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Abstract 
Introduction 
 

Coronary artery bypass graft (CABG) is associated with periods 
of ischaemia and reperfusion, which may lead to myocardial dysfunction. In 
clinical studies, hyperbaric oxygen (HBO2) treatment following an acute 
myocardial infarction (AMI), has been shown to limit myocardial injury and 
improve myocardial function. The primary efficacy objective of this study was 
to determine if systemically preconditioning coronary artery disease (CAD) 
patients with HBO2, prior to first time elective on cardiopulmonary bypass 
(CPB) CABG surgery, leads to a remote preconditioning like effect that is 
capable of improving myocardial function following CABG. The main 
secondary objectives of this study were to assess the safety of HBO2 
preconditioning and, its effects on myocardial injury and post operative 
intensive care unit (ICU) length of stay. The exploratory secondary objectives 
were to assess the effects of HBO2 preconditioning on surrogate serum 
biomarkers of endothelial and neutrophilic adhesiveness and, myocardial 
biomarkers of cardioprotection.    

 
Methods 

In this single centre, randomised control study, 81 patients, who 
were having first time elective on CPB CABG surgery, were recruited. 40 were 
randomised to the Control Group and 41 to the HBO2 Group. Treatment with 
HBO2 preconditioning was completed approximately 2 hours prior to CPB and 
consisted of two 30 minute sessions of 100% oxygen at 2.4 atmospheres 
(ATA) separated 5 minutes apart. Efficacy was measured by determining peri-
operative haemodynamic measurements using a pulmonary artery (PA) 
catheter. Safety was measured by collecting peri-operative data on myocardial 
injury and adverse events (AEs) and, post operative days spent in ICU. Using 
collected peri-operative venous blood, myocardial injury was determined by 
measuring the concentration of serum Troponin-T. In these same venous blood 
samples, endothelial and neutrophilic adhesiveness was indirectly assessed by 
measuring the concentrations of sE-selectin, sP-Selectin and sICAM-1 and, 
sPSGL-1, respectively. Using intra-operative right atrial biopsies, the degree of 
cardioprotection provided by HBO2 preconditioning was determined by 
measuring the quantity of myocardial eNOS and Hsp72. Analysis of the serum 
and myocardial biomarkers were done by ELISA. 
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Results 
 

Compared to the Control Group, the HBO2 Group demonstrated 
a significant improvement in left venticular stroke work (LVSW) 24 hours post 
CPB (p=0.005). While there were no significant safety findings, there were 
fewer cardiovascular, pulmonary, renal and neurological AEs in the HBO2 
Group. This group also had a significantly shorter post operative ICU length of 
stay. 1 hour post HBO2 preconditioning, the concentration of sPSGL-1 
increased significantly in the HBO2 Group. At all time points, the peri-oprative 
concentration of sPSGL-1 was higher in the HBO2 Group but none of the 
changes were significant. The latter was also the case for the peri-operative 
concentration of sP-Selectin, apart from following the period of ischaemic and 
reperfusion, when it was lower in the HBO2 Group. Intra-operatively, the 
concentration of sE-Selectin increased significantly in the HBO2 Group and 
was higher in this group throughout the peri-operative period. During this 
intra-operative period also, the concentration of sICAM-1 was higher in the 
HBO2 Group and the increase was particularly significant following the period 
of ischaemia and reperfusion. 24 hours post CPB, the concentrations of all the 
serum soluble adhesion molecules were higher in the HBO2 Group. No 
significant differences were observed between the groups with respect to the 
concentrations of serum Troponin-T and, the quantity of myocardial eNOS and 
Hsp72. However, in the HBO2 Group, the peri-operative concentrations of 
serum Tropinin-T, eNOS and Hsp72 were lower. Furthermore, while there was 
a pre-CPB reduction of both eNOS and Hsp72, following ischaemia and 
reperfusion, the quantity of both these myocardial biomarkers were increased. 
 
Conclusion 
 

From this study, it can be concluded that HBO2 preconditioning of 
patients with CAD prior to on CPB CABG, is capable of improving 
myocardial function 24 hours post CABG. Additionally, the data suggest that 
this may also be a safe modality of treatment as it did not lead to significant 
post operative AEs, limited peri-operative myocardial injury and reduced post 
operative ICU length of stay. It also led to increased post operative 
concentrations of the measured surrogate biomarkers of endothelial and 
neutrophilic adhesiveness, with a number of significant peri-operative changes. 
Finally, while HBO2 treatment did not lead to significant changes in the 
myocardial biomarkers of cardioprotection, the quantities of these increased in 
the HBO2 Group following ischaemia and reperfusion, suggesting that it may 
be capable of inducing endogenous cardioprotection following ischaemia and 
reperfusion.  
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1. Introduction 
 

Coronary artery bypass graft (CABG) surgery has been shown 

to be a life saving procedure (Guyton, 2006) which leads to longer 

survival (Eagle et al., 2004) and better quality of life (Loponen et al., 2007) 

when compared with medical therapy or percutaneous intervention, in specific 

groups of patients suffering from coronary artery disease (CAD) (Eagle et al., 

2004). This surgical procedure, when performed during cardiopulmonary 

bypass (CPB), requires a relatively bloodless operating field without any 

myocardial contractions. This is achieved by clamping the aorta with a cross-

clamp, which induces a controlled global myocardial ischaemia due to the 

reduced coronary perfusion. As a result of this myocardial ischaemia, the heart 

becomes relatively motionless heart and this facilitates the anastamosis of the 

bypass conduit to the coronary artery (distal anastamosis). In order to protect 

the myocardium during this period of ischaemia, one of two very different 

myocardial protective strategies maybe utilised. One strategy involves the use 

of a potassium enriched solution known as St. Thomas Cardioplegia 

solution (Hearse et al., 1976) during the global ischaemic period. This 

hyperkalaemic solution causes a cardiac arrest and stand still, while at the same 

time providing the myocardium with substrates necessary to keep it 

metabolically viable (Rosenkranz, 1995). The other strategy, known as 

hypothermic (28oC-32 oC) intermittent ischaemic fibrillatory arrest (Lucas et 

al., 1980), involves the use of short, repeated intervals of controlled global 

ischaemia, by clamping the aorta, together with a controlled electrically 
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induced ventricular fibrillation. This leads to a relatively motionless heart 

while also protecting the myocardium (Abd-Elfattah et al., 1995).    

While on CPB CABG using either of these myocardial 

protective strategies has been shown to be a safe and effective means of 

providing myocardial protection (Alex et al., 2005, Alhan et al., 1996, 

Anderson et al., 1994, Liu et al., 1998, Scarci et al., 2009), the need for the 

application of an aortic cross-clamp to achieve a bloodless operating field 

without myocardial contractions, followed by its removal, also means that 

during CABG surgery, the myocardium is exposed to durations of ischaemia 

followed by durations of reperfusion. This ischaemia and reperfusion leads to 

an injury known as ischaemic reperfusion injury (IRI) (Venugopal et al., 2009) 

which can cause mortality, myocardial infarction (MI), unstable angina, 

ventricular failure, life-threatening arrhythmia, renal insufficiency and 

stroke (Alexander et al., 2005, Desai et al., 2004, Eagle et al., 2004, Edwards et 

al., 1994, Ferguson et al., 2002, Manning and Hearse, 1984). Despite efforts to 

improve the post operative outcomes, post CABG adverse events (AEs) remain 

common and add substantially to hospital costs for this procedure (Brown et 

al., 2008). It has been reported that over half of in-hospital deaths after CABG 

occur in patients with normal baseline left ventricular function and, are related 

to IRI and low cardiac output (CO) in post operative period (O'Connor et al., 

1998). Furthermore, 25% to 45% of patients dying soon after CABG have 

histological evidence of IRI at autopsy (Bulkely and Hutchins, 1977, Moore 

and Hutchins, 1981, Weman et al., 2000). 
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 1.1 Myocardial Ischaemic Reperfusion 

Injury 

The common denominator of myocardial IRI involves the acute 

interruption of coronary blood flow, due to obstruction, followed by the return 

of coronary flow when that obstruction is removed or bypassed (Piper et al., 

1998, Prasad et al., 2009). During the period of no flow, cells are metabolically 

compromised by hypoxic conditions that cause cellular dysfunction and 

eventually lead to cell death. When the coronary blood flow is restored, this 

return of myocardial perfusion, paradoxically, despite restoring the ischaemic 

myocardium with oxygen (O2) and metabolic substrates, leads to another form 

of myocardial damage termed ‘reperfusion injury’ (Ferrari et al., 1993, Prasad 

et al., 2009). This is defined as the death of myocytes, alive at the time of 

reperfusion, as a direct result of one or more events initiated by 

reperfusion (Braunwald and Kloner, 1985). One of the causes for reperfusion 

injury is a second period of decreased flow that occurs during reperfusion. This 

is known as the no-reflow phenomenon (Ito, 2006, Kloner et al., 1974, Krug et 

al., 1966). This phenomenon is associated with an increased incidence of acute 

myocardial infarction (AMI), myocardial rupture and death (Abbo et al., 

1995). The mechanism underlying this reperfusion injury is attributed to 

plugging of the vasculature with neutrophils (Engler et al., 1983) and 

platelets (Michaels et al., 2000), capillary endothelial damage and intraluminal 
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swelling (Engler et al., 1983) and, cellular oedema compressing the 

capillaries (Manciet et al., 1994).  

The cellular damage that results from myocardial ischaemia and 

reperfusion can be reversible or irreversible and is related to the duration of the 

preceding ischaemic insult (Jennings and Reimer, 1983). When myocardial 

ischaemia is limited to periods of less than 20 minutes, reperfusion leads to 

recovery following transient changes in cellular structure, function and 

metabolism. These changes manifest clinically as depressed myocardial 

contractility, which may persist for a variable period of time. This condition is 

not associated with myocardial necrosis and is termed ‘myocardial stunning’. 

This is defined as the mechanical dysfunction that persists after reperfusion of 

previously ischaemic tissue in the absence of irreversible damage including 

myocardial necrosis (Hess and Kukreja, 1995). However, when myocardial 

blood flow is restored after an ischaemic period of greater than 20 minutes, the 

myocardium sustains a reperfusion injury that results in myocardial necrosis 

and the extent is directly proportional to the duration of the ischaemic 

insult (Jennings and Reimer, 1983).  
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1.2  The Inflammatory Response of 

Ischaemic Reperfusion Injury 

 
Myocardial ischaemia elicits an acute inflammatory response 

that is greatly augmented by reperfusion (Hearse and Bolli, 1992, Steffens et 

al., 2009, Suleiman et al., 2008). In the human heart, this acute inflammatory 

response is associated with the production of reactive oxygen species (ROS) 

and lipid peroxidation products and, is accompanied by intra-coronary release 

of pro-inflammatory cytokines and vasoactive substances (Vaage and Valen, 

1993). Part of this ischaemic-reperfusion induced inflammatory damage is 

mediated by neutrophils which accumulate in myocardium under the influence 

of chemo-attractants (Entman et al., 1991, Mehta et al., 1988, Reimer et al., 

1989, Vinten-Johansen, 2004). In addition to physically plugging 

capillaries (Engler et al., 1983), neutrophils also bind to the endothelial surface 

and cause endothelial cell dysfunction and tissue destruction through a variety 

of cytotoxic mechanisms that involve ROS, cytotoxic enzymes and 

cytokines (Inauen et al., 1990).  
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1.2.1 Neutrophil & Endothelial Adhesion 

Molecules 

Neutrophil mediated endothelial injury is dependent on the 

interaction of adhesion glycoproteins [L-selectin, Sialyl Lewisx, P-selectin 

glycoprotein ligand-1 (PSGL-1), and CD11/CD18] expressed on the surface of 

circulating neutrophils, with adhesion molecules expressed on the surface of 

the endothelium [P-selectin, E-selectin, and intracellular adhesion molecule-1 

(ICAM-1)].  

1.2.1.1 The Selectin Family Of Adhesion Molecules 

The selectin family of adhesion molecules mediates the initial 

capture of neutrophils from the blood stream, before their firm adhesion and 

diapedesis at the sites of tissue injury and inflammation (Ebnet and Vestweber, 

1999). L-selectin is expressed constitutively on  neutrophils (Bevilacqua and 

Nelson, 1993) and is rapidly shed after neutrophil activation (Kishimoto et al., 

1989). P-selectin, is constitutively stored in the Weibel-Palade bodies of 

endothelial cells and in the α granules of platelets and, is rapidly mobilised to 

the cell surface in response to various inflammatory stimuli like thrombin, 

histamine, and ROS (Lorant et al., 1991, Patel et al., 1991). E-selectin 

expression is largely restricted to endothelial cells and is activated by stimuli 

such as endotoxins, the pro-inflammatory cytokine interleukin (IL)-1 and 

tumour necrosis factor (TNF) (Bevilacqua et al., 1989). Unlike P-selectin, E-

selectin expression takes 4-8 hours to occur following stimulation (Lasky, 
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1995) as E-selectin expression requires de novo messenger mRNA and protein 

synthesis. It usually returns to baseline levels 24 hours after the stimulating 

event. 

In the first 20 minutes after tissue injury, neutrophil rolling on the 

vascular endothelium is mainly mediated by P-selectin, with minimal L-

selectin contribution (Griffin et al., 1990). Subsequently, the role of P-selectin 

diminishes due to internal degradation, and L-selectin becomes the principal 

mediator of neutrophil rolling. There is little appreciable role for E-selectin in 

the early response to injury. Rather, initial interaction between the neutrophil 

and the vascular endothelium, mediated via P-and L-selectins, is later followed 

by a stronger interaction involving E-selectin and subsequently integrins, prior 

to extravasation of the neutrophil, via the blood vessel wall, into lymphoid 

tissues and to the sites of inflammation (Lasky, 1995). To date, the best 

characterised cell adhesion ligand for P- and E-selectins is PSGL-

1 (Cummings, 1999), which is found on the surface of neutrophils. It is a 

stronger ligand for P-selectin than for E-selectin (Moore et al., 1992).  
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1.2.1.2 ICAM-1  

ICAM-1, is expressed on the surface of endothelial cells, 

epithelial cells and fibroblast (Rothlein et al., 1986). Its expression is induced 

by cytokines IL-1, IL-6 and TNF-α (Frangogiannis et al., 2002, Frangogiannis 

et al., 1998). Once stimulated, its expression is significantly increased within 4 

hours of induction and cell surface levels may remain elevated for 

days (Lindsberg et al., 1996). ICAM-1 is one of the primary ligands for the 

neutrophilic adhesion molecule, CD-18 (Albelda et al., 1994).  

1.2.1.3 Ischaemic Reperfusion Injury & Adhesion 

Molecules 

 In experimental mouse models, ischaemia followed by 

brief (Palazzo et al., 1998a) and prolonged (Jones et al., 2000) periods of 

reperfusion have been shown to upregulate P-Selectin expression in the 

coronary circulation and enhance neutrophil accumulation. However, in mice 

that were made genetically deficient for P-Selectin, neutrophil accumulation 

and myocardial injury were attenuated following IRI (Jones et al., 2000, 

Palazzo et al., 1998a). Similarly, it also been demonstrated that E-Selectin was 

upregulated in the mouse myocardium following ischaemia and 

reperfusion (Jones et al., 2000), and that genetic deficiency of E-Selectin 

conferred myocardial protection by limiting myocardial infarct size owing to 

the attenuation of neutrophil accumulation (Sligh et al., 1993). It has also been 

demonstrated that mice that were made genetically deficient of ICAM-1, 

showed a significant reduction in myocardial necrosis in association with an 
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attenuation of myocardial neutrophil infiltration following both brief (Palazzo 

et al., 1998b) and extended (Jones et al., 2000) periods of reperfusion.  

Due the deleterious effects of neutrophil-endothelial 

interactions via the selectin group of adhesion molecules, many selectin 

inhibitory therapies have been developed. These therapies involve the use of 

monoclonal antibodies (Nigam and Kopecky, 2002), Sialyl Lewisx analogues, 

PSGL-1 analogues (Ley, 2003), nitric oxide (NO) enhancing agents  (Li et al., 

2009) and small-molecule selectin antagonist (Onai et al., 2003). More 

recently, there has also been evidence to suggest a role for hyperbaric oxygen 

(HBO2) in limiting neutrophil-endothelial interactions (Buras and Reenstra, 

2007). 
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1.3  Ischaemic Reperfusion Injury & 

Reactive Oxygen Species 

While the lack of oxygen during ischaemia is deleterious to 

myocardial survival, the restoration of oxygen during reperfusion of the 

previously ischaemic myocardium, paradoxically, has also been demonstrated 

to lead to a myocardial injury which is worse than the injury induced by 

ischaemia alone (Hearse et al., 1973).  It has now been established that the 

presence of oxygen during the early moments of reperfusion of the ischaemic 

myocardium leads to an oxidative stress via a burst of ROS (Kevin et al., 2003, 

Park and Lucchesi, 1999). These ROS arise from a variety of sources, such as 

the xanthine oxidase system, activated neutrophils, the electron transport chain 

of mitochondria, and the arachidonic acid pathway (Kloner et al., 1989, 

Kukreja and Hess, 1992).   

ROS have been suggested to be responsible for the post 

ischaemic myocardial dysfunction characterized by myocardial stunning and 

post ischaemic arrhythmia (Kevin et al., 2005, Kloner et al., 1989, Kukreja and 

Hess, 1992). At present, controversy exist as to as to whether ROS leads to MI 

as there have been some experimental studies which support the use of anti-

oxidant (Ambrosio et al., 1986, Chi et al., 1989, Kilgore et al., 1994, Naslund 

et al., 1986) and others (Downey et al., 1991, Nejima et al., 1989, Ooiwa et al., 

1991, Uraizee et al., 1987, Vanhaecke et al., 1991) which do not support the 

use of anti-oxidants to limit the possibility of ROS induced MI.  
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In an experimental study, it was demonstrated that when the 

myocardium was exposed to ischaemia, the generation of ROS rapidly 

increased, but this increase did not occur at the same rate during subsequent 

episodes of ischaemia and reperfusion (Das et al., 1999b). It was suggested that 

the initial ischaemia and reperfusion led to the development of an oxidative 

stress that adapted the myocardium to the subsequent oxidative stresses of 

ischaemia and reperfusion and this, resulted in the observed ROS mediated 

reduction in ischaemia-reperfusion induced injury. The myocardial protective 

abilities of the ROS adapted myocardium were completely abolished when the 

myocardium was pre-perfused with N-acetyl cysteine to scavenge ROS, 

suggesting that redox signaling may play a crucial role in generating survival 

signals during myocardial adaptation to ischaemia (Maulik et al., 1998). In 

keeping with this, ROS have been demonstrated to function as signaling 

molecules (Herrlich and Bohmer, 2000, Rosette and Karin, 1996). By initiating 

genetic expression and, the consequent synthesis of a variety of functional and 

structural proteins, ROS signaling may allow for the adaptation and survival of 

the cells (Das and Maulik, 2003, Das and Maulik, 2004) or, depending on the 

intensity and duration of the signal, activate the processes responsible for the 

cell damage or death (Buttke and Sandstrom, 1994, Das, 2001). Thus, it is 

possible that an oxidative attack may induce either a loss or a gain of a 

function or lead to a switch to a different function. 
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1.4  Ischaemic Reperfusion Injury, Nitric 

Oxide & Nitric Oxide Synthase 

The administration of NO donors prior to ischaemia have been 

demonstrated to reduce myocardial infarct size and endothelial dysfunction as 

a result of IRI (Bolli, 2001). Furthermore, pre-treatment with drugs that 

enhance NO release such as statins (Lefer et al., 1999), calcium channel 

antagonist (Asanuma et al., 2001), ACE inhibitors (Hartman et al., 1994) and 

dexamethasone (Hafezi-Moghadam et al., 2002), have also been shown to 

protect the myocardium against IRI. While these provide evidence to support 

the role for exogenous administration of NO to initiate protection against IRI, 

there is also evidence, based on models of ischaemic preconditioning (IPC), 

demonstrating a role for endogenously induced NO in mediating early (Han et 

al., 2008b) and delayed (Bolli, 2000) myocardial protection against IRI.  

1.4.1  Nitric Oxide  & Nitric Oxide Synthase 

NO, first characterized as endothelium-derived relaxation factor, 

is a ubiquitous signalling messenger molecule that is involved in 

neurotransmission, inflammatory and immune responses and, vascular 

homeostasis (Gong et al., 2004, Moncada et al., 1988). It is formed by the 

oxidation of  the guanidine moiety of L-arginine resulting in the products NO 

and L-citrulline (Schulz et al., 2004). This reaction is catalysed by nitric oxide 

synthase (NOS). Once formed, it diffuses freely and has a  half-life of only 3-5 
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seconds (Tuteja et al., 2004) before being rapidly oxidized to the stable 

inactive end products of nitrite and nitrate (NO-
2  and NO-

3) (Geller and Billiar, 

1998).  

At present, there are three known isoforms of NOS, neuronal 

NOS (also known as nNOS or NOS 1), inducible NOS (also known as iNOS or 

NOS 2) and endothelial NOS (also known as eNOS or NOS 3). All three 

isoforms have been shown to be present in the myocardium (Forstermann et al., 

1994, Massion et al., 2005, Xuan et al., 2000) and all have been found to play a 

role in myocardial NO production (Jugdutt, 2002).  nNOS and eNOS are 

continuously present and are thereby termed constitutive NOS (cNOS). In 

contrast, iNOS, which is not typically expressed in resting cells, must first be 

induced by a stress such as ischaemia (Bolli et al., 1997), hypoxia (Jung et al., 

2000), lipopolysaccharides (Yin et al., 2007) and cytokines (Balligand et al., 

1994). 
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1.4.2  Nitric Oxide &  Its Mechanisms for 

Myocardial Protection 

NO has a negative inotropic and chronotropic (Finkel et al., 

1992) effect on the myocardium. The capacity for NO to reduce myocardial 

contractility (Brady et al., 1993) serves to reduce oxygen consumption and 

demand. This NO function involves cyclic guanosine monophosphate (cGMP),  

a secondary messenger produced by the action of NO on soluble guanylate 

cyclase (Mittal CK, 1982). Guanylate cyclase catalyses the conversion of 

guanosine triphosphate (GTP) to cGMP. cGMP exerts it protective effects by 

reducing the influx of calcium through L-type calcium channels (Han et al., 

1996, Mery et al., 1993). This, prevents calcium overload which is one of the 

critical features of mitochondrial dysfunction during IRI (Jennings and Reimer, 

1991). 

NO has also been shown to maintain coronary vasodilatory 

tone (McGowan et al., 1994), reduce post ischaemic hyperpermeability (Kubes 

and Granger, 1992, Noel et al., 1995), decrease platelet adhesion and 

aggregation (Radomski et al., 1987), reduce neutrophil adherence, migration 

and associated injury (Conger and Weil, 1995, Jordan et al., 1999, Ronson et 

al., 1999) and, impair mast cell activation (Johnson et al., 1990). It also inhibits 

neutrophilic generation of the ROS superoxide (Kubes et al., 1991, Sato et al., 

1996). The neutrophil anti-adhesive effects mediated by NO occurs via NO’s 

ability to inhibit the vascular endothelial expression of adhesion molecules, in 
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particular P-selectin, E-selectin and ICAM-1 (De Caterina et al., 1995, Ohashi 

et al., 1997).  
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1.5 Ischaemic Reperfusion Injury & Heat 

Shock Proteins 

Studies in the early 1990’s demonstrated that increased 

expression of Heat Shock Protein (Hsp) may protect the myocardium from a 

stressful stimulus such as ischaemia and reperfusion (Donnelly et al., 1992, 

Heads et al., 1996, Radford et al., 1996, Yellon et al., 1992). Amongst the 

many Hsp, the major inducible form of the Hsp70 stress protein, Hsp72, has 

been shown to directly protect against myocardial ischaemic damage, improve 

metabolic and functional recovery and, reduce myocardial infarct size (Hutter 

et al., 1996, Marber et al., 1995, Radford et al., 1996). 

Experimental studies have demonstrated that short durations of 

global or regional myocardial ischaemia lead to the induction of myocardial 

Hsp70 (Currie, 1987, Dillmann et al., 1986, Marber et al., 1993) and that the 

increase in Hsp70 was associated with the protection of the myocardium 

against a subsequent ischaemic episode (Currie et al., 1988). This increase in 

Hsp70 was also observed following repeated, brief episodes of coronary artery 

occlusion prior to prolonged ischaemia and was associated with reductions in 

myocardial infarct size (Marber et al., 1993). The latter findings also suggests 

that the degree of cardioprotection correlated directly with the quantity of 

Hsp70 produced by the preceding stress event (Marber et al., 1994). 
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1.5.1 Heat Shock Protein 70 & Its Mechanism For 

Myocardial Protection 

  During myocardial IRI, there is an oxidative stress that is 

associated with the generation of ROS (Misra et al., 2009). When the 

production of ROS exceeds the capacity of endogenous detoxification 

mechanisms, myocardial cells are damaged, either by ROS directly or by the 

ROS-dependent triggering of a cascade of pro-inflammatory events. Hsp may 

favourably interfere with the ROS-induced injuries because of its role as 

biological molecular chaperones in ensuring quality control of protein folding 

in major subcellular compartments (Feder and Hofmann, 1999, Li et al., 2002, 

Santoro, 2000). Hsp70 in particular has a number of cytoprotective functions 

such as ensuring the appropriate folding of proteins (Bukau and Horwich, 

1998), the maintenance of structural proteins (Palleros et al., 1991), the 

refolding of misfolded proteins (Palleros et al., 1991), the translocation of 

proteins across membranes and into various cellular  compartments (Bukau 

and Horwich, 1998, Chirico et al., 1988, Deshaies et al., 1988), the prevention 

of protein aggregation (Bukau and Horwich, 1998) and, the degradation of 

unstable proteins (Bukau and Horwich, 1998). Additionally, there are also 

studies that have shown that levels of Hsp closely parallel the activity of 

antioxidant enzymes such as catalase. This indirectly supports the suggestion 

that Hsp may also be involved in pathways which are activated to counteract 

ROS-dependent cellular and tissue damage (Currie et al., 1988, Karmazyn et 

al., 1990, Mocanu et al., 1993). 



 

 
35 

 

Hsp may also function as immunodominant signalling 

molecules that is capable of downregulating the production of pro-

inflammatory cytokines, such as TNF-α, interferon-γ, IL-1α, IL-1β, and IL-

6 (Pockley, 2002) and also improving cellular tolerance to inflammatory 

cytokines such as TNF-α and IL-1 (Jaattela and Wissing, 1993, Muller et al., 

1993). In a myocardial model of ischaemia and reperfusion, it has been 

demonstrated that the upregulation of Hsp70 is associated with  the 

suppression of inflammatory cytokines in  (Grunenfelder et al., 2001).  It has 

also been proposed that Hsp could interfere with the signaling pathway of the 

transcription factor NFκB. This pathway is involved in the transcription of 

several pro-inflammatory genes. It has been shown that the heat shock 

response inhibits the activation of the NFκB pathway, resulting in suppression 

of the cellular inflammatory response (Malhotra and Wong, 2002).  The down 

regulation of cytokine production by Hsp may account for the Hsp-dependent 

protection of the myocardium during experimental ischaemia and reperfusion.  

The myocardial protection provided by Hsp may also be linked 

to mechanisms involving NO and NOS. Although the exact mechanism 

involved in the interaction between NO and Hsp is unknown, evidence 

suggests that NO could trigger Hsp70 synthesis and expression, and this seems 

to ultimately protect the myocardial cells against the cytotoxic effects of   

TNF-α (Latchman, 2001). Additionally, it has also been demonstrated in an 

experimental model of myocardial ischaemia that increased activity of iNOS 

was associated with reduced myocardial injury and that this protective effect 



 

 
36 

 

was paralleled by an elevated expression of Hsp70, with reduced activity of 

NFκB (Zingarelli et al., 2002).  

Hsp may also play a role in cellular protection during periods of  

energy depletion as cellular ATP depletion has been shown to induce Hsp 

expression (Benjamin et al., 1992). It has been demonstrated that treatments 

leading to the accumulation of cellular Hsp70 can reduce protein aggregation 

resulting from ATP loss (Kabakov et al., 2002). Furthermore, it has also been 

shown that heat shock not only results in Hsp70 induction but also protection 

from energy deprivation (Gabai and Kabakov, 1993). This suggest that Hsp 

accumulation may confer an ‘ATP-sparing’ effect (Gabai and Kabakov, 1993, 

Kabakov, 1997).  

In addition to an anti-apoptotic function (Garrido et al., 2001, Li 

et al., 1996), Hsp70 has also been reported to improve the process of fibrotic 

repair after myocardial injury by enhancing the synthesis of collagen and repair 

of ion channels (Latchman, 2001). It has been shown that the opening of    

ATP-sensitive potassium channels, especially in the mitochondria, is a crucial 

step for ATP synthesis in myocardial cells (Eells et al., 2000). By repairing 

these ion channels under stressful conditions, Hsp70 upregulation may protect 

the mitochondrial energy metabolism as well as cellular function in the injured 

myocardium (Sammut et al., 2001).  
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1.6  Myocardial Preconditioning 

  The concept of myocardial preconditioning began with the 

understanding from experimental studies in late 1970’s which demonstrated 

that while 40 minutes of sustained ischaemia was associated with severe ATP 

depletion and cell death (Jennings et al., 1978, Reimer and Jennings, 1979), 

four 10 minute periods of coronary artery occlusion produced no more ATP 

depletion than a single 40 minute occlusion and did not cause necrosis (Reimer 

et al., 1986). Its was observed that intermittent brief periods of ischaemia 

prevented the cumulative effects of a prolonged period of ischaemia by 

reducing harmful catabolites  such as lactate and hydrogen ions which were 

washed out with each reperfusion (Reimer et al., 1986). These findings led to 

the hypothesise that multiple brief ischaemic episodes may actually protect the 

myocardium during a subsequent sustained ischemic insult. This hypothesis 

was later proven (Murry et al., 1986) and marked the beginning for the era of 

myocardial preconditioning. In that 1986 study by Murry, anaesthetised open-

chest dogs were exposed to four cycles of 5 minutes of coronary artery 

occlusion followed by 5 minutes reperfusion before being exposed to 40 

minutes of coronary occlusion and 4 days of reperfusion. The protocol of four 

short cycles of ischaemia followed by reperfusion was termed ischaemic 

preconditioning (IPC). That study demonstrated that dogs exposed to IPC 

developed significantly smaller infarct sizes than the control animals. 
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1.6.1  Ischaemic Preconditioning 

Since the discovery of IPC, its myocardial protective capacity 

has been widely studied (Bolli et al., 2007, Das and Das, 2008, Downey et al., 

2007, Hausenloy et al., 2005) and now, it is clear that IPC is cardioprotective 

against myocardial IRI (Bolli, 2001, Bolli et al., 2007). A recent meta-analysis 

concluded that IPC reduces post operative ventricular arrhythmias, inotrope 

use and shortens post operative intensive care unit (ICU) stay (Walsh et al., 

2008). 

IPC induces two distinct windows for myocardial 

protection (Kuzuya et al., 1993, Marber et al., 1993). The first window of 

myocardial protection, known as the ‘early phase’ or ‘Classical 

Preconditioning’ (Pagliaro et al., 2001) develops within minutes and lasts 1-2 

hours after IPC while the second window, known as the ‘late phase’ or 

Delayed Preconditioning’ (Bolli et al., 2007), develops within 24 hours 

following the initial IPC and lasts for  48-72 hours. The early phase of IPC has 

been shown to result from the rapid post-translational modifications of existing 

myocardial proteins whereas the late phase of IPC is mediated by 

cardioprotective gene expression and the synthesis of new proteins in the 

myocardium (Bolli et al., 2007). Furthermore, the early phase of IPC has been 

shown to protect against MI but fails to limit the degree of myocardial 

contractile dysfunction or stunning while, the late phase of IPC protects against 

both myocardial cell death and preserves post ischaemic left ventricular 

function (Bolli et al., 2007). 
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The initial triggers for IPC, which are released within minutes 

of ischaemia, include adenosine, opioids, bradykinins and prostaglandin. In the 

early phase of IPC, these molecules lead to the activation of G-protein-coupled 

receptors and mitochondrial KATP channels, ROS generation and, the 

stimulation of a series of protein kinases which include protein kinase C 

(PKC), tyrosine kinase and members of the Mitogen Activated Protein Kinase 

(MAPK) family (Das and Das, 2008, Penna et al., 2009). Following the initial 

trigger, the effects of the late phase of IPC are mediated mainly via newly 

synthesised proteins such as NOS and maybe even Hsp (Das and Das, 2008, 

Heusch et al., 2008).  

In the first clinical application of IPC in 1993, which involved 

aortic clamping, it was reported that a protocol of IPC during surgery led to 

preservations of ATP levels in the myocardium of patients undergoing on CPB 

CABG (Yellon et al., 1993). It was subsequently reported that in patients 

undergoing on CPB CABG, a protocol of IPC was also capable of reducing 

myocardial injury (Jenkins et al., 1997). In addition to ATP preservation (Lu et 

al., 1997) and attenuating myocardial injury (Ji et al., 2007, Szmagala et al., 

1998, Teoh et al., 2002a, Teoh et al., 2002b), IPC during cardiac surgery has 

also demonstrated the ability to improve ventricular function (Lu et al., 1997, 

Wu et al., 2002, Wu et al., 2001), limit arrthymias (Wu et al., 2002), heart rate 

variability (Wu et al., 2005) and inotrope use (Wu et al., 2002). However, the 

risks associated with repeated clamping and unclamping of the aorta, as 

required for an IPC protocol, in addition to the routine clamping and 

unclamping that has to occur to perform on CPB CABG surgery, has meant 
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that the routine clinical use of IPC has been limited. Due to this, the concept of 

myocardial preconditioning has been further investigated using remote IPC 

(RIPC), which does not require an invasive intra-operative myocardial IPC 

protocol, and, pharmacological preconditioning using adenosine, bradykinin, 

opioids and inhalation anaesthetics (Granfeldt et al., 2009, Hausenloy and 

Yellon, 2009, Venugopal et al., 2009). 

1.6.2 Remote Ischaemic Preconditioning 

Myocardial RIPC involves applying the IPC protocol to an 

organ or tissue which is distant from the heart (Hausenloy and Yellon, 2008). 

This method of myocardial preconditioning was first discovered in 1993, when 

it was observed that a period of  brief ischaemia and reperfusion in the left 

circumflex coronary artery territory of dog hearts, prior to a prolonged period 

of acute coronary occlusion in the left anterior descending (LAD) artery 

territory, later led to a substantial reduction in myocardial infarct 

size (Przyklenk et al., 1993). Subsequently, the cardioprotective effects of 

RIPC has also been demonstrated using RIPC protocols to the kidney (Pell et 

al., 1998), intestine (Gho et al., 1996) and limb (Birnbaum et al., 1997). 

The mechanism for RIPC is unclear but it appears to closely 

resemble that for IPC (Granfeldt et al., 2009). At present, there are three 

general theories regarding the mechanism for RIPC (Hausenloy and Yellon, 

2008, Walsh et al., 2009). The first theory is the neural hypothesis which 

suggests that ischaemic remote organs release endogenous substances, such as 

adenosine and bradykinin, which activate local afferent neural pathways to 
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trigger end-organ protection. The second theory is the humoral theory which 

suggests that the remote organs release humoral mediators, which again maybe 

adenosine and bradykinin, into the bloodstream and these substances are 

transported to distant organs where they directly trigger intracellular survival 

pathways. The third theory is the inflammatory suppression theory which 

suggests that the transient remote organ ischaemia produces a systemic 

inflammatory response which is capable of protecting distant organs from a 

subsequent IRI. While it is unclear which of these theories are accurate, it is 

also possible that all are true and that they maybe an interaction between all 

mechanisms of all three theories. 

In the clinical setting, in 2005, a study was conducted where the 

non-dominant arm was rendered ischaemic by inflation of a blood pressure 

cuff for 5 minutes followed by 5 minutes of reperfusion for 3 

cycles (Loukogeorgakis et al., 2005). Following this, the contralateral arm was 

subjected to 20 minutes of sustained ischaemia via cuff inflation followed by 

critical assessment of conduit vessel vasoreactivity. In that study, it was clearly 

demonstrated that both the early and late phases of IPC were present in RIPC 

and that the effects were mediated via neuronal activity as treatment with an 

autonomic blocker, trimetaphan, abolished the preservation of flow-mediated 

vasodilatation in the subjects that were treated with RIPC protocol.  

The clinical effects of RIPC in cardiac surgery were first 

published in 2006. In that study, 37 children undergoing repair of congenital 

heart defects were randomised to either a RIPC group or a control 

group (Cheung et al., 2006). RIPC was induced by four cycles of 5 minutes of 
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lower limb ischaemia followed by 5 minutes of reperfusion using a blood 

pressure cuff. It was found that post operative serum Troponin-I and inotrope 

use were significantly lower in the RIPC group. Additionally, the RIPC group 

had a significantly lower post operative airway resistance. In the setting of on 

CPB CABG, a randomised control study had been conducted where 57 patients 

undergoing elective surgery were randomly allocated to receive RIPC or 

not (Hausenloy et al., 2007). The RIPC group was subjected to 3 cycles of 5 

minutes of upper arm ischaemia that was induced by an automated blood 

pressure cuff-inflation followed by 5 minutes of reperfusion just prior to the 

start of CABG. The total Troponin-T released from the heart during the 72 

hour study period was significantly reduced by 43% in the RIPC group 

compared to the control group. However, as that was a small study, and a 

previous small under-powered clinical study involving RIPC and CABG found 

no cardioprotective effects (Gunaydin et al., 2000), larger randomised control 

studies are required to conclusively assess the effects of RIPC in patients 

having CABG. 
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1.6.3 Pharmacological Preconditioning 

Despite the cardioprotective effects of IPC and RIPC, both 

these techniques are still not part of the routine myocardial protective strategies 

used during cardiac surgery. This is perhaps because the protocols for each of 

these procedures adds further time to an already long operation and, 

particularly with regards to IPC, there is the added concern of unnecessarily 

cross-clamping an aorta which may already be atherosclerotic. Following the 

understanding of some of the basic mechanisms involved in inducing the 

beneficial effects of IPC and RIPC, it became clear that the cardioprotective 

effects of IPC and RIPC prior to sustained myocardial ischaemia can be 

mimicked with the use of pharmacological agents (Andreadou et al., 2008, 

Huffmyer and Raphael, 2009).  

