-phosphate; G6P, glucose 6-phosphate; GLUT4, glucose transporter-4;
GSK3, glycogen synthase kinase-3; IRE1, inositol requiring kinase-1; LC-CoAs, long-chain acyl CoAs; nPKCs, novel protein kinase Cs; PA, phosphatidate;
PGC1a, PPARc co-activator-1a; PH, pleckstrin homology domain;PI, phospatidylinositol; PIP, phospatidylinositol 4-phospate; PIP2, phosphatidyli-
nositol 4,5-bisphospate, PIP3, phospatidylinositol 3,4,5-trisphospate; PI 3-kinase, phosphoinositol 3-kinase; PPARc, peroxisome proliferator-activated
receptor-c; PTB, phosphotyrosine binding domain; ROS, reactive oxygen species; RXR, retinoid X receptor; SH2, src homology domain; TCA,
tricarboxylic acid cycle; TF, transcription factor; CPT1, carnitine palmitoyltransferase-1; PTDETN, phosphatidylethanolamine.
doi:10.1371/journal.pcbi.1000729.g004
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circuits in human cells may be discovered in the future with the

here-identified transcription factors (Table S7) as one of the starting

points.

Other pathways. Metabolites involved in protein and lipid

glycosylation were found as reporters and characterized by down-

regulation of neighboring enzymes (Table S2). Alterations in

glycosylation may ultimately cause misfolding of several proteins, a

feature previously associated with over-nutrition in hepatocytes [5].

Another reporter metabolite, shared by T2DM vs NGT and T2DM vs

FH2 comparison, is trichloroethanol, a metabolite in the cytochrome

P450-mediated pathway derived from trichlorethene [54]. Although

tricholoethanol or tricholoethene is not an endogenous metabolite in

human tissues, it appears that the expression of the cytochrome P450

is altered in T2DM. Interestingly, experimental evidence shows that

mouse exposure to trichlorethene leads to PPARa activation and the

reprogramming of gene expression, resulting in induction of enzymes

mediating b- and v-oxidation of fatty acids, and increased expression

of genes involved in lipid metabolism [55], a pattern similar to the

T2DM metabolic phenotype [3].

Reporter metabolites and macroscopic physiological
parameters

The identification of reporter metabolites from glycolysis and

energy-generation pathways suggests that there may be regulation of

certain physiological parameters, such as glucose uptake, at the

transcriptional level of the corresponding metabolic pathways. To

investigate the extent of such possible regulation, we calculated

Pearson correlation coefficients between insulin sensitivity (as

measured by either whole-body glucose uptake during the

hyperinsulinemic euglycemic clamp or insulin levels achieved during

the OGTT) and mean centroid expression levels of genes

surrounding reporter metabolites (Swedish dataset) (Materials and

methods). A significant linear correlation with whole-body glucose

uptake was observed for several reporter metabolites. In most cases,

the correlation was significant only for one of the conditions (NGT,

IGT or T2DM). For example, significant correlation of transcrip-

tional regulation around dUDP with glucose uptake was found only

for NGT samples (Figure 5A). It appears that this potential

connection is de-linked under IGT and T2DM conditions. Another

example is 1-Phosphatidyl-1D-myo-inositol 3-phosphate (Figure 5B),

where significant correlation is observed with insulin level only for

IGT. Further investigation of the causal mechanisms behind these

observed correlation patterns may help in elucidating the regulatory

role of the reporter metabolites in diabetes pathogenesis.

Potential biomarkers and pharmacological targets
A key scientific and clinical challenge is to identify molecular

markers of diabetes risk, not only to better understand disease

pathophysiology, but also to develop novel therapies for

prevention and treatment of established diabetes. In this context,

it is interesting that our analysis identified both PPARc and its

potential lipid ligands as regulatory molecules, since PPARc ligand

thiazolidinediones are currently employed as effective therapy for

diabetes. We hypothesize that some transcriptional pathways

identified in the current analysis, including CREB, NRF-1 and

SRF, may be additional novel molecular mediators of the

transcriptomic phenotype associated with insulin resistance, and

thus potential targets for future intervention strategies. Of course,

the potential roles of these pathways will require additional testing

in cultured cells and animal models, where their impact on

metabolic flux and insulin sensitivity can be fully assessed.