As pharmacological agents are more readily available and easily 

applicable to clinical practice than IPC or RIPC, it may be of more use in 

attempts to induce myocardial protection. At present there are a large number 

of pharmacological agents which have been shown to induce myocardial 

preconditioning and cardioprotection. This includes NO related agents such as 

NO donors (Takano et al., 1998) and sodium nitrite (Shiva et al., 2007), 

phosphodiaesterase inhibitors (Das et al., 2005), adenosine (Toombs et al., 

1992), bradykinin (Wall et al., 1994), opiod agonist (Das and Das, 2008, 

Downey et al., 2007, Schultz and Gross, 2001), muscarinic agents (Przyklenk 

and Kloner, 1995), angiotensin AT1  agonist (Fryer et al., 2002) and 

endothelin (Erikson and Velasco, 1996). In addition to this, a number of 
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noxious stimuli such as heat stress (Joyeux-Faure et al., 2003), ROS (Penna et 

al., 2009), cytokines (Wang and Yin, 2006) and endotoxins (Harder et al., 

2005, Wang et al., 2002), when applied sparingly, have also been shown to 

trigger myocardial preconditioning. 

In clinical studies involving CABG and pharmacological 

preconditioning, adenosine preconditioning has been shown to reduce peri-

operative myocardial enzyme release and improve post operative myocardial 

function (Lee et al., 1995, Mentzer et al., 1997, Zarro et al., 1998). While the 

Acadesine 1024 Trial (Mangano et al., 2006) which investigated the use of 

acadesine, a purine analoge of adenosine which acts on adenosine receopts to 

increase adenosine levels, failed to show a statistically significant difference in 

post procedure MI, a meta-analysis of acadesine showed that it use led to a 

27% decrease in MI and a 26% decrease in the combined outcome of stroke, 

MI, or cardiac death (Mangano, 1997). Pharmacological preconditioning with 

bradykinin on the other hand, has only demonstrated a weak anti-inflammatory 

cardioprotective effect but at the expense of significant haemodynamic 

compromise (Wang et al., 2009b, Wei et al., 2004). Studies have also shown 

that the use of the mitochondrial KATP channel opener, diazoxide, as a 

pharmacological preconditioner prior to CABG, had an anti-inflammatory 

effect and was associated with improved post operative myocardial functional 

recovery but did not reduce myocardial injury (Wang et al., 2003, Wang et al., 

2004). Where the use of  the pharmacological inhibitor of the Na+-H+ 

exchanger (NHE), which prevents intra-cellular calcium overload, is 

concerned, the GURDIAN clinical trial (Boyce et al., 2003) reported that 
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preconditioning with the NHE inhibitor cariporide, reduced all-cause mortality 

and myocardial infarction at 36 days and 6 months post CBAG. Subsequently, 

the EXPIDITION clinical trial (Mentzer et al., 2008) confirmed the early 

cardioprotective benefits of cariporide, but not the 6 month outcomes. 

However, that study also demonstrated that cariporide was associated with 

increased mortality from cerebrovascular events. In a recent pilot study, 

preconditioning with the calcium sensitizer, levosimendan, was also found to 

reduce myocardial injury in the setting of CABG (Tritapepe et al., 2006). The 

anti-C5a antibody, pexelizumab, which inhibits complement immune 

activation, was in vestigated in the PRIMO-CABG study (Verrier et al., 2004) 

and showed a strong trend twards reduced mortality or MI but again, these 

results were not confirmed in the larger follow-up study PRIMO-CABG 

II (Testa et al., 2008). The pyridoxine metabolite and purinergic receptor 

antagonist, pyridoxal-5’-phosphate, which is capable of reducing intra-cellular 

calcium over load and limiting IRI (Kandzari et al., 2005) was initially shown 

in the MEND-CABG-I clinical study to be capable of possibly lowering post 

CABG MI size (Tardif et al., 2007). However, this finding was not reproduced 

in the larger MEND-CABG II clinical study which instead demonstrated a 

small increase in mortality (Alexander et al., 2008).  

Clinical studies investigating the pharmacological 

preconditioning effects of volatile anaesthetic agents have led to inconsistent 

results with respect to the reduction in myocardial enzyme release (Piriou et 

al., 2004, Tomai et al., 1999, Wang et al., 2004), although a few studies (De 

Hert et al., 2003, Landoni et al., 2008) have demonstrated an anti-stunning 
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effect with higher post operative cardiac index, reduced post operative low-

output states necessitating inotrope use and shorter post operative ICU length 

of stay. A recent meta-analysis however, determined that volatile anaesthetics 

are capable of reducing myocardial injury but had no beneficial effect on 

observed clinical outcomes (Yu and Beattie, 2006). As with RIPC, a large 

multi-centre randomised control study is required to definitively determine if 

preconditioning with volatile anaesthetics can positively impact on clinical 

outcomes post cardiac surgery. 
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1.6.4  Hyperoxic Preconditioning 
 

 The concept of inducing myocardial protection by 

preconditioning with oxygen was first investigated in 2001. It was 

hypothesised that pre-treatment with high doses of oxygen, hyperoxia, to 

induce a low-grade oxidative stress prior to ischaemia and reperfusion, may 

evoke myocardial protection by mimicking both an early and late IPC like 

effects (Tahep ld et al., 2001). In that experimental study, rats were exposed to 

>95% oxygen for 60 or 180 minutes. Isolated rat hearts were then 

Langendorff-perfused immediately (early) or 24 hours (delayed) after 

hyperoxia before being subjected to 25 minutes of global ischaemia followed 

by 60 minutes of reperfusion. It was determined that both 60 and 180 minutes 

of hyperoxia induced a low grade systemic oxidative stress. In the early model, 

only exposure to >95% oxygen for 180 minutes, but not 60 minutes, was 

associated with significantly reduced reperfusion arrhythmias. However, in the 

delayed model, 24 hours after exposure, both 60 and 180 minutes of exposure 

to >95% oxygen were associated with significantly reduced reperfusion 

arrhythmias. In both the early and delayed model, exposure to >95% oxygen 

for both 60 and 180 minutes led to significant reductions in left ventricular end 

diastolic pressure (LVEDP). However, where left ventricular developed 

pressure (LVDP) [LVDP = left ventricular systolic pressure (LVSP) –LVEDP] 

was concerned, only the early model showed significant improvement post IRI 

following both 60 and 180 minutes of exposure to >95% oxygen. The delayed 

model only showed improvement following 60 minutes of >95% oxygen and 

not after 180 minutes. This was also the case for coronary flow. With respect 
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to myocardial infarct size, only the early model that was exposed to >95% 

oxygen for 60 minutes showed a reduction in infarct size post IRI.  

Subsequently, the same group conducted another study to 

determine the dose of oxygen and verify the length of time of hyperoxic 

preconditioning which would induce myocardial protection. In that later study, 

it was shown that preconditioning rats for 60 minutes with ≥95%, 80% or 60%, 

but not 40% oxygen, improved post IRI myocardial function and coronary 

flow (Tahepold et al., 2002). Exposure for 60 minutes to either ≥95% or 80%, 

but not 60% or 40% oxygen, reduced LVEDP and the myocardial infarct size 

after IRI. LVDP and coronary flow were also significantly better in those 

groups. Furthermore, it was also demonstrated that exposure to ≥95% oxygen 

for 60 and 180 minutes in rats, led to significant reductions in LVEDP 

compared to the control group post IRI. Moreover, exposure to ≥95% oxygen 

for 60 and 180 minutes also led to smaller reductions in LVDP and improved 

coronary flow post IRI. Where myocardial infarct size was concern, exposure 

to ≥95% oxygen for 60 minutes in rats, led to reductions in post IRI infarct 

sizes. When the delayed effects of hyperoxic preconditioning were examined, 

it was also found that 24 hours after treatment with ≥95% oxygen for 60 and 

180 minutes, prior to IRI, led to significant inhibition the increase in LVEDP 

and an attenuation in post ischaemic depression of LVDP. The delayed effects 

of 60 minutes of hyperoxia prior to IRI was also associated with a significantly 

reduced attenuation of coronary flow.  

These early studies (Tahepold et al., 2002, Tahepold et al., 

2001) suggest that preconditioning with  ≥95% oxygen is capable of inducing 
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both early and delayed cardiprotective effects following IRI, in a way that 

mimics the cardioprotective effects of IPC and RIPC. Shorter durations (60 

minutes) of hyperoxic preconditioning , in the early model, is capable reducing 

in post IRI myocardial infarct size This is not seen with longer durations (180 

minutes) of hypeoxia in both the early and delayed model of hyperoxia and 

neither is it seen in the delayed models hyperoxia prior to IRI which use a 

shorter duration (60 minutes) of hyperoxia.  In the both the early and delayed 

models of hyperoxia prior to IRI, both the shorter (60 minutes) and the longer 

(180 minutes) durations of hyperoxia are capabale of improving myocardial 

function. Where coronary flow is concerned, while in the early model of 

hyperoxia prior to IRI, both the shorter (60 minutes) and the longer (180 

minutes) durations of hyperoxia are capable of improving flow, this only 

occurs with the shorter (60 minutes) duration hyperoxia in the delayed models 

of hyperoxia prior to IRI. With respect to reperfusion arrhythmias, in the early 

model of hyperoxia prior to IRI, a longer duration (180 minutes) of hyperoxia 

is required to limit the appearence of these while in the delayed model both the 

shorter (60 minutes) and the longer duration (180 minutes) of hyperoxia  have 

the capacity to attenuate arrhythmias. 

More recent studies however, on the duration of hyperoxia in 

relation to the early (Colantuono et al., 2008, Kaljusto et al., 2008) and 

late (Baharvand et al., 2009, Esmaili Dehaj et al., 2009) cardioprotective 

effects of hyperoxic preconditioning prior to IRI have clearly demonstrated 

that higher doses of oxygen (>95% oxygen), for durations of as little as 60 

minutes and, for as long as 180 minutes, are able to reduce myocardial infarct 
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size and arrhythmias following both a short and a long duration between 

hyperoxia and a subsequent event of IRI. Furthermore, it has also been recently 

demonstrated that the myocardial protective effects of the delayed phase of 

hyperoxic preconditioning prior to IRI may last for longer than 48 hours and 

that this phase may be prolonged to up to 72 hours by repeated, intermittent 

exposure prior to the insult of IRI (Baharvand et al., 2009).  

While hyperoxia of ≥95% for 60 minutes immediately prior to 

IRI is capable of reducing myocardial infarct size and reduce the increase in 

LVEDP in mouse hearts, durations of hyperoxia for as short a period of as 30 

minutes, 24 hours prior to IRI, has also been shown to reduce myocardial 

infarct size and limit the increase in LVEDP in an experimental model 

 (Tahepold et al., 2002). In another recent experimental study, it was also 

demonstrated that 100% oxygen for 30 minutes, prior to IRI, is also capable of 

improving coronary flow, LVDP and LVEDP and, reducing myocardial infarct 

size as early as 30 minutes after ischaemia (Colantuono et al., 2008).  

As the administration of 80% oxygen for less than 24 hours is 

considered clinically safe (Kabon and Kurz, 2006), it would indeed be 

interesting to determine the effects of a short duration of preconditioning with 

100% oxygen, prior to IRI, in a clinical setting. While the clinical effects of 

preconditioning with this dose has yet to be investigated, in a recent clinical 

study (Karu et al., 2007), 40 CABG patients were randomly exposed to either 

40% oxygen or >96% oxygen for 120 minutes prior to IRI. In this study, it was 

observed that post operatively, Troponin-I, CK-MB and lactate levels did not 

differ between the groups. Neither were there any differences seen in the post 
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operative haemodynamic parameters. There was however a transient 

significant reduction in the pro-inflammatory cytokine, IL-6 in the first 20 

minutes after reperfusion in the group that was exposed to >96% oxygen. 

Under normal physiological conditions, 1% to 4% of available 

body oxygen is converted to ROS. This process is greatly accelerated in 

conditions which enable the breathing of hyperoxic air, thus leading to oxygen 

tensions higher than normal (Brueckl et al., 2006). While it is unclear how high 

ROS production has to be before it triggers preconditioning effects, what is 

clear is that hyperoxia increases ROS production, reaching the threshold level 

when oxygen  is adminstered for approximately 120 minutes at a saturation of   

between 80% to 95% (Esmaili Dehaj et al., 2009). It has been demonstrated 

that hyperoxia increases ROS generation in a time and dose dependent 

manner (Brueckl et al., 2006). Several studies using infusions of low 

concentrations of ROS (Tritto et al., 1997, Vanden Hoek et al., 1998, Zhai et 

al., 1996) and administration of anti-oxidants (Das et al., 1999b, Tanaka et al., 

2002, Toufektsian et al., 2003) have demonstrated that ROS acts as the trigger 

for the preconditioning process. It is currently the thinking that the 

cardiprotective effect of hyperoxic preconditioning, and the ROS it generates, 

prior to IRI, may have to do with the activation of NFκB and the dual role in 

may play in the adapted myocardium (Choi et al., 2006, Tahepold et al., 2003). 

While the activation of NFκB is know to lead to pro-inflammatory 

effects (Blackwell and Christman, 1997), its activation by hyperoxia prior to 

myocardial IRI, has been shown to lead to the upregulation of the rapidly 

inducible IFκB, which is capable of reducing the inflammation during a 
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subsequent sustained ischaemia by inhibiting NFκB activation (Tahepold et al., 

2003).  
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1.7  Hyperbaric Oxygen 
 

  In hyperbaric oxygen (HBO2) therapy, the patient intermittently 

breathes pure oxygen (100%) at a pressure greater than atmospheric pressure, 

usually between 1.5 absolute atmosphere (ATA) to 3 ATA, at room 

temperature, for a duration not longer than 2 hours,  (Kim et al., 2001) while in 

a steel or polymer chamber. This mode of oxygen therapy is capable of 

increasing arterial and tissue oxygen tension up to 2000mmHg and 400mmHg, 

respectively (Choi et al., 2006).  

HBO2 is known mainly for its use as the treatment of choice in 

carbon monoxide poisoning, gas embolism and decompression 

sickness (Kindwall EP, 2002). In these conditions, generally only one or two 

HBO2 therapy sessions are required. The experience of HBO2 medicine 

specialists and, to a certain extent, the scientific literature, also support the use 

of HBO2 as an adjuvant treatment for a number of other clinical conditions 

such as complex, refractory wounds (Morykwas and Argenta, 1997), 

intracranial abscess, radiation tissue injury, crush injuries, compartment 

syndrome, acute traumatic peripheral ischaemia, burns and IRI (Kindwall EP, 

2002). However, such use requires numerous visits, with up to as many as 

sixty sessions lasting between 30 to 90 minutes a session, depending on the 

clinical condition. At present, there are no standard protocols for these clinical 

conditions. The therapeutic protocols vary according to the severity of the 

clinical condition and the treatment centre.  
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1.7.1 Hyperbaric Oxygen In Ischaemic 

Reperfusion Injury 

Two phenomena may be involved to give HBO2 therapy an anti-

ischaemic effect: 

a) The first phenomena is related to Henry’s Law which states that 

“the amount of any given gas that will dissolve in a liquid at a given 

temperature is a function of the partial pressure of the gas in contact with the 

liquid and the solubility coefficient of the gas in the liquid”. As HBO2 involves 

the administration of oxygen at pressures above atmospheric pressure at room 

temperature, this enables higher partial pressures of oxygen to be achieved in 

the blood and this has been clearly demonstrated in a recent clinical 

study (Weaver et al., 2009).  

b) The second phenomena involves the ability for HBO2 to 

improve the elasticity and therefore the deformability of red blood cells, which 

enables them to reach ischaemic tissues (Mathieu D, 1984). 

These two phenomenon are capable of improving tissue oxygenation and thus 

increasing local metabolism. These potential benefits, have led to research into 

the use of HBO2  for attenuating myocardial ischaemia and 

infarction (Shandling et al., 1997, Thomas et al., 1990) and, improving 

myocardial function (Dekleva et al., 2004). 
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A number of experimental studies have investigated the effects 

of HBO2 during ischaemia and reperfusion. It appears that HBO2 treatment 

prior to  (Chen et al., 1998), during  (Yamada et al., 1995) or after 

ischaemia (Nylander et al., 1987) or, immediately upon reperfusion (Yamada 

et al., 1995) is capable of preserving cellular ATP. Furthermore, it has also 

been observed that HBO2 treatment prior to the insult of ischaemia and 

reperfusion (Chen et al., 1998), is capable of leading to an increase in ATP 

concentration that is associated with an attenuation of adherent neutrophils and 

lipid peroxidation. 

In an experimental model of IRI, HBO2 has also been shown to 

enhance endothelial cell-derived fibrinolysis and blood flow (Tjarnstrom et al., 

2001). In that study, cultured endothelial cells were subjected to simulated 

ischaemic reperfusion by anoxia, followed by reperfusion with either HBO2 or 

normobaric air for 1.5 hours. The HBO2 treated cells exhibited significant 

increases in all the measured fibrinolytic factors [tissue plasminogen activator 

(t-PA), urokinase plasminogen activator (uPA) and plasminogen activator 

inhibitor type 1 (PAI-1)], suggesting that HBO2 treatment following ischaemia 

(during reperfusion) has the potential to also limit vascular thrombosis. 
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1.7.2 Hyperbaric  Oxygen & Myocardial 

Ischaemic Reperfusion Injury 

In 1976, an experimental study was conducted to investigate the 

effects of HBO2 on the myocardium (Kawamura et al., 1976). In that study,  

HBO2 treatment consisting of 100% oxygen at 2 ATA was administered to one 

group of dogs before temporary occlusion of the left coronary artery and to 

another group immediately after the temporary occlusion of the left coronary 

artery. The duration of coronary occlusion ranged from 30 minutes to 2 hours.  

A control group of dogs also had durations of temporary left coronary artery 

occlusion in a similar range but did not receive HBO2 treatment.  Following 

sacrifice, which occured 4 hours after HBO2 treatment in the group treated 

with HBO2 prior to coronary artery oclusion and 5 days after coronary 

occlusion in the group that was treated with HBO2 following coronary artery 

oclusion, it was discovered that, compared to the control animals, the 

myocardial ischaemic area in dogs that were treated with HBO2, either before 

or after coronary oclusion, was markedly reduced and the myocardial muscles 

around the arterioles and sinusoids were viable. That study also found that 

serious arrhythmia, especially ventricular fibrillation, was suppressed in the 

treated dogs and they were haemodynamically more stable during the operative 

period. That study was the first to demonstrate, both macroscopically and 

histologically, that treatment with HBO2 either before or after an ischaemic 

reperfusion event, was capable of limiting myocardial infarct size.  
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The myocardial infarct sparing property of HBO2 was later 

further demonstrated in another experimental study. In that study involving an 

open-chest rabbit model, the left coronary artery was occluded for 30 minutes, 

to induce ischaemia, followed by 3 hours of reperfusion (Sterling et al., 1993). 

During this ischaemia and/or reperfusion, the controls group was ventilated 

with 100% oxygen at 1 ATA while the ‘treated’ group was exposed to HBO2 at 

2.5 ATA. The animals exposed to HBO2 during ischaemia only, reperfusion 

only, or ischaemia and reperfusion, had significantly smaller infarcts compared 

to the control animals. When HBO2 was administered 30 minutes after the 

onset of reperfusion, no myocardial protection was seen. This study suggests 

that treatment with HBO2 is only capable of inducing myocardial protection 

during periods of ischaemia and reperfusion but not if administered shortly 

after reperfusion has begun.  

The concept of using HBO2 to limit myocardial IRI has also 

been investigated by using HBO2 enriched solution. In an attempt to determine 

if perfusion with a solution of HBO2 through the anterior interventricular vein 

(AIV) would reduce myocardial infarct size and neutrophil activation, using 

three  groups, animals were exposed to IRI by 60 minutes of balloon occlusion 

of the LAD to induce ischaemia followed by 120 minutes of 

reperfusion (Johnson et al., 2004). Following IRI, the first control group was 

not treated with any further intervention during reperfusion while the second 

control group received arterial blood, drawn from the femoral artery, perfused 

into the AIV for the first 90 minutes of reperfusion. In the third experimental 
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group, a solution of HBO2 enriched arterial blood was perfused through the 

AIV either immediately after reperfusion or 30 minutes after reperfusion, for a 

duration of 90 minutes. The oxygen level of blood delivered into the AIV in 

experimental group was between 1000 and 1400mmHg. In that study, 

compared to the control groups and the experimental group treated with HBO2 

30 minutes after reperfusion, in the experimental group that was treated with 

with HBO2 immediately upon reperfusion, the endocardial blood flow was 

significantly higher in at the risk regions of the myocardium. Furthermore, the 

myocardial infarct size was also significantly smaller in this group compared to 

the other groups. It was also determined that in the HBO2 group the smaller 

infarct size was associated with reduced reperfusion association neutrophil 

activation. This study supports the premise that increasing myocardial tissue 

oxygenation early during reperfusion is cardioprotective but delayed 

oxygenation, during reperfusion, is of limited cardioprotective value. 

1.7.2.1 Hyperbaric Oxygen Preconditioning 

While the the concept of treatment with HBO2, prior to 

ischaemia and reperfusion to mitigate myocardial IRI, was first investigated in 

1976 by  Kawamura et al. (Kawamura et al., 1976), it was not until  2001 when 

the biology behind this mode of treatment was further investigated to 

understand how it may prophylactically induce myocardial protection prior to 

IRI. In a study by Kim et al  (Kim et al., 2001), rats were intermittently 

exposed to 100% oxygen at 3 ATA for 1 hour daily for 5 days and then 

sacrificed after 24 hours of recovery in room air. The isolated rat hearts were 
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subjected to 40 minutes of ischaemia and 90 minutes of reperfusion. It was 

found that HBO2 pre-treatment enhanced enzymatic activity and gene 

expression of the anti-oxidant enzyme catalase and, this was associated with a 

significant reduction in  myocardial infarct size. A catalase inhibitor, 3-amino-

1,2,4-triazole, completely abolished the infarct-limiting effect of HBO2 pre-

treatment. This concept of inducing cellular protection, via HBO2, prior to 

cellular injury is now known as HBO2 preconditioning (Kim et al., 2001) and 

its appears that its myocardial infarct limiting capacity is similar to that 

observed during IPC (Murry et al., 1986).  

Further evidence of the MI sparing capacity of HBO2 

preconditioning comes from another recent experimental study (Han et al., 

2008a). In that study 108 rats were randomly divided into four groups: 

normoxia + sham surgery (CS), normoxia + permanent occlusion of the LAD 

coronary artery (CMI), HBO2 preconditioning + sham surgery (HS) and HBO2 

preconditioning + permanent LAD occlusion (HMI). Rats receiving HBO2 

preconditioning were exposed to 100% oxygen at 2.5 ATA for 60 minutes, 

twice daily for 2 days prior to myocardial ischaemia induced by LAD ligation. 

There was a 12 hour interval between HBO2 preconditioning sessions and, a 12 

hour interval between the last HBO2 preconditioning session and the LAD 

ligation. Rats in the normoxia group were time-matched with the HBO2 group 

and maintained under normoxic conditions prior to LAD occlusion. At day 3 

after LAD ligation, the infarct size of the HMI group was found to be 

significantly smaller than that of the CMI group. The LVSP was significantly 
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improved in the HMI group compared to the CMI group at 3 and 7 days after 

LAD occlusion. That study also found that the capillary density was 

significantly increased in the ischaemic myocardium that was preconditioned 

with HBO2. The findings from this randomised control experimental study 

clearly demonstrates that HBO2 preconditioning is capable of leading to 

cardioprotection by improving myocardial myocardial function and blood flow 

as a result of increased myocardial capillary density and, as such, leading to a 

reduction in myocardial infarct size following ischaemia. 

The concept of utilising HBO2 preconditioning to induce 

myocardial protection has also been investigated in terms of determining the 

effects of HBO2 on a common cause of myocardial ischaemia, coronary 

atherosclerosis.  In a study involving rabbits fed an atherogenic diet, the 

animals were exposed to HBO2 consisting of 100% at 2.5 ATA for 90 minutes, 

5 days a week for 10 weeks (Kudchodkar et al., 2000). The control rabbits had 

the same diet but were not treated with HBO2. In that study it was determined 

that repeated short periods of HBO2 exposure dramatically reduced the 

development of atherosclerosis by reducing the accumulation of cholesterol in 

the aortic wall. Treatment with HBO2 also substantially reduced the 

accumulation oxidised LDL and HDL cholesterol in the plasma, liver and 

aortic tissue which according to the investigators, may explain the slower 

progression of atherosclerosis in the HBO2 treated animals. Furthermore, 

HBO2 treatment also prevented the decrease in the plasma anti-oxidant activity 

of paraoxonase and caused a significant acceleration in the regression of aortic 
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atherosclerotic lesions. The investigators of that study suggests that HBO2 

possibly inhibits the initial development of atherosclerosis by suppressing the 

recruitment and proliferation of macrophages and the thus the formation of 

foam cells via paraoxonase anti-oxidation mediated reduction in the formation 

of lipid-derived oxidative products. This is a reasonable suggestion as others 

have also shown that HBO2 has the capacity to enhance the activity of the 

serum anti-oxidant paraoxonase and this is known to cause a reduction in the 

oxidation of tissue and plasma lipids (Aviram et al., 1998). In a later study, the 

same group also found that HBO2 treatment resulted in significant reduction in 

aortic cholesterol content and decreased fatty streak formation (Kudchodkar et 

al., 2007). In examining the possible biochemical mechanisms for these 

findings, this group found that a 10 week treatment with HBO2 led to 

significant reduction in auto-antibodies against oxidatively modified LDL 

[levels of auto-antibodies to oxidised LDL have been shown to reflect levels of 

oxidised LDL in the circulation and correlate positively with the progression 

and regression of experimental atherosclerosis in mouse models (Tsimikas et 

al., 2001, Zhou et al., 1998)]. There were also profound changes in the redox 

state of aortic tissues with significant increases in aortic glutathione, oxidized 

gluththione reductase activity, glutathione S-transferase activity and catalase 

thus, suggesting that HBO2 treatment had induced an environment that inhibits 

oxidation. They concluded that this anti-oxidant response may be the key to the 

anti-atherogenic effect of HBO2 treatment.  
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1.7.3  Hyperbaric Oxygen Induced Neutrophil 

Attenuation & Adhesion Molecule 

Expression 

One of the possible means for HBO2 induced attenuation of IRI 

may be via the interference of neutrophil infiltration (Atochin et al., 2000, 

Hong et al., 2003). Findings in various experimental models have shown that 

neutrophil recruitment as a result of ischaemia and reperfusion was 

significantly reduced by peri-IRI HBO2 treatment in IRI models of the 

liver (Chen et al., 1998, Kihara et al., 2005), intestine (Tjarnstrom et al., 1999, 

Yamada et al., 1995), gracilis muscle (Zamboni et al., 1996), brain (Atochin et 

al., 2000, Miljkovic-Lolic et al., 2003) and testis (Kolski et al., 1998). Real 

time videomicroscopy of HBO2-treated muscle flaps following ischaemia and 

reperfusion have demonstrated a decrease in the adhesion of neutrophils to the 

vascular endothelium and a greater microvascular diameter (Zamboni et al., 

1993, Zamboni et al., 1996). Studies by others suggest HBO2 limits neutrophil-

endothelial adhesion by inhibiting the polarization of the adhesion molecule 

CD18 on the surface of neutrophils (Khiabani et al., 2008), but not its 

expression (Hong et al., 2003, Larson et al., 2000), and inhibits the expression 

of the cellular adhesion molecule, ICAM-1 (Buras et al., 2000, Hong et al., 

2003).  
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In a recent clinical study (Alex et al., 2005), 64 CAD patients 

were randomised to either a group preconditioned with hyperbaric air (n=31), 

or HBO2 consisting of two 30 minute periods of 100% oxygen at 2.4 ATA 

separated 5 minutes apart (n=33). Preconditioning with air or HBO2 took place 

for 90 minutes, 24 hours, 12 hours and 4 hours, respectively, prior to on CPB 

CABG. In that study it was observed that patients who were preconditioned 

with three sessions of HBO2 (HBO2 preconditioning) prior to the insult of IRI 

during on CPB CABG, in contrast to the control patients, did not experience 

any significant increase in post operative (2 hours and 24 hours post CPB) 

plasma CD18 and this was not accompanied by any significant neurocognitive 

decline 4 months post CABG. This suggests that perhaps cerebral vascular 

flow may have been better preserved in patients preconditioned with HBO2 as 

a result of the attenuation of ischaemia reperfusion induced neutrophil-

endothelial interaction and perhaps a reduction in the ensuing endothelial 

injury. 

In the clinical study by Alex et.al, it was also observed that in 

addition to attenuating the rise in plasma CD18, three sessions of HBO2 prior 

to the insult of IRI  also reduced the post operative expression of serum soluble 

E-selectin (sE-Selectin) following CABG (Alex et al., 2005). However, in that 

study, HBO2 preconditioning was also found to increase the post operative 

expression of serum soluble ICAM-1 (sICAM-1) and soluble P-selectin (sP-

Selectin). In experimental models of IRI, it has been demonstrated that HBO2 

treatment during ischaemia (Hong et al., 2003) or following IRI (Buras et al., 
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2000, Hong et al., 2003), decreased the expression of ICAM-1 in a muscular 

flap (Hong et al., 2003) and in the endothelium (Buras et al., 2000). These 

studies suggest that HBO2 prior to IRI i.e. HBO2 preconditioning (Alex et al., 

2005), is capable of limiting the rise in plasma CD18 and, while HBO2 during 

ischaemia and HBO2 post IRI (Hong et al., 2003) does not alter neutrophilic 

CD18 expression, it does inhibit neutrophilic CD-18 polarization and thus 

neutrophil-endothelium adhesion (Khiabani et al., 2008). It remains unclear as 

to whether the attenuation in the rise of plasma CD-18 is linked to the 

inhibition in the distribution of CD-18 on the surface of neutrophils. Is it 

possible that the oxidative stress of HBO2 redistributes the neutrophilic CD18 

thus limiting the cleavage of CD18 from the surface of neutrophils into the 

plasma? Additionally, while HBO2 during ischaemia (Hong et al., 2003) and 

HBO2 following IRI (Buras et al., 2000, Hong et al., 2003) is capable of 

downregulating endothelial ICAM-1 expression, it also appears that HBO2 

prior to IRI was capable of increasing the presence of serum sICAM-1 (Alex et 

al., 2005). Is there a possible link between HBO2 induced increase in sICAM-1 

and the downregulation in the expression of endothelial ICAM-1?. Could it be 

that the lack of endothelial ICAM-1 following HBO2 treatment is due to these 

adhesion molecules being shed into the circulation, as a result of the oxidative 

stress of HBO2, thus leading to increased circulating sICAM-1?. 
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1.7.4 Mechanisms of Action of Hyperbaric Oxygen 

in Ischaemic Reperfusion Injury 

HBO2 has been demonstrated to increase ROS 

generation (Benedetti et al., 2004, Conconi et al., 2003, Gregorevic et al., 

2001) and has also been shown to be protective to the myocardium (Kim et al., 

2001, Kudchodkar et al., 2000, Shandling et al., 1997, Sharifi et al., 2004, 

Sterling et al., 1993, Swift et al., 1992). It is therefore plausible to suggest that 

there is a therapeutic association between HBO2 generated ROS and 

myocardial protection. There maybe six possible complex and intertwining 

mechanisms by which HBO2 generated ROS may lead to reduced endothelial 

and myocardial injury (Figure 1.1). 

Mechanism 1: eNOS & NO 

ROS, such as superoxide or hydrogen peroxide, are capable of 

modulating the expression of eNOS (Drummond et al., 2000, North et al., 

1996) and NO production (Lebuffe et al., 2003). This may occur by ROS 

functioning as signaling molecules (Hool, 2006, Lebuffe et al., 2003) to 

activate NOS (Drummond et al., 2000, Lopez-Ongil et al., 1998) and produce 

NO (Mathy-Hartert et al., 2002, Whorton et al., 1997). Via direct (Elayan et 

al., 2000) and indirect (Thom et al., 2003) measurements of ROS, HBO2 

induced ROS has been shown to activate NOS (Elayan et al., 2000, Thom et 

al., 2003) and produce NO (Elayan et al., 2000, Thom et al., 2003).  
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Mechanism 1a: Peroxynitrite 

HBO2 generated ROS, in particular, superoxide, may play a 

therapeutic role in the attenuation of neutrophil adhesion via peroxynitrite 

production (Figure 1.1: Mechanism 1a). It is possible that by combining with 

NO to form peroxynitrite (Beckman and Crow, 1993, Beckman and Koppenol, 

1996, Liu et al., 1994), NO may act as a sink to reduce the contribution of IRI 

generated superoxide towards excessive free radical chain reaction 

propagation (Pryor and Squadrito, 1995, Rubanyi et al., 1991). Given the 

suggestions in favor of the use of HBO2 as a therapeutic modality against 

IRI (Alex et al., 2005, Bertoletto et al., 2008, Chen et al., 1998, Henninger et 

al., 2006, Nie et al., 2006, Nylander et al., 1985, Nylander et al., 1987, Sterling 

et al., 1993, Tomur et al., 2005, Yamada et al., 1995, Yin and Zhang, 2005, Yu 

et al., 2005), it is unlikely that HBO2 generated ROS leads to irreversible 

cellular injury. Paradoxically, it is more likely that, in balanced quantities, the 

HBO2 generated ROS, such as superoxide, play a pharmacological role in the 

attenuation of neutrophil adhesion possibly via peroxynitrite production from 

the NO. Peroxynitrite in intermediate concentrations (2-5μM) has been shown 

to reduce neutrophil adhesion by inhibiting P-selectin expression on 

endothelial cell (Nossuli et al., 1998) thus limiting endothelial injury via 

neutrophil-endothelial adhesion. 

In addition to P-Selectin attenuation, in an experimental model 

of IRI, it was demonstrated that peroxynitrite administration was also capable 

of inhibiting the expression of  ICAM-1 mRNA (Liu et al., 2000). This 



 

 
67 

 

suggests that peroxynitrite is also capable of impairing neutrophil adhesion to 

the vascular endothelium by inhibiting the synthesis of ICAM-1 (Figure 1.1: 

Mechanism 1b). This in turn will limit the neutrophil-endothelial adhesion that 

is known to occur as part of the ‘no-reflow’ phenomenon of IRI (Engler et al., 

1986). As HBO2 generated ROS could react with HBO2 induced NO to 

produce peroxynitrite, and HBO2 has been shown to lead to a down regulation 

of ICAM-1 expression (Buras et al., 2000), this mechanism could account for 

the observed HBO2 associated preservation of capillary flow (Chen et al., 

1998, Sirsjo et al., 1993, Zamboni et al., 1993) and hence the myocardial 

protection in models of IRI (Cabigas et al., 2006a, Sterling et al., 1993).  

Mechanism 1b: CD-18 

Studies have shown that HBO2 exposure inhibits the 

extracellular binding domain of neutrophil guanylate cyclase (Thom et al., 

1997) and impairs the synthesis of cGMP (Chen et al., 1996). This leads to an 

alteration in the function of the neutrophil specific adhesion molecule 

CD18 (Thom et al., 1997) and its distribution on the neutrophilic 

surface (Khiabani et al., 2008). CD18, as part of the heterodimeric protein 

CD11/18, binds to the ligand ICAM-1 that is located on the endothelial 

cell (Malik and Lo, 1996). This alteration in neutrophilc CD18 function and 

distribution, may limit the ability of neutrophils to adhere to endothelial cells 

via the interaction of CD18 with ICAM-1. In keeping with this, HBO2 has also 

been shown to be capable of reducing neutrophil adhesion to the vascular 

wall (Khiabani et al., 2008, Zamboni et al., 1993). It is possible that the 
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mechanism underlying this effect is related to the ability of HBO2 to stimulate 

eNOS  (Cabigas et al., 2006b) and produce NO (Thom et al., 2003) which in 

turn inhibits neutrophil membrane-bound guanylate cyclase (Banick et al., 

1997) thus limiting cGMP synthesis and altering the function of CD18 (Figure 

1.1: Mechanism 1b). Studies have shown that inhibition of eNOS promotes the 

adherence of neutrophils to the microvasculature while increased 

concentrations of eNOS has an anti-adherent effect (Kubes et al., 1991, Lefer 

and Lefer, 1996).  
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Figure 1.1: HBO2 Possible Mechanisms of Action 
 

  

Mechanism 1: HBO2 generated ROS attenuating of endothelial injury via eNOS & NO. Mechanism 2: HBO2 generated ROS activation of PKC inducing anti-oxidation 
and attenuation of ICAM-1. Mechanism 3: HBO2 induced impairment of guanylate cyclase reaction products. Mechanism 4: HBO2 generated ROS attenuating 
endothelial injury via Hsp. Mechanism 5: HBO2 induced ROS attenuating lipid peroxidation. Mechanism 6: HBO2 generated ROS enhancing endothelial cell 
proliferation. 
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Mechanism 2: PKC 

Exposure to HBO2 (Buras et al., 2000, Shinomiya et al., 1998) 

has been demonstrated to downregulate ICAM-1 expression. In studies 

involving myocardial IPC, it appears that the ROS, superoxide, is involved in 

the induction of increased ischemic tolerance (Baines et al., 1997, Mori et al., 

2000, Osada et al., 1994, Tanaka et al., 1994, Tritto et al., 1997). IPC has also 

been shown to induce an endothelial protective effect by suppressing the 

expression of ICAM-1, a process which is mediated by production of NO, 

ROS, and PKC (Beauchamp et al., 1999). Furthermore, there is also evidence 

to suggest that both superoxide and hydrogen peroxide can stimulate PKC 

activity (Ogata et al., 2000). Hence, it may be possible that superoxide and/or 

hydrogen peroxide are able to participate in the regulation of ICAM-1 

expression, through PKC (Beauchamp et al., 1999, Niwa et al., 1996, Suzuki et 

al., 1997a). This activation of PKC in turn, may lead to decreased amounts of 

free radical production during the actual insult of ischaemia and reperfusion 

possibly via PKC mediated anti-oxidant defences (Niwa et al., 1996). This 

mechanism may also partially explain the ability for HBO2 generated ROS to 

limit neutrophil adhesion (Figure 1.1: Mechanism 2). 
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Mechanism 3: Neutrophil Guanylate Cyclase Reaction Products 

Research (Russwurm and Koesling, 2004) suggest that when 

NO encounters guanylate cyclase, it binds to the heame moiety of guanylate 

cyclase to become active and produce cGMP. As such, how is it that in the 

presence of HBO2 induced NO, there is an inhibition of guanylate cyclase, as 

has been previously demonstrated (Banick et al., 1997, Chen et al., 1996), 

which in turn leads to the impairment of cGMP synthesis and alteration in the 

function of CD18. Here in with may lie an another possible mechanism of 

action for HBO2 induced NO (Figure 1.1: Mechanism 3). It is now known that 

for guanylate cyclase to be activated by NO, it requires the presence of its 

reaction products (magnesium/cGMP/pyrophosphate) and sufficient NO 

(substrate) (Russwurm and Koesling, 2004) in order for it to transit, in a 

reversible manner, via a dinitrosyl state, to form an active five-coordinated 

NO-guanylate cyclase species. Based on the available evidence from the 

observed actions of HBO2 on guanylate cyclase, perhaps it would be possible 

to suggest that the lack of activation of guanylate cyclase following HBO2 

could be due to the following two possible scenarios. First, and perhaps more 

easily appreciated, is that some how, HBO2 limits the reaction products of 

guanylate cyclase. HBO2 has certainly been shown to limit cGMP 

production (Chen et al., 1996, Thom et al., 1997) together with an attenuation 

of guanylate cyclase function (Thom et al., 1997). Second, and assuming that 

HBO2 has no effect on guanylate cyclase’s reaction products, while HBO2 may 

generate NO, it also generates ROS such as superoxide. The inactivating 
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reaction between NO and superoxide to form peroxynitrite, may limit the 

available NO that binds to guanylate cyclase. While some NO may bind to 

guanylate cyclase, the lack of sufficient free NO to reversibly bind to it and 

form an active five coordinated species via a dinitosyl state may lock the NO-

bound guanylate cyclase in an inactive five coordinated species or in the 

inactive six coordinated dinitrosyl state. Either of these two scenarios may 

limit guanylate cyclase’s cGMP production. cGMP is not only one of the 

reaction products of guanylate cyclase but also a second messenger needed for 

the appropriate functioning of neutrophil CD18. 

Mechanism 4: Hsp 

It has been shown that the synthesis of Hsp70 is significantly 

induced in the lymphocytes of human subjects after just a single treatment with 

HBO2 (Dennog et al., 1999).  Furthermore, it has also been demonstrated that 

HBO2 administration results in a time and dose dependent increase in Hsp70 

expression at both mRNA and protein levels  (Shyu et al., 2004). This suggests 

that Hsp70 may play a part in the mechanism for HBO2 induced cellular 

protection (Figure 1.1: Mechanism 4). 

It is also possible that this HBO2 induction of Hsp synthesis 

occurs via the expression of NO. Using a rat heart model of IRI at various 

concentrations of oxygen and pressure, it was demonstrated that there was a 4 

fold increase in association of Hsp90 with eNOS following preconditioning 

with HBO2 (Cabigas et al., 2006b). This was in addition to an increase in 
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eNOS and nitrite plus nitrate (breakdown products of NO) content in the 

myocardium of rats preconditioning with HBO2. Furthermore, it was also 

demonstrated that the myocardial protective effects of HBO2 preconditioning 

were reversed by L-Nitro-Arginine Methyl Ester (L-NAME) (an NO inhibitor). 

These findings were also associated with the observation that preconditioning 

with HBO2 resulted in a decrease in myocardial infarct size and increased 

recovery of left ventricular diastolic pressure. While that study did not show a 

significant increase in total Hsp90 content following HBO2 preconditioning, 

the investigators felt that the increased association of Hsp90 with eNOS 

supported the notion that Hsp90 helps eNOS to produce NO and that this was 

responsible for the observed myocardial protection against IRI following 

HBO2 preconditioning.  

Mechanism 5: Lipid Peroxidation 

Superoxide has been hypothesised to be involved in reactions 

antagonizing lipid peroxidation (Thom and Elbuken, 1991) and, in certain 

doses, may function as a terminator of lipid peroxidation (Nelson et al., 1994). 

HBO2 given before ischaemia-reperfusion (Chen et al., 1998, Gurer et al., 

2006) and during ischaemia (Bosco et al., 2007), has also been demonstrated to 

reduce lipid peroxidation. The reduction in ischaemia reperfusion mediated 

lipid peroxidation has also been observed following post IRI treatment with 

HBO2 (Rubinstein et al., 2009). In a model of myocardial IPC, which also 

involves the generation of ROS, it was demonstrated that the beneficial effects 

of IPC was associated with both a reduction in neutrophil adhesion and lipid 
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peroxidation (Zhao et al., 2003). It is therefore also plausible to suggest that, 

HBO2, via its ROS generation, is also capable of mediating the attenuation of 

lipid peroxidation and this leads to the associated reduction in neutrophil 

adhesion (Figure 1.1: Mechanism 5).  

Mechanism 6: Endothelial Cell Proliferation 

HBO2 has been shown to stimulate neovascularization in flaps, 

wounds, irradiated tissue and grafts (Bayati et al., 1998, Manson PN, 1980, 

Marx et al., 1990, Meltzer and Myers, 1986, Nemiroff, 1987, Zhang et al., 

1998) and, angiogenesis (Godman et al., 2009, Han et al., 2008a, Khan et al., 

2009, Ren et al., 2008, Sheikh et al., 2005). ROS have been shown to be able 

to function as signaling molecules (Suzuki et al., 1997b) that are a able to 

stimulate endothelial cell proliferation (Heinloth et al., 2000) and 

neovascularization (Monte et al., 1994). As HBO2 is a modality of treatment 

which is capable of generating ROS, it is also reasonable to suggest that via its 

ROS signaling properties, HBO2 may be capable of improving blood flow 

through endothelial cell proliferation and neovascularisation thus, alleviating 

tissue ischaemia (Figure 1.1: Mechanism 6). 
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1.8  Hypothesis 
The hypothesis of this study is that systemically  

preconditioning CAD patients with 100% oxygen, at a pressure above that of 

atmospheric pressure i.e.  HBO2, prior to first time elective on CPB CABG, 

leads to a remote preconditioning like effect that is capable of leading to post 

operative improvements in cardiovascular function. 

1.9  Objective 

1.9.1 Primary Objective 

The primary cardiovascular efficacy objective of this study was 

to determine if systemically preconditioning CAD patients with HBO2 prior to 

first time elective on CPB CABG, remotely precontioned the myocardium by 

leading to a better post operative improvement in myocardial left ventricular 

stroke work (LVSW) compared to CAD patients who were not preconditioned 

with HBO2.  

1.9.2 Secondary Objectives 

  Main Secondary Objectives: 

The main secondary objectives of this study were to assess, in 

comparison to the Control Group, the effects of HBO2 preconditioning on: 

a) other peri-operative cardiovascular efficacy parameters. 

b) patient outcomes with respect to the safety. 
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Exploratory Secondary Objectives: 

The exploratory secondary objectives for this study were to 

assess, in comparison to the Control Group, the effects of HBO2 

preconditioning on: 

a) surrogate biomarkers of endothelial and neutrophilic 

adhesiveness.  

b) myocardial biomarkers of cardioprotection.  

Additionally, a post-hoc analysis was also done to determine the cost 

effectiveness of HBO2 preconditioning . 
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1.10  End Points 

1.10.1 Primary Endpoint Measure 

The primary cardiovascular efficacy endpoint measure of this 

study was the mean (or median) measurement of myocardial LVSW 24 hours 

post CPB in both groups. 

1.10.2 Secondary Endpoint Measures 

Main Secondary Endpoint Measures: 

The secondary endpoint measures of this study were the mean 

(or median or incidence or proportion) measurements, in both groups, with 

respect to the following: 

a) at all the pre-specified time points, the peri-operative cardiovascular 

haemodynamic parameters, as described in Table 2.4. 

b) post operative adverse events (AEs) described in Table 2.3. 

In this study, an AE was defined as any new untoward medical occurrence or 

worsening of a pre-existing medical condition in a patient treated with HBO2 

and that does not necessarily have a causal relationship with this treatment. An 

AE can therefore be any unfavorable and unintended sign (including an 

abnormal laboratory finding or prolonged admission), symptom, or disease 

temporally associated with the use of HBO2, whether or not considered related 

to the HBO2. 
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Exploratory Secondary Endpoints:  

The exploratory secondary endpoint measures of this study were 

the mean (or median) measurements, in both groups, at all of the pre-specified 

time points, with respect to the following: 

a) concentration of serum soluble adhesion molecules which 

included: 

i. soluble E-Selectin 

ii. soluble P-Selectin 

iii. soluble ICAM-1 

iv. soluble PSGL-1 

b) quantity of intra-operative myocardial cardioprotective proteins 

which included: 

c) eNOS  

d) Hsp72 

The post-hoc cost effectiveness analysis of HBO2 preconditioning was done by 

estimating the cost for HBO2 treatment and the daily post operative cost for the 

use of an intensive care bed in both groups. 
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2.  Methods 

2.1  Ethical & Hospital Approvals 

Prior to commencing this study, ethical and hospital approval 

was obtained from the Hull & East Riding Local Research Ethics Committee 

(approval number: 04/Q1104/26) and the Hull & East Yorkshire NHS Trust 

(approval number: R0047), respectively. This clinical study conforms with the 

Declaration of Helsinki, the principals of Good Clinical Practice (GCP) and the 

principals of the International Conference of Harmonisation. 

2.2  Study Population 

The study population was defined as all patients with coronary 

artery atherosclerosis who were admitted to the Hull & East Yorkshire NHS 

Trust for elective first time CABG surgery using CPB and hypothermic 

intermittent ischaemic fibrillatory arrest.  From January 2005 to July 2006, this 

study population consisted of 474 patients who had been admitted under the 

care of the two cardiac surgeons who had agreed to be part of this study.   
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2.2.1  Inclusion Criteria 
 

The inclusion criteria was:  

1. patients undergoing elective first time CABG using CPB 

and hypothermic intermittent ischaemic fibrillatory arrest.  

2.2.2  Exclusion Criteria 
 

The exclusion criteria were: 

1.  Patients with a high surgical risk which included:  

a) Age < 20 and > 85 years.  

b) Ejection fraction < 30%. 

c) Unstable angina.  

d) < 1 month post MI.  

e) Cardiac disease other than CAD.  

f) Organ failure.  

g) History of chronic obstructive pulmonary disease 

(COPD), pneumothorax, pulmonary bullae, 

convulsions, myopia or intraocular lens. Patients with 

a history of any these clinical conditions were excluded 

as exposure to the pressure changes during HBO2 

preconditioning may lead to complications.   
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2. Current use of K+
(ATP) channel openers, oral 

hypoglycaemic, opioid analgesics or catecholamines. 

Patients on any form of these agents were excluded as these 

agents have demonstrated some capacity to provide 

myocardial protection.   

2.3  Statistical Plan 

The statistical plan and analysis for this study was done in 

collaboration with the appointed study statistician, Dr.E.Gardiner.  

2.3.1  Sample Size 

Based on the haemodynamic observations from another study 

involving pharmacological preconditioning and myocardial protection (Wang 

et al., 2003), the sample size calculations for this study was based on the 

assumption that compared to the Control Group, treatment with HBO2 

preconditioning in the HBO2 Group, would lead to a 7.5% improvement in 

LVSW, 24 hours post CPB. Furthermore, based on a previous clinical 

study (Alex et al., 2005) involving  HBO2  preconditioning and CBAG, a 

within-group standard deviation of 6.25% was assumed. A two-sided 5% 

significance level and a 90% power were pre-specified for this study.  

Allowing for the detection of a 7.5% difference in the primary 

endpoint measure between the two treatment groups and, allowing for 

increased variance of interaction and estimates relative to the main effect 

 (Piantadosi, 1997), it was estimated that a minimum of 60 patients would be 
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required to show statistically significant difference between the groups, with 

respect to LVSW at the time point ‘24 hours post CPB’. Based on the previous 

clinical study by Alex et.al (2005) involving HBO2 and CABG, a drop-out rate 

of 35% was estimated for this study. Taking this into account, it was estimated 

that a minimum of 80 patients would need to be randomised to detect the a 

difference of 7.5% between the groups with respect to the primary endpoint 

measure. 

However, as the detection of a 7.5% difference between the 

groups is small, it was expected that there would also be the possibility that 

this sample size may not be large enough to detect any difference between the 

groups and a Type 2 error (false negatives) made be made. Additionally, as this 

study has multiple secondary endpoints, which would involve multiple 

statistical testing, this may also increase the risk of a Type 1 error (false 

positives). To avoid making conclusions that were based on Type 1 and Type 2 

errors, it was planned that definitive conclusions, based on statistical analysis, 

can only be drawn for the comparison of the primary endpoint between the 

groups, and not the secondary endpoints. 

In this study, it was also planned that the main analysis for 

comparing the secondary endpoints measures between the groups would be a 

descriptive analysis of the means (or medians or proportions), with the 

statistical analysis only providing a sensitivity measure to support estimates of 

the descriptive differences that are reported.  
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2.3.2  Sample Population 

 Screening for suitable patients from the study population took 

place during the pre-assessment clinical visits. During these visits, which 

occurred up to 30 days prior to surgery, patients had routine investigations 

conducted as part of their work-up prior to surgery. From the study population 

of 474 patients, 81 matched the study criteria and were recruited following 

informed consent. 40 patients were randomised to the Control Group and 41 

patients were randomised to the HBO2 Group. The patients were aware of their 

randomisation group. None of the surgeons, junior doctors, anaesthetists, 

perfusionists or nursing team were aware of the study group allocations of the 

patients.  

Following randomisation, there were 5 drop-outs from the 

Control Group and 7 from the HBO2 Group. The total drop-out rate for this 

study was 13.6%, which was less than was expected. The drop-out rate for the 

Control Group was 13% while for the HBO2 group it was 17%. The reason for 

the 5 drop-outs from the Control Group was a withdrawal of consent following 

randomisation. Of the 7 drop-outs from the HBO2 Group, 4 were due to 

withdrawal of consent following randomisation and 3 were due to ear pain 

during the initial pressurisation protocol of the HBO2 preconditioning 

treatment. Figure 2.1 shows the CONSORT Flow Diagram of patients 

recruited to this study.  
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Figure 2. 1: Consort Flow Diagram 
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2.3.3  Study Design 

  This study was designed as a pilot proof of concept, phase 2, 

prospective, single centre randomised control study that was based on a 

previous clinical study involving HBO2 and CABG (Alex et al., 2005). In this 

study, following screening during the pre-admission clinic visit, suitable 

consenting patients were randomised to either the Control Group or to the 

HBO2 Group. Randomisation was done in a 1:1 manner (Figure 2.2). 

Randomisation was carried out by pulling out sealed envelopes in sequence 

from a box. The random treatment allocations were contained within the 

envelope. The random treatment allocation list was prepared by the study 

statistician.  

 

Figure 2. 2: Study Design 
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2.3.4  Statistical Methods 

Repeated measures of ANOVA was used to analyse the data 

involving haemodynamic and safety measurements and, the concentrations of 

serum Troponin-T, soluble adhesion molecules and, myocardial eNOS and 

Hsp72. Wilcoxon Signed Rank Test was used to analyse pre and post HBO2 

data involving serum soluble adhesion molecules concentrations. Independent 

sample t-test was used to analyse post operative length of stay in ICU, intra 

and post operative blood loss and, post operative blood transfusion. The Chi-

Square test was used to analyse categorical differences between the groups.  

  Data were analysed in accordance with the principals of 

intention to treat basis (ITT) (Molenberghs, 2007). Where data were missing, 

no imputation was undertaken. As there was no imputation of data, where large 

amounts of data were missing, only an on-treatment analysis was performed. 

To determine if the data were normally distributed or skewed, both the means 

and the medians were calculated. A large disparity between these would 

suggest that the data were skewed. Where the data were skewed, natural 

logarithmic (ln) transformation of the data were performed to normalise the 

data and enable parametric statistical analysis. Once parametric statistical 

analysis was performed, the data from logged results were transformed back 

into original estimates to provide the geometric mean which represents the 

ratio of the HBO2 Group to Control Group values (Altman, 1991).   

  Where appropriate, the location of the data are displayed in 

tables, as ranges, medians, means and ln means. The p-values provided are for 
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the geometric means. The variability of the the means of the data are displayed 

in bar charts as the standard error of the mean. 

2.4 Hyperbaric Oxygen Preconditioning 

Protocol 

 
The pressure and duration for HBO2 preconditioning was based 

on the optimum effect noted in a previous clinical study (Alex et al., 2005) 

involving HBO2 and CABG. On the morning of surgery, patients randomised 

to the HBO2 Group were transported to the Classic Hospital (Hull, UK) where 

they were preconditioned with HBO2. The protocol for the HBO2 treatment is 

depicted in Figure 2.3.  

 

Figure 2. 3: HBO2 Protocol 
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The HBO2 preconditioning treatment consisted of 

pressurisations over 10 minutes from 1 ATA to 2.4 ATA. During this 

pressurisation period, the patients were breathing air. Once at 2.4 ATA, 

patients placed a clear plastic hood over their heads and 100% oxygen was 

supplied for 30 minutes. This period was followed by a 5 minute interval out of 

the hood at 2.4 ATA, when the patients were breathing only air. After this 

interval, the hood was replaced and the patients again breathed 100% oxygen 

at 2.4 ATA for a further 30 minutes. The two 30 minute periods of 100% 

oxygen at 2.4 ATA effectively constitutes the treatment of HBO2 

preconditioning. Finally, the hood was removed and the chamber was 

depressurised over 25 minutes back to 1 ATA. During this depressurisation 

period, patients were again only breathing air. Treatment with HBO2 

preconditioning was completed approximately 2 hours prior to CPB. This 

duration between the end of HBO2 preconditioning and the start of CPB was 

the minimum duration that this research unit could achieve, as the chamber for 

the administration of HBO2 was not at the site where patients were having their 

CABG surgery.  
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2.5  Anaesthetic & Surgical Procedure 

There were 8 anaesthetists and 2 surgeons who were part of this 

randomised control study. All of them adhered to the same anaesthetic and 

surgical technique.  

2.5.1  Anaesthetic Procedure 

Approximately 1 hour prior to CABG, while the patients were 

on the ward, all the patients were given an anoxylitic, which consisted of either 

Temazepam or Lorazepam. In the Control Group this was given following 

baseline venous blood sampling. In the HBO2 Group, this was given after the 

post HBO2 venous blood sample was taken. 

 In the anaesthetic room, once all the routine monitoring devices 

were attached to the patient, anaesthesia was induced using Fentanyl and 

Propofol. Following anaesthetic induction, a pulmonary artery (PA) catheter 

(Edward Life Sciences, Germany) was inserted to enable peri-operative 

haemodynamic monitoring. During the intra-operative period, Isoflurane and 

Ramifentanyl were used to maintain anaesthesia. 
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2.5.2  Surgical Procedure 

Non-pulsatile (continuous flow) CPB was achieved using a 

Stockert SIII roller pump (Stockert Instrumente GmbH, Germany) together 

with a hollow fibre membrane oxygenator, an integral hard shell venous 

cardiotomy reservoir (Avant Phisio/M-Dideco, Italy) and a 38μm arterial line 

filter (Affinity352 Medtronic Inc, USA). During CPB, systemic hypothermia 

of 32°C was maintained. Intermittent ischaemic fibrillatory arrest was used as 

the intra-operative method for myocardial protection. Re-warming commenced 

during the distal anastamosis of the final coronary artery bypass graft. In this 

study, none of the patients were given Trasylol (serine protease inhibitor) as an 

anti-thrombolytic prior to CABG.  

2.6  Study Data Collection & Measurements 

  The data collected and the measurements made during this 

study consisted of the following: 

a. pre-operative and intra-operative patient data.  

b. post operative patient AEs.  

c. measurements of peri-operative haemodynamic parameters. 

d. measurements of peri-operative venous blood serum biomarker 

concentrations. 

e. measurements of the amount of intra-operative myocardial biomarkers. 

The details of the data collected and the measurements made, will be discussed 

in the following sections. 
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2.6.1  Pre-Operative Patient Data Collection 

  Following screening, to determine suitability for this study, and 

obtaining informed consent, pre-operative patient data were collected as 

described in Table 2.1. Apart from serum Troponin-T, all these data are 

routinely collected as part of pre-operative assessment. 

 

Table 2. 1: Pre-Operative Patient Data Catergories 
 
 
 
 
 
 
 
 

Pre-Operative Patient Data 

Age 
Sex 

Body Mass Index (BMI) 
History of unstable angina 

History of previous MI 
Severity of CAD 

Left ventricular function 
History of hypertension 

History of diabetes mellitus 
History of peripheral vascular disease 

EUROSCORE (Simple Additive Score) 
 (Roques et al., 1999)  

Pre-HBO2 Serum Troponin-T 
(all patients) 

Post HBO2 Serum Troponin-T 
(only patients in HBO2 Group) 

 

These data were collected as these factors may affect the intra and post 

operative clinical outcomes of patients in this study.  

The pre- and post operative measurement of serum Troponin-T 

was not routinely performed in the Cardiothoracic Surgical unit at Castle Hill 

Hospital, Hull. The pre- and post HBO2 serum Tropinin-T measurements were 

used as a surrogate biomarker which enabled further assessment of the 

myocardial safety, with respect to myocardial injury, of HBO2 preconditioning. 
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Serum Troponin-T from all time points were analysed by the Department of 

Biochemistry at the Hull & East Yorkshire NHS Trust within 4 hours of 

collection. This analysis was done using an                               

electrochemiluminescence immunoassay (ELICA) (Troponin T STAT, Roche 

Diagnostics Ltd, Burgess Hill, UK) performed on the Roche Elecsys 2010 

analyser in accordance with the manufacturer’s protocol. The measuring range 

of the kit is 0.01-25.00ng/ml. The analytical sensitivity (lower detection limit) 

and specificity of the kit is 0.01ng/ml and, between 0.001%-0.1%, 

respectively. According to the European Society of Cardiology (ESC) and the 

American College of Cardiology (ACC), MI is diagnosed when the levels of 

cardiac Troponin are above the 99th. percentile of the reference limit in the 

healthy population (Alpert J. S., 2000). According to the manufacturor, the 

99th. percentile for Troponin-T in the healthy population, measured using the 

Troponin-T STAT kit, is <0.01ng/ml. Furthermore, it has also been 

recommended that the Troponin-T concentration that is used to diagnose an MI 

must take in to account an imprecision (coefficient of variation) at the 99th. 

percentile that is equal to or less than 10% (Alpert JS, 2000) and this 

coefficiant of variation must also be taken into account when determining the 

serum Troponin-T concentration that will be used as a medical diagnostic 

guide (Apple FS, 2001). According to the manufacturor of the Troponin-T 

STAT kit, this would make a serum Troponin-T concentration of 0.03ng/ml as 

the medical diagnostic guide for diagnosing an MI. It is the lowest limit of 

quantification that can be reproducibly measuresed with a coefficient of 

variation of 10%. 
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2.6.2  Intra-Operative Patient Data Collection 

  Table 2.2 shows the routine categories of patient data that were 

collected during surgery: 

Table 2. 2: Intra Operative Patient Data Categories 
 

 
Intra Operative Patient Data 

Myocardial ischaemic time 
CPB time 

Intra-operative blood loss 
 

The intra-operative myocardial ischaemic time was measured to determine the 

length of time, during CABG, when the myocardium was exposed to ischaemia 

and thus susceptible to myocardial injury. The time spent on CPB was 

measured to determine the length of time patients were exposed to the 

hypothermia of 32°C and the non-pulsatile flow CPB. Intra-operative blood 

loss was measured by determining the volume of blood collected by the 

Yanker Suckers and the cell savers, as a measure of the amount of intra-

operative bleeding experienced by patients during this study. 
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2.6.3  Post-Operative Patient Adverse Event Data 

  Table 2.3 shows the patient AE data that were collected 

following the CABG surgery, during the in-hospital stay: 

Table 2. 3: Post Operative Patient Adverse Event Data 
 

Type of AE Measurement 
 
 
 
 

Cardiovascular 

Troponin-T ≥ 0.03ng/ml 
Proportion with low cardiac output syndrome 

Proportion with atrial fibrillation 
Proportion with MI 

Proportion with inotrope use 
Proportion needing cardiovascular supportive 

therapy (IABP*, pacing) 
Volume of post operative blood loss 

Volume of  post operative blood transfusion 
 
 
 

Pulmonary 

Duration mechanical ventilation 
Duration of endotracheal inbubation 

Proportion with pneumothorax 
Proportion with pleural effusion 
Proportion with chest infection 

Proportion needing pulmonary supportive 
therapy (BIPAP¥, CPAP§) 

 
Renal 

Proportion with serum creatinine > 200mmols/l 
Proportion with needing renal supportive 

therapy  (CVVH†) 
 

Neurological 
Proportion with confusion 

Proportion with transient ischemic attack (TIA) 
Proportion with stroke 

Gastrointestinal Proportion with diarrhoea 
Proportion with ischaemic bowel 

 
Microbiological Infections 

Proportion with superficial sternal wound 
infections 

Proportion with deep sternal wound infections 
Proportion with leg wound infections 

ICU Stay Number of hours 
Sternal Re-wiring Proportion needing sternal re-wiring 

Mortality Proportion of dead patients 
*IABP-Intra-Aortic Balloon Pump;  
¥BIPAP- Biphasic Positive Airway Pressure;  
§CPAP-Continuous Positive Airway Pressure;                          
†CVVH- Continuous Venovenous Haemofiltration 
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Apart from the measurement of serum Troponin-T ≥ 0.03ng/ml, the above AE 

data were routinely collected post operative data at the Cardiothoracic Surgical 

unit in Castle Hill Hospital, Hull. This AE data enabled descriptive estimates 

of the post operative safety profile of each group and, enabled simple statistical 

comparisons between the groups. Post operative serum creatinine was 

measured by the Department of Biochemistry at the Hull & East Yorkshire 

NHS Trust using Beckman Coulter (UK) Ltd (High Wycombe, UK) Unicel 

DxC800 (Synchron Clinical Systems) modular creatinint (Jaffe) method. 

In the hospital where this study was conducted, and as such for 

this study, patients requiring the used of inotropes, intra or post operatively, 

were identified as experiencing low cardiac output syndrome. Atrial fibrillation 

(AF) in this study was defined as an electrocardiogram (ECG) tracing without 

‘p’ waves at a rate of ≥ 120 per minute. 

2.6.4  Peri-Operative Haemodynamic Measurements 

  During the peri-operative period, haemodynamic measurements 

were taken using the PA catheter which was inserted following anaesthetic 

induction. The haemodynamic parameters and the time points at which they 

were  measured are displayed in Table 2.4. 
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Table 2. 4: Peri-Operative Haemodynamic Parameters 

 
Time Points 

 

 Intra-operative Post-Operative 
 Post 

Anaesthetic 
Induction 

5 minutes 
post CPB 

2 hours 
post CPB 

4 hours 
post 
CPB 

8 hours 
post 
CPB 

12 
hours 
post 
CPB 

24 
hours 
post 
CPB 

 

 

 

 

 

Haemodynamic 
Parameters 

Heart Rate (HR) X X X X X X X 
Mean Arterial Pressure (MAP) X X X X X X X 

Stroke Volume (SV) X X X X X X X 
Cardiac Output (CO) X X X X X X X 
Cardiac Index (CI) X X X X X X X 

Mean Pulmonary Artery 
Pressure (MPAP) 

X X X X X X X 

Pulmonary Capillary Wedge 
Pressure (PCWP) 

X X X X X X X 

Pulmonary Vascular Resistance 
(PVR) 

X X X X X X X 

Pulmonary Vascular Resistance 
Index (PVRI) 

X X X X X X X 

Systemic Vascular Resistance 
(SVR) 

X X X X X X X 

Systemic Vascular Resistance 
Index (SVRI) 

X X X X X X X 

Left Ventricular Stroke Work 
(LVSW) 

X X X X X X X 

Left Ventricular Stroke Work  
Index (LVSWI) 

X X X X X X X 

Right Ventricular Stroke Work 
(RVSW) 

X X X X X X X 

Right Ventricular Stroke Work 
Index (RVSWI) 

X X X X X X X 
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Measurement of these haemodynamic parameters enabled the assessment of 

the effects of HBO2 preconditioning on peri-operative myocardial function 

(HR, MAP, SV, CO, CI, MPAP, LVSW, LVSWI, RVSW and RVSWI), 

systemic vascular function (MAP, SVR and SVRI) and pulmonary vascular 

function (MPAP, PCWP, PVR and PVRI).  

2.6.5  Peri-Operative Serum Biomarker Sampling 

  During the peri-operative period, two 5ml samples of venous 

blood was drawn from each patient at the time points shown in Table 2.5 for 

serum biomarker analysis. 

Table 2. 5: Peri-Operative Venous Blood Sampling 
 
 Time Points 
 Pre- 

HBO2 
Post 

HBO2 
5 

minutes 
on CPB 

5 
minutes 
post IRI 

2 hours 
post 
CPB 

24 hours 
post 
CPB 

Control 
Group 

X † X X X X 

HBO2 
Group 

X X X X X X 

†The Control Group did not have any blood taken at the post HBO2 time point  
 

In this study, the baseline blood samples from each group were 

not taken at the same time. In the Control Group, a baseline (this will be 

classified as the ‘pre-HBO2’ time point in the Control group) blood sample was 

taken approximately 1 hour prior to anaesthetic pre-medication. In the HBO2 

Group, a baseline ‘pre-HBO2’ blood sample was taken approximately 1 hour 

prior to HBO2 preconditioning.  As the Control Group of patients did not have 

any intervention or HBO2 preconditioning prior to anaesthesia and CABG, no 
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blood sample was taken at the ‘post HBO2’ time point in this study. In the 

HBO2 Group, the ‘post HBO2’ blood sample was taken approximately 1 hour 

after HBO2. Only the HBO2 Group had blood taken pre and post HBO2 

preconditioning to allow for assessment of changes in serum biomarkers 

following HBO2 preconditioning. The blood sample at the time point ‘5 

minutes on CPB’ was taken 5 minutes following the onset of CPB. This ‘5 

minutes on CPB’ blood sample allowed for the assessments of the early 

changes in serum biomarkers following the initiation CPB, prior to operative 

IRI, in both groups, when compared to the blood sample taken at the ‘pre- 

HBO2’ time point. The blood sample taken at the time point ‘5 minutes post 

IRI’ was taken 5 minutes following the final release of the aortic cross clamp 

from the aorta i.e. after the final anastamosis of the final bypass graft to the 

coronary artery (distal anastamosis) was complete. This ‘5 minutes post IRI’ 

blood sample allowed for the assessment of changes in serum biomarkers as a 

result of the effects of operative IRI in both groups when compared to blood 

samples taken at earlier time points in this study. The blood samples taken at 

the time point ‘2 hours post CPB’ and ‘24 hours post CPB’, allowed for the 

assessment of the delayed changes in serum biomarkers following the 

termination CPB in both groups when compared with blood samples taken at 

earlier time points in this study. 

Each of the two 5ml blood sample taken was placed in an amber 

top BD Vacutainer Tube (SST11 Advance). One tube was analysed for serum 

Troponin-T and the other was used for the analysis of serum soluble adhesion 

molecule biomarkers. The tube for serum soluble adhesion molecule analysis 
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was centrifuged, within 4 hours of collection, at 1200g for 15 minutes at 2ºC in 

a Rotanta 96R centrifuger (Hettich Zentrifugen, Tuttingen, Germany). The 

supernatant (i.e. the serum) was subsequently pipetted into labelled 1.5ml 

propylene tubes and stored at -80ºC for later serum biomarker analysis. 

2.6.6  Peri-Operative Serum Biomarkers 

Assessment 

  The methods used for the assessment of the biomarkers 

investigated in this study are described below. 

2.6.6.1 Peri-Operative Serum Troponin-T Assessment 

The pre- and post operative measurement of serum Troponin-T 

was not routinely performed in the Cardiothoracic Surgical unit at Castle Hill 

Hospital, Hull. The pre- and post HBO2 serum Tropinin-T measurements were 

used as a surrogate biomarker which enabled further assessment of the 

myocardial safety, with respect to myocardial injury, of HBO2 preconditioning. 

Serum Troponin-T from all time points were analysed by the Department of 

Biochemistry at the Hull & East Yorkshire NHS Trust within 4 hours of 

collection. This analysis was done using an                               

electrochemiluminescence immunoassay (ELICA) (Troponin T STAT, Roche 

Diagnostics Ltd, Burgess Hill, UK) performed on the Roche Elecsys 2010 

analyser in accordance with the manufacturer’s protocol. The measuring range 

of the kit is 0.01-25.00ng/ml. The analytical sensitivity (lower detection limit) 

and specificity of the kit is 0.01ng/ml and, between 0.001%-0.1%, 
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respectively. According to the European Society of Cardiology (ESC) and the 

American College of Cardiology (ACC), MI is diagnosed when the levels of 

cardiac Troponin are above the 99th. percentile of the reference limit in the 

healthy population (Alpert J. S., 2000). According to the manufacturor, the 

99th. percentile for Troponin-T in the healthy population, measured using the 

Troponin-T STAT kit, is <0.01ng/ml. Furthermore, it has also been 

recommended that the Troponin-T concentration that is used to diagnose an MI 

must take in to account an imprecision (coefficient of variation) at the 99th. 

percentile that is equal to or less than 10% (Alpert JS, 2000) and this 

coefficiant of variation must also be taken into account when determining the 

serum Troponin-T concentration that will be used as a medical diagnostic 

guide (Apple FS, 2001). According to the manufacturor of the Troponin-T 

STAT kit, this would make a serum Troponin-T concentration of 0.03ng/ml as 

the medical diagnostic guide for diagnosing an MI. It is the lowest limit of 

quantification that can be reproducibly measuresed with a coefficient of 

variation of 10%. 
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2.6.6.2 Peri-Operative Serum Soluble Adhesion Molecule 

Assessment 

  In this study, the serum soluble adhesion molecule biomarkers 

that were assessed were soluble E-Selectin (sE-Selectin), soluble P-Selectin 

(sP-Selectin), soluble ICAM-1 (sICAM-1) and soluble PSGL-1 (sPSGL-1). 

These serum biomarkers were measured as they are adhesion molecules that 

are known to be shed (Gearing and Newman, 1993, Hayward et al., 1999, 

Hillis et al., 2002, Pigott et al., 1992, Ushiyama et al., 1993) from the surfaces 

of the vascular endothelium (sE-Selectin, sP-Selectin and sICAM-1) or cleaved 

off the surfaces of  neutrophils (sPSGL-1) (Gardiner et al., 2001, Lefer et al., 

1998)  following a period of oxidative stress such as IRI. Following the 

discussion in section 1.2.1, as intact adhesion molecules on the surfaces of the 

vascular endothelium and neutrophils are required for endothelial-neutrophil 

adhesion, it is reasonable to suggest that the presence of the soluble form of 

these adhesion molecules, which are no longer attached to the endothelial or 

neutrophilic surfaces, provides an indirect measure of the reduced 

adhesiveness of those surfaces. Furthermore, following on from the discussion 

in section 1.2.1.3, it is reasonable to suggest that the more of these intact 

adhesion molecules that are shed or cleaved off the surfaces of the vascular 

endothelium and the neutrophils into the circulation, the less likely is it for 

neutrophils to be able to adhere to the vascular endothelium and vice-versa. 

This has the potential to limit neutrophil mediated vascular injury. 
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To measure these serum soluble adhesion molecules, the 

required serum samples were removed from the -80ºC freezer and thawed prior 

to use. Each sample was analysed for the four different serum soluble adhesion 

molecules in the sequence of sE-Selectin, sP-Selectin, sPSGL-1 and sICAM-1. 

As such, samples from each time point for sE-Selectin analysis experienced 

one freeze-thaw cycle, the samples for  sP-Selectin analysis experienced two 

freeze-thaw cycles, the samples for sPSGL-1 analysis experienced three 

freeze-thaw cycles and the samples for sICAM-1 analysis experienced four 

freeze-thaw cycles.  

  All samples for serum soluble adhesion molecule measurement 

were analysed using a quantitative sandwich ELISA procedure. The ELISA 

kits for sE-selectin, sP-selectin and sICAM-1 were purchased from R&D 

Systems (R&D Systems Inc, Minneapolis, USA) while those for sPSGL-1 

analysis were purchased from Bender MedSystems (Bender MedSystems, 

Vienna, Austria).  