Similarly, reporter metabolites identified in our analysis represent

molecules likely to be involved in human skeletal muscle insulin

resistance phenoytpes and also novel candidate biomarkers of

insulin resistance and diabetes risk. In support of this hypothesis,

several of the identified metabolites have known physiological roles

in T2DM (Table S8 and Discussion above). Additional molecules

have been analyzed either in rodents and/or in other tissues (Table

S8) and thus, their appearance as reporter metabolites also strongly

implicates their involvement in insulin resistance in human skeletal

muscle. Some of the novel metabolites identified in our analysis,

including glycolytic and fatty acid oxidation intermediates, are

known targets of metformin, a compound effective for diabetes

therapy and prevention (Figure 4). We also identified an interesting

link between DAG, a reporter metabolite for T2DM, and the CDP-

choline branch of the Kennedy pathway of phospholipid metabo-

lism (Figure 4). This pathway has been implicated in cancer

development and is being established as anti-tumor drug target

[56,57]. Changes in phospholipid metabolism are known to affect

the properties of cellular membranes, and subsequently signaling

through membrane proteins. Further investigation of the role of

phospholipids in T2DM pathogenesis may provide clues to some of

the missing links that connect metabolic flux changes with insulin

signaling in skeletal muscle cells.

Figure 5. Correlation of glucose uptake and insulin level with mean centroid expression levels of reporter metabolite neighbor
genes (Swedish male dataset). M value – whole-body glucose uptake during the hyperinsulinemic euglycemic clamp, Insulin 120 min – insulin
levels achieved at the two hour time point of oral glucose tolerance test.
doi:10.1371/journal.pcbi.1000729.g005
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Supplementary tables S1, S2, S3, S4 list additional reporter

metabolites which are, to our knowledge, not (directly) linked with

any of the known metabolic players in T2DM. Our analysis

nevertheless suggests them as potential nodes of disruption or as

biomarkers. Measurement of the intramyocellular concentration of

the reporter metabolites in patients with diabetes risk may help to

confirm the role of these metabolites in insulin resistance.

Metabolic hubs as reporters
A particularly interesting finding from our analysis is the

identification of highly connected metabolites as reporters,

including ATP/ADP and NAD+/NADH. We hypothesize that

diverse environmental and genetic risk factors result in insulin

resistance when individuals are unable to mediate appropriate

compensatory transcriptional and metabolic responses in other

parts of the network connected by these hubs. Our results also

suggest that alterations in gene expression linked to the highly

connected co-factors are likely to be acquired features of

established T2DM. Analysis of the transcriptional activity of

CREB in the context of ATP concentrations and TCA cycle

activity in skeletal muscle may help to elucidate regulatory

mechanisms leading to these changes.

Constraints and extension of methodology
Reconstructed human metabolic network models are still

evolving, incomplete, and subject to error. Well-annotated

pathways such as central carbon metabolism are thereby likely

to be over-represented in the reporter analysis. In order to partially

compensate for this limitation, we used two reconstructions –

Recon1 and EHMN. As network reconstructions will become

more complete, it will be possible to better assess the extent of this

limitation. Another essential input to our algorithm, in addition to

metabolic network, is gene expression data for the genes

represented in the network. We would like to note that neither

EHMN nor Recon1 network genes were fully represented by the

microarray chips used in the two case studies (Text S1). Only 54%

and 39% genes from the Recon1 and EHMN, respectively, were

represented on the chips used in Mexican-American case study,

while this coverage was 85% and 60% in Swedish case study.

Interestingly, re-analysis of the Swedish Male dataset by using only

a subset of genes from the HG-U133A chip that were represented

also on the HuGeneFL (used in Mexican-American case study)

showed a large overlap between the two reporter metabolite sets

thus obtained (86% for T2DM vs NGT comparison and 69% for

the rest). The details of this analysis, together with relevant

statistical considerations, can be found in Text S1.