The ELISA assay procedure was performed according to the 

methods recommended by the manufacturer. This method was similar for all 

the four  types of assays. As such, for the purpose of describing the ELISA 

method that was used, the general steps involved in the serum sE-Selectin 

ELISA assay procedure will be described in the following section. A summary 

of the differences in between sE-Selectin ELISA assay procedure and the 

ELISA assay procedure for sP-Selectin, sICAM-1 and sPSGL-1, will be 

described in the subsequent sections.  
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2.6.6.2.1  ELISA Assay Procedure For sE-Selectin 

  All the reagents used in this procedure were provided by the 

manufacturer (R&D Systems Inc, Minneapolis, USA) and were brought to 

room temperature prior to use. 

  Sample Preparation 

 All samples were diluted 20 fold by adding 15μl of sample to 

285μl of Sample Diluent. 

Reagent Preparation 

The wash buffer was made by diluting 20ml of the wash buffer 

concentrate with 480ml distilled water. The sE-Selectin conjugate concentrate 

(sheep polyclonal antibody to recombinant human sE-Selectin conjugated to 

horseradish peroxidase in buffer with preservative) was then diluted by 

pipetting 250μl of the concentrate into a bottle containing 11ml of Conjugate 

Diluent (horseradish peroxidase conjugate concentrate). All the provided 

standards were reconstituted by pippeting 1ml of distilled water into each of 

the bottles containing the standards. The reconstituted standards were then 

allowed to sit at room temperature for 10 minutes before use. The 

concentration of each of the reconstituted standards was stated on each of the 

bottles containing the standards (Table 2.6). 
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Table 2. 6: Concentration of sE-Selectin Standards 
 

 

 

 

 

 

Assay Procedure 

Using the 96 well microplate (12 strips, 8 wells per strip, coated 

with a mouse monoclonal antibody to human sE-Selectin), 100μl of sE-

Selectin Standard 5 was pipetted in duplicate in wells A1 & B1. This was 

followed by 100μl sE-Selectin Standard 4 in wells A2 & B2, 100μl sE-Selectin 

Standard 3 in wells A3 & B3, 100μl sE-Selectin Standard 2 in wells A4 & B4, 

100μl sE-Selectin Standard 1 in wells A5 & B5 and 100μl sE-Selectin 

Standard 0 in wells A6 & B6. Wells A7, A8, B7 and B8 were left blank 

(Figure 2.4). In this study, all the blank wells were left empty and not used 

during the assay procedure. 

100μl of a particular patient’s diluted sample, from an appropriate 

study time point, was then added in duplicates to the respective wells in strips 

C to L of the ELISA microplate (Figure 2.4). 100μl of the diluted sE-Selectin 

Conjugate was then added to all the wells in strips A to L (except for the blank 

wells). The microplate was then covered with a plate sealer and allowed to 

incubate for 1.5 hours at room temperature on a rotator set at 100 revolutions 

Standards sE-Selectin Concentration (ng/ml) 
5 10.56 
4 7.91 
3 4.88 
2 2.54 
1 0.57 
0 0 
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per minute (rpm). The plate was then washed six times with 300μl of the 

previously made up wash buffer using a Thermolab Systems Wellwash 4MK2 

autowasher. Once washed and ensuring that all the liquid in each well was 

removed, 100μl of the Substrate Solution (tetramethylbenzidine-TMB) was 

added to each well (except for the blank wells). The micoplate was then once 

again covered with a new plate sealer and allowed to incubate, in the dark, at 

room temperature for approximately 15 minutes on a rotator set at 100rpm. 

Once the most concentrated standard had reached a deep blue colour, 100μl of 

the provided Stop Solution (Sulfuric Acid) was added to each well (except for 

the blank wells). Within 30 minutes of adding the Stop Solution, the 

spectophotometric reading from each well was then determined using the 

Anthos 2010 microtitre plate reader (Anthos Labtec Instrument GmdH, 

Austria) together with the Stingray software (Stingray Software Inc, USA). A 

primary wavelength of 450nm was used during the spectophotometric analysis 

with a correction for optical imperfections in the plate set at 620nm.  

According to the manufacturer (R&D System), the intra-assay coefficient of 

variation for sE-Selectin ELISA microplate was between 4.7% and 5% while 

the inter-assay coefficient of variation was between 5.7% and 8.8%. The 

minimum detectable dose of sE-Selectin was 0.1ng/ml.  
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Figure 2. 4: Schematic Representations of ELISA Microplate Wells Containing ELISA Standards & Samples At Each                             
Time Point In Duplicates 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Legend 2. 1: Legend Colour for Figure 2.4 
 
 
 

 A B C D E F G H I J K L 
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2 hours Post  
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2 hours Post  
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Pre 

HBO2 
Pre 

HBO2 

5 minutes 
On 

CPB 

5 minutes 
On 

CPB 

2 Standard 4 Standard 4 
Post 

HBO2 
Post 

HBO2 

5 minutes 
Post 

Ischaemic 
Reperfusion 

5 minutes 
Post 

Ischaemic 
Reperfusion 

24  hours 
Post 
CPB 

24  hours 
Post 
CPB 

Post 
HBO2 

Post 
HBO2 

5 minutes 
Post 

Ischaemic 
Reperfusion 
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Post 

Ischaemic 
Reperfusion 
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CPB 
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2 hours Post  
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Pre 

HBO2 
Pre 

HBO2 
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CPB 
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CPB 
2 hours Post  

CPB 
2 hours Post  

CPB 
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Post 
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Reperfusion 
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Ischaemic 
Reperfusion 

24  hours 
Post 
CPB 

24  hours 
Post 
CPB 

Post 
HBO2 

Post 
HBO2 

5 minutes 
Post 

Ischaemic 
Reperfusion 

5 minutes 
Post 

Ischaemic 
Reperfusion 

24  hours 
Post 
CPB 

24  hours 
Post 
CPB 

5 Standard 1 Standard 1 
2 hours Post  

CPB 
2 hours Post  

CPB 
Pre 

HBO2 
Pre 

HBO2 

5 minutes 
On 

CPB 

5 minutes 
On 

CPB 
2 hours Post  

CPB 
2 hours Post  

CPB 
Pre 

HBO2 
Pre 

HBO2 

6 Standard 0 Standard 0 

24  hours 
Post 
CPB 

24  hours 
Post 
CPB 

Post 
HBO2 

Post 
HBO2 

5 minutes 
Post 

Ischaemic 
Reperfusion 
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Post 
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Reperfusion 
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Post 
CPB 

24  hours 
Post 
CPB 
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HBO2 

Post 
HBO2 

7   
Pre 

HBO2 
Pre 

HBO2 
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On 

CPB 
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On 

CPB 
2 hours Post  
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2 hours Post  

CPB 
Pre 

HBO2 
Pre 

HBO2 
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On 

CPB 

5 minutes 
On 

CPB 
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Post 

HBO2 
Post 

HBO2 
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Post 

Ischaemic 
Reperfusion 

5 minutes 
Post 
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Post 
CPB 
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Post 
CPB 

Post 
HBO2 

Post 
HBO2 
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Reperfusion 
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Post 
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Reperfusion 

Well 
containing sE-

Standard 
Well 

containing 
sample from 
Patient No. 7 
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containing 
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Patient No. 17 
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containing 
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Well 
containing 
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Patient No. 23 

Well 
containing 
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Patient No. 53 
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containing 
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Patient No. 56 

 
Blank Wells 
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2.6.6.2.2 ELISA Assay Procedure For sP-Selectin 

The reagents, methods used and the steps involved in the  

ELISA assay procedure for sP-Selectin was similar to that used for sE-Selectin 

apart from  

a) the first incubation period was only 1 hour in duration. 

b) the microplate was washed only 3 times on the autowasher.  

The intra-assay coefficient of variation for sP-Selectin ELISA 

microplate was between 4.9% and 5.1% while the inter-assay coefficient of 

variation was between 7.9% and 9.9%. The minimum detectable dose of sP-

Selectin was 0.5ng/ml.  

2.6.6.2.3 ELISA Assay Procedure For sICAM-1 

The reagents, methods used and the steps involved in the  

ELISA assay procedure for sICAM-1 was exactly the same as for sE-Selectin. 

The intra-assay coefficient of variation for sICAM-1 ELISA microplate was 

between 3.3% and 4.8% while the inter-assay coefficient of variation was 6% 

between 10.1%. The minimum detectable dose of sICAM-1 was 0.35ng/ml. 
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2.6.6.2.4 ELISA Assay Procedure For sPSGL-1 

This assay procedure also involved a 20 fold dilution of the 

samples. While the general methods and steps  for the ELISA assay procedure  

for sPSGL-1 was similar to that of sE-Selectin, there were some differences. 

These differences involved the following: 

   Reagent Preparation 

   50ml of the manufacturer provided wash buffer concentrate was 

mixed with 950ml of distilled water to make up a 1liter of 20 fold dilution of 

the wash buffer. 5ml of the manufacturer provided Assay Buffer concentrate 

was then mixed with 95ml of distilled water to make up a 100ml 20 fold 

dilution of the Assay Buffer.  

   A 100 fold dilution of Biotin Conjugate solution was then made 

by mixing 0.06ml of Biotin Conjugate (anti-human sPSGL-1 monoclonal 

antibody) to 5.94ml of the prepared Assay Buffer. After this, a 200 fold 

dilution of the Streptavidin-Horseradish Peroxidase (HRP) concentrate was 

made by adding 60μl of Streptavidin-HRP concentrate to 12 ml of Assay 

Buffer. Then the sPSGL-1 standard was reconstituted by the addition of a 

volume of distilled water that was stated on the bottle of the sPSGL-1 standard. 

The concentration of the reconstituted standard was 100u/ml.  

   Once the standard was reconstituted, a series dilution of the 

standard was then made. This was done by firstly labelling 6 propylene tubes 

as S1, S2, S3, S4, S5, S6, respectively, one for each diluted standard. Then a 2 

fold serial dilution of the provided sPSGL-1 standards was made by firstly 

pipetting 225μl of Sample Diluent into each tube. Then, 225μl of the 
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reconstituted standard was pipetted into the first tube, labelled S1. The contents 

of S1 was mixed (concentration of standard 1 = 50u/ml). Following this, 225μl 

of the diluted standard from S1 was pipette into the second tube, labelled S2. 

This was mix thoroughly before the next transfer (Figure 2.5). This step was 

repeated 4 more times to create a standard dilution series with concentrations 

ranging from 50 to 1.6U/ml. The sample diluent serves as blank. 

 

Figure 2. 5: Series Dilution of sPSGL-1 Standard 
 

 
        (Figure was adapated from Bender MedSystems PSGL-1 ELISA instruction book) 
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Assay Procedure 

The prepared sPSGL-1 standards were pipetted in duplicates 

into columns A and B (rows 1 to 6), as in Figure 2.4, of the 96 well ELISA 

microplate (coated with monoclonal antibodies to human sPSGL-1).  Wells 

A7 A8, B7 and B8 were left blank. 100μl of the diluted patient sample, from 

an appropriate time point, was then respectively added in duplicates to all 

wells, except the standard and blank wells. 50μl of the diluted Biotin-

Conjugate was then added to all wells, except the blank wells. The microplate 

was then covered with a plate cover and left to incubate for 2 hours at room 

temperature on a rotator set at 100rpm.  

After this incubation, the microplate was washed 3 times with 

300μl of the manufacturer provided wash buffer. 100μl of the diluted 

Streptavidin-HRP was added to all wells (except for the blank wells). The 

microplate was covered with a plate cover and allowed to incubate at room 

temperature on a rotator set at 100rpm for a further 1 hour.  

Then the plate was washed again as before. 100μl of the 

Substrate Solution (TMB) was then added to all wells (except for the blank 

wells). The micoplate was once again covered with a new plate sealer and 

allowed to incubate, in the dark, at room temperature for 10 minutes on a 

rotator set at 100rpm.  

Once the most concentrated standard had reached a deep blue 

colour, 100μl of the manufacturer provided Stop Solution (Sulfuric Acid) was 

added to each well (except for the blank wells). The spectophotometric reading 

from each well was then determined using Anthos 2010 microtitre plate reader 
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(Anthos Labtec Instrument GmdH, Austria) together with the Stingray 

software (Stingray Software Inc, USA). A primary wavelength of 450nm was 

used during the spectophotometric analysis with a correction for optical 

imperfections in the plate set at 620nm. The intra-assay coefficient of variation 

for sPSGL-1 ELISA microplate was 3.2% while the inter-assay coefficient of 

variation was 6.6%. The limit of detection of this assay was 0.99u/ml. 

2.6.6.3  Correction For Haemodilution Of Serum 

Biomarkers 

Haemodilution is a standard practice during CPB (Liam et al., 

1998). This is known to result in moderate to severe reduction of the serum 

soluble adhesion molecule (Williams et al., 1998) and Troponin-T (Licker et 

al., 2005) concentrations. As such, a correction for the effects of haemodilution 

on the measured serum biomarker concentration in the venous blood samples 

taken during the intra and post operative periods was required to determine 

their absolute concentration serum. Such a correction was also done in a 

similar previous study (Alex et al., 2005). In this study, this correction was 

done using a formula described by Taylor et al (Taylor et al., 1976). The 

haematocrit measurement in the venous blood samples taken during the intra 

and post operative time points, that was required for use in this formula, was 

measured using a GEM 3000 analyser (Instrumentation Laboratory).  
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Formula for correction of hemodilution: 

Corrected Serum Soluble Adhesion Molecule/Troponin-T 
concentration (ng/ml )= 

Adhesion Molecule Concentration at Sampling Time (ng/ml) x 
(Pre-Op Hct)/(Hct at time of sampling) 

 (Hct=Haematocrit) 

2.6.7 Intra-Operative Myocardial Biopsy 

In this study, a myocardial biopsy of the right atrium was  

taken from each  patient, at the time points shown in Table 2.7. 

 

Table 2. 7: Intra-Operative Time Points For Right Atrial Biopsy 
 
 Time Points 
 Post 

Induction 
5 minutes on 

CPB 
5 minutes 
post IRI 

5 minutes 
post CPB 

Control 
Group 

X X X X 

HBO2 
Group 

X X X X 

 

 Myocardial biopsies were taken by excising a piece of right 

atrium from the part of the atrium above the atrial purse string suture that was 

securing the atrial venous cannula in the right atrium and inferior vena cava. 

Each biopsy measured approximately 0.5cm x 0.5cm.   

The myocardial biopsy taken at time point ‘post induction’ was 

taken after anaesthetic induction, median sternotomy and, cannulation of the 

aorta and the right atrium, prior to the onset of CPB. This biopsy provided a 

baseline for the assessment of myocardial biomarkers. The myocardial biopsy 

taken at time point ‘5 minutes on CPB’ was taken 5 minutes following the 
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onset of CPB to enable the assessments of the early changes in the myocardial 

biomarkers as a result of CPB, prior to operative IRI, in both groups when 

compared to the biopsy taken at the time point ‘post induction’. The 

myocardial biopsy taken at the time point ‘5 minutes post IRI’ was taken 5 

minutes following the final release of the aortic cross clamp from the aorta i.e. 

after the final anastamosis of the final bypass graft to the coronary artery 

(distal anastamosis) was complete. This biopsy allowed for the assessment of 

the changes in myocardial biomarkers as a result of the operative IRI in both 

groups when compared to biopsies taken earlier in the intra-operative period. 

The final myocardial biopsy taken at the time point ‘5 minutes post CPB’ was 

taken 5 minutes following the termination of CPB to enable the assessment of 

the changes in myocardial biomarkers in comparison with the changes prior to 

the onset of CPB. 

Each of the myocardial biopsy was placed in a 2ml cryo-vial 

(Nunc) containing RNA-Later (Qiagen) for immediate stabilisation of RNA 

and was processed according to manufacturer’s recommendations for RNA 

stabilisation. The cryo-vials were then stored in a 4ºC fridge for 24 hours. 

After this period, in a sterile Class 2 Biological Safety Cabinet (Faster, SLS, 

Nottingham), the RNA-Later was removed from the cryo-vial and discarded. 

The biopsy was left in the cryo-vial and stored in a -80ºC for later myocardial 

biomarker analysis. 
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2.6.7.1 Intra-Operative Myocardial Biomarker Assessment 

  In this study, the myocardial biomarkers that were assessed 

were eNOS (Cabigas et al., 2006a) and Hsp72 (Hutter et al., 1996, Iwaki et al., 

1993, Marber et al., 1995, Plumier et al., 1995) as they have been shown to be 

cardioprotective in models of IRI.  

The required myocardial biopsies for eNOS or Hsp72 

measurements, were removed from the -80ºC freezer. Before the samples could 

thaw, in a sterile Class 2 Biological Safety Cabinet (Faster, SLS, Nottingham), 

a small specimen from the biopsy was quickly excised. The remaining biopsy 

was returned to the -80ºC freezer. The myocardial specimen was allowed to 

completely thaw. Once thawed, the myocardial specimen was weighed and the 

weight was recorded. Each myocardial biopsy was analysed in the sequence of 

eNOS first then, followed by Hsp72. As such, the biopsies, from each time 

point, for myocardial eNOS analysis experienced one freeze-thaw cycle while 

those for myocardial Hsp72 analysis experienced two freeze-thaw cycles. 

A quantitative Enzyme Linked ImmunoSorbent Assay (ELISA) 

test was used for measuring myocardial eNOS and myocardial Hsp72. The 

ELISA kits for the measurement of myocardial eNOS were purchased from 

R&D Systems (R&D Systems Inc, Minneapolis, USA) and those for 

myocardial Hsp72 ELISA were purchased from Stressgen Bioreagents 

(Victoria, BC, Canada).  
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2.6.7.2 Myocardial Specimen Lysis 

The lysis of the myocardial specimens was done according to 

the recommendations of the manufacturer for the respective ELISA kits.  

In a sterile Class 2 Biological Safety Cabinet (Faster, SLS, 

Nottingham), using separate petri dishes, each myocardial specimen was teased 

apart and disrupted in 1ml of the manufacturer provided lysis buffer using two 

size 11 blades. The specimens were then homogenised by passing the lysis 

buffer containing the disrupted specimen, 5 times through a 20G needle and 

syringe. The homogenate was then transferred into two separate 1.5ml 

propylene tube and centrifuged at 300g for 5 minutes. The supernatant (lysate) 

from the propylene tube was then removed and transferred into another 

labelled 1.5ml propylene tube. The lysates were then frozen at -80ºC for later 

analysis.   
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2.6.7.3 Myocardial Lysate eNOS  ELISA Assay Procedure 

All the reagents used in this procedure were provided by the 

manufacturer (R&D Systems Inc, Minneapolis, USA). The preparation of the 

reagents and the ELISA assay procedure were carried out according to the 

methods recommended by the manufacturer. 

Sample Preparation 

The required propylene tubes containing myocardial lysate 

samples for analysis, were removed from the -80ºC freezer and allowed to 

thaw. 100μl of the lysate from each propylene tube was then transferred to a 

fresh propylene tube for use in the myocardial eNOS ELISA procedure. The 

remaining myocardial lysate sample was immediately returned to the -80ºC 

freezer. 

For this myocardial eNOS ELISA procedure, the sample lysate did 

not require dilution. The above procedure was repeated for all the sample 

lysates that were required for eNOS ELISA analysis. 
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Reagent Preparation 

All reagents were first brought to room temperature. 500ml 

wash buffer was made by diluting 20ml of the provided Wash Buffer 

Concentrate with 480ml of distilled  water.  

The substrate solution for this ELISA assay procedure was 

made by mixing equal volumes of the provided Colour Reagents A (stabilised 

hydrogen peroxide) & B (stabilised chromogen- tetramethylbenzidine). This 

was done 15 minutes prior to addition of the substrate solution to the wells. 

This substrate solution was light sensitive and needed to be covered from the 

light.   

The eNOS standard (40ng of recombinant human eNOS) was 

then reconstituted with 1ml of distilled water. This reconstitution produced a 

stock solution of 40,000pg/ml. The standard was allowed to sit for 15 minutes 

before a series dilution was made. This was done by pipetting 900μl of 

Calibrator Diluent RD5K (a buffered protein base) into the first propylene 

tubes (Figure 2.6). 500μl of Calibrator Diluent RD5K was then pipetted into 

propylene tube 2, 3, 4, 5, 6 and 7. Then, 100μl of stock was added to propylene 

tube 1. After mixing the 1000μl content of propylene tube 1, 500μl form 

propylene tube 1 was transferred to propylene tube 2 and mixed. Following 

this, 500μl of the content from propylene tube 2 was transferred to propylene 

tube 3. This procedure was continued until propylene tube 7 was reached. 

Propylene tube 7 ended up with a volume of 1000μl. The 4000pg/ml standard, 

in propylene tube 1, served as the high standard. Calibrator Diluent RD5K 

serves as the zero standard (0pg/ml). 
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Figure 2. 6: Series Dilution of eNOS Standard Stock 
 

 

Propylene  tube:         1             2             3              4            5             6          7 
(Figure was adapated from R&D Systems eNOS ELISA  instruction book) 

 

Assay Procedure 

In this myocardial eNOS ELISA assay procedure, the  

manufacturer provided 96 well microplate (12 strips, 8 wells per strip) was 

used. The wells of this plate were coated with a monoclonal antibody against 

eNOS. 100μl of Assay Diluent RD1W (a buffered protein base) was added to 

each well. 100μl of eNOS Standard from propylene tube 1 was pipetted, in 

duplicates, into wells A1 & B1. This was followed by pipetting 100μl eNOS 

Standard from propylene tube 2 into wells A2 & B2, 100μl  eNOS Standard 

from propylene tube 3 into wells A3 & B3, 100μl eNOS Standard from 

propylene tube 4 into wells A4 & B4, 100μl eNOS Standard from propylene 

tube 5 into wells A5 & B5, 100μl eNOS Standard from propylene tube 6 into 

wells A6 & B6 and 100μl eNOS Standard from propylene tube 7 into wells A7 

& B7. Wells A8 and B8 were left blank. 100μl of sample lysate was then 

added to all wells except the standard and blank wells (Figure 2.4). 
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The microplate was covered with an adhesive strip and 

incubated for 2 hours at room temperature on a horizontal microplate shaker 

set at 500rpm. The plate was then washed 3 times with 400μl, of the previously 

made up, manufacturer wash buffer using a Thermolab Systems Wellwash 

4MK2 autowasher. Once washed, and ensuring that all the liquid in each well 

was removed, 200μl of eNOS Conjugate (polyclonal antibody against eNOS 

conjugated to horseradish peroxidase) was added to each well. The microplate 

was then covered with a new adhesive seal prior to incubation for a further 2 

hours at room temperature on a horizontal microplate shaker set at 500rpm. 

Then the plate was washed 3 times with 400μl of the wash buffer using a 

Thermolab Systems Wellwash 4MK2 autowasher. After this second wash step, 

200μl of Substrate Solution was added to each well. The microplate was then 

incubated for 30 minutes on a bench top while protecting it from light. Once 

the most concentrated standard had reached a deep blue colour, 50μl of the 

manufacturer provided Stop Solution (Sulfuric Acid) was added to all the 

wells. Within 30 minutes of adding the Stop Solution, the spectophotometric 

reading from each well was then determined using Anthos 2010 microtitre 

plate reader (Anthos Labtec Instrument GmdH, Austria) together with the 

Stingray software (Stingray Software Inc, USA). A primary wavelength of 

450nm was used during the spectophotometric analysis with a correction for 

optical imperfections in the plate set at 540nm. 
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The intra-assay coefficient of variation for the eNOS ELISA 

microplate was between 3.7% and 4.9% while the inter-assay coefficient of 

variation was between 3.6% and 7.4%. The maximum detectable concentration 

of eNOS is typically less than 25ρg/ml.  

The quantity of eNOS in each milligram of the right atrial 

biopsy, at each time point, was then determined using the following formula: 

Quantity of eNOS in Right Atrial Specimen (pg/mg) = 
[eNOS Concentration at time of sampling (ng/ml) X Lysate Buffer 
Volume(ml)] / Right Atrial Specimen Weight (mg) 
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2.6.7.4 Myocardial Lysate Inducible Hsp70 (Hsp72) 

ELISA Assay Procedure 

All the reagents used in this procedure were provided by the 

manufacturer (Stressgen Bioreagents; Victoria, BC, Canada). The preparation 

of the reagents and the ELISA assay procedure were carried out according to 

the methods recommended by the manufacturer. 

Sample Preparation 

The required propylene tubes containing myocardial lysate 

samples for analysis, were removed from the -80ºC freezer and allowed to 

thaw. 15μl of the lysate from each propylene tube was then transferred to fresh 

propylene tube for use in the Hsp72 ELISA procedure. The remaining 

myocardial lysate sample was immediately returned the -80ºC freezer. 

285μl of the provided Sample Diluent, was then added to the 

propylene tube containing the 15μl of lysate sample. This created a 20 fold 

dilution of the sample lysate that was to be used. The above procedure was 

repeated for all the sample lysates that were required Hsp72 ELISA analysis. 
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Reagent Preparation 

All reagents were brought to room temperature. 

a. Series Dilution of Anti-Human Hsp70 Standard. 

The provided Recombinant Hsp70 Standard (10μg/ml stock  

solution of inducible Hsp70 protein) was used to generate a series dilution of 

Hsp70 Standard concentration, ranging from 0.78 to 50ng/ml. This was done in 

the following manner.  Seven 1.5ml propylene tubes were respectively labelled 

with the following standard values: 

i. Propylene tube 1: 50ng/ml 

ii. Propylene tube 2: 25ng/ml 

iii. Propylene tube 3: 12.5ng/ml 

iv. Propylene tube 4: 6.25ng/ml 

v. Propylene tube 5: 3.125ng/ml 

vi. Propylene tube 6: 1.56ng/ml 

vii. Propylene tube 7: 0.78ng/ml 

995μl of Sample Diluent was added to propylene tube 1. 500μl 

of Sample Diluent was added to propylene tube 2, 3, 4, 5, 6 and 7. 5μl of 

Hsp70 Standard stock solution was added to propylene tube 1 and was mixed 

thoroughly. 500μl of mixture from propylene tube 1 was then transferred to 

propylene tube 2 and mixed thoroughly. The dilution series was then 

completed by transferring 500μl from propylene tube 2 to propylene tube 3 and 

so forth until propylene tube 7 was reached to generate the standard dilutions 

(Figure 2.7). Propylene tube 7 ended up with a volume of 1ml. Finally, 500μl 
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of Sample Diluent was added to another propylene tube (propylene tube 8). 

This served as the blank assay (0ng/ml).  

 
Figure 2. 7: Series Dilution of Hsp70 Standard Stock 

 

 

Propylene tube:          1            2            3            4          5            6          7 
          (Figure was adapated from Stressgen Hsp72 ELISA  instruction book) 

 
b.  Preparation of Anti-Hsp70 Biotin Conjugate 

22μl of the provided Anti-Hsp70 Biotin Conjugate (Rabbit  

polyclonal antibody specific for inducible Hsp70) was diluted in 11ml of    

Anti-Hsp70 Biotin Conjugate Diluent (a buffer) in a propylene tube and mixed.  

            c.  Preparation of Avidin HRP Conjugate 

22μl of Avidin-HRP Conjugate(Horseradish Peroxidise 

conjugated anti-rabbit IgG) was mixed with 11ml of Avidin-HRP 

Conjugate Diluent in a propylene tube. 
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d. Wash Buffer Preparation 

100ml of the provided wash buffer concentrate was diluted with 

900ml of distilled water to make a 10 fold dilution of the wash buffer. 

Assay Procedure 

The manufacturer provided 96 well microplate (12 strips, 8  

wells per strip) was used. The wells were pre-coated with mouse monoclonal 

antibody specific for inducible Hsp70. 100μl of Hsp70 Standard from 

propylene tube 1 was placed in duplicate in wells A1 & B1. This was followed 

by 100μl Hsp70 Standard from propylene tube 2 into wells A2 & B2, 100μl  

Hsp70 Standard from propylene tube 3 into wells A3 & B3, 100μl Hsp70 

Standard from propylene tube 4 into wells A4 & B4, 100μl Hsp70 Standard 

from propylene tube 5 into wells A5 & B5, 100μl Hsp70 Standard from 

propylene tube 6 into wells A6 & B6 and 100μl Hsp70 Standard from 

propylene tube  7 into wells A7 & B7. Wells A8 and B8 were left blank. 100μl 

of sample lysate was then added all well except the standard and blank wells 

(Figure 2.4). 

The microplate was covered with an adhesive seal and 

incubated for 2 hours at room temperature on a horizontal microplate shaker 

set at 500rpm. Then the plate was washed six times with 300μl of the 

previously made up manufacturer wash buffer using a Thermolab Systems 

Wellwash 4MK2 autowasher. Once washed and ensuring that all the liquid in 

each well was removed, 100μl of Anti-Hsp70 Biotin Conjugate was added to 

each well. The microplate was covered with an adhesive seal and incubated for 

1 hour at room temperature on a horizontal microplate shaker set at 500rpm. 
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The plate was then washed six times with 300μl of the wash buffer using a 

Thermolab Systems Wellwash 4MK2 autowasher. Once washed and again 

ensuring that all the liquid in each well was removed, 100μl of Avidin-HRP 

Conjugate was added to each well. The microplate was covered with an 

adhesive seal and incubated for 1 hour at room temperature on a horizontal 

microplate shaker set at 500rpm. The plate was washed again six times with 

300μl of the wash buffer using a Thermolab Systems Wellwash 4MK2 

autowasher. Again after ensuring all the liquid in each well was removed, 

100μl of the provided TMB Substrate Solution was added to each well and the 

plate was left to incubate at room temperature for 10 minutes. 

Once the most concentrated standard had reached a deep blue 

colour, 50μl of Acid Stop solution (Sulfuric Acid) was added to all the wells in 

the same order the TMB Substrate was added. Within 30 minutes of adding the 

Stop Solution, the spectophotometric reading from each well was then 

determined using Anthos 2010 microtitre plate reader (Anthos Labtec 

Instrument GmdH, Austria) together with the Stingray software (Stingray 

Software Inc, USA). A primary wavelength of 450nm with a correction for 

optical imperfections in the plate set for 540nm, was used. 

According to manufacturer (Stressgen Bioreagent), the intra-

assay and the inter-assay coefficient of variation for the Hsp70 ELISA 

microplate was <10%, respectively.  
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The quantity of inducible Hsp70 (Hsp72) in each milligram of 

the right atrial tissue specimen at each time point was then determined using 

the following formula 

Quantity of Hsp72 in Right Atrial Specimen (ng/mg) = 
[Hsp72 Concentration at time of sampling (ng/ml) X Lysate Buffer Volume 
(ml)] / Right Atrial Specimen Weight (mg) 
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3. The Effects Of HBO2 

Preconditioning On Peri-Operative 

Cardiovascular Efficacy & Clinical 

Safety 

3.1  Introduction 

In 1965, a case report was published describing a case of low 

cardiac output syndrome, following complex cardiac surgery (and therefore 

post IRI), which improved after treatment with HBO2 (Yacoub and Zeitlin, 

1965). This interesting case report was followed up in 1971, by the publication 

of a randomised control study involving HBO2 and patients who had suffered 

an AMI (Thurston, 1971). In that study, in addition to the unit’s protocol for  

treatment of AMI, 127 patients who had suffered an AMI were randomly 

allocated either to a group where patients were treated intermittently for the 

first 48 hours with HBO2 (n=58) or to a group where patients were treated with 

oxygen via a face mask (n=69). It was observed that patients with a history of 

cardiovascular disease and patients who presented with cardiogenic shock or 

heart failure, performed clinically better following treatment with HBO2. In 

particular, it was observed that some arrhythmias appeared to resolve during 

treatment with HBO2, occasionally only to return in air at atmospheric pressure 

but, correctable again when the pressure was raised. There was also less in-
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hospital mortality in the HBO2 group compared to the control group (19% vs. 

24.6%) despite the HBO2 group having patients with slightly more severe MIs. 

In 1973, this same group published the results of an another similar, but larger, 

randomised control study (Thurston et al., 1973). The primary objective of that 

study was to determine the effects of HBO2 on mortality following recent 

AMI. In that study, 103 and 105 patients were randomised to the HBO2 and 

control groups, respectively. Both groups of patients were treated using the 

unit’s protocol for AMI. However, the HBO2 group of patients also received 

100% oxygen at 2 ATA for 2 hours followed by air for 1 hour in a repeating 

cycle, day and night, for 48 hours. It was observed that in the HBO2 group, 

compared to the control group, there was a reduction in mortality 3 weeks after 

an AMI and a reduction in significant dysrrhythmias (complete heart block, 

ventricular fibrillation and asystole). That study concluded that the reduction in 

major adverse coronary events after an AMI in the HBO2 group justified the 

routine use of HBO2 in selected cases of AMI. While the findings of that study 

indicated the favorable use of HBO2 post AMI to reduce mortality, the results 

were however not statistically significant.  

Since those randomised controlled studies of the early 1970s, 

there had been a paucity in the number of reported clinical studies 

investigating the effects of HBO2 on myocardial ischaemia and reperfusion. 

This was probably driven by the lack of statistically significant clinical 

findings and a lack of understanding of the biochemical mechanisms of action 

of HBO2 in models of ischaemia and reperfusion. However, from the 1980s 
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onwards, following a series of studies demonstrating the beneficial effects of 

HBO2 in experimental models of IRI (Nylander et al., 1985, Sterling et al., 

1993, Nylander et al., 1987, Yamada et al., 1995, Chen et al., 1998, Kim et al., 

2001, Choi et al., 2006, Tjarnstrom et al., 2001), there appeared to be a steady 

resurgence in the interest of administering HBO2 to limit                     

ischaemia-reperfusion associated myocardial injury.   

In the earliest clinical study investigating the effects of HBO2 on 

myocardial function following IRI, a study was designed to determine the 

potential for HBO2 to produce an improvement in myocardial function in the 

hibernating myocardium (Swift et al., 1992). That study found that, compared 

to those patients who were not treated with HBO2 post AMI, patients who were 

also treated with HBO2 consisting of 100% oxygen at 2.0 ATA for 30 minutes 

following an AMI, had improved myocardial contraction as observed by 

echocardiography and, demonstrated reversible ischaemia as determined by 

Single Photon Emission Computer Tomography (SPECT). The interesting 

findings from that study were later followed by the first study from ‘HOT-MI’ 

group (Shandling et al., 1997) which was conducted to assess the safety of 

treating patients, who recently suffered from an AMI, with HBO2. In the that 

study by the ‘HOT-MI’ group, 66 patients with an AMI were randomised to 

treatment with HBO2, which consisted of 100% oxygen at 2 ATA for 60 

minutes, in addition to recombinant tissue plasminogen activator (rTPA) 

(n=32) or treatment with rTPA alone (n=34). The results showed that in 

patients who were also treated with HBO2, there was a 35% reduction in mean 
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creatine phosphokinase (CK) (p=0.03) at 12 and 24 hours post MI and, a 

reduction in time to pain relief and ST segment resolution post MI. The 

ejection fraction (EF) on discharge of the HBO2 group of patients was 52.4% 

while that of the control group’s was 47.3%. The study concluded that 

adjunctive HBO2 was a feasible and safe treatment for patients who had 

suffered from an AMI. This group later validated their findings by conducting 

a second similar, but larger randomised controlled study. In that later 

study (Stavitsky et al., 1998), 112 patients who were admitted with an AMI 

were randomised to treatment with either HBO2 and either rTPA or 

streptokinase (STK) or, to a group that was treated with only rTPA or STK. In 

that second study by the ‘HOT MI’ group, it was observed that patients in the 

HBO2 group had a CK that was 7.5% lower than the control group at 12 and 24 

hours post AMI. Additionally, the HBO2 group of patients also experienced a 

shorter time to pain relief. The left ventricular ejection fraction (LVEF) on 

discharge in the HBO2 group was also better than the control group, 48.4% 

compared to 43.4%, respectively. 

The ‘HOT-PI’ study (Sharifi et al., 2004) was conducted to 

assess whether using HBO2 as an adjunct to percutaneous coronary 

intervention (PCI) in patients who presented with unstable angina or AMI, 

could reduce clinical re-stenosis. In that randomised control study, 33 and 36 

patients were randomised to the HBO2 and control group, respectively. All the 

patients presented with unstable angina or AMI and were treated according to 

the unit’s protocol for AMI. The patients randomised to the HBO2 group also 
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received HBO2 treatment 2 hours before or immediately after PCI followed by 

another treatment less than 18 hours after the first HBO2 treatment. The HBO2 

treatment consisted of 100% oxygen at 2 ATA for 90 minutes. In that study, 8 

months post treatment for AMI, the HBO2 group not only had a significant 

reduction of composite adverse cardiac events (p=0.001), which included 

mortality, MI, CABG or revascularization of target lesion, but there was also a 

significant reduction in both the revascularization of the previous target lesion 

(p<0.003) and the recurrence of angina  (p<0.003). However, it was also found 

that while collectively there was a significant reduction in composite adverse 

cardiac event, the reduction in mortality rate in the HBO2 group was not 

statistically significant. That finding was in keeping with findings from earlier 

clinical studies (Sharifi et al., 2002, Thurston, 1971, Thurston et al., 1973).  

In 2005, the Cochrane Collaborative (Bennett et al., 2005) 

conducted a meta-analysis to review the effects of clinical treatment with 

HBO2 following an acute coronary syndrome (ACS). The meta-analysis 

comprised of 6 randomised control trials (Sharifi et al., 2004, Dekleva et al., 

2004, Stavitsky et al., 1998, Shandling et al., 1997, Swift et al., 1992, Thurston 

et al., 1973) consisting of a total of 536 patients (n=273 were treated with 

HBO2, n=263 were not treated with HBO2). This meta-analysis showed that 

while there was a trend towards significance, there was no statistically 

significant decrease in the risk of death in patients who were also treated with 

HBO2 (p=0.08). There was however a significant reduction in the time to pain 

relief following the onset of angina (p<0.0001) in this group of patients. The 
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Cochrane Collaborative Group concluded that despite HBO2 treatment 

following ACS, in individual trials, having the potential to significantly reduce 

the risk of major adverse coronary events (p=0.03) and some dysrrhythmias 

(p=0.01), particularly complete heart block (p=0.02), it did not demonstrate the 

potential to significantly reduce mortality following an ischaemic reperfusion 

event such as ACS. This they determined was due to study flaws in those trials 

such as modest patient numbers, methodological shortcomings and poor 

reporting. As such, until an appropriately powered study of high 

methodological rigor is conducted to identify those cardiac patients who can be 

expected to benefit from HBO2 treatment, the routine application of HBO2 

treatment in clinical practices where IRI is a common occurrence, remains to 

be justified. 
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3.2  Objectives 

 The primary cardiovascular efficacy objective for this part of 

this clinical study was to determine if systemically treating CAD patients with 

HBO2 preconditioning, involving two episodes of 30 minutes of 100% oxygen 

at 2.4 ATA separated 5 minutes apart, which was completed approximately 2 

hours prior to on CPB CABG, is capable of remotely preconditioning the 

myocardium by leading to better post operative improvement in myocardial 

function, as measured by left ventricular stroke work (LVSW) at the time point 

24 hours post CPB. Additionally, the secondary objectives for this part of the 

study was to estimate the effect of HBO2 preconditioning on: 

a. other peri-operative cardiovascular efficacy parameters,  

as measured by the haemodynamic parameters at the  

pre-specified time points listed in Table 2.4. 

b. patient outcomes with respect to post operative safety, as    

measured by the AEs listed in Table 2.3. 

A post hoc analysis of the cost effectiveness HBO2 preconditioning was also 

conducted. 

3.3 Methods 

Peri-operative (pre, intra and post operative) patient data were 

collected as described in section 2.6.1-2.6.3 and peri-operative haemodynamic 

data were collected using a PA catheters as described in section 2.6.4.  
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3.4 Results 

Table 3.1 shows the baseline patient characteristics and Table 

3.2 shows the intra operative disposition of the patients recruited to this 

randomised controlled study. The patient ages and gender were similar between 

the groups. The Control Group had a higher mean pre-operative risk score with a 

Euroscore of 3.78 while the HBO2 Group had a EUROSCORE of 2.83. The 

Control Group also had a slightly higher number of patients with unstable angina, 

previous MI, hypertension and diabetes compared to the HBO2 Group. There 

were however slightly more patients with peripheral vascular disease in the HBO2 

Group compared to the Control Group. The majority of patients in the Control 

Group (n=20; 50%) and HBO2 Group (n=22; 55%) had CABG x 3. More patients 

in the HBO2 Group, compared to the Control Group, had CABG x 1 (n=2; 5% vs. 

n=1; 2.5%) and CABG x 3 (n=22; 55% vs. n=20; 50%). However, more patients 

in the Control Group (n=5; 12.5%), compared to the HBO2 Group, had CABG x 4 

(n=3; 7.5%). The Control Group, compared to the HBO2 Group, had a slightly 

longer mean myocardial ischaemic time (29.2 minutes vs. 27.6 minutes) and a 

slightly longer mean CPB time (65.8 minutes vs. 62.5 minutes).  
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Table 3. 1: Baseline Patient Characteristics 
 

Variable Control Group 
(n=40) 

HBO2 Group 
(n=41) 

Age (years; mean) 69 65 
Men 29 (72.5%) 33 (80.5%) 
BMI 28.8 28.2 

Pre-op Euroscore (mean) 3.78 2.83 
Unstable Angina 3 (7.5%) 1 (2.5%) 

Previous MI 20 (51.3%) 16 (41.0%) 
Left Main Stem Disease 13 (32.5%) 13 (31.7%) 

1 Diseased Coronary Artery 0 1 (2.4%) 
2 Diseased Coronary 

Arteries 
7 (17.5%) 8(19.5%) 

33 Diseased Coronary 
Arteries 

33(82.5%) 32(78.0%) 

Left Ventricular Function   
≥ 50% 

31 (79.5%) 33 (82.5%) 

Left Ventricular Function 
30% -  50% 

7 (17.9%) 7 (17.5%) 

Hypertension 30 (75.0%) 25 (62.5%) 
Diabetes Mellitus 5 (12.5%) 3 (7.5%) 

Peripheral Vascular Disease 1 (2.5%) 3 (7.5%) 
 

 
Table 3. 2: Intra Operative Patient Disposition 

 
Variable Control Group 

(n=40) 
HBO2 Group 

(n=41) 
CABG X 1 1 (2.5%) 2 (5.0%) 
CABG X 2 13 (32.5%) 13 (32.5%) 
CABG X 3 20 (50.0%) 22 (55.0%) 
CABG X 4 5 (12.5%) 3 (7.5%) 
CABG X 5 1 (2.5%) 1 (2.5%) 

Myocardial Ischaemia Time 
(minutes; mean) 

29.2 27.6 

Cardiopulmonary Bypass 
Time (minutes; mean) 

65.8 62.5 
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3.4.1 Effects Of HBO2 Preconditioning On Peri-

Operative Haemodynamic Parameters 

In this study, only 22 patients (54%) in the HBO2 Group and 25 

patients in the Control Group (63%) had their haemodynamic parameters 

measured. This was due to an insufficient number of monitoring equipment 

required for measuring haemodynamic parameters.  This insufficiency 

occurred because the haemodynamic monitoring equipment was required for 

the management of other more critical ICU patients. As 46% (n=19) patients in 

the HBO2 Group and 37% (n=15) patients in the Control Group did not have 

any peri-operative haemodynamic measurements, and no imputation of data 

were carried out in this study, only an on-treatment analysis of the 

haemodynamic measurement was done. This was because, due to the large 

numbers of patients without peri-operative hemdynamic measurements, an 

intention to treat analysis would reveal results that were not clinically 

meaningful. 

Due to the large number of peri-operative haemodynamic 

measurements that were recorded during this study, only the results of the 

primary endpoint (LVSW) and, results which showed statistical significance, 

are reported. In this study, only LVSW, LVSWI, SV, PVR and PVRI show 

statistically significant results.  
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a. Peri-Operative Mean LVSW & LVSWI 

In this study, in both groups, between the baseline ‘post 

induction’ time point and the time point ‘24 hours post CPB’, there were  

general increases in the mean LVSW and mean LVSWI in both the groups. At 

all time points following the baseline ‘post induction’ time point, the mean 

LVSW and mean LVSWI were higher in the HBO2 Group. In this study, it was 

determined that at all the time points following the ‘post induction’ time point, 

there were statistically significant improvements in both the mean LVSW 

(p=0.005; Geometric Mean Estimate & 95% Confidence Interval: 1.28 & 1.05, 

1.31) (Figure 3.1) and the mean LVSWI (p=0.02; Geometric Mean Estimate & 

95% Confidence Interval: 1.12 & 1.02, 1.24) (Figure 3.2)  in the HBO2 Group, 

compared to the Control Group. A summary of the results are provided in 

Table 3.3. In this table, the data are displayed as both mean and median values. 

As the means and medians are not the same at each time point, this indicates 

that the data were skewed. To normalise the data and enable parametric 

statistical analysis, the mean values were transformed into natural logarithmic 

(ln) values.  
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Figure 3. 1: Bar Chart of Peri-Operative Mean LVSW 
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Figure 3. 2: Bar Chart of Peri-Operative Mean LVSWI 
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Table 3. 3: Peri-Operative LVSW & LVSWI 
 

† This is an on treatment analysis; 
Statistical analysis using repeated measures of ANOVA; 

¥95% Confidence Intervals and p values are only given where the result is statistically 
significant;  
*p values are for geometric means 

 

 

 

  LVSW 
(g.m/beat) 

LVSWI 
(g.m/m2/beat) 

 
 
 

 Control 
Group 

[n=25]† 

HBO2 
Group 
[n=22]† 

Control 
Group 
[n=25]† 

HBO2 
Group 

[n=22]† 
 
 

Post Induction 

Range 32-111 29-89 18-55 15-43 
Median 59 62 30 32 
Mean 58 60 31 30 

Mean Ln 4.1 4.1 3.4 3.4 
Geometric  Mean Estimate & 95% Confidence 

Interval¥      (p-value*) 
p=0.08 p=0.08 

 
 

5 minutes post 
CPB 

Range 33-73 35-82 18-37 20-42 
Median 50 55 24 29 
Mean 50 60 26 30 

Mean Ln 3.9 4.1 3.3 3.4 
Geometric  Mean Estimate & 95% Confidence 

Interval¥      (p-value*) 
1.28 & 1.05-1.31 

(p=0.005) 
1.12 & 1.02- 1.24 

(p=0.02) 
 
 

2 hours post 
CPB 

Range 30-115 51-129 16-54 26-76 
Median 61 72 30 36 
Mean 59 76 31 36 

Mean Ln 4.1 4.3 3.4 3.6 
Geometric  Mean Estimate & 95% Confidence 

Interval¥      (p-value*) 
1.28 & 1.05-1.31 

(p=0.005) 
1.12 & 1.02- 1.24 

(p=0.02) 
 
 

4 hours post 
CPB 

Range 35-87 33-111 19-45 18-56 
Median 54 59 39 30 
Mean 54 62 25 31 

Mean Ln 4.0 4.1 3.2 3.4 
Geometric  Mean Estimate & 95% Confidence 

Interval¥      (p-value*) 
1.28 & 1.05-1.31 

(p=0.005) 
1.12 & 1.02- 1.24 

(p=0.02) 
 
 

8 hours post 
CPB 

Range 29-90 34-129 16-40 18-65 
Median 55 65 30 33 
Mean 58 70 30 35 

Mean Ln 4.1 4.2 3.4 3.6 
Geometric  Mean Estimate & 95% Confidence 

Interval¥     (p-value*) 
1.28 & 1.05-1.31 

(p=0.005) 
1.12 & 1.02- 1.24 

(p=0.02) 
 
 

12 hours post 
CPB 

Range 35-93 35-98 19-49 19-51 
Median 63 65 32 35 
Mean 58 68 26 34 

Mean Ln 4.1 4.2 3.2 3.5 
Geometric  Mean Estimate & 95% Confidence 

Interval¥      (p-value*) 
1.28 & 1.05-1.31 

(p=0.005) 
1.122 & 1.02- 1.24 

(p=0.02) 
 
 

24 hours post 
CPB 

Range 35-91 48-144 19-48 21-79 
Median 63 73 33 39 
Mean 67 80 35 48 

Mean Ln 4.2 4.4 3.6 3.9 
Geometric  Mean Estimate & 95% Confidence 

Interval¥     (p-value*) 
1.28 & 1.05-1.31 

(p=0.005) 
1.122 & 1.02- 1.24 

(p=0.02) 
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b. Peri-Operative Mean SV 

In this study, in both groups, between the baseline ‘post 

induction’ time point and the time point ‘24 hours post CPB’, there was a 

general increase in mean SV in both groups. At all time points following the 

baseline ‘post induction’ time point, the mean stroke volume (SV) was higher 

in the HBO2 Group. At all the time points following the ‘post induction’ time 

point, there was a statistically significant improvement in SV                

(p=0.01; Geometric Mean Estimate & 95% Confidence Interval: 1.13 & 1.03, 

1.25) (Figure 3.3) in the HBO2 Group compared to the Control Group. A 

summary of the results are provided in Table 3.4. In this table, the data are 

displayed as both mean and median values. As the means and medians are not 

the same at each time point, this indicates that the data were skewed. To 

normalise the data and enable parametric statistical analysis, the mean values 

were transformed into natural logarithmic (ln) values.  

 

 

 

 

 

 

 

 

 

 



 

 
142 

 

Figure 3. 3: Bar Chart of Peri-Operative Mean SV 
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   Bars chart showing mean values and error bars for the standard error of the mean; 
   * p<0.05 following repeated measures of ANOVA analysis 
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Table 3. 4: Peri-Operative SV 

 

 

† This is an on treatment analysis; 
Statistical analysis using repeated measures of ANOVA; 
 ¥95% Confidence Intervals and p values are only given where the result is statistically 
significant;  
*p values are for geometric means 

 

 

 

  SV 
(ml/beat) 

 
 
 

 Control 
Group 
[n=25]† 

HBO2 
Group 

[n=22]† 
 
 

Post Induction 

Range 32-91 37-94 
Median 59 62 
Mean 62 65 

Mean Ln 4.1 4.2 
Geometric  Mean Estimate & 95% Confidence Interval¥                

(p-value*) 
p=0.07 

 
 

5 minutes post 
CPB 

Range 39-86 43-94 
Median 60 63 
Mean 60 66 

Mean Ln 4.1 4.2 
Geometric  Mean Estimate & 95% Confidence Interval¥ 

(p-value*) 
1.13 & 1.03-1.25 

(p=0.01) 
 
 

2 hours post CPB 

Range 26-99 47-81 
Median 57 63 
Mean 57 65 

Mean Ln 4.0 4.2 
Geometric  Mean Estimate & 95% Confidence Interval¥ 

(p-value*) 
1.13 & 1.03-1.25 

(p=0.01) 
 
 

4 hours post CPB 

Range 33-92 35-94 
Median 53 60 
Mean 58 60 

Mean Ln 4.1 4.1 
Geometric  Mean Estimate & 95% Confidence Interval¥ 

(p-value*) 
1.13 & 1.03-1.25 

(p=0.01) 
 
 

8 hours post CPB 

Range 38-97 52-137 
Median 58 64 
Mean 58 72 

Mean Ln 4.1 4.3 
Geometric  Mean Estimate & 95% Confidence Interval¥ 

(p-value*) 
1.13 & 1.03-1.25 

(p=0.01) 
 
 

12 hours post 
CPB 

Range 48-110 41-92 
Median 64 68 
Mean 68 68 

Mean Ln 4.2 4.2 
Geometric  Mean Estimate & 95% Confidence Interval¥ 

(p-value*) 
1.13 & 1.03-1.25 

(p=0.01) 
 
 

24 hours post 
CPB 

Range 43-99 44-115 
Median 63 76 
Mean 63 75 

Mean Ln 4.1 4.3 
Geometric  Mean Estimate & 95% Confidence Interval¥ 

(p-value*) 
1.13 &1.03-1.25 

(p=0.01) 
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c.  Peri-Operative Mean PVR & PVRI 

In this study, in both groups, between the baseline ‘post 

induction’ time point and the time point ‘24 hours post CPB’, there was a 

general decrease in the mean PVR and PVRI in both groups. At all time points 

following the baseline ‘post induction’ time point, both the mean PVR and 

PVRI were lower in the HBO2 Group. In this study it was determined that at 

the baseline ‘post induction’ time point, there was a statistically significant 

decrease in PVR (p=0.03; Geometric Mean Estimate & 95% Confidence 

Interval: 1.55 & 1.05, 2.29) (Figure 3.4) and the PVRI (p=0.05; Geometric 

Mean Estimate & 95% Confidence Interval: 1.49 & 1.02, 2.12) (Figure 3.5) in 

the HBO2 Group compared to the Control Group. A summary of the results are 

provided in Table 3.5. In this table, the data are displayed as both mean and 

median values. As the means and medians are not the same at each time point, 

this indicates that the data were skewed. To normalise the data and enable 

parametric statistical analysis, the mean values were transformed into natural 

logarithmic (ln) values.  
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Figure 3. 4: Bar Chart of Peri-Operative Mean PVR 
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       Bars chart showing mean values and error bars for the standard error of the mean; 
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Figure 3. 5: Bar Chart of Peri-Operative Mean PVRI 
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Table 3. 5: Peri-Operative PVR & PVRI 
 

 

 

† This is an on treatment analysis; 
Statistical analysis using repeated measures of ANOVA; 
 ¥95% Confidence Intervals and p values are only given where the result is statistically 
significant;  
*p values are for geometric means 

 

 

 

  PVR 
(dyns.cm5) 

PVRI 
(dyns.cm5/m2) 

 
 
 

 Control 
Group 

[n=25]† 

HBO2 
Group 
[n=22]† 

Control 
Group 

[n=25]† 

HBO2 
Group 

[n=22]† 
 
 

Post Induction 

Range 72-303 21-309 68-530 42-571 
Median 150 100 281 208 
Mean 158 110 292 228 

Mean Ln 5.1 4.7 5.7 5.4 
Geometric  Mean Estimate & 95% 
Confidence Interval¥      (p-value*) 

1.55 & 1.05-2.29 
(p=0.03) 

1.49 & 1.01, 2.19 
(p=0.05) 

 
 

5 minutes post 
CPB 

Range 46-855 12-218 45-349 65-432 
Median 125 101 212 129 
Mean 141 130 230 219 

Mean Ln 4.9 4.9 5.4 5.4 
Geometric  Mean Estimate & 95% 
Confidence Interval¥      (p-value*) 

0.08 0.08 

 
 

2 hours post 
CPB 

Range 51-220 11-341 70-623 22-681 
Median 133 121 248 237 
Mean 140 150 280 263 

Mean Ln 4.9 5.0 5.6 5.6 
Geometric  Mean Estimate & 95% 
Confidence Interval¥      (p-value*) 

0.08 0.08 

 
 

4 hours post 
CPB 

Range 24-1246 53-661 24-1246 53-661 
Median 166 168 227 258 
Mean 149 135 273 253 

Mean Ln 5.0 4.9 5.6 5.5 
Geometric  Mean Estimate & 95% 
Confidence Interval¥      (p-value*) 

0.08 0.08 

 
 

8 hours post 
CPB 

Range 23-589 32-432 23-589 32-432 
Median 141 130 245 229 
Mean 129 121 236 226 

Mean Ln 4.9 4.8 5.5 5.1 
Geometric  Mean Estimate & 95% 
Confidence Interval¥     (p-value*) 

0.08 0.08 

 
 

12 hours post 
CPB 

Range 80-408 27-543 80-408 27-543 
Median 121 123 239 229 
Mean 115 112 236 220 

Mean Ln 4.7 4.7 5.4 5.4 
Geometric  Mean Estimate & 95% 
Confidence Interval¥      (p-value*) 

0.08 0.08 

 
 

24 hours post 
CPB 

Range 28-538 29-406 28-538 29-406 
Median 129 119 243 231 
Mean 113 106 225 219 

Mean Ln 4.7 4.6 5.4 5.4 
Geometric  Mean Estimate & 95% 
Confidence Interval¥     (p-value*) 

0.08 0.08 
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3.4.2 Effects Of HBO2 Preconditioning On Post 

Operative Clinical Safety 

3.4.2.1 Cardiovascular Adverse Events 

  In this study, compared to the Control Group, in the HBO2 

Group, there was a 10.4% reduction in the proportion of patients with low 

cardiac output syndrome (p=0.4), an 8% reduction in the proportion of patients 

requiring the use of inotropes (p=0.1) and an 11% reduction in the proportion 

of patients with AF (p=0.6) (Table 3.6). There were no incidences of the use of 

cardiovascular supportive therapy (IABP or pacing), MI or mortality in either 

group.  
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Table 3. 6: Post Operative Cardiovascular Adverse Events 
 

Values are patient numbers with percentages in brackets; 
 †This is an intention to treat analysis; 
 Statistical analysis using Chi-Squared Test 
 
 

 
 

 

 

 

 

 

 

 

 

 
Cardiovascular Adverse Event 

 
Control 
Group 
(n=40)† 

 
HBO2 
Group 
(n=41)† 

 
p- value 

 

Low cardiac output 10 (25%) 6 (14.6%) 0.4 
Inotrope Usage 10 (25%) 7 (17%) 0.4 
1. Adrenaline 
2. Dopamine 
3. Noradrenaline 
4.Adrenaline + Dopamine 
5. Adrenaline +  Noradrenaline 
6. Adrenaline +  Milrinone 
7.Adrenaline +  Noradrenaline + 
Milrinone 

2 
3 
0 
1 
2 
1 
1 

1 
3 
2 
0 
1 
0 
0 

 

Atrial Fibrillation 10 (25%) 6 (14%) 0.4 
Cardiovascular Supportive Therapy 
(IABP, pacing) 

0 0 1.0 

Myocardial Infarction 0 0 1.0 
Mortality 0 0 1.0 
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Patients in the HBO2 Group had a 57% reduction in intra-

operative blood loss compared to patients in the Control Group (p=0.02). 

There were no significant difference between the groups with respect to post 

operative blood loss and blood transfusion. However, in the HBO2 Group, 

compared to the Control Group, there was an 11.6% reduction in post 

operative (p=0.1) blood loss and a 34% reduction in post operative blood 

transfusion (p=0.4) (Table 3.7).  

 
Table 3. 7: Intra-Operative & Post Operative Blood Loss & Blood Transfusion 
 

  
Control 
Group 
(n=40)† 

 
HBO2 
Group  
(n=41) † 

 
% Mean 

Reduction 
in 

HBO2 Group 

 
p- 

value 
 

95% 
Confidence 

Intervals 
(for % 

change) 
 

Intra 
Operative 
Blood Loss 

(ml) 

 
Range 

 
0-1528 

 
0-961 

 
[(309-133)/ 
309] X 100 

= 57 
 

 
 

0.02 

 
 

-318, -32 
 

Mean 
 

309 
 

133 

 
Post 

Operative 
Blood Loss 

(ml) 

 
Range 

 
255-
1295 

 
325-
1330 

 
[(727-643)/ 
727] X 100 

= 11.6 
 

 
 

0.1 

 
 

-31, 200 
 

Mean 
 

727 
 

643 
 
 

Total blood 
transfusion 

(ml) 
 

 
Range 

 
0-612 

 
0-610 

 
[(138-91)/ 
138] X 100 

=34 
 

 
 

0.4 

 
 

-63, 159 
 
Mean 

 
138 

 
91 

†This is an intention to treat analysis 
Statistical analysis using Independent Sample t-test 
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3.4.2.2 Pulmonary Adverse Events 

Patients in the HBO2 Group had a mechanical ventilation time 

and an endotracheal intubation time that was 30 minutes longer compared to 

patients in the Control Group. Neither of these results were significant      

(Table 3.8). 

 
Table 3. 8: Post Operative Duration of Ventilation & Intubation 

 
 Control Group 

(n=40) † 
HBO2 Group 

(n=41) † 
p-value 

Mechanical 
Ventilation Time 

(hours) 

Range Mean Range Mean  
1-13.5 2.5 0-18 3.0 0.2 

Duration of 
Intubation 

(hours) 

1.5-14 3.0 0.5-18.5 3.5 0.2 

   †This is an intention to treat analysis; 
   Statistical analysis using Chi-Squared Test 
 
  

 

 

 

 

 

 

 

 

 

 

 



 

 
152 

 

In this study, compared to the Control Group, in the HBO2 

Group, there was a 12.7% reduction in the proportion of patients with  

pulmonary AEs (p=0.3) (Table 3.9). There were no incidences of 

pneumothoraces, pleural effusions or the use of pulmonary supportive therapy 

in the HBO2 Group, all of which were increased in the Control Group. While 

there was a 5.1% reduction in chest infections in the HBO2 Group (p=0.9), 

there was one patient (2.4%) in this group with a chest infection associated 

with pleural effusion.   

 
Table 3. 9: Post Pulmonary Adverse Events 

 

Values are patient numbers with percentages in brackets;  
†This is an intention to treat analysis; 
Statistical analysis using Chi-Squared Test; 
 BiPAP=Biphasic Positive Airway Pressure; CPAP=Continous Positive Airway Pressure   

 

 

 

 

 

 

 
 

Control 
Group 
(n=40)† 

HBO2 
Group 
(n=41)† 

 
p-value 

 
Pulmonary Adverse Events 9 

(22.5%) 
4 

(9.8%) 
0.3 

1. Pneumothorax 1 (2.5%) 0 1 
2. Pleural Effusion 2 (5%) 0 0.9 
3. Chest Infection 4 (10%) 2 (4.9%) 0.9 
4. Pulmonary atelectasis  requiring 
pulmonary supportive therapy  
(BiPAP/CPAP) 

1 (2.5%) 0 
 

1 

5. Chest infection +  Pleural Effusion 0 1 (2.4%) 1 
6. Other 1 (2.5%) 1 (2.4%) 1 
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3.4.2.3 Renal Adverse Events 

  In this study, there were no incidences of serum           

creatinine > 200mmol/l in the HBO2 while in the Control Group, there were 

two patients (5%) (Table 3.10). There were no incidences requiring the use of 

renal supportive therapy in either group. 

Table 3.10: Post Operative Renal Adverse Events 
 

Values are patient numbers with percentages in brackets;  
†This is an intention to treat analysis;  
Statistical analysis using Chi-Squared Test 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Renal Adverse Event 

Control 
Group 
(n=40)† 

HBO2 
Group 
(n=41)† 

 
p-value 

 
Creatine>200mmols/l 2 (5%) 0 0.9 

Renal Supportive Therapy (CVVH) 0 0 1.0 
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3.4.2.4 Neurological Adverse Events 

In this study, there was one patient (2.5%) who developed 

transient confusion associated with blurred vision in the Control Group. There 

were no incidences of TIAs or strokes in both groups (Table 3.11).  

Table 3.11: Post Operative Neurological Adverse Events 
 

Values are patient numbers with percentages in brackets;  
†This is an intention to treat analysis; 
Statistical analysis  using Chi-Squared Test 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Neurological Adverse Event 

Control 
Group 
(n=40)† 

HBO2 
Group 
(n=41)† 

 
p-value 

 
Confusion  +  blurred vision 1 (2.5%) 0 1.0 

TIA 0 0 1.0 
Stroke 0 0 1.0 
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3.4.2.5 Gastrointestinal Adverse Events 

  In this study, both the HBO2 and the Control Group had similar 

proportions of patients who experienced gastrointestinal AEs (Table 3.12). 

There was one patient (2.5%) in the Control Group who developed Clostridia 

Difficiele diarrhoea while there were none in the HBO2. There were no 

incidences of ischaemic bowel in either group. 

Table 3.12: Post Operative Gastrointestinal Adverse Events 
 

Values are patient numbers with percentages in brackets;  
†This is an intention to treat analysis;  
Statistical analysis using Chi-Squared Test 
 
 
 

 

 

 

 

 

 

 

 

 

 

Variable Control 
Group 
(n=40)† 

HBO2 
Group 
(n=41)† 

 
p-value 

 
Gastrointestinal Adverse Event 1 (2.5%) 1 (2.4%) 1.0 
1. Clostridia Difficiele Diarrhoea 1 0 1.0 
2. Ischaemic Bowel 0 0 1.0 
3. Other 0 1 1.0 
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3.4.2.6 Microbiological Adverse Events 

  Compared to the Control Group, in the HBO2 Group there was a 

7.6% reduction in the proportion of patients who experienced microbiological 

AEs (p=0.8) (Table 3.13). There were no incidences of superficial sternal or 

deep sternal wound infections in the HBO2 Group, of which there were three 

patients (7.3%) and one patient (2.5%), respectively in the Control Group. 

There was however, one patient (2.4%) who developed leg wound infection in 

the HBO2 Group while there were none in the Control Group. There were no 

incidences of patients requiring sternal wound re-wiring secondary to deep 

sternal wound infection in the HBO2 while there was one (2.5%) patient in the 

Control Group. 

Table 3.13: Post Operative Microbiological Adverse Events 
 

Values are patient numbers with percentages in brackets; 
 †This is an intention to treat analysis;  
Statistical analysis using Chi-Squared Test 
 
 

 

 

 

 

 Control 
Group 
(n=40)† 

HBO2 
Group 
(n=41)† 

 
p-value 

 
Microbiological Adverse Event 
(based on bacterial culture results) 

4 (10%) 1 (2.4%) 0.8 

1. Superficial  sternal wound infections 3 (7.3%) 0 0.8 
2. Deep sternal  wound infections 1 (2.5%) 0 1.0 
3. Leg  wound infections 0 1 (2.4%) 1.0 
Sternal infection requiring re-wiring 1 (2.5%) 0 1.0 
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3.4.2.7 Post Operative ICU Length of Stay 

In this study, after adjusting for longest aortic cross clamp and 

CPB time, there was a statistically significant reduction in the post operative 

ICU length of stay of patients in the HBO2 Group compared to those in the 

Control Group (p=0.05; Geometric Mean Estimate & 95% Confidence Interval 

for the difference: 1.18 and 0.02, 7.96). On the average, patients in the HBO2 

Group spent 4 hours less in ICU. A summary of the results are provided in 

Table 3.14. In this table, the data are displayed as both mean and median 

values. As the means and medians are not the same at each time point, this 

indicates that the data were skewed. To normalise the data and enable 

parametric statistical analysis, the mean values were transformed into natural 

logarithmic (ln) values.  

 
Table 3.14: Post Operative ICU Length of Stay 

 
 
 

 
 

Control 
Group 
(n=40) † 

HBO2 
Group 
(n=41) † 

Geometric Mean 
Estimate & 95% 

Confidence Interval 
(p-value *) 

 
 
 

Length of 
ICU Stay 

(hours) 

Total 1051 
 

850 
 

 
 
 
 

1.18 & 0.99, 1.39 
(p=0.05) 

Range 21-76 
 

6-28 

Median 24 18 

Mean 18 14 

Mean Ln 2.89 2.64 

*p values are for geometric means; 
 †This is an intention to treat analysis; 
Statistical analysis using Independent Sample t-test 
 
 
 



 

 
158 

 

3.4.3  Cost Effectiveness of HBO2 Preconditioning  

The post hoc cost effectiveness analysis of HBO2 

preconditioning is shown in Table 3.15. For this study, the HBO2 treatment as 

a whole was estimated to be approximately £200 per patient. The cost for the 

use of the ICU bed per day at Castle Hill Hospital (Hull & East Yorkshire NHS 

Trust) was estimated to be approximately £2,000. Using these cost estimates, it 

was calculated that patients treated with HBO2 prior to CABG saved 

approximately £292.63 per patient, in terms of ICU bed cost. This equated to 

an estimated savings of approximately £73.16 per saved ICU hour.   

 
Table 3.15: Summary of Cost 

 
Item Cost (£) 

HBO2 Treatment 200 
HBO2 treatment for 34 patients 6,800 

ICU bed per day (24 hours) 2000 
ICU bed per hour 2000/24 = 83.33 

ICU stay for 35 Control patients (A) 
(see Table 3.14) 

83.33 x 1051 = 87,579.83 

ICU stay for 34 HBO2 patients 
(see Table 3.14) 

83.33 x 850 = 70,830.50 

HBO2 treatment  + ICU stay for 34 
patients (B) 

6,800 + 70,830.50 = 77,630. 50 

Total Savings for HBO2 patients  
(A-B=C) 

(savings made by 34 HBO2 patients 
who spent a total of 1051-850=201 
hours less in ICU; see Table 3.14) 

 
 

87,579.83 - 77,630. 50 = 9,949.33 

Savings per HBO2 patient in ICU 
(C/34=D) 

9,949.33/34 = 292.63 

Savings per mean ICU hour saved 
(see Table 3.14) in each HBO2 

patient (D/4) 

 
292.63/4 = 73.16 

*This is an on treatment analysis 
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3.5  Discussion 

3.5.1  Peri-Operative Cardiovascular Efficacy of 

HBO2 Preconditioning 

In this study it was observed that following the termination of CPB, 

in the HBO2 Group, there were statistically significant increases in the mean LVSW 

(Figure 3.1), LVSWI (Figure 3.2) and SV (Figure 3.3). At present, there are no 

other published clinical studies that have determined the effects of HBO2 

preconditioning on myocardial function following IRI. These findings, however, do 

not corroborate with the findings of an experimental study of HBO2 

preconditioning prior to IRI (Radice et al., 1997). In that study, it was found that 

preconditioning rats with 100% O2 at 2.5 ATA for 1 hour, 3 hours or 6 hours, prior 

to ischaemia of 40 minutes and reperfusion of 20 minutes, resulted in a time 

proportional increase in the heart resting tension (left ventricular end-diastolic 

pressure). This reflects an increased degree of ventricular stiffness and depression 

of myocardial mechanics. In that study, it was suggested that the findings were in 

keeping with the observation by others that high oxygen tension (100%) increased 

isometric systolic tension and alters coronary flow as a result of oxygen 

toxicity (Daniell and Bagwell, 1968). This may well be the explanation for the 

findings in that experimental study but is one that cannot be used in the current 

HBO2 clinical study which demonstrated haemodynamic benefits from HBO2 

preconditioning. In this clinical HBO2 preconditioning protocol, the possibility of 

oxygen toxicity was mitigated by having a 5 minute air break between the two 30 
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minute periods of 100% O2 at 2.4 ATA. This HBO2 preconditioning protocol has 

also been safely used before (Alex et al., 2005) with no report of any 

cardiopulmonary decompensation or oxygen toxicity. By reducing the duration of 

exposure to HBO2 that is intermittent in nature and limiting the compression 

pressure to a level that is known to be clinically safe, the results from this clinical 

study indicate that preconditioning CAD patients with HBO2 prior to CABG may 

have the potential to enhance myocardial mechanical function post CABG and IRI.

  An indirect measure of support for the haemodynamic findings of the 

current clinical study comes from clinical studies where HBO2 was administered 

following the ischaemic-reperfusion event. Dekleva et.al  conducted a randomised 

control study to assess the benefits of HBO2, after thrombolysis, on the ventricular 

function and remodelling in patients who had suffered from an AMI  (Dekleva et 

al., 2004). 74 patients with first time AMI were randomly assigned to HBO2 

treatment consisting of 100% oxygen at 2 ATA for 60 minutes in addition to STK 

or treatment with just STK alone. In that study, it was observed that there was a 

significant decrease in end-systolic volume index from the first day to the third 

week after HBO2 treatment, in HBO2 group of patients compared with control 

group of patients. This was accompanied by a lack of changes in end diastolic 

volume index in the HBO2 group compared to increased values in the control 

group. The EF was also significantly improved in the HBO2 group while it 

decreased in the control group of patients 3 weeks after AMI. That study concluded 

that adjunctive HBO2 after thrombolysis in patients with an AMI, had a favourable 

effect on left ventricular function and the remodelling process. Further support 

comes from the ‘HOT MI’ study group (Shandling et al., 1997, Stavitsky et al., 
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1998). In the studies conducted by that group, it was observed that in the patients 

who were also treated with HBO2 following an AMI, there was an improvement in 

post MI EF. The ‘HOT-MI’ clinical studies demonstrated that HBO2, as a drug to 

adjunct thrombolysis, was capable improving systolic function while at the same 

time arresting any further deterioration in diastolic function following AMI. 

Furthermore, it showed that in the absence of HBO2 to adjunct thrombolysis, the 

control group went on to develop systolic and diastolic dysfunction post AMI. 

More recently, it was also observed that in diabetic patients who were being treated 

for non-healing lower extremity ulcers, after 10 HBO2 treatment sessions, these 

patients had an improved diastolic function (Aparci et al., 2008). Those clinical 

studies, together with the results from this current study, further support the premise 

that HBO2 treatment, pre and post myocardial ischaemia and reperfusion may be 

capable of improving myocardial function.   

In this study, it was also observed that prior to the onset of CPB 

(i.e. at the time point ‘post induction’), the PVR (Figure 3.4) and PVRI (Figure 

3.5) were significantly lower in the HBO2 Group compared to in the Control 

Group. This reduction in PVR and PVRI suggest that preconditioning CAD 

patients with HBO2 prior to CABG and IRI has the potential to reduce 

pulmonary vascular resistance and as such, improve pulmonary vascular blood 

flow. Physiologically, this finding is in keeping with what is known about 

pulmonary vascular reactivity following exposure to hyperoxia i.e. in response 

to hyperoxia, the pulmonary vessels dilate thus allowing improved blood flow. 

Furthermore, it also possible that these observations may be related to changes 

in the kinetics of sPSGL-1 and, this shall be discussed later in section 5. 
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3.5.2  Safety of HBO2 Preconditioning 

3.5.2.1 Cardiovascular Safety 

  While there were no statistically significant differences between 

the groups with respect to cardiovascular AEs, the proportion of patients with 

low cardiac output syndrome, AF or requiring inotrope use was lower in the 

HBO2 (Table 3. 6). This suggests that preconditioning CAD patients with 

HBO2 prior to on CPB CABG is a relatively safe procedure that does not lead 

significant post operative cardiovascular AEs. 

3.5.2.2 Pulmonary Safety 

  In this study, it was observed that patients in the HBO2 

Group had a post operative duration of mechanical ventilation and 

endotracheal intubation that was 30 minutes longer compared to patients in the 

Control Group (Table 3.8). These findings were not statistically significant and 

indicates that preconditioning CAD patients with HBO2 prior to on CPB 

CABG does not lead to prolonged post operative pulmonary support. This, in 

addition to the observation that this group of patients had a lower PVR and 

PVRI (Table 3.4) prior to CPB and, post operatively there was a lower 

proportion of patients who experienced combined pulmonary AEs (Table 3.9), 

suggests that this modality of treatment is a relatively safe procedure that does 

not lead significant post operative pulmonary AEs.  
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3.5.2.3 Renal, Neurological & Gastrointestinal Safety 

  In this study, the proportion of patients with renal and 

neurological AEs were lower in the HBO2 Group while the proportion of 

patients with gastrointestinal AEs were similar between the groups (Tables 

3.10-3.12). While none of these findings were statistically significant, it does 

suggest that  preconditioning CAD patients with HBO2 prior to on CPB CABG 

is a relatively safe procedure that does not lead significant post operative renal, 

neurological and GI AEs.  