Although the present analysis identified common metabolic and

regulatory signatures across the two studies, there are several

differences in the study designs, and therefore the results must be

regarded with certain caution. In addition to relatively low

number of subjects in Mexican-American study, the differences

include fasting state biopsies in Mexican-American study vs post

insulin stimulation biopsies in Swedish study. Furthermore, the age

and BMI (Body Mass Index) of the individuals participating in the

two studies were different and may contribute to the differences in

the observed gene expression patterns. To our knowledge, these

two case studies represent the only human skeletal muscle

transcriptome datasets that were available at the time of here

reported computational analysis. Analysis of new datasets which

may become available in the future will be useful in obtaining

further insight into molecular physiology of skeletal muscle in the

context of T2DM. Moreover, emergence of better or new gene

expression analysis tools will help to cover parts of metabolic

network that are currently inaccessible due to the lack of data.

Extension of the analysis to discover more global regulatory

patterns by using additional bio-molecular interaction data [58]

such as protein-DNA and protein-protein interactions will definitely

be an important step in obtaining a higher resolution picture of

T2DM metabolic phenotypes. Availability of such interaction data

at the high confidence level of metabolic interactions is the current

major bottleneck. Another essential extension of the methodology

will require the use of thermodynamic data for metabolic reactions

[59–61]. Moreover, since mRNA levels do not necessarily correlate

with the protein levels, incorporation of the proteomics data

together with the thermodynamic data will allow more accurate

interpretation of the reporter metabolites in terms of implications

for flux and concentration changes.

Conclusions
We demonstrate the use of a network-guided data integration

approach to discover key, physiologically relevant metabolic and

regulatory nodes in T2DM pathogenesis. The methodology does

not require the use of a priori disease-specific knowledge regarding

the involvement of specific pathways or metabolites, thereby making

it a robust and unbiased analytical framework for studying diseases

linked to perturbations in the cellular metabolic network. Our

results identify the highly connected metabolites ATP and NAD+ as

reporters and potential mediators of the widespread changes in gene

expression linked to insulin resistance in muscle. Moreover, our

results extend previous knowledge about T2DM pathogenesis at the

gene expression level – by reporting additional potential sites of

disruption, e.g., TCA cycle and Kennedy pathway of phospholipid

metabolism. Several metabolites from other pathways were also

found to display significant differential gene expression of the genes

around them and we suggest putative regulatory mechanisms

behind these alterations. Our results suggest a framework of

metabolic disruption observed with insulin resistance and diabetes,

which can be used to test the role of specific pathways in mediating

disease pathophysiology, and more practically, for the identification

of potential biomarkers for preventive and therapeutic monitoring.

Materials and Methods

Gene expression and sequence data
Two datasets used in the study were obtained from the Diabetes

Genome Anatomy Project website (http://www.diabetesgenome.

org). Brief comparison of microarray platforms from the

experimental studies [8,9] used in the current work is presented

in the Text S1. Promoter sequences for all genes were obtained

from the Ensembl Biomart (http://www.ensembl.org/biomart).

The transcriptional start sites (TSSs) were identified based on the

annotation of the Ensembl Biomart sequences. Sequences in the

2800 to 200 base pairs region of the TSS were deemed as

promoter regions for the analysis. Interspersed repeats and low

complexity DNA sequences were masked out.

Metabolic networks
Two reconstructions of human metabolic network, viz., Recon1

[19] and EHMN [62] were used in this study. The Homo Sapiens

Recon1 is a comprehensive literature-based metabolic network

reconstruction that accounts for the functions of 1496 ORFs, 2004

proteins, 2766 metabolites and 3311 metabolic and transport

reactions. The ENMN (Edinburgh Human Metabolic Model) is a

network reconstructed by integrating genome annotation information

from different databases and metabolic reaction information from the

literature. The network contains nearly 3000 metabolic reactions,

which were reorganized into about 70 human-specific pathways

according to their functional relationships. The two models mainly
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differ in the coverage of reactions and in the accounting of

compartmentalization and inter-organelle transport reactions.