3.5.2.4 Microbiological Safety 

In this study, the proportions of patients with wound infections 

was lower in the HBO2 Group. In particular, while the Control Group had 4 

cases of sternal wound infection, HBO2 Group had none. While there are a 

number of studies (Barili et al., 2007, De Feo et al., 2001, Lappa et al., 2003, 

Petzold et al., 1999) that have shown that treatment with HBO2 was a useful 

adjunct to promote sternal wound healing following post operative sternal 

wound infection, the results from this study suggests that HBO2 treatment prior 

to median sternotomy may also be capable of limiting post operative sternal 

wound infections (Table 3.13). Perhaps this may have been due to the 

induction of prophylactic anti-microbial effects of treatment with HBO2. This 

is plausible because oxygen and HBO2 have been described to have anti-

microbial properties (Park et al., 1992).   
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3.5.2.5 Post Operative Length of ICU Stay 

In this study it was observed that patients who were 

preconditioned with HBO2 prior to CABG and IRI had a significantly shorter 

post operative length of stay in ICU compared to patients in the Control Group.  

Age, CPB time, pre-CABG chronic COPD and pre-CABG pulmonary function 

are known to affect ICU length of stay (Nakasuji et al., 2005, Rosenfeld et al., 

2006). In this study, the ages of patients in both groups were similar (Table 

3.1). While the Control Group had slightly longer mean ischaemic and CPB 

times (Table 3.2), the potential confounding effect of these were mitigated by 

performing a multivariable linear regression analysis which adjusted for 

longest cross aortic clamp and CPB times. Patients with COPD were excluded 

from this study as they are more susceptible to pneumothoraces and this risk is 

increased in a HBO2 chamber where there are changes in pressure during the 

compression and decompression stages of the HBO2 treatment. As patients in 

both groups were of similar ages and appropriate statistical analysis had been 

performed to adjust for the potential confounding effect of time on CPB, it 

would be reasonable to suggest that HBO2 preconditioning was, in part, the 

cause for the shorter ICU stay that was observed in the HBO2 Group. This may 

have been the result of the HBO2 Group of patients having lower incidences of 

post operative AEs.  
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3.5.3  Cost Effectiveness 

  In this clinical study, the post hoc cost effectiveness analysis 

revealed that preconditioning CAD patients with HBO2 prior to CABG and IRI 

was a cost effective means of reducing post operative length of stay in ICU. 

This was found to be the case despite the slightly longer mechanical ventilation 

and intubation time in this group of patients. The saving made by the HBO2 

Group of patients were based on the cost per hour for the use of an ICU bed. 

This analysis did not take into account the added cost of any post operative 

AEs and the treatments required to resolve these AEs or, the staff and infra-

structure cost. As the proportion of patients with post operative AEs was lower 

in the HBO2 Group than in the Control Group, it is quite likely that the overall 

savings made by the HBO2 Group, in addition to the savings made from the 

shorter post operative ICU length of stay, may have been greater. The health 

technology assessment involving the cost effectiveness of HBO2 as a modality 

of treatment, has been reviewed by others (Guo et al., 2003b), particularly in 

the area of wound management (Chuck et al., 2008, Guo et al., 2003a, 

McEwen and Smith, 1997, Treweek and James, 2006). It is clear from these 

assessments that HBO2 is a cost effective treatment. This clinical study is the 

first to attempt to assess the cost effectiveness of HBO2 in a clinical model of 

CABG and IRI. While it was shown to be cost effective, no assessment was 

made of the possible ‘Quality Added Life Years’ (QUALY) that may have 

been made as a result of HBO2 preconditioning. However, based on the clinical 

study by Alex et.al, involving HBO2 preconditioning and CABG patients, 
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which found that patients who were preconditioned with HBO2 prior to CABG 

had significantly less post operative neurocognitive dysfunction (Alex et al., 

2005), it is quite possible that this modality of treatment may have the capacity 

to increase QUALY in patients following CABG. To accurately determine the 

cost effectiveness and QALY associated with the use of HBO2 in this group of 

patients, health technology assessment models will need to be developed in 

collaboration with health economists. 
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3.6  Conclusion 

This study met its primary cardiovascular efficacy endpoint and 

demonstrated that preconditioning CAD patients with HBO2 prior to CABG 

led to a significant improvement in LVSW 24 hours post CPB. As such, it can 

be concluded that HBO2 preconditioning in this group of patients leads to an 

improvement in myocardial function following CABG.   

As this study was not designed to determine the effects of HBO2 

preconditioning with respect to all the other clinical endpoints, which were all 

secondary endpoints, despite some statistically significant results, no definitive 

conclusions can be made with regards to the effects of HBO2 preconditioning 

on these endpoints. Where there were findings of statistical significance, this 

only provided a sensitivity analysis to support the estimates for any numerical 

differences between the groups. However, based on some of the estimates of 

the differences between the groups with respect to the clinical secondary 

endpoints, it is possible to make a few comments with regards to these 

differences.  

In addition to the observed improvement in LVSW 24 hours 

post CPB, in this study it was also observed that treating CAD patients with 

HBO2 prior to CABG, also leads to significant improvements in the LVSWI 

and SV 24 hours post CPB. These data supports the hypothesis that this 

modality of pre-treatment is capable of improving myocardial function in this 

group of patients. Furthermore, HBO2 preconditioning also led to significant 

reductions in PVR and PVRI prior to CPB. This indicates that preconditioning 
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CAD patients with HBO2 prior to CABG has the potential to improve 

pulmonary vascular blood flow prior to surgery. 

This study also demonstrated that despite the longer post 

operative mechanical ventilation and intubation times, the patients who were 

preconditioned with HBO2 had a significantly shorter post-operative length of 

stay in ICU. As such, it is reasonable to suggest that HBO2 preconditioning 

was in part, the cause for the shorter ICU stay. It was also observed that HBO2 

preconditioning, in this group of patients, was a safe modality of treatment as it 

was associated with a smaller proportion of patients experiencing post 

operative cardiovascular, pulmonary, renal, neurological and microbiological 

AEs. Where cost effectiveness was concerned, it was determined that the 

shorter length of post operative ICU stay amongst patients preconditioned with 

HBO2, was also associated with savings in hospital ICU bed cost. 

The main limitation of this study, that may have an impact on 

the observed clinical outcomes, is that patients in both groups had variable 

durations of intra-operative ischaemia, reperfusion and CPB and, a variety of 

ischaemic-reperfusion cycles as patients had a variable number of coronary 

artery bypasses (Table 3.1). While it would have been difficult to standardise 

the duration of ischaemia, reperfusion and CPB in a clinical study, perhaps one 

way to limit the variability in these durations was to limit the study population 

to patient who were only going to have a particular number of coronary artery 

bypass grafts. 

 



 

 
169 

 

4. Effects of HBO2 Preconditioning on 

A Surrogate Biomarker of 

Myocardial Injury: Serum 

Troponin-T 

4.1  Introduction 

To date, there are no other experimental or clinical studies 

where the effects of HBO2 on serum Troponin-T had been investigated. 

However, the ‘HOT-MI’ study group (Shandling et al., 1997) found that in 

AMI patients who were treated with HBO2 in addition to routine therapy, there 

was a 35% reduction in mean CK at 12 and 24 hours post MI. In a later similar 

study by the ‘HOT-MI’ group of investigators (Stavitsky et al., 1998), it was 

again observed that, compared to a control group, in AMI patients who were 

also treated with HBO2 in addition to routine therapy, the mean CK was 7.5% 

lower at 12 and 24 hours post AMI.  
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4.2  Objective 

The objective for this part of this clinical study was to assess the 

myocardial safety of systemically preconditioning CAD patients with one 

session of HBO2 preconditioning, involving two episodes of 30 minutes of 

100% oxygen at 2.4 ATA. Treatment with  HBO2 preconditioning  was 

completed approximately 2 hours prior to on CPB CABG. The assessment of 

the myocardial safety of this modality of treatment was done by determining 

the degree of myocardial injury as measured by the concentration of the 

surrogate biomarker of myocardial injury, serum Troponin-T at the pre-

specified time points (Table 2.5).  

4.3  Methods 

The time points for the collection of venous blood samples in 

this study and the method used for the measurement of serum Troponin-T have 

already been described in section 2.6.5. The measurement for serum Troponin-

T was done by the Department of Biochemistry at the Hull & East Yorkshire 

NHS Trust within 4 hours of collection using an ELICA method as described 

in section 2.6.6.1. Correction for the effects of hemodilution of serum 

Troponin-T during CPB, was done as described in section 2.6.6.3. 
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4.4  Results 

a. Pre- & Post HBO2 Mean Concentration of Serum    

Troponin-T in the HBO2 Group 

In this study, any value for Troponin-T that was between           

0 and 0.03ng/ml was reported as <0.03ng/ml by the Department of 

Biochemistry at the Hull & East Yorkshire NHS Trust. This is because, as 

described in section 2.6.1, the medical diagnostic guide for diagnosing an MI 

using the Troponin-T STAT kit is a Troponin-T concentration of 0.03ng/ml 

and greater. Furthermore, for clinical purposes, 0.03ng/ml is the lowest limit of 

quantification that can be reproducibly measuresed using this kit.  In this study, 

in the HBO2 Group of patients, the pre- and post HBO2 serum Troponin-T 

concentrations, in all patients, were reported as <0.03ng/ml. As in this study 

there were no plans for data imputation, it was not possible to determine the 

range, median, mean, ln mean or statistical significance of serum Troponin-T 

measurements from both these time points in this group of patients (Table 4.1). 

 
Table 4. 1: Pre & Post HBO2 Mean Concentration of Serum Troponin-T in the 

HBO2 Group 
 

HBO2 Group (n=41) † 
Concentration of Serum Serum Troponin-T(ng/ml) 
 Range Median 

 
Mean Ln 

Mean 
p-value 

Pre-HBO2 Unable to 
determine 

Unable to 
determine 

Unable to 
determine 

Unable to 
determine 

 
- 
 1 hour post HBO2 Unable to 

determine 
Unable to 
determine 

Unable to 
determine 

Unable to 
determine 

   †This is an intention to treat analysis 
 



 

 
172 

 

b. Peri Operative Mean Concentration of  Serum Troponin-T 

Between The Groups 

Just as in the HBO2 Group of this study, in the Control Group of 

patients, the serum Tropinin-T taken at the time point labelled ‘pre-HBO2’, 

were also reported as <0.03ng/ml. Again, as no imputation of data were done 

during this study, serum Troponin-T values that were reported as <0.03ng/ml 

were not used for statistical analysis. As such, for the purposes of this part of 

this study, when comparing serum Troponin-T between the groups, the time 

point which was taken as the baseline for serum Troponin-T analysis was the 

time point ‘5 minutes on CPB’.   

In this study, after adjusting for longest aortic cross-clamp time and CPB time, 

no statistically significant changes in serum Troponin-T were found between 

the groups at any of the time points. It was observed, however, that at all time 

points, apart from at the time point ‘5 minutes on CPB’, the mean 

concentration of serum Troponin-T was lower in the HBO2 Group (Figure 

4.1). In both groups, the mean concentration of serum Troponin-T appeared to 

rise from the time point ‘5 minutes on CPB’ up to the time point ‘2 hours post 

CPB’. After this time point, the mean concentration of serum Troponin-T 

continued to rise in the Control Group but remained unchanged in the HBO2 

Group. A summary of the results are provided in Table 4.2. In this table, the 

data are displayed as both mean and median values. As the means and medians 

are not the same at each time point, this indicates that the data were skewed. 

To normalise the data and enable parametric statistical analysis, the mean 

values were transformed into natural logarithmic (ln) values. 
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Figure 4. 1: Bar Chart of Peri-Operative Mean Concentration of Serum Troponin-T 
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Table 4. 2: Peri-Operative Concentration of Serum Troponin-T 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†This is an Intention to treat analysis;  
Statistical analysis using repeated measures of ANOVA; 
*p-values are for geometric means; 

Serum Troponin-T (ng/ml) 
Control Group 

(n=40)† 
HBO2 Group 

(n=41)† 
 

 Range Median Mean Ln 
Mean 

Range Median Mean Ln 
Mean 

p-
value* 

Pre- 
HBO2 

Unable to 
determine 

Unable to 
determine 

Unable to 
determine 

 
- 

Unable to 
determine 

Unable to 
determine 

Unable to 
determine 

 
- 

 
- 

5 minutes 
on CPB 

 
0.03-0.11 

 
0.03 

 
0.03 

 
-3.4 

 
0.02-0.15 

 
0.03 

 
0.03 

 
-3.4 

 
0.90 

5 minutes 
post IRI 

 
0.03-0.59 

 
0.10 

 
0.16 

 
-1.9 

 
0.03-0.34 

 
0.1 

 
0.12 

 
-2.1 

 
0.61 

2 hours 
post CPB 

 
0.22-1.50 

 
0.22 

 
0.59 

 
-0.5 

 
0.17-1.43 

 
0.5 

 

 
0.50 

 
-0.7 

 
0.99 

24 hours 
post CPB 

 
0.14-7.62 

 
0.14 

 
0.79 

 
-0.2 

 
0.10-2.90 

 
0.49 

 
0.50 

 
-0.7 

 
0.99 
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4.5  Discussion 

 In this study, it was observed that 1 hour following HBO2 

treatment, serum from patients in HBO2 Group did not show any clinically 

meaningful change in serum Troponin-T.  This suggests that 1 hour following 

HBO2 preconditioning, the oxidative stress of this modality of treatment did 

not cause any clinically significant myocardial injury. Furthermore, during the 

peri-operative period, it appeared that HBO2 preconditioning induced a degree 

of cardioprotection by limiting the amount of myocardial injury and hence the 

release of Troponin-T into the circulation. In fact following the time point ‘2 

hours post CPB’, the serum concentration of Troponin-T in the HBO2 Group 

appeared to plateau off while in the Control Group it continued to rise 

suggesting that there was no progressive myocardial injury in the HBO2 Group 

after that time point but a continued to escalation of injury in the Control 

Group. As such, these observations provide some further support that in a 

group of patients with ischaemic heart disease, HBO2 preconditioning is a safe 

modality of treatment. This in keeping with the findings of other randomised 

controlled studies  (Shandling et al., 1997, Stavitsky et al., 1998).  

As a modality of treatment that induces an oxidative stress, it is 

still not entirely clear how HBO2 preconditioning and its generated ROS, 

paradoxically, limits myocardial injury and reduces the release of biomarkers 

of myocardial injury such as CK and Troponin-T during ischaemia and 

reperfusion. Clinical studies also have yet to find any correlation between ROS 

generation and, myocardial injury and Troponin-T release (Berg et al., 2006, 
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Berg et al., 2005, Berg et al., 2004). In a recent study, it was demonstrated that 

while oxidative stress does occur following IRI and CABG, this does not 

necessarily equate to cellular injury and clinical deterioration (Milei et al., 

2007). While high doses (100-200μM) of ROS (such as H2O2) have been 

shown to have deleterious effects on the structure and function of the 

myocardium (Evans et al., 1995, Janero et al., 1991, Miki et al., 1988, Onodera 

et al., 1992), it has also been demonstrated in an experimental model, that low 

doses of  H2O2 (between 1μM and 2 μM), added during reperfusion, can 

reduce myocardial infarct size  (Ytrehus et al., 1995). In another experimental 

study, it was demonstrated 25μM of H2O2 administered during reperfusion, 

resulted in a beneficial effect on functional and metabolic recovery in isolated 

rat hearts (Hegstad et al., 1997). Coronary flow and, left ventricular developed 

pressure and relaxation, were improved in the group that was exposed to 25μM 

of H2O2 compared to the untreated control group. Furthermore, the addition of 

25μM of H2O2 increased the levels of high energy phosphates (ATP) at the end 

of the reperfusion period compared to the control group. Additionally, it has 

also been demonstrated that low concentrations of H2O2 causes 

vasodilatation (Burke and Wolin, 1987). These beneficial ROS induced effects 

may account for the reduction in myocardial injury observed in the HBO2 

Group of this study, who were indirectly exposed to ROS during treatment 

with HBO2 preconditioning prior to CABG and IRI. As myocardial protection 

via ROS preconditioning, has been successfully demonstrated by others (Das et 

al., 1999a), it is possible that the HBO2 induced ROS preconditioned the 

myocardium to better tolerate the subsequent stress of IRI induced ROS.  
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4.6  Conclusion 

 
In this clinical study, no statistically or clinically significant 

results were observed when determining the effects of HBO2 preconditioning 

on serum Troponin-T. As such, and as per the statistical plan for analysing the 

secondary endpoints of this study, no definitive conclusions can be made with 

respect to the changes that were observed. However, based on the observed 

mean differences between the groups with respect to this secondary endpoint, 

it would not be unreasonable to further reinforce the suggestion that 

preconditioning CAD patients with HBO2 prior to CABG is a safe as it did not 

exacebate the peri-operative myocardial injury and may have even contributed 

to limiting this injury post operatively.  

 The main limitations to this part of the study was the inability to 

accurately quantify the concentrations of serum Troponin-T for values 

<0.03ng/ml. As no imputation of data was done for this study, there were no 

available serum Troponin-T measurements  at the time points ‘pre-HBO2’ 

(both groups) and ‘post HBO2’ (HBO2 Group only), that could be used in the 

statistical analysis. As a result of this, the all the serum Troponin-T values at 

the time point ‘5 minutes on CPB’ had to be used as the baseline measurement. 

This meant that there was no assessment of changes in serum Troponin-T 

between the pre-HBO2 period and the post HBO2 period or between the        

pre-CPB period and on-CPB period. In this study, there was also no 

assessment of ROS generation or, for the presence of its metabolites, as a result 

of HBO2, ischaemia and reperfusion. As such, the correlation between ROS 
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generation and serum Troponin-T could not be determined. Furthermore, the 

duration of ischaemia, reperfusion and CPB and, the number of ischaemic-

reperfusion cycles in both groups were not standardised in this clinical study 

and this may limit the value of the results from this study. 
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5. Effects of HBO2 Preconditioning on 

Surrogate Biomarkers of 

Neutrophilic & Endothelial 

Adhesiveness: Serum Soluble 

Adhesion Molecules 

5.1 Introduction 

HBO2 prior to the insult of IRI (HBO2 preconditioning), has 

been shown to limit myocardial infarct size (Kim et al., 2001) and improve 

myocardial function (Dekleva et al., 2004). It appears that part of the 

mechanism by which HBO2 limits IRI is by decreasing neutrophil 

sequestration (Tjarnstrom et al., 1999), decreasing the polarization expression 

of the neutrophil adhesion molecule, CD18 (Khiabani et al., 2008), and 

decreasing the expression of the endothelial cell adhesion molecule, ICAM-

1 (Buras et al., 2000) which is a ligand for CD18. A clinical study involving 

two episodes of 30 minutes of 100%  oxygen at 2.4 ATA at 24, 12, and 4 hours 

prior to on CPB CABG, showed that preconditioning with three sessions of 

HBO2 prior to the insult of IRI during on CPB CABG, was capable of 

significantly attenuating the rise in plasma CD18 and sE-Selectin (Alex et al., 
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2005). However, this study also found that HBO2 preconditioning increased 

the expression of sICAM-1 and sP-selectin.  

5.2 Objective 

 The objective of this part of this clinical study was to evaluate 

the effects of systemically preconditioning CAD patients with one session of 

HBO2 preconditioning, involving two episodes of 30 minutes of 100% oxygen 

at 2.4 ATA, which was completed approximately 2 hours prior to on CPB 

CABG, on the on the expression of surrogate biomarkers (soluble adhesion 

molecules) of endothelial  (sP-Selectin, sE-Selectin and sICAM-1), platelet 

(sP-Selectin) and neutrophilic (sPSGL-1) adhesiveness as measured by the 

concentration of these biomarkers at the pre-specified time points (Table 2.5).  

5.3 Methods 

The time points for the collection of venous blood samples in 

this study and the method used for the measurement of serum soluble adhesion 

molecules have been described in sections 2.6.5 and 2.6.6.2, respectively. 

Correction for the effects of hemodilution on the concentration of serum 

soluble adhesion molecules during CPB, was done as described in section 

2.6.6.3. 
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5.4  Results 

  From the 81 patients recruited to this study who had venous 

blood samples taken at 6 different time points for ELISA serum soluble 

adhesion molecule analysis, a total of 486 samples were analysed. Each sample 

was analysed in duplicates in a 96 well ELISA microplate. In this microplate, 

80 wells were used to analyse a total of 40 samples. The 12 remaining wells 

were used to analyse, in duplicates, the standards for each serum soluble 

adhesion molecule. The remaining 4 wells on each plate were left as blanks.  

  As each ELISA microplate was only used to analyse 40 of the 

total 486 samples, 13 ELISA microplates were used for the analysis of each 

type of serum soluble adhesion molecules. As there were 4 different types of 

serum soluble adhesion molecules that were measured, a total of 52 ELISA 

microplates were used in total. 
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5.4.1  Serum Adhesion Molecule Results 

Figure 5.1 shows an example of a set of spectrophotometric 

results that were obtained from an ELISA microplate following an ELISA 

assay procedure for a particular batch of samples for sE-Selectin analysis. As 

each sample analysed during the sE-Selectin ELISA assay procedure was 

analysed in duplicates on the ELISA microplate, the spectrophotometric results 

are also in duplicates. As part of this study, it had been pre-defined that if 

either of the spectrophotometric duplicates were more or less than 50% of the 

other’s value, that pair of reading would be labelled as unreliable and omitted 

from the analysis. From Figure 5.1 for example, the readings in E6 is greater 

than 50% of F6 and F6 is less than 50% of E6. As such, these readings were 

labelled as unreliable and were omitted from the analysis. This error may have 

occurred due to an operator error in pipetting. From all the 52 plates analysed, 

there were only 10 pairs of results that were unreliable and omitted from 

subsequent analysis.  

The duplicates from each pair of spectrophotometric results 

were then averaged to determine the average spectrophotometric result for 

each sample that was analysed in a particular ELISA microplate. Figure 5.2 

shows the averaged spectrophotometric results for the sE-Selectin 

spectrophotometric results from Figure 5.1. 

Using the manufacturer provided concentrations for each of the 

serum soluble adhesion molecule standards and by using the average of the 

duplicates of these standard’s spectrophotometric results, a standard curve and 
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its equation was determined using Microsoft Excel 2003. Figure 5.3 shows the 

standard curve obtained from the sE-Selectin ELISA microplate example that 

was used earlier to determine the spectrophotometric results.  
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Figure 5. 1: Spectrophotometric Readings From Serum sE-Selectin ELISA Plate 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Legend 5. 1: Legend Colour for Figure 5.1 
 
 
 
 
 
 
 
 
 

 A B C D E F G H I J K L 
1 2.57 2.22 0.56 0.42 0.39 0.35 0.2 0.2 0.45 0.48 0.27 0.26 
2 1.77 1.82 0.49 0.43 0.37 0.35 0.54 0.56 0.44 0.42 0.28 0.25 
3 1.28 1.19 0.39 0.32 0.44 0.38 0.40 0.42 0.39 0.39 0.30 0.24 
4 0.60 0.64 0.33 0.32 0.30 0.28 0.36 0.37 0.36 0.42 0.29 0.28 
5 0.18 0.18 0.40 0.46 0.22 0.15 0.29 0.30 0.4 0.43 0.41 0.24 
6 0.06 0.06 0.29 0.29 0.65 0.15 0.28 0.27 0.42 0.45 0.31 0.26 
7   0.46 0.34 0.29 0.16 0.83 0.45 0.31 0.32 0.25 0.23 
8   0.53 0.43 0.27 0.38 0.45 0.49 0.31 0.33 0.24 0.24 
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Figure 5. 2: Averages Of Spectrophotometric Reading For Each Patient From Each Time Point 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Legend 5. 2: Legend Colour for Figure 5.2 
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Figure 5. 3: Example of a Standard Curve For Serum sE-Selectin 
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The equation obtained for this standard curve was: 

 y = -0.002x2 + 0.242x + 0.0467.  

The r2 value for this standard curve was 0.99. Using this standard curve, the 

concentration of sE-Selectin at each time point was determined using 

Microsoft Excel 2003. 

This method of determining the serum soluble adhesion 

molecule concentration was also used during the analysis of all the other 

ELISA microplates in this study. The r2 values for all the standard curves 

obtained ranged from 1.0 to 0.97.  

In this study, following the ELISA assay procedure and 

spectrophotometry analysis, where necessary, a correction for sample dilution 

during the assay procedure was calculated. In addition to this, to correct for the 

effect of hemodilution during CPB, a further correction for the concentration 

of serum soluble adhesion molecule during the intra-operative period was 

calculated as described in section 2.6.6.3.  
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The results will be discussed in the sequence of sPSGL-1, sP-

Selectin, sE-Selectin and sICAM-1, as this sequence of serum soluble adhesion 

molecule discussion enables a more logical discussion of the findings. 

5.4.2  Serum sPSGL-1 Results 

a. Pre- & Post HBO2 Mean Concentration of Serum sPSGL-1 

in the HBO2 Group 

In this study, approximately 1 hour following HBO2 

preconditioning, there was a statistically significant increase in the mean 

concentration of serum sPSGL-1 (p=0.03) (Table 5.1). 

 

Table 5. 1: Pre & Post HBO2 Mean Concentration of Serum sPSGL-1 in the 
HBO2 Group 

   †This is an intention to treat analysis 
   Statistical results obtained using Wilcoxon Signed Rank Test 

 

 

 

 

 

 

 

 

HBO2 Group (n=41)† 
Concentration of Serum sPSGL-1 (ng/ml) 

 Range Mean p-value 
Pre-HBO2 12-1187 265  

0.03 1 hour post  HBO2 149-875 278 
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b. Peri Operative Mean Concentration of Serum sPSGL-1 

Between The Groups 

In this study, after adjusting for longest aortic cross-clamp time and CPB time, 

none of the changes at any of the time points between the groups were 

statistically significant. In both groups (Figure 5.4), there was a decrease in the 

mean concentration of serum sPSGL-1 from the time point ‘pre-HBO2’ to the 

time point ‘5 minutes on CPB’. At the time point ‘5 minutes on CPB’, the 

concentration of of sPSGL-1 was higher in the HBO2 Group. During the period 

of IRI, (i.e. from the time point ‘5 minutes on CPB’ to the time point ‘5 

minutes post IRI’), there was a small decrease in the concentration of sPSGL-1 

in the HBO2 Group while in the Control Group there was a small increase. 

Despite this decrease, at the time point ‘5 minutes post IRI’, the concentration 

of serum sPSGL-1 was higher in the HBO2 Group than in the Control Group. 

From the time point ‘5 minutes post IRI’ to the time point ‘2 hours post CPB’, 

the concentration of sPSGL-1 increased in both groups. At the time point ‘2 

hours post CPB’, the concentration of serum sPSGL-1 continued to remain 

higher in the HBO2 Group. From the time point ‘2 hours post CPB’ up to the 

time point ‘24 hours post CPB’, in both groups, the concentration of sPSGL-1 

decreased but remained higher in the HBO2 Group. A summary of the results 

are provided in Table 5.2. In this table, the data are displayed as both mean and 

median values. As the means and medians are not the same at each time point, 

this indicates that the data were skewed. To normalise the data and enable 

parametric statistical analysis, the mean values were transformed into natural 

logarithmic (ln) values. 



 

 
189 

 

Figure 5. 4: Bar Chart of Peri-Operative Mean Concentration of Serum sPSGL-1 
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Table 5. 2: Peri-Operative Concentration of Serum sPSGL-1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         †This is an intention to treat analysis; 
                               Statistical analysis using repeated measures of ANOVA; 

 *p-values are for Geometric Means 

Peri-Operative Concentration of Serum sPSGL-1 (ng/ml) 
 Control Group 

(n=40)† 
HBO2 Group 

(n=41)† 
 

  
Range 

 
Median 

 
Mean 

 
Ln 

Mean 
 

 
Range 

 

 
Median 

 
Mean 

 
Ln 

Mean 
 

 
p-value* 

 
 

Pre-HBO2 
(baseline) 

24-611 211 265 5.6 12-1187 245 265 5.8 - 

5 minutes on CPB 62-930 199 221 5.4 93-703 225 244 5.5 0.09 
5 minutes 
post IRI 

70-847 220 226 5.4 108-804 229 237 5.5 0.16 

2 hours 
post CPB 

78-485 214 238 5.5 94-1212 242 263 5.6 0.13 

24 hours 
post CPB 

78-485 180 180 5.2 80-605 190 204 5.3 0.13 
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5.4.3  Serum sP-Selectin Results 

a. Pre- & Post HBO2 Mean Concentration of Serum sP-

Selectin in the HBO2 Group 

In this study, approximately 1 hour following HBO2 

preconditioning, there was a very small, statistically non-significant, increase 

in the mean concentration of serum sP-Selectin (Table 5.3). 

 

Table 5. 3: Pre & Post HBO2 Mean Concentration of Serum sP-Selectin in the 
HBO2 Group 

 
HBO2 Group (n=41) † 

Concentration of Serum sP-Selectin (ng/ml) 
 Range Mean p-value 

Pre-HBO2 30-238 86  
0.9 1 hour post HBO2 33-233 90 

  †This is an intention to treat analysis; 
  Statistical analysis using Wilcoxon Signed Rank Test 
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b. Peri Operative Mean Concentration of  Serum sP-Selectin 

Between The Groups 

After adjusting for longest aortic cross-clamp time and CPB time, none of the 

changes at any of the time points between the groups were statistically 

significant. In both groups (Figure 5.5), between the time point ‘pre-HBO2’ 

and ‘5 minutes on CPB’ the mean concentration of serum sP-Selectin 

decreased. At the time point ‘5 minutes on CPB’, the mean concentration of 

serum sP-Selectin was higher in the HBO2 Group. During the period of IRI 

(between time points ‘5 minutes on CPB’ and ‘5 minutes post IRI’), there was 

a further small decrease in the mean concentration of serum sP-Selectin in the 

HBO2 Group while in the Control Group, there was an increase. At the time 

point ‘5 minutes post IRI’, the mean concentration of serum sP-Selectin was 

lower in the HBO2 Group. In both groups, from the time point ‘5 minutes post 

IRI’ to the time point ‘2 hours post CPB’, the mean concentration of serum sP-

Selectin increased. At time point ‘2 hours post CPB’ the mean concentration of 

sP-Selectin was slightly higher in the HBO2 Group. Following this, from the 

time point ‘2 hours post CPB’ to ‘24 hours post CPB’ the mean concentration 

of serum sP-Selectin decreased in both groups but remained higher in the 

HBO2 Group. A summary of the results are provided in Table 5.4. In this table, 

the data are displayed as both mean and median values. As the means and 

medians are not the same at each time point, this indicates that the data were 

skewed. To normalise the data and enable parametric statistical analysis, the 

mean values were transformed into natural logarithmic (ln) values. 
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Figure 5. 5: Bar Chart of Peri-Operative Mean Concentration of Serum sP-Selectin 
 
 

0

20

40

60

80

100

120

140

Pre-HBO2 5 min. on
CPB

5 min. post
IRI

2 hrs. post
CPB

24 hrs.
post CPB

Time Points

M
ea

n 
S

er
um

 C
on

ce
nt

ra
tio

n 
of

 s
P

-
S

el
ec

tin
 (n

g/
m

l)
Control Group

HBO2 Group

 
                         HBO2 Group, n=41; Control Group, n=40 
                       Bars chart showing mean values and error bars for the standard error of the mean
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Table 5. 4: Peri-Operative Concentration of Serum sP-Selectin 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      †This is an intention to treat analysis; 
    Statistical analysis using repeated measures of ANOVA; 
   *p-values are for Geometric Means 

Peri-Operative Concentration of Serum sP-Selectin (μg/ml) 
 Control Group 

(n=40)† 
HBO2 Group 

(n=41)† 
 

  
Range 

 
Median 

 
Mean 

 
Ln 

Mean 
 

 
Range 

 

 
Median 

 
Mean 

 

 
Ln 

Mean 
 

 
p-value* 

 
 

Pre-HBO2 
(baseline) 

30-238 91 86 4.0 50-232 89 86 4.4 - 

5 minutes on CPB 1-114 39 40 3.5 11-178 39 46 3.8 0.36 
5 minutes 
post IRI 

7-139 43 45 3.6 14-175 38 42 3.7 0.61 

2 hours 
post CPB 

39-258 94 101 4.8 19-352 102 103 4.6 0.22 

24 hours 
post CPB 

22-296 72 82 4.1 52-502 74 88 4.5 0.82 
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5.4.4  Serum sE-Selectin Results 

a. Pre- & Post HBO2 Mean Concentration of Serum sE-

Selectin in the HBO2 Group 

 In this study, approximately 1 hour following HBO2 

preconditioning, there was a no change in the mean concentration of serum  

sE-Selectin (Table 5.5). 

 

Table 5. 5: Pre & Post HBO2 Mean Concentration of Serum sE-Selectin in the 
HBO2 Group 

 
HBO2 Group (n=41)† 

Concentration of Serum sE-Selectin (ng/ml) 
 Range Mean p-value 

Pre-HBO2 3-54 16  
0.3 1 hour post HBO2 3-53 16 

†This is an intention to treat analysis; 
Statistical analysis using Wilcoxon Signed Rank Test 
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b. Peri Operative Mean Concentration of Serum sE-Selectin 

Between The Groups 

At all time points, Figure 5.6, the mean concentration of serum        

sE-Selectin was higher in the HBO2 Group compared to in the Control Group. 

From the time points ‘pre-HBO2’ to ‘5 minutes on CPB’, the mean 

concentration of serum sE-Selectin increased in both groups. At the time point 

‘5 minutes on CPB’, the mean concentration of serum sE-Selectin was higher 

in the HBO2 Group. After adjusting for longest aortic cross-clamp time and 

CPB time, the mean concentration of serum sE-Selectin at the time point ‘5 

minutes on CPB’ was found to be significantly higher in the HBO2 Group than 

in the Control Group (Geometric Mean Estimate & 95% Confidence Interval; 

1.21 & 1.03, 1.42; p=0.02). During the period of IRI (between the time points 

‘5 minutes on CPB’ and ‘5 minutes post IRI’), there was a very small increase 

in the mean concentration of serum sE-Selectin in HBO2 Group and no change 

in the Control Group. At the time point ‘5 minutes post IRI’, the mean 

concentration of serum sE-Selectin was higher in the HBO2 Group. After 

adjusting for longest aortic cross-clamp time and CPB time, the mean 

concentration of serum sE-Selectin at the time point ‘5 minutes post IRI’  was 

found to be significantly higher in the HBO2 Group than in the Control Group 

(Geometric Mean Estimate & 95% Confidence Interval; 1.26 & 1.04, 1.52; 

p=0.02). Between the time points ‘5 minutes post IRI’ and ‘24 hours post 

CPB’, the mean concentration of serum sE-Selectin increased in both groups 

and continued to remain higher in the HBO2 Group. None of the changes 

between the the time points ‘5 minutes post IRI’ and ‘24 hours post CPB’ were 
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statistically significant. A summary of the results are provided in Table 5.6. In 

this table, the data are displayed as both mean and median values. As the 

means and medians are not the same at each time point, this indicates that the 

data were skewed. To normalise the data and enable parametric statistical 

analysis, the mean values were transformed into natural logarithmic (ln) 

values.  
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Figure 5. 6: Bar Chart of Peri-Operative Mean Concentration of Serum sE-Selectin 
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Table 5. 6: Peri-Operative Concentration of Serum sE-Selectin 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  †This is an intention to treat analysis 
        Statistical analysis using repeated measures of ANOVA 
       *p-values are for the Geometric Means 

Peri-Operative Concentration of Serum sE-Selectin (ng/ml) 
 Control Group 

(n=40)† 
 

HBO2 Group 
(n=41)† 

 

 

  
 

Range 

 
 

Median 

 
 

Mean 

 
 

Ln 
Mean 

 

 
 

Range 

 
 

Median 

 
 

Mean 

 
 

Ln 
Mean 

 
 

p-value* 
(Geometric 

Mean Estimate & 
95% Confidence Interval) 

Pre-HBO2 
(baseline) 

3-39 11 14 2.6 4-53 13 16 2.8 - 

5 minutes 
on CPB 

4-48 13 17 2.8 5-66 19 22 3.1 0.02 
1.21 & 1.03, 1.42 

5 minutes 
post IRI 

2-46 14 17 2.8 4-66 22 23 3.1 0.02 
(1.26 & 1.04, 1.52) 

2 hours 
post CPB 

0.5-54 18 21 3.0 5-79 20 25 3.2 0.42 

24 hours 
post CPB 

6-75 19 23 3.1 4-138 22 27 3.3 0.42 
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5.4.5  Serum sICAM-1 Results 

a. Pre- & Post HBO2 Mean Concentration of Serum sICAM-1 

in the HBO2 Group 

In this study, approximately 1 hour following HBO2 

preconditioning, there was a small, statistically non-significant increase in the 

mean concentration of serum sICAM-1 concentration (Table 5.7). 

 

Table 5. 7: Pre & Post HBO2 Mean Serum sICAM-1 Concentrations in the 
HBO2 Group 

 
HBO2 Group (n=41)† 

Concentration of Serum sICAM-1 (ng/ml) 
 Range Mean p-value 

Pre-HBO2 33-451 258  
0.3 1 hour post HBO2 35-464 261 

†This is an intention to treat analysis 
Statistical analysis using Wilcoxon Signed Rank Test 
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b. Peri Operative Mean Concentration of Serum sICAM-1 

Between The Groups 

In this study, at all time points, the mean concentration of serum 

sICAM-1 was higher in the HBO2 Group than in the Control Group (Figure 

5.7). In both groups, between the time points ‘pre-HBO2’ and ‘5 minutes on 

CPB’, there was a small decrease in the mean concentration of serum of 

sICAM-1. At the time point ‘5 minutes on CPB’, the mean concentration of 

serum sICAM-1 was higher in the HBO2 Group but this was not a statistically 

significant result. During the period of IRI, (i.e. from the time points ‘5 

minutes on CPB’ to 5 minutes post IRI), in the HBO2 Group there was a small 

increase in the mean concentration of serum sICAM-1 while in the Control 

Group there was a small decrease. At the time point ‘5 minutes post IRI’, the 

mean concentration of serum sICAM-1 was higher in the HBO2 Group. At the 

time point ‘5 minutes post IRI’, after correction for longest aortic cross-clamp 

time and CPB time, the HBO2 Group had a significantly higher mean 

concentration of serum sICAM-1 compared to the Control Group (Geometric 

Mean Estimate & 95% Confidence Interval; 1.17 & 1.02, 1.34; p=0.03). From 

the time point ‘5 minutes post IRI’ up to the time point ‘24 hours post CPB’, 

the mean concentration of serum of sICAM-1 increased in both groups and 

remained higher in the HBO2 Group. None of the changes between the time 

point ‘5 minutes post IRI’ and the time point ‘24 hours post CPB’ were 

statistically significant. A summary of the results are provided in Table 5.8. In 

this table, the data are displayed as both mean and median values. As the 

means and medians are not the same at each time point, this indicates that the 
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data were skewed. To normalise the data and enable parametric statistical 

analysis, the mean values were transformed into natural logarithmic (ln) 

values.  
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Figure 5. 7: Bar Chart of Peri-Operative Mean Concentration of Serum sICAM-1 
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Table 5. 8: Peri-Operative Concentration of Serum sICAM-1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   †This is an intention to treat analysis 
                          Statistical analysis using repeated measures of ANOVA 
                         *p-values are for Geometric Means 

Peri-Operative Concentration of Serum sICAM-1 (ng/ml) 
 Control Group 

(n=40)† 
HBO2 Group 

(n=41)† 
 

  
 

Range 

 
 

Median 

 
 

Mean 

 
 

Ln 
Mean 

 

 
 

Range 

 
 

Median 

 
 

Mean 

 
 

Ln 
Mean 

 

p-value* 
(Geometric 

Mean 
Estimate & 

95% 
Confidence 

Interval) 
Pre-HBO2 
(baseline) 

33-326 212 175 5.2 34-451 258 211 5.6 - 

5 minutes 
on CPB 

39-316 196 165 5.1 105-509 223 207 5.5 0.07 

5 minutes 
post IRI 

37-321 191 162 5.1 135-478 254 209 5.5 0.03 
(1.17 & 1.02, 

1.34) 
2 hours 

post CPB 
28-399 221 183 5.2 95-727 281 237 5.7 0.06 

24 hours 
post CPB 

40-442 246 214 5.3 151-1798 308 299 5.9 0.06 
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5.5  Discussion 

5.5.1  sPSGL-1 

In the HBO2 Group, 1 hour following HBO2 preconditioning 

(Table 5.1), there was a statistically significant increase in the mean 

concentration of serum of sPSGL-1 (p=0.03). A possible explanation for this 

may have been the oxidative stress that is known to be generated by treatment 

with HBO2 (Benedetti et al., 2004, Conconi et al., 2003, Gregorevic et al., 

2001, Thom, 2009). At present there are no other clinical studies involving 

HBO2, CABG and the oxidative stress of ischaemia and reperfusion, that have 

investigated the kinetics of sPSGL-1 in this group of patients. However, in in-

vivo (Dulkanchainun et al., 1998, Hayward et al., 1999) and ex-

vivo (Dulkanchainun et al., 1998) models of IRI, the presence of sPSGL-1 

appears to be associated with reduced myocardial (Hayward et al., 1999) and 

liver (Dulkanchainun et al., 1998) reperfusion injury and, the preservation of 

endothelial function (Hayward et al., 1999). These cellular protective effects 

were largely the result of reduced neutrophil infiltration (Dulkanchainun et al., 

1998) and reduced neutrophil-endothelial cell interaction (Hayward et al., 

1999). The latter appears to be the result of the ability for sPSGL-1 to inhibit 

the adhesion between neutrophil bound PSGL-1 and its endothelial bound 

ligand, P-Selectin by binding to either of these intact adhesion 

molecules (Hayward et al., 1999). This suggests that in this study, 

preconditioning CAD patients with HBO2 prior to CABG and IRI, may have 
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had the potential to reduce neutrophil mediated ischaemia reperfusion 

endothelial injury as the circulation of this group of patients had an increased 

load of sPSGL-1 that maybe capable of inhibiting endothelial P-Selectin 

adhesion to neutrophil PSGL-1.  

5.5.2  sE-Selectin 

During the period of anaesthetic pre-medication, induction and, 

maintenance, prior to the onset of CPB (i.e. between the time point              

‘pre-HBO2’ and ‘5 minutes on CPB’) (Figure 5.6), there was an increase in the 

mean concentration of serum sE-Selectin in both groups with the concentration 

being higher in the HBO2 Group at the time point ‘5 minutes on CPB’. At this 

time point ‘5 minutes on CPB’, the concentration in the HBO2 Groups was 

significantly greater than in the Control Group (p=0.02). A reason for this may 

be that by the time point ‘5 minutes on CPB’, approximately 4 hours would 

have passed since the end of the HBO2 treatment. This may have provided 

sufficient time for the oxidative stress of HBO2 to not only stimulate the 

transcription of E-Selectin but also for its eventual expression on the vascular 

endothelium. Increased levels of ROS, as generated during HBO2, have not 

only been shown to stimulate E-Selectin expression (Rupin et al., 2004, 

Russell et al., 2000) but also possibly cleave them off the surfaces of 

endothelial cells to produce sE-Selectin (Eguchi et al., 2005). 

During the period of ischaemia and reperfusion (i.e. between the 

time point ‘5 minutes on CPB’ and ‘5 minutes post IRI’) (Figure 5.6), in the 

HBO2 Group there was a small increase in the serum concentration of sE-
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Selectin while in the Control Group, there was no change. At the time point ‘5 

minutes post IRI’, the serum concentration was higher in the HBO2 Group.    

At this time point, the HBO2 Group had a significantly higher mean serum 

concentration of sE-Selectin (p=0.02). As ischaemia and reperfusion are 

generally known to cause an increase in serum sE-Selectin (Kalawski et al., 

1998, Matata and Galinanes, 2000), one possible reason for only a small 

increase in the circulating load of sE-Selectin during the period of IRI in the 

HBO2 Group could perhaps be because prior to the period of IRI, there was 

also a high circulating load of sPSGL-1. It has been reported (Takada et al., 

1997) that sPSGL-1 is capable of limiting the transcription of E-Selectin by 

limiting cytokines, such as TNF-α, that are necessary for the induction of E-

Selectin expression on the vascular endothelium. This may limit the amount of 

available endothelial bound E-Selectin that maybe shed into the circulation as a 

result of ischaemia and reperfusion. While it has been demonstrated that 

sPSGL-1 is capable of inhibiting the adhesion between neutrophil bound 

PSGL-1 and its endothelial bound ligand, P-Selectin (Hayward et al., 1999), it 

has also been suggested that the interaction between PSGL-1 and P-Selectin is 

required for sE-Selectin expression (Bodary et al., 2007). As in this study, in 

the HBO2 Group of patients, there was a high circulating sPSGL-1 prior to IRI, 

it would be reasonable to suggest that this too may have indirectly led to an 

attenuation of sE-Selectin expression in this group of patients during this 

period.  
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5.5.3  sICAM-1 

In this study, during the period of ischaemia and reperfusion 

(i.e. between the time point ‘5 minutes on CPB’ and ‘5 minutes post IRI’), the 

mean concentration of serum sICAM-1 increased a little in the HBO2 Group 

and decreased a little in the Control Group. At the time point ‘5 minutes post 

IRI’, the concentration was significantly higher in the HBO2 Group (p=0.03) 

compared to in the Control Group (Figure 5.7). It is possible that the 

adjunctive oxidative effects of ischaemia and reperfusion in combination with 

the earlier oxidative stress of HBO2, was the cause for this small increase in 

sICAM-1 in the HBO2 Group. In an experimental model, where whole blood 

was exposed to the oxidative  effects of lipopolysaccharise (LPS) followed by 

the oxidative stress of HBO2 i.e. 2 consecutive adjunctive oxidative events, a 

significant increase in sICAM-1 was also observed (Fildissis et al., 2004). The 

decrease in sICAM-1 in the Control Group is in keeping with the observations 

of another clinical study (Hambsch et al., 2002).  
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5.6 Conclusion 

 
  In this clinical study, estimating the effects of HBO2 

preconditioning on the serum biomarkers were only the secondary endpoints of 

the study. As such, despite a mix of statistically significant and non-significant 

findings, and as pre the statistical plan for the analysis of the secondary 

endpoint of this study, no definitive conclusions can be made with respect to 

the changes that were observed for these endpoints. However, based on the 

findings of this study, it is possible to suggest that systemically 

preconditioning CAD patients with HBO2 prior to CABG, has the potential to 

lead to an overall increase in the serum concentration of all the serum soluble 

adhesion molecules. This may be of potential benefit as it indirectly suggest 

vascular, platelet and neutrophilic adhesion molecules are being cleaved off 

their respective surfaces and bering shed into the circulation, thus limiting the 

degree of neutrophil and endothelial interaction and, hence the ensuing 

ischaemia reperfusion mediated injury. 

The main limitations to this part of the study, was that there was 

no assessment of the generation of ROS or its metabolites as a result of HBO2, 

ischaemia and reperfusion and, as such an assessment of the correlation with 

soluble adhesion molecule expression was not possible. Additionally, this 

study did not assess the expression of adhesion molecules on the surfaces of 

the endothelium and neutrophils. As such, it was again not possible to assess 

the correlation between the ROS generation as a result of HBO2, ischaemia and 

reperfusion with the expression of endothelial and neutrophilic adhesion 
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molecules. Furthermore, the actual correlation between endothelial and 

neutrophilc adhesion molecule expression and the expression of the soluble 

form of these adhesion molecules in the serum was not possible. Finally, as the 

durations of ischaemia, reperfusion and CPB and, the number of ischaemic 

reperfusion cycles in this study were not standardised, there is always the 

possibility that a different set of results may have been obtained if it was 

possible to standardise these intervals in a clinical study. 
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6.  Effects of HBO2 Preconditioning on 

Biomarkers of Cardioprotection: 

Myocardial eNOS & Hsp72 

6.1  Introduction 

6.1.1  HBO2 & eNOS     

HBO2 has been shown to increase the expression of 

eNOS (Atochin et al., 2003, Buras et al., 2000, Cabigas et al., 2006b, Xu et al., 

2009) and NO (Boykin and Baylis, 2007, Demchenko et al., 2000, Gurdol et 

al., 2009, Thom et al., 2006, Thom et al., 2003, Wang et al., 2009a). Studies 

have also shown that inhibition of eNOS promotes the adherence of 

neutrophils to the microvasculature while increased concentrations of eNOS 

have an anti-adherent effect (Kubes et al., 1991, Lefer and Lefer, 1996). In an 

experimental model of endothelial ischaemia and reperfusion, the 

downregulation of ICAM-1, as a result of treatment with HBO2, correlated 

with an increase in eNOS concentration (Buras et al., 2000). As this 

downregulation of ICAM-1 prevents neutrophils from adhering to endothelial 

cells, this suggests that the mechanism for HBO2 mediated downregulation of 

ICAM-1, and the attenuation of IRI, may be modulated by eNOS and NO. 
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Recently, in a rat heart model of IRI, it was observed that 

preconditioning with HBO2 not only resulted in a greater decrease in 

myocardial infarct size and increased the recovery of left ventricular diastolic 

pressure but also led to an increase in myocardial eNOS and nitrite plus nitrate 

content (Cabigas et al., 2006b). This study suggested that preconditioning with 

HBO2 prior to ischaemia and reperfusion induced endogenous myocardial 

protective effects which involved the increased expression of eNOS and NO. 

6.1.2  HBO2 & Hsp72 

Only a limited amount of knowledge is known about the effects 

of HBO2 on Hsp72 and, even less is known about its effects on myocardial 

Hsp72. There are however, studies examining the effects of HBO2 in non-

cardiac models.  

In an experimental model of ischaemic tolerance, HBO2 

consisting of 60 minutes of 100% oxygen at 2.0 ATA, was administered to 

gerbils either for a single session or every other day for 5 sessions (Wada et al., 

1996). 2 days after HBO2 pre-treatment, the gerbils were subjected to 5 

minutes of forebrain ischaemia by occlusion of both common carotid arteries 

under anesthesia. Immunohistochemical staining for Hsp72 in the gerbil 

hippocampus, showed that 5 sessions of HBO2 prior to ischaemia and 

reperfusion increased the amount of Hsp72  compared to that in the ischaemic 

control group and in the single HBO2 pre-treatment group. They concluded 

that tolerance against ischaemic neuronal damaged can be induced by repeated 
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treatment with HBO2 prior to ischaemia and this tolerance occurrs through the 

induction of Hsp72 synthesis. Another group later determined, in a rat model 

of cerebral ischaemia, that when HBO2 treatment was administered after 

ischaemia, in comparison to the control group, there was a weaker induction of 

Hsp72 (Konda et al., 1996). These observations suggest that HBO2 treatment 

prior to an ischaemic event induces better cellular protection compared to 

treatment after an ischaemic event. However, the importance of this 

observation is a little difficult to confirm as while pre-treatment with HBO2 

before cerebral ischaemia has been shown to increase Hsp72 (Wada et al., 

1996), this finding was not observed in a rat liver model of IRI that was pre-

treated with HBO2  (Yu et al., 2005). In fact the experimental findings by Yu 

et.al were similar to the findings of a recent clinical study involving HBO2 pre-

treatment and patients undergoing CABG (Alex et al., 2005). In that clinical 

study, in CAD patients who were treated with 3 sessions of HBO2, consisting 

of 100% oxygen at 2.4 ATA for 90 minutes, prior to on CPB CABG, there 

were lower levels of inducible Hsp70 (Hsp72) compared to the control group. 
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6.2  Objective 

The objective of this part of this clinical study was to evaluate 

the effects of systemically preconditioning CAD patients with one session of 

HBO2 preconditioning, involving two episodes of 30 minutes of 100% oxygen 

at  2.4 ATA, which was completed approximately 2 hours prior to on CPB 

CABG, on the expression of two  myocardial biomarkers of cardioprotection, 

eNOS and Hsp72, as measured by the quantity of these biomarkers in 

specimens from right atrial biopsies taken at the pre-specified time points 

(Table 2.7).  

6.3  Methods 

The intra-operative time points at which right atrial biopsies 

were taken in this study and the methods used for the measurement of 

myocardial eNOS and Hsp72 have been described in sections 2.6.7. 

6.4  Results 

  From the 81 patients randomised to this study who had intra-

operative right atrial biopsies taken at 4 different time points for myocardial 

ELISA eNOS and Hsp72 analysis, there were a total of 324 right atrial tissue 

specimens that were analysed. As the myocardial lysate samples from each 

specimen was analysed in duplicates during the ELISA analysis, in each 96 

well ELISA microplate, 80 wells were used to analyse the lysate from 40 

different right atrial specimens. 14 wells from each microplate were used to 
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analyse the standards for either eNOS or Hsp72 in duplicates. The remaining 2 

wells on each plate were left as blanks. 

As each ELISA microplate was only used to analyse the lysate 

from 40 of the total of 324 right atrial specimens, 8 ELISA microplates each 

were used for the analysis of myocardial eNOS and Hsp72, respectively. As 

such, a total of 16 ELISA microplates were used in the ELISA analysis of all 

the myocardial biomarkers.  

6.4.1  Myocardial Biomarker ELISA Results 

 Spectrophotometric analysis for each of the myocardial 

biomarkers was done in a similar way as described for sE-Selectin in section 

5.4.1. From the total of 16 ELISA microplates used for myocardial biomarker 

analysis, there were 3 pairs of unreliable spectrophotometric readings that were 

omitted from subsequent analysis.  

Using the manufacturer provided concentrations for each of the 

myocardial biomarker standards and by using the average of the duplicates of 

these standard’s spectrophotometric results, a standard curve and its equation 

was determined using Microsoft Excel 2003. R2 values for all the standard 

curves for the myocardial biomarkers ranged from 1 to 0.98. Using the 

standard curve equation that was obtained, the concentration of the myocardial 

biomarker at each time point was determined. The quantity of each biomarker, 

in each milligram of the right atrial specimen that was analysed, from each 

time point, was then determined using the formula described in sections 2.6.7.3 

and 2.6.7.4, respectively. 
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6.4.2  Myocardial eNOS ELISA Results 

In this study, there were no statistically significant changes in 

the mean quantity of myocardial eNOS at any of the time points between the 

groups. At all time points, the mean quantity of myocardial eNOS was higher 

in the Control Group (Figure 6.1). Between the time points ‘post induction’ 

and ‘5 minutes on CPB’, the mean quantity of myocardial of eNOS decreased 

in both groups. Between the time points ‘5 minutes on CPB’ and ‘5 minutes 

post IRI’, the mean quantity of myocardial eNOS increased slightly in the 

HBO2 Group but decreased in the Control Group. Finally, between the time 

points ‘5 minutes post IRI’ and ‘5 minutes post CPB’, the mean quantity of 

myocardial eNOS decreased in both groups and remained lower in the HBO2 

Group. A summary of the results are provided in Table 6.1. In this table, the 

data are displayed as both mean and median values. As the means and medians 

are not the same at each time point, this indicates that the data were skewed. 

To normalise the data and enable parametric statistical analysis, the mean 

values were transformed into natural logarithmic (ln) values.  
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Figure 6. 1: Bar Chart of Intra-Operative Mean Quantity of Myocardial eNOS 
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        HBO2 Group, n=41; Control Group, n=40 
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Table 6. 1: Intra-Operative Quantity of Myocardial eNOS Atrial Biopsy 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

       †This is an intention to treat analysis; 
    Statistical analysis using repeated measures of ANOVA; 
   *p-values are for Geometric Means 

 Quantity of eNOS in the Right Atrial Biopsy (pg/mg) 
 Control Group 

(n=40)† 
HBO2 Group 

(n=41)† 
 

 Range Median Mean Mean 
ln 

Range Median Mean Mean 
ln 

p-value* 
 

Post 
induction 
(baseline) 

 
5-416 

 
17.2 

 
35.3 

 
3.7 

 
3-146 

 
18.9 

 
23.7 

 
3.4 

 
0.9 

5 minutes 
on CPB 

4-257 15.6 29.7 3.5 5-89 12.6 19.3 3.1 0.8 

5 minutes 
post IRI 

4-272 14.5 21.6 3.2 2-73 15.7 20.7 3.2 1.0 

5 minutes 
post CPB 

1-255 11.8 19.4 3.1 3-93 13.6 17.1 3.0 1.0 
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6.4.3  Myocardial Hsp72 ELISA Results 

 In this study, there were no statistically significant changes in 

the mean quantity of myocardial Hsp72 at any of the time points between the 

groups. At all time points, the mean quantity of myocardial Hsp72 was lower 

in the HBO2 Group (Figure 6.2). Between the time points ‘post induction’ and 

‘5 minutes on CPB’, there was a small decrease in the mean quantity of 

myocardial Hsp72 in the HBO2 Group while in the Control Group there was a 

very small increase. Between the time points ‘5 minutes on CPB’ and ‘5 

minutes post IRI’, there was a small increase in the mean quantity of 

myocardial Hsp72 in the HBO2 Group while in the Control Group there was a 

decrease. Finally, between the time points ‘5 minutes post IRI’ and ‘5 minutes 

post CPB’, the mean quantity of myocardial Hsp72 decreased in both groups 

and remained lower in the HBO2 Group. A summary of the results are 

provided in Table 6.2. In this table, the data are displayed as both mean and 

median values. As the means and medians are not the same at each time point, 

this indicates that the data were skewed. To normalise the data and enable 

parametric statistical analysis, the mean values were transformed into natural 

logarithmic (ln) values.  
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Figure 6. 2: Bar Chart of Intra-Operative Mean Quantity of Myocardial Hsp72 
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Table 6. 2: Intra-Operative Quantity of Myocardial Hsp72 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 †This is an intention to treat analysis; 
                               Stattistical analysis using repeated measures of ANOVA;  
                              *p-values are for Geometric Means 

 Quantity of Hsp72  in the Right Atrial Biopsy (ng/mg) 
 Control Group 

(n=40)† 
HBO2 Group 

(n=41)† 
 

 Range Median Mean Mean 
ln 

Range Median Mean Mean 
ln 

p-value* 

Post 
induction 
(baseline) 

 
0.2-67.0 

 
1.4 

 
4.0 

 
1.4 

 
0.6-16.5 

 
1.8 

 
2.4 

 
0.9 

 
0.09 

5 minutes 
on CPB 

0.5-58.8 1.9 4.1 1.4 0.6-8.2 1.5 2.0 0.7 0.09 

5 minutes 
post IRI 

0.4-33.4 1.4 2.5 0.9 0.8-18.6 1.8 2.4 0.9 1.0 

5 minutes 
post CPB 

0.7-30.1 1.7 2.4 0.9 0.5-9.8 1.8 2.2 0.8 1.0 
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6.5  Discussion 

6.5.1  Myocardial eNOS 

 In this study it was observed that following HBO2 

preconditioning, in the baseline right atrial biopsy taken at the time point ‘post 

induction’, the myocardium of patients in the HBO2 Group had a lower mean 

quantity of myocardial eNOS compared to the Control Group (Figure 6.1). 

While this was not a statistically significant finding, this finding suggests that 

preconditioning CAD patients with HBO2 prior to CABG leads to a reduction 

in myocardial eNOS. This is the first time such a result has been observed in a 

clinical study. While there are no clinical studies to compare with, the findings 

of this study are contradictory to those of an experimental model of HBO2 

 (Liu et al., 2008). In that mouse brain model, it was observed that exposure to 

HBO2, consisting of twice daily 100% oxygen for 60 minutes at  2.4 ATA for 3 

consecutive days, led to an increase in brain eNOS. However, in this 

experimental model, as the tissue being examined and, the dose and intervals 

for treatment with HBO2 were different, this may provide some explanation for 

the differences seen between that experimental study and this clinical study.  A 

reasonable possibility for the generally lower eNOS expression in the HBO2 

Group at the ‘post induction’ time point may be the negative feedback 

mechanism involving NO and eNOS (Abu-Soud et al., 2000, Assreuy et al., 

1993, Grumbach et al., 2005, Santolini et al., 2001). During this feedback 

inhibition, a portion of the enzyme is trapped in a NO-bound form, thus 
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decreasing the portion of the enzyme that is able to participate in NO 

synthesis (Santolini et al., 2001). As HBO2 in other studies has also been 

demonstrated to increase NO  (Cabigas et al., 2006b) and NOS (Cabigas et al., 

2006a, Buras et al., 2000), it is highly plausible that the negative feedback 

inhibition caused by an increased amount of NO as a result of HBO2 in the 

HBO2 Group of this study, may have led to partial inhibition eNOS thus 

reducing the presence of fully active, free, myocardial eNOS.  

In the period between the ‘post induction’ time point and the 

time point ‘5 minutes on CPB’, there was a decrease in the mean quantity of 

myocardial eNOS in both groups (Figure 6.1). This decrease was greater in the 

HBO2 Group resulting in a lower quantity of myocardial eNOS at the time 

point ‘5 minutes on CPB’. One possible explanation for this decrease in 

myocardial eNOS expression in both groups may lie in use of non-pulsatile 

flow (continuous flow) of blood during CPB in this study. The decrease in 

eNOS expression following the onset of CPB has also been described by 

others (Zhou et al., 2000).  As it has been demonstrated that pulsatile flow (Li 

et al., 2005) and shear stress (Cheng et al., 2005, Nishida et al., 1992, Tao et 

al., 2006, Xiao et al., 1997) leads to an increase myocardial eNOS expression, 

it is quite possible that the loss of pulsatile flow, and as such a reduction in 

shear stress, following the onset of continuous flow during CPB in this study, 

may have led to the decrease in eNOS expression. It may also account for the 

general decreasing trend in myocardial eNOS expression in both groups of this 

study. Another possibility for the general decrease in eNOS expression may 

again be, as previously described, the negative feedback mechanism involving 



 

 
224 

 

NO and eNOS (Abu-Soud et al., 2000, Assreuy et al., 1993, Grumbach et al., 

2005, Santolini et al., 2001).  

During the period of ischaemia and reperfusion (i.e. between the 

time points ‘5 minutes post CPB’ and ‘5 minutes post IRI’) (Figure 6.1), in the 

HBO2 Group there was a small increase in myocardial eNOS quantity while in 

the Control Group there was a decrease. The increase in myocardial eNOS as a 

result of ischaemia and reperfusion following HBO2 preconditioning  has also 

been demonstrated by Cabigas et al (Cabigas et al., 2006b) in a rat model of 

IRI. It has been shown that eNOS expression may also be regulated by protein-

protein interaction (Venema et al., 1996) and it has been suggested that this 

protein may be Hsp90 (Alderton et al., 2001, Garcia-Cardena et al., 1998). 

Cabigas et al (Cabigas et al., 2006b), in their experimental HBO2 model of IRI, 

showed that following IRI, rats pre-treated with HBO2 had an increase in the 

association of Hsp90 with eNOS and this occurred without any further increase 

in total Hsp90. This suggests that one possibility for the increase in myocardial 

eNOS expression during the period of ischaemia and reperfusion in the HBO2 

Group of this study, may be due to the protein-protein interaction between the 

HBO2 induced myocardial eNOS and existing myocardial Hsp90, leading to a 

burst of further eNOS expression during this period in the HBO2 Group. This 

observation, during the period of ischaemia and reperfusion, in the HBO2 

Group indicates that preconditioning CAD patients with HBO2 prior to CABG 

may be capable of enhancing endogenous myocardial protection during 

ischaemia and reperfusion by increasing myocardial eNOS expression.  
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Following the period of ischaemia and reperfusion, between the 

time points ‘5 minutes post IRI’ and ‘5 minutes post CPB’ (Figure 6.1), both 

groups again, showed a decrease in the mean quantity of myocardial eNOS and 

the final quantity of myocardial eNOS in the HBO2 Group at the time point ‘5 

minutes post CPB’ was lower than in the Control Group. It is possible that the 

decrease seen in the HBO2 Group may be again due to the negative feedback 

effect of high levels of NO on myocardial eNOS following the period of 

ischaemia and reperfusion.  
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6.5.2  Myocardial Hsp72 

In this study it was observed that following HBO2 

preconditioning, in the baseline right atrial biopsy taken at the time point ‘post 

induction’, the myocardium of patients in the HBO2 Group had a lower mean 

quantity of myocardial Hsp72 compared to the Control Group (Figure 6.2). 

Although this was not a statistically significant result, it does suggest that 

preconditioning CAD patients with HBO2 prior to CABG leads to a reduction 

in myocardial Hsp72 expression. To date, this is the first and only clinical 

study that has demonstrated such as result. There are also no available 

experimental studies that have examined the tissue changes of Hsp72 before 

and after HBO2 treatment, prior to IRI. As such, at present it is difficult to offer 

a reasonable explanation for this observation other than to suggest that 

perhaps, the initial oxidative stress of HBO2 may have led to a degree of 

myocardial injury which required the chaperoning effect of Hsp72. This may 

have led to the reduced detection of myocardial Hsp72 in the HBO2 Group of 

patients 1 hour following HBO2 preconditioning. This explanation can only be 

confirmed if the actual concentration of serum Tropoin-T at the time points 

‘pre-HBO2’ and ‘post HBO2’ are known. However, as the concentration of 

serum Tropoin-T at these time points were reported as <0.03ng/ml and, the 

absolute concentrations were not reported by the laboratory, it is not possible 

to determine if there were minor degrees (i.e. not clinically relevant) of the 

myocardial injury, that may have resulted from HBO2 trearment, that could be 

correlated to changes in levels of myocardial Hsp72.  
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In the period between the time point ‘post induction’ and the 

time point ‘5 minutes on CPB’, there was a decrease in the mean quantity of 

myocardial Hsp72 in the HBO2 Group while in the Control Group there was a 

very small increase (Figure 6.1). A possible explanation for the decrease in 

Hsp72 in the HBO2 Group at the time point ‘5 minutes on CPB’ may be the 

following. It has been documented that CPB causes myocardial 

damage (Cosgrave et al., 2006, Dahlin et al., 2003, Lehrke et al., 2004). As 

such, it could be possible that at this time point in the HBO2 Group, the 

available myocardial Hsp72 may be chaperoning myocardial proteins that have 

unfolded as a result of 5 minutes of CPB. It has been suggested that any 

increase in the presence of unfolded proteins, shifts the equilibrium between 

Hsp and its transcription factor, Heat Shock Factor (HSF), to binding with the 

unfolded proteins (Abravaya et al., 1992, Morimoto, 1993). This may account 

for the reduced quantity of myocardial Hsp72 in the HBO2 Group. Cellular 

ATP depletion has also been shown to induce Hsp72 expression in the 

recovering cells (Vogt et al., 2007). HBO2 has been shown to preserve ATP 

levels  (Chen et al., 1998, Nylander et al., 1987, Yamada et al., 1995) while 

CPB causes ATP depletion (Khuri et al., 1993). As such, it is possible to 

further speculate that the Hsp72 chaperoning of unfolding proteins during the 

initiation of CPB and, the loss of the ATP mediated stimulus for the induction 

of Hsp72 expression as a result of HBO2 induced preservation of ATP, may 

have possibly led to the observed reduction in myocardial Hsp72 at the time 

point ‘5 minutes on CPB’ 
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During the period of ischaemia and reperfusion (i.e. between the 

time points ‘5 minutes on CPB’ and ‘5 minutes post IRI’), in the HBO2 Group 

there was a small increase in the mean quantity of myocardial Hsp72 while in 

the Control Group there was a decrease. The finding in the HBO2 Group of this 

study is similar to the previously described experimental findings of a HBO2 

IRI model (Wada et al., 1996) where the effects of repeated HBO2 exposure on 

ischaemic tolerance in gerbil hippocampus was investigated. The findings from 

that experimental study and the of this clinical study, further suggest that 

HBO2 preconditioning prior to ischaemia and reperfusion may be capable of 

increasing Hsp72 expression. 

Following the period of ischaemia and reperfusion, between the 

time points ‘5 minutes post IRI’ and ‘5 minutes post CPB’ (Figure 6.2), in 

both groups there was a decrease in the mean quantity of myocardial Hsp72. It 

could be possible that the decrease in myocardial Hsp72 in both the groups 

during this period may have been due to either, the further chaperoning of 

unfolded proteins as a result of IRI or post chaperoning structural changes to 

free Hsp72 (Kiang and Tsokos, 1998, Snoeckx et al., 2001) resulting in a 

reduction of free myocardial Hsp72.  
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6.6  Conclusion 
 

In this clinical study, no statistically or clinically significant 

results were found when estimating the effects of HBO2 preconditioning on the 

myocardial biomarkers of cardioprotection. As such, no definitive conclusions 

can be made with respect to the changes that were observed for these 

endpoints. Furthermore, as these were secondary endpoints, it was not part of 

the statistical plan of this study to make firm conclusions based on secondary 

endpoints. In keeping with this statistical plan, only an explanation for the 

results of the descriptive statistical were provided.  

In this study, it was observed that following HBO2 

preconditioning, this group of patients, compared to the Control Group of 

patients, had a lower amount of both myocardial eNOS and Hsp72 during the 

peri-operative period. However, it was also observed that during the period of 

ischaemia and reperfusion, both these biomarkers increased in the HBO2 

Group but decreased in the Control Group. Despite these changes during 

ischaemia and reperfusion, the amount of both biomarkers remained lower in 

the HBO2 Group when compared to in the Control Group. These results 

indirectly suggests (see section 6.5) that NO, from the catalytic action of 

eNOS, and Hsp72 may be functioning to protect the myocardium via their 

individual mechanisms of action, hence accounting for the limited pre-CPB 

detection of free eNOS and Hsp72 in the myocardium. Furthermore, as it was 

also observed that patients who were preconditioned with HBO2 experienced 

an increase in eNOS and Hsp72 following ischaemia and reperfusion, this 
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possibly also suggest that HBO2 preconditioning of this group of patients may 

be able to further induce the endogenous expression of these biomarkers to 

provide additional protection to the myocardium during the period of 

ischaemia and reperfusion.  

The main limitation to this part of the study was that there was 

no assessment of myocardial NO production. As a result of this, the correlation 

between eNOS activity and NO production could not be determined. 

Additionally, as eNOS catalyses the production of NO, which in turn leads to a 

variety of haemodynamic changes, the correlation between NO production and 

the haemodynamic changes observed in this study also could not be 

determined. Finally, as was the case with the serum soluble adhesion 

molecules, as the durations of ischaemia, reperfusion, CPB and, the number of 

ischaemic reperfusion cycles in both groups of this study were not 

standardised, there is always the possibility that a different set of results for 

both eNOS and Hsp72 expression may have been obtained if it was possible to 

standardise these intervals in a clinical study. 
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7.  Effects of HBO2 Preconditioning on 

the Myocardial Molecular 

Expression of NOS & Hsp72  

7.1  Introduction 

CABG is associated with periods of ischaemia and reperfusion 

that leads to IRI (Venugopal et al., 2009). The induction however, of 

endogenous myocardial eNOS  (Elrod et al., 2008, Han et al., 2008b, Iwase et 

al., 2007, Kim et al., 2007) and Hsp72 (Radford et al., 1996, Vahlhaus et al., 

2005) have been shown to protect the myocardium against IRI.    

Experimental models of IRI have demonstrated that treatment 

with HBO2 prior to  (Cabigas et al., 2006b, Kim et al., 2001) and, during 

ischaemia and reperfusion (Sterling et al., 1993) is capable of limiting 

myocardial infarct size as a result of IRI. It has also been demonstrated that 

HBO2 preconditioning prior to ischaemia and reperfusion is also capable of 

increasing myocardial eNOS expression (Cabigas et al., 2006a). While 

currently no work has been published on the effects of HBO2 and, ischaemia 

and reperfusion on myocardial Hsp72 expression, experimental work in gerbil 

brain tissue (Wada et al., 1996) has demonstrated that HBO2 preconditioning 

prior to ischaemia and reperfusion is capable of increasing cerebral Hsp72.  
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7.2  Objective 

The objective of this part of the study was to determine a 

method for the quantification of myocardial eNOS, iNOS and Hsp72 mRNA in 

myocardial tissue sample from the time point ‘5 minutes post CPB’ in patients 

who had been preconditioned with two episodes of 30 minutes of 100%  

oxygen at 2.4 ATA, which was completed approximately 2 hours prior to on 

CPB CABG.  

7.3  Methods 

7.3.1  Selection of Primers for RT-PCR 

The selection of primers and the primer sequences (Table 7.1) 

that were used for the reverse transcriptase polymerase chain reaction (RT-

PCR) were based on previously published literature investigating the effects of 

ischaemia and reperfusion on the expression of myocardial eNOS (Valen et al., 

2000), iNOS (Valen et al., 2000) and Hsp72 (Giannessi et al., 2003). The 

housekeeping gene used was β-Actin and its primer sequence too was obtained 

from the published literature (Giannessi et al., 2003). 

7.3.1.1 Primers 

Primers were purchased from Yorkshire Bioscience Ltd 

(Biocentre, York Science Park, Heslington, York, UK). The primers were 

reconstituted in RNase Free Water (Qiagen, UK) and had a concentration of 
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100μM. The primers were diluted 10 fold to a concentration of 10μM and 

stored as 10μl aliquots at -20ºC. 
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Table 7. 1: Primers used for RT-PCR 
 

 Hsp72 
Forward 
Primer 

Hsp72   
Reverse 
Primer 

β-Actin 
Forward 
Primer 

β-Actin 
Reverse 
Primer 

iNOS 
Forward 
Primer 

iNOS   
Reverse 
Primer 

 

eNOS  
Forward 
Primer 

eNOS   
Reverse 
Primer 

 
Sequence      

(5’-3’) 

5’GCT-
GAC-CAA-
GAT-GAA-
GGA-GAT-

3’ 

5’-GAG-
TCG-ATC-
TCC-AGG-
CTG-GC-3’ 

5’-GAG-
ACC-TTC-
AAC-ACC-
CCA-GCC-

3’ 

5’-GCC-
CAT-CTC-
TTG-CTC-
GAA-GTC-

3’ 

5’-AGT-
TTC-TGG-
CAG-CAA-

CGG-3’ 

5’-TTA-
AGT-TCT-
GTC-CCG-
GCA-G-3’ 

5’-ACC-
TGC-AAA-
GCA-GCA-
AGT-CCA-

GC-3’ 

5’-CCG-
AAC-ACC-
AAA-GTC-
ATG-GGA-

GT-3’ 
Product 
Size (bp) 

467 457 532 737 

Melting 
Temperature 

(Tm) 

 
60.3 

 
63.4 

 
63.7 

 
61.8 

 
56 

 
56.7 

 
64.2 

 
62.4 

No. Bases 22 20 21 21 18 19 23 23 
GC% 50 65 61.9 67.1 55.6 52.6 56.5 52.2 

   bp = base pairs 
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7.3.2  RNA Extraction from Myocardial Biopsy 

To determine the expression of iNOS, eNOS and Hsp72 mRNA 

in the right atrial biopsies, the myocardial samples were first removed from the    

-80ºC freezer. For the purpose of establishing a method, all the samples used 

were samples obtained at the time point ‘5 minutes post CPB’ from 20 patients 

who were preconditioned with HBO2.  