Significance of differential gene expression
Preprocessing of the gene expression data was carried out by using

the statistical software environment – R (www.r-project.org). The

probe intensities were obtained and corrected for background by

using robust multi-array average method (RMA) [63] with only

perfect-match (PM) probes. Normalization was performed by using

the quantiles algorithm. Gene expression values were calculated from

the PM probes with the median polish summarization method [63].

All data preprocessing methods were used by invoking them through

the affy package [64] by using rma function. Significance of the

differential expression was calculated by using the empirical Bayes

test [65]. The probe-sets were grouped into genes, and to each gene

the differential expression was defined by choosing the value from the

top level probe-set (using the probe-set rank defined by Affymetrix).

In case of more than one probe-set present at the top level, the

median value was used.

Reporter metabolites
Each metabolite in the metabolic network was scored based on

the scores of its k neighbor enzymes (i.e. enzymes catalyzing

reactions involving that metabolite, either as a substrate or as a

product). Each enzyme was assigned with a p-value for differential

expression based on the p-value of the gene encoding for that

enzyme. In case of isozymes and enzyme-complexes, genes with

most significant expression change were used to score the enzyme

(Figure 1). P-values of genes pi, indicating the significance of

differential expression, were converted to Z-scores Zi by using the

inverse normal cumulative distribution function (CDF) (h{1):

Zi~ h{1 1{pið Þ. All metabolite nodes were assigned a Z-score,

Zmetabolite, calculated as aggregated Z scores of the k neighbor

enzymes: Zmetabolite~
1

k

X
Zni. Zmetabolite scores were then corrected

for the background distribution by subtracting the mean (mk) and

dividing by the standard deviation (sk) of the aggregated Z scores

derived by sampling 10000 sets of k enzymes from the network:

Zcorrected
metabolite~

Zmetabolite{mkð Þ
sk

. Corrected Z-scores were then trans-

formed to p-values by using CDF. Metabolites with p-values less

than 0.05 were deemed as reporter metabolites. Detailed informa-

tion on the reporter scoring can be found in the Text S1 and [14].

Transcription factor binding site enrichment
For all reporter metabolites, we assessed enrichment of known

protein-binding sequence motifs in the promoter regions (2800 to

200 base pairs relative to the transcription start site) of the

corresponding neighbor genes. In order to obtain robust results,

we only considered sets consisting of at least 5 up- or down-

regulated genes. For each reporter metabolite, the sequences of all

enzyme neighbors were used as the positive sequence set, whereas

all other enzymes in the network model were used as the negative

(background) set. Known motifs were identified by using position

frequency matrices of all known motifs stored in the TRANSFAC

database [66]. The motif enrichment analysis tool ASAP [67] was

used to scan all TRANSFAC motif matrices against the positive

sequence sets of each reporter metabolite. The negative sequence

sets were used together with 2nd order background model. A one-

tailed Fisher’s exact test was used to assess per-sequence over-

representation of any known motif, and the threshold used to

calculate significance for each TRANSFAC matrix was set to 70%

of the highest-scoring sequence motif. The q-value cut-off criteria

[29] was used as a post-data measure of statistical significance of all

motifs found to be significantly enriched.

Supporting Information

Text S1 Supporting text describing scoring methodology and

datasets.
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Table S4 Reporter metabolites for Mexican-American dataset

(EHMN).
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Table S5 Overlapping reporter metabolites between two case

studies (Recon1).
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studies (EHMN).

Found at: doi:10.1371/journal.pcbi.1000729.s007 (0.06 MB XLS)

Table S7 Results of the motif enrichment analysis.
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Table S8 Experimentally studies linking metabolite levels to

T2DM pathophysiology
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within the Swedish male and Mexican-American datasets based

on the overlapping reporter metabolites (EHMN network).
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