All steps for RNA extraction were done in a Class 2 Biological 

Safety Cabinet (Faster, SLS, Nottingham). Prior to use, the working surface of 

this cabinet was cleaned with RNaseZap (Sigma, UK) to ensure the surface 

was free of RNase. Before the samples could thaw, a small piece of tissue from 

the sample was quickly excised and the remaining portion of the right atrial 

biopsy sample was returned to the -80ºC freezer. The excised right atrial tissue 

specimen was allowed to completely thaw and then weighed. Trizol 

(Invitrogen, UK) was used, in accordance with the manufacturer’s protocol,  to 

extract RNA from the right atrial tissue specimens.  
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Myocardial Specimen Disruption & Homogenisation 

In a petri dish, the right atrial tissue specimen was teased apart 

and disrupted in 800μl of Trizol using two size 11 scalpels prior to 

homogenisation by passing it 5 times through a 20G needle and syringe. The 

homogenate was incubated for 5 minutes at room temperature before being 

centrifuged at 12,000g for 10 minutes at 4ºC. The supernatant (lysate) was then 

used for subsequent analysis.  

Phase Separation 

160μl of chloroform was added to the lysate, shaken vigorously 

for 15 seconds and then incubated for 2 minutes at room temperature before 

centrifugation at 10,000g for 15 minutes at 4ºC. The colourless upper aqueous 

phase containing RNA was decanted for subsequent use. 

RNA Precipitation 

  At room temperature, 400μl of isopropyl alcohol was mixed 

with the aqueous phase to precipitate RNA. This was subsequently incubated 

for 10 minutes at room temperature before centrifugation at 10,000g for         

10 minutes at 4ºC. The RNA precipitate formed a gel-like pellet on the bottom 

of the propylene tube. 

  RNA Wash 

The RNA pellet was washed once with 800μl of 75% Ethanol 

[in Diethylpyrocarbonate (DEPC)-treated water] and then centrifuged at 

7,500g for 5 minutes at 4 ºC. 
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Redissolving the RNA 

The RNA gel pellet was allowed to dry at room temperature for 

5 minutes and then dissolved in 50μl RNase Free Water by incubation in a 

water bath for 10 minutes at 55ºC. Typically, the volume of RNA solution 

obtained following this incubation was between 60 to 64μl. 

Quantification of RNA 

  In order to quantify the concentration of the RNA that was 

extracted, the absorbance of the RNA at 260nm (A260) was determined by 

using a spectrophotometer (GeneQuant [Pharmacia, UK]). The quantity of 

protein contaminants in the volume of extracted RNA was then determined by 

measuring the absorbances at 280nm (A280) using the same spectrophotometer 

(GeneQuant [Pharmacia, UK]). By calculating the A260/280 ratio, the purity of 

the extracted RNA was determined. 10mM of 

tris(hydroxymethyl)aminomethane choride (Tris.Cl) (pH=7.5) was used as the 

buffer during the process of measuring the A260 and A280 RNA absorbance. As 

per manufacturer requirements, when using the Trizol RNA extraction reagent, 

the RNA extracted was only used for RT-PCR when the A260/280 ratio (i.e. 

purity of extracted RNA) was >1.65. Below is an example of how the A260 and 

A280 absorbance was measured and how the eventual quantity of extracted 

RNA was determined. 
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1. Control calibration of the spectrophotometer was done by pippeting 

200μl of 10mM Tris.Cl (pH= 7.5) into a cuvette which was then 

placed in the spectrophotometer for spectorphotometric measurement.  

2. The Tris.Cl was then removed from the cuvette and the cuvette was 

cleaned with distilled water. 

3. 2μl of RNA (for example, from a total volume of 64μl) was then 

mixed with 198μl 10mM Tris.Cl (pH=7.5) in a propylene tube to 

make a 100 fold RNA dilution (200μl). 

4. The diluted RNA was pipetted into the cuvette and placed into the 

calibrated spectrophotometer for RNA absorbance measurement. 

5. The following is an example of the reading provided by the 

spectrophotometer:  

a. A260 = 0.043 

b. A280 = 0.024 

c. A260/280 = 1.8 

d. RNA Concentration = 2.1μg/ml 

6. Using the RNA concentration measurement provided by the 

spectrophotometer, a corrected RNA concentration was then 

calculated to take into account the previous 100 fold dilution of the 

RNA. This correction was done as such:   

2.1 x 100 = 210μg/ml 
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7. Using the corrected RNA concentration, the quantity of RNA in the 

64μl of RNA that was obtained following the redissolving of the 

RNA, was calculated as such: 

64/1000 x 210 = 13.44μg of RNA 

8. Therefore, 

a. 1μg of RNA is contained in:  

1/13.44 x 64 = 4.8μl of RNA 

b. 1μl of RNA contains: 

1/64 x 13.44 = 0.21μg of RNA 
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7.3.3  Two Step RT-PCR 

In order to detect β-actin, eNOS, iNOS and Hsp72 DNA in the 

right atrial tissue specimen, initially, a Two Step RT-PCR technique was used. 

The 2 steps of this technique are:  

a) synthesis of cDNA, from the extracted RNA, via reverse 

transcription. 

b) amplification of the respective DNA sequences via 

polymerase chain reaction (PCR) using primers for β-

actin, eNOS, iNOS and Hsp72 DNA. 

7.3.3.1  cDNA Synthesis 

All the reagents required for this, apart from the Moloney 

Murine Leukemia Virus Reverse Transcriptase (M-MLV RT), were thawed 

and kept on ice. The M-MLV RT was only removed from the -20ºC when it 

was required for use. The cDNA synthesis process consisted of the following: 
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1. In a 0.5ml thin wall plastic tube, the following were added: 

a. 1μl oligo-dT Primer (0.5μg/μl) [Invitrogen, UK] 

b. an appropriate volume of RNA containing 1μg of RNA 

c. 1μl 10mM dNTP Mix [10mM each of dATP, dGTP, dCTP, 

dTTP in a solution of 0.6mM Tris-HCl (pH=7.5)] 

(Invitrogen, UK) 

d. 12μl DEPC treated distilled sterile water 

2. The reaction mixture was heated in a thermal cycler (Techne Genius-

Techne, Sone, UK) for 5 minutes at 65ºC to denature the dNTP probe 

and then chilled quickly in ice.  

3. The following was then added to the reaction mixture: 

a. 4μl 5 x First Strand Buffer (Invitrogen, UK) 

b. 2μl Dithiothreitol (DTT) Buffer (Invitrogen, UK) 

4. The contents of the tube was mixed and incubated in a thermal cycler 

(Techne Genius-Techne, Stone, UK) for 2 minutes at 37ºC.  

5. 1μl of M-MLV RT (200U/μl) (Invitrogen, UK) was then added and 

mixed. 

6. This reaction mixture was incubated in a thermal cycler (Techne 

Genius-Techne, Stone, UK) for 50 minutes at 37ºC to allow cDNA 

synthesis. 

7. The reaction was inactivated by heating the sample in a thermal cycler 

(Techne Genius-Techne, Stone, UK) at 70ºC for 15 minutes. 

8. The cDNA synthesised was stored at 4ºC for further analysis. 
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7.3.3.2 Quantification of cDNA 

The cDNA was quantified using a spectrophotometer 

(GeneQuant [Pharmacia, Kent, UK]) in a manner that similar to RNA 

quantification as described in section 7.3.2.  

7.3.3.3 PCR Of cDNA 

All the primers and PCR Master Mix (Promega, UK), were 

removed from the -20ºC freezer, thawed and kept cool on ice. The cDNA that 

was required was removed from the 4ºC refrigerator and also kept cool on ice. 

The primers used had a final concentration of 10μM. 

The PCR Master Mix consisted of  

a) 50units/ml  of Taq DNA Polymerase (in a 

propriety reaction buffer with pH=8.5) 

b) 400μM each of dATP, dGTP, dCTP, dTTP 

c) 3μM of MgCl2 

Preparation of Components for PCR of cDNA 

1. 5 separate thin-walled tubes were set up, in duplicates, 

containing the components as described in Table 7.2. 

2. All tubes were then place in a thermal cycler       

(Techne Genius-Techne, Stone, UK). The PCR cycling 

conditions used are given in Table 7.3.  

 

 

 



 

 
243 

 

Table 7. 2: Reaction Mixture for PCR of cDNA 
 

 Tube 1 
 

Tube 2 
 

Tube 3 
 

Tube 4 
 

Tube 5 

β-Actin 
(Positive 
Control) 

iNOS eNOS Hsp72 Negative 
Control 

Forward β-
Actin Primer 

(10μM) 

1μl    1μl 

Reverse      
β-Actin 
Primer 
(10μM) 

1μl    1μl 

Forward 
iNOS Primer 

(10μM) 

 1μl    

Reverse 
iNOS Primer 

(10μM) 

 1μl    

Forward 
eNOS 
Primer 
(10μM) 

  1μl   

Reverse 
eNOS 
Primer 
(10μM) 

  1μl   

Forward 
Hsp72 
Primer 
(10μM) 

   1μl  

Reverse 
Hsp72 
Primer 
(10μM) 

   1μl  

Template 
cDNA (1μg) 

1μl 1μl 1μl 1μl  

PCR Master 
Mix 

12.5μl 12.5μl 12.5μl 12.5μl 12.5μl 

Nuclease 
Free H2O 

9.5μl 9.5μl 9.5μl 9.5μl 10.5μl 

Total 
Reaction 
Volume 

25μl 25μl 25μl 25μl 25μl 
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Table 7. 3: PCR Cycling Conditions 
 

Cycles Temperature Time 
1 x Denaturation at 95ºC 5 minutes 

 
28x 

Denaturation at 94ºC 1 minute 
Annealing at 59ºC 1 minute 
Extension at 72ºC 1 minute 

1 x Prolonged extension at 
60ºC 

45 minutes 

 4ºC Holding post PCR 
 

7.3.3.4 Gel Electrophoresis 

In order to identify the size of the RT-PCR products, agarose gel 

electrophoresis was performed using a 2% gel.  

7.3.3.4.1  2% Agarose Gel Preparation 

3gm of Agarose 1000 gel powder (Invitrogen, UK) was 

dissolved in 150ml of 1x Tris/Borate/Ethylene Diamine Tetraacetate (EDTA) 

[TBE] by heating this mixture in a 500W microwave for 8 minutes. The gel 

was then allowed to cool for 5 minutes before 3μl of Ethidium Bromide (10 

mg/ml stock) was mixed into the gel. The gel was then poured into a horizontal 

gel tank with a comb and left to set for approximately 2 hours.  
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7.3.3.4.2 Electrophoresis 

Once the gel wells had been loaded with the appropriate 

contents (details of the content of each of the gel wells during the 

electrophoresis procedure, will be discussed later in the relevant sections), the 

gel was then placed in an electrophoresis tank containing TBE. In a 4ºC room, 

a 100V current was then run through the tank for approximately 1 hour or until 

the blue dye front had moved through 80% of the gel. The gel was then 

removed from the tank and DNA bands were visualised under UV light using a 

gel documentation system (UVItec, Cambridge, UK).  
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7.3.4  One Step RT-PCR 

In a One Step RT-PCR, cDNA synthesis and PCR are 

performed using an optimized buffer system in a single reaction tube without 

the requirement to add further reagents between cDNA synthesis and PCR. 

This simplified procedure reduced the potential for pipetting errors. 

For this procedure, the Titan One Step RT-PCR kit was used 

(Roche Diagnostics GmbH, Germany). The components of the kit are shown in 

Table 7.4. 

Table 7. 4: Titan One Step RT-PCR Kit Components 
 

Component Content 
 

Titan Enzyme Mix 
50μl of Titan enzyme mix [Avian 
Myeloblastosis Virus (AMV) and 
Expand High Fidelity] in storage 

buffer (1 reaction/μl) 
dNTP mix 200μl; 10mM total (2.5mM each 

dNTP) 
RNase Inhibitor 50μl (5U/μl) 

Human Control RNA 50μl (2pg/μl); K562 total RNA with 
MS2 carrier RNA 

Housekeeping (Control) Primer Mix 20μl; 20μM (See Table 7.5) 
PCR H2O 2 x 1ml 

 
RT-PCR reaction buffer 

1ml of 5 fold concentration with 
7.5mM MgCl2 and Dimethyl 

sulfoxide (DMSO) 
DTT solution 1ml (100mM) 

MgCl2 stock solution 1ml (25mM) 
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Table 7. 5: Roche Titan One Step RT-PCR Control Primer 
 

Control 
Primer 

Sequence (5’-3’) Size 
(bp) 

β-Actin (f) 5’-CCA-AGG-CCA-ACC-GCG-AGA-AGA-
TGA-C-3’ 

 
587 

β-Actin (r) 5’-AGG-GTA-CAT-GGT-GGT-GCC-GCC-
AGA-C-3’ 

f = forward primer r = reverse primer  bp = base pairs 

 

The preparation of the required reagents and the PCR cycling conditions for 

this analysis were performed according to the manufacturer’s instructions. 

  Preparation of Master Mix 1 

All the components for Master Mix 1 were thawed and placed 

on ice. All reagents were vortexed before setting up reactions. The initial 

concentration of the Yorkshire Bioscience primers that were used prior to 

making up Master Mix 1 was 10μM. A Nuclease Free thin wall plastic tube 

was used to set up each of the reaction mixture (Master Mix 1) as in Table 7.6. 

In total there were 7 thin wall plastic tubes, in duplicates, containing the 

necessary components for Master Mix 1. Following the addition of each of the 

components for Master Mix 1 into each of the thin wall plastic tubes, the tubes 

were then pulsed for 30 seconds at 10,000g. 

 

 

 

 

 

 



 

 
248 

 

Table 7. 6: Reaction Mixture for Master Mix 1 
 

  
Tube 1 

 
Tube 2 

 
Tube 3 

 
Tube 4 

 
Tube 5 

 
Tube 6 

 
Tube 7 

 
 

Final 
Concentration Negative 

Control-1 
β-Actin 
(Positive 

Control 1) 

β-Actin 
(Positive 

Control 2) 

β-Actin 
(Positive 

Control 3) 

 
iNOS 

 
eNOS 

 
Hsp72 

 
 

H2O 

 
 

15.5μl 

 
 

10.5μl 

Make up 
volume to 

25μl 

Make up 
volume to 

25μl 

Make up 
volume to 

25μl 

Make up 
volume to 

25μl 

Make up 
volume to 

25μl 

 

dNTP 4μl 4μl 4μl 4μl 4μl 4μl 4μl 0.2mM (each) 
DTT 2.5μl 2.5μl 2.5μl 2.5μl 2.5μl 2.5μl 2.5μl 5mM 

RNase Inhibitor 1μl 1μl 1μl 1μl 1μl 1μl 1μl  
Control RNA  5μl 5μl     10pg 

 
Sample RNA 

   Appropriate 
Volume 

Containing 
1μg RNA 

Appropriate 
Volume 

Containing 
1μg RNA 

Appropriate 
Volume 

Containing 
1μg RNA 

Appropriate 
Volume 

Containing 
1μg RNA 

 
1μg 

β-Actin Primer Mix 
(Roche) (f + r) 

 
2μl 

 
2μl 

      
0.4μM 

β-Actin Primer (YB) 
(f) 

  1μl 1μl    0.4μM 

β-Actin Primer 
(YB)(r) 

  1μl 1μl    0.4μM 

iNOS Primer (YB) (f)     1μl   0.4μM 
iNOS Primer (YB)(r)     1μl   0.4μM 
eNOS Primer (YB) (f)      1μl  0.4μM 
eNOS Primer (YB)(r)      1μl  0.4μM 
Hsp72 Primer (YB) (f)       1μl 0.4μM 
Hsp72 Primer (YB)(r)       1μl 0.4μM 

Total Volume (μl) 
per thin wall plastic 

tube 

 
25 

 
25 

 
25 

 
25 

 
25 

 
25 

 
25 

 

          f=forward;   r=reverse 
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Preparation of Master Mix 2 

All the components for Master Mix 2 were thawed and vortexed 

before setting up the reactions. A Nuclease Free thin wall plastic tube was used 

to set up each of the reaction mixture (Master Mix 2) as in Table 7.7. In total 

there were 7 thin wall plastic tubes, in duplicates, containing the necessary 

components for Master Mix 2. Each of the Master Mix 2 thin wall plastic tubes 

were then pulsed for 30 seconds at 10,000g. In this study, Master Mix 1 & 2 

were prepared separately, as per manufacturer’s instructions. The separate 

preparation of Master Mix 1 & 2, allows, if necessary, for a further step 

involving only Master Mix 2, to reduce DNA contamination with RNA or 

DNA from previous amplification procedures. This step involves heating 

Master Mix 2 for 2 minutes at 94ºC to inactivate reverse transcriptase AVM. 

This step was not done in this set of experiments as all other precautions to 

reduce error from DNA contamination were taken and this included having 

appropriate positive and negative controls, setting up a control reaction without 

RNA template and using RNase during the RNA extraction procedure. 
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Table 7. 7: Reaction Mixture for Master Mix 2 
 

 Tube 1 Tube 2 Tube 3 Tube 4 Tube 5 Tube 6 Tube 7  
 

Final 
Concentration 

Negative 
Control-1 

β-Actin 
(Positive 

Control 1) 

β-Actin 
(Positive 

Control 2) 

β-Actin 
(Positive 

Control 3) 

 
iNOS 

 
eNOS 

 
Hsp72 

H2O 14μl 14μl 14μl 14μl 14μl 14μl 14μl  
 

5 x RT-
PCR 

Buffer 

 
 

10μl 

 
 

10μl 

 
 

10μl 

 
 

10μl 

 
 

10μl 

 
 

10μl 

 
 

10μl 

1 x 
concentration 
with 1.5mM 
MgCl2 and 

DMSO 
Titan 

Enzyme 
Mix 

 
1μl 

 
1μl 

 
1μl 

 
1μl 

 
1μl 

 
1μl 

 
1μl 

 

Total 
Volume 
(μl) per 

thin wall 
plastic 
tube 

 
 

25 

 
 

25 

 
 

25 

 
 

25 

 
 

25 

 
 

25 

 
 

25 
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RT-PCR Protocol 

Master Mix 2 was mixed into Master Mix 1. The 50μl mixture 

of Master Mix 1 and 2 was then pulsed for 30 seconds at 10,000g before being 

placed in a thermal cycler (Techne Genius-Techne, Stone, UK)  for 30 minutes 

at 60ºC to allow for reverse transcription. Following this, PCR was performed 

using the manufacturer recommended cycling conditions as in Table 7.8.  

 
Table 7. 8: One Step RT-PCR Cycling Conditions 

 
Cycles Temperature Time 

1 x Denaturation at 94ºC 2 minutes 
 

35 x 
Denaturation at 94ºC 30 seconds 

Annealing at 55ºC 30 seconds 
Elongation at 68ºC 30 seconds 

1 x Prolonged elongation at 
68ºC 

7 minutes 

 4ºC Holding post PCR 
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7.3.4.1 Gel Electrophoresis 

  A 2% agarose was made as described in section 7.3.3.4.1. 8μl of 

each of the RT-PCR product was mixed with 2μl of 1x PCR Loading Buffer 

before being loaded into the wells of the gel as shown in Table 7.9.  

Table 7. 9: Gel Well Content for Electrophoresis of One Step RT-PCR 
Products 

 
Well Content 

1 10μl Mixture of Negative Control* 1 + 
Loading Buffer 

2 1μl 1000bp DNA Ladder (Promega, 
UK) 

3 10μl Mixture of Positive Control 1* + 
Loading Buffer 

4 10μl Mixture of Positive Control 2* + 
Loading Buffer 

5 10μl Mixture of Positive Control 3* + 
Loading Buffer 

6 10μl Mixture of iNOS RT-PCR 
product + Loading Buffer 

7 10μl Mixture of eNOS RT-PCR 
product + Loading Buffer 

8 10μl Mixture of Hsp72 RT-PCR 
product + Loading Buffer 

9 1μl 100bp DNA Ladder 
*(For the constituents of the positive and negative controls, see Table 7.6) 

Once the gel wells were loaded, electrophoresis was carried out 

as in section 7.3.3.4.2. Following the completion of the gel electrophoresis, 

DNA bands were visualised under UV light as in section 7.3.3.4.2. 
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7.4  Results 

7.4.1  RNA Quantification Results 

In this thesis, as per manufacturer’s recommendations (see 

section 7.3.2), the RNA extracted from each of the 20 post CPB right atrial  

specimens were only used for RT-PCR if the A260/280 was >1.65. The A260/ A280 

in this study ranged from 1.7 to 1.9.  

7.4.2  cDNA Quantification Results 

  All the 20 post CPB right atrial specimens that were used for 

cDNA synthesis, via the 2 Step RT-PCR, had their cDNA quantified. In this 

study, the cDNA that was synthesised had an A260/280 ratio that ranged from 

between 1.56 to 1.62.  
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7.4.3 Demonstrating Effective Function of      

Purchased Primers 

7.4.3.1 Amplification of β-Actin and Hsp72 in human 

buccal mucosa DNA 

  The aim of this experiment was to determine if the primers that 

were purchased from Yorkshire Bioscience functioned effectively when using 

the PCR cycling conditions described in Table 7.3. For this experiment, only 

the purchased β-Actin and Hsp72 primers were used. Human buccal mucosa 

DNA was used as the sample DNA and D16S539 was used as the positive 

control gene. The human buccal mucosal DNA was used as the sample DNA 

as it was readily available in the lab at the time of this experiment. It was 

obtained following a swab of the buccal mucosal surface of a volunteer in the 

lab. The DNA was extracted using a Qiagen QIAamp DNA Micro Kit. The 

D16S539 gene is a polymorphic microsatellite found on chromosome 16 at 

location q24.1 and is composed of the tetrameric repeat sequence GATA. It is 

a commonly used positive control gene during forensic testing. It was used as 

the positive control gene in this experiment as the primers (purchased from 

Eurofins MWG Operon, Germany) for this gene were readily available in the 

lab at the time.  
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  In this experiment, 3 thin wall plastic tubes, in duplicates, were 

made up to a 10μl volume containing the PCR components listed in Table 

7.10. 

Table 7. 10: PCR MixtureTo Demonstrate Effective Function of Purchased 
Primers (β-Actin & Hsp72) 

 
Components Volume 

1 x NH4 Buffer [contains 16mM 
(NH4)2SO4 and 67mM of Tris.HCL) 

(Bioline, UK) 

1.0μl 

MgCl2 (3mM) (Bioline, UK) 0.3μl 
dNTP (10μM) (Bioline, UK) 0.5μl 

Forward primer (either β-Actin, 
Hsp72 or D16S539; 10μM) 

1.0μl 

Reverse primer (either β-Actin, 
Hsp72 or D16S539; 10μM) 

1.0μl 

Bovine Serum A (New England 
Biolabs, UK) 

1.0μl 
 

PCR H2O (Bioline, UK) 4.0μl 
Taq DNA Polymerase (50units/ml) 

(Bioline, UK) 
0.2μl 

 
Human buccal mucosa DNA (0.5μg) 1.0μl 

Total Volume 10μl 
 

Each tube was then place in a thermal cycler (Techne Genius-Techne, Stone, 

UK). The thermal cycling conditions used are listed in Table 7.3.  
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Table 7. 11: Gel Well Content for Electrophoresis to Demonstrate Effective 

Function of Purchased Primers (β-Actin & Hsp72) 
 

Well Content 

1 1μl 100bp DNA Ladder (Promega, 
UK) 

2 1μl 1000bp DNA Ladder (Promega, 
UK) 

3 The 10μl mixture of β-Actin RT-PCR 
product + 1x PCR Loading Buffer 

4 The 10μl mixture of Hsp72 RT-PCR 
product + 1x PCR Loading Buffer 

5 The 10μl mixture of D16S539 RT-
PCR product (Positive Control) + 1x 

PCR Loading Buffer 
6 The 10μl mixture of β-Actin RT-PCR 

product + 1x PCR Loading Buffer 
7 The 10μl mixture of Hsp72 RT-PCR 

product + 1x PCR Loading Buffer 
8 1μl 1000bp DNA Ladder (Promega, 

UK) 
9 1μl 100bp DNA Ladder (Promega, 

UK) 
 

Following PCR, the RT-PCR products were loaded into a 2% 

agarose gel that was made as described in section 7.3.3.4.1. 8μl of each of the 

RT-PCR product was mixed with 2μl of 1x PCR Loading Buffer before being 

loaded into the gel wells.  The contents of the gel well are shown in Table 7.11. 

Once the gel wells were loaded satisfactorily, electrophoresis 

was then conducted as in section 7.3.3.4.2. Following the completion of the gel 

electrophoresis, DNA bands were visualised under UV light as in section 

7.3.3.4.3. Figure 7.1 shows the image of the gel electrophoresis viewed under 

UV light.  
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Figure 7. 1: UV image of gel showing the product bands for β-Actin & Hsp72 
following PCR using the purchased primers & human buccal mucosal DNA 
and, showing the product band for the positive control gene, D16S539. 

 
     Lane:    1          2         3          4        5         6         7          8         9 

   

                                Yellow arrow indicates 100bp band (100-1000bp ladder) 

                                 Blue arrow indicate 1000bp band (1000-10000bp ladder) 

 

Legend 7. 1: Legend for Figure 7.1 
 

Lane Content 
1 100bp ladder 
2 1000bp ladder 
3 β-Actin 
4 Hsp72 
5 D16S539 
6 β-Actin 
7 Hsp72 
8 1000bp ladder 
9 100bp ladder 
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 In Figure 7.1, RT-PCR products were visible under UV light 

for β-Actin (457bp), Hsp72 (467bp) and D16S539 (330bp). A 100bp and 

1000bp DNA ladder were used to enable easier identification of the RT-PCR 

products base pair sizes. This experiment demonstrated that the purchased β-

Actin and Hsp72 primers functioned optimally using the PCR conditions listed 

in Table 7.3.  

This experiment was repeated twice and gave the similar results. 

Optimisation experiments for the purchased eNOS and iNOS primers, using 

the PCR conditions listed in Table 7.3, were not performed as the success of 

this experiment, using the purchased primers for β-Actin and Hsp72, provided 

sufficient evidence that primers purchased from Yorkshire Bioscience were 

reliable and would functioned appropriately. 
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7.4.4 Assessment of Myocardial Specimen DNA 

Expression using Purchased Primers. 

7.4.4.1 Detection of β-Actin, Hsp72, eNOS and iNOS in 

sample myocardial DNA using a Two Step RT-PCR 

  These experiments were conducted to assess the expression of 

mRNA for β-Actin, Hsp72, eNOS and iNOS in the 20 post CPB right atrial 

myocardial specimens, following the RNA extraction procedure, as in section 

7.3.2 and, the Two Step RT-PCR procedure, as in section 7.3.3. In this series 

of experiments, in the second step of the Two Step RT-PCR procedure, the 

Promega PCR Master Mix was used rather than individual PCR components as 

in section 7.4.3. This was done due to the simplicity and ease of use of a PCR 

Master Mix.  

In this series of experiments, following the Two Step RT-PCR 

procedure (see section 7.3.3) and 2% agarose gel preparation (see section 

7.3.3.4.1), 8μl of each of the RT-PCR product was mixed with 2μl of 1x PCR 

Loading Buffer. The 10μl mixture was then loaded into the gel wells. The 

content of each gel well is described in Table 7.12. 
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Table 7. 12: Gel Well Content for Electrophoresis to Demonstrate Presence of 
β-Actin, eNOS, iNOS and Hsp72 in Sample Myocardial cDNA following Two 
Step RT-PCR. 

 
Well Content 

1 1μl 100bp DNA Ladder (Promega, 
UK) 

2 1μl 1000bp DNA Ladder (Promega, 
UK) 

3 The 10μl mixture of Hsp72 RT-PCR 
product + 1x PCR Loading Buffer 

4 The 10μl mixture of eNOS RT-PCR 
product + 1x PCR Loading Buffer 

5 The 10μl mixture of iNOS RT-PCR 
product + 1x PCR Loading Buffer 

6 The 10μl mixture of β-Actin RT-PCR 
product (Positive Control) + 1x PCR 

Loading Buffer 
7 The 10μl mixture of Negative Control 

(β-Actin RT-PCR without sample 
myocardial DNA) product + 1x PCR 

Loading Buffer 
8 1μl 1000bp DNA Ladder (Promega, 

UK) 
9 1μl 100bp DNA Ladder (Promega, 

UK) 
 

Once the gel wells were loaded satisfactorily, electrophoresis 

was then conducted as in section 7.3.3.4.2. Following the completion of the gel 

electrophoresis, DNA bands were visualised under UV light as in section 

7.3.3.4.3. 
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For each of the 20 post CPB right atrial myocardial specimen 

used, a similar experiment was performed using 4 increasing amounts of RNA, 

0.03μg, 0.05μg, 0.3μg and 1μg, respectively. To optimise conditions, a range 

of denaturation (94ºC-98ºC) and annealing (58ºC-62ºC) temperatures were also 

used during the PCR procedure. However, in all the optimisation experiments, 

none of the β-Actin, Hsp72, eNOS or iNOS  RT-PCR product bands were 

visible, in the gel, under UV light. Figure 7.2 is an example of one of those 

gels. A 100bp and 1000bp DNA ladder was used to enable easier identification 

of the base pair product band of interest. 
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Figure 7. 2: UV image of gel showing no product bands bands following 
electrophoresis of the Two Step RT-PCR products (β-Actin, Hsp72, eNOS and 
iNOS) that was obtained from 0.03μg of sample myocardial RNA. 
 
            Lane:        1      2     3      4      5        6       7      8        9 

 

                                 Yellow arrow indicates 100bp band (100-1000bp ladder) 

                                  Blue arrow indicates 1000bp band (1000-10000bp ladder)            

  
 

Legend 7. 2: Legend for Figure 7.2 
 

Lane Content 
1 100bp ladder 
2 1000bp ladder 
3 Hsp72 
4 eNOS 
5 iNOS 
6 Positive Control 
7 Negative Control 
8 1000bp ladder 
9 100bp ladder 
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7.4.4.2 Two Step RT-PCR involving human buccal mucosa 

DNA and sample myocardial DNA  

  As the RT-PCR experiments in section 7.4.4.1, where sample 

myocardial DNA and a PCR Master Mix were used during the second step of 

the Two Step RT-PCR procedure, did not yielded any bands, one possible 

reason for this may have been the Two Step RT-PCR process itself. The 

problem could arise either in the process of synthesising cDNA from the 

extracted myocardial RNA (first step of the Two Step RT-PCR process) or 

during the PCR step (second step of the Two Step RT-PCR) of the process.  

In order to establish if there was a problem in synthesising 

cDNA from the myocardial RNA (section 7.3.3.1) during the first step of the 

Two Step RT-PCR process, an experiment was set up using post CPB right 

atrial myocardial sample DNA (obtained following RNA extraction as in 

section 7.3.2 and cDNA production as in section 7.3.3.1) and human buccal 

mucosa DNA (as used in the experiment in section 7.4.3.1). 
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  In this experiment, 10 thin wall plastic tubes, in duplicates, were 

made up to a 25μl volume containing the PCR components listed in Table 

7.13. 

 
Table 7. 13: PCR Mixture to produce the required PCR products from Human 
Buccal Mucosa DNA & Myocardial Sample cDNA (obtained follwing Two 
Step RT-PCR) 
 

Components Volume 
Promega PCR Master Mix 12.5μl 
Forward Primer (β-Actin, 

D16S539, Hsp72, eNOS or iNOS; 
10μM) 

          1μl 
 

Reverse Primer (β-Actin, D16S539, 
Hsp72, eNOS or iNOS; 10μM) 

          1μl 
 

Sample myocardial (0.7μg/μl) or 
human buccal mucosa DNA 

(0.5μg/μl) 

 
1μl 

Nuclease Free H2O 9.5μl 
Total Volume 25μl 

 

Each tube was then place in a thermal cycler (Techne Genius-Techne, Stone, 

UK). The thermal cycling conditions listed in Table 7.3 were used.  

 RT-PCR products were then loaded into a 2% agarose that was 

made as described in section 7.3.3.4.1. 8μl of each of the RT-PCR product was 

mixed with 2μl of 1x PCR Loading Buffer before being loaded into the gel 

wells. The contents of each gel well is described in Table 7.14.  
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Table 7. 14: Gel Well Content for Electrophoresis using Human Buccal 
Mucosa DNA & Sample Myocardial cDNA (obtained following Two Step RT-
PCR). 
 

Well Content 
1 1μl 100bp DNA Ladder (Promega, 

UK) 
2 1μl 1000bp DNA Ladder (Promega, 

UK) 
3 10μl mixture of sample myocardial 

Hsp72 RT-PCR product + 1x PCR 
Loading Buffer 

4 10μl mixture of sample myocardial 
eNOS RT-PCR product + 1x PCR 

Loading Buffer 
5 10μl mixture of sample myocardial 

iNOS RT-PCR product + 1x PCR 
Loading Buffer 

6 10μl mixture of sample myocardial β-
Actin RT-PCR product + 1x PCR 

Loading Buffer 
7 10μl mixture of sample myocardial 

D16S539 RT-PCR product + 1x PCR 
Loading Buffer 

8 10μl mixture of buccal mucosa Hsp72 
RT-PCR product + 1x PCR Loading 

Buffer 
9 10μl mixture of buccal mucosa eNOS 

RT-PCR product + 1x PCR Loading 
Buffer 

10 10μl mixture of buccal mucosa iNOS 
RT-PCR product + 1x PCR Loading 

Buffer 
11 10μl mixture of buccal mucosa β-

Actin RT-PCR product + 1x PCR 
Loading Buffer 

12 10μl mixture of buccal mucosa 
D16S539 RT-PCR product + 1x PCR 

Loading Buffer 
13 1μl 1000bp DNA Ladder (Promega, 

UK) 
14 1μl 100bp DNA Ladder (Promega, 

UK) 
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Once the gel wells were loaded satisfactorily, electrophoresis 

was then carried out as in section 7.3.3.4.2. Following the completion of the 

gel electrophoresis, DNA bands were visualised under UV light as in section 

7.3.3.4.3. The image of the gel as viewed under UV light are shown in Figures 

7.3.  
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Figure 7. 3: UV image gel showing no products bands from the of sample 
myocardial cDNA (obtained following the Two Step RT-PCR) but showing 
product bands for Human Buccal Mucosal Hsp72 & D16S539. 
 
      Lane:            1   2      3      4     5     6    7     8      9     10   11  12  13  14    

 

                     Arrow indicating 100bp band (100-1000bp ladder) 

                     Arrow indicating 1000bp band (1000-10000bp ladder).  

Legend 7. 3: Legend for Figure 7.3 
 

Lane Content 
1 100bp ladder 
2 1000bp ladder 
3 Myocardial Hsp72 
4 Myocardial eNOS 
5 Myocardial iNOS 
6 Myocardial  β-Actin 
7 Myocardial D16S539 
8 Buccal Mucosa Hsp72 
9 Buccal Mucosa eNOS 
10 Buccal Mucosa iNOS 
11 Buccal Mucosa  β-Actin 
12 Buccal Mucosa D16S539 
13 100bp ladder 
14 1000bp ladder 
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The above experiment was repeated twice with similar results. 

None of the sample myocardial RT-PCR products i.e. β-Actin (expected at 

457bp), D16S539 (expected at 330bp), Hsp72 (expected at 467bp), eNOS 

(expected at 737bp) or iNOS (expected at 532bp) were visible under UV light. 

However, from the buccal mucosa RT-PCR products, apart from eNOS and 

iNOS, the RT-PCR products for β-Actin, D16S539 and Hsp72 (Lanes 10, 11 

and 12) were visible under UV light at the appropriate band scale. It is possible 

that eNOS and iNOS RT-PCR products from the buccal mucosa DNA were 

not visualised because the purchased primers for eNOS and iNOS required 

further optimisation before being used this study. This may be the case as, 

while in section 7.4.3, it was demonstrated that the purchased primers for       

β-Actin and the Hsp72 functioned appropriately, this was not demonstrated for 

the purchased primers of eNOS and iNOS. An assumption was made then that 

as the purchased primers for β-Actin and the Hsp72 functioned appropriately, 

the same would be the case for the purchased eNOS and iNOS primers. 

However, the detection of β-Actin and Hsp72 RT-PCR product using the 

buccal mucosa DNA, also suggest that the failure to produce any RT-PCR 

product from the sample myocardial DNA may also lie in the process of 

synthesising cDNA from the sample myocardial RNA. One  possible reason 

that may have led to this, when using the right atrial myocardial spample RNA 

and the Two Step RT-PCR process, may have been contamination of the 

cDNA that was synthesised. In this study, the cDNA that was synthesised had 

a A260/280 ratio which was between 1.56-1.62. Conventionally, a cDNA A260/280 

ratio which is less than 1.8 is suggestive of some cDNA contamination (Clark 
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W, 2001) and this may have affected the outcome of the eNOS and iNOS PCR 

results. Another factor which may have affected the PCR results of the Two 

Step RT-PCR process, may be the possibility that there was an excess of 

reverse transcriptase enzyme (M-MLV RT) that was being used during the 

cDNA synthesis (see section 7.3.3.1) and this was inhibiting the PCR step of 

this two step process. This problem has been published in the literature (Suslov 

and Steindler, 2005). As a means of reducing cDNA contamination and 

limiting possible inhibition of the PCR process during the Two Step RT-PCR, 

due to excessive reverse transcriptase enzymes, a One Step RT-PCR was 

subsequently used to directly synthesise target myocardial DNA from the 

extracted RNA.  

7.4.4.3 Results of the One Step RT-PCR using sample 

myocardial DNA  

  Following the One Step RT-PCR process (section 7.3.4), a 2% 

agarose gel was prepared as in section 7.3.3.4.1. Gel loading and 

electrophoresis was done as in section 7.3.4.2. Following electrophoresis, the 

gel was viewed under UV light as in section 7.3.3.4.3. The image of the gel as 

viewed under UV light is shown in Figures 7.4.  
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Figure 7. 4: UV image of gel showing product bands for myocardial β-Actin 
and iNOS &, product band for Control β-Actin following One Step RT-PCR. 
 
      Lane 1        2          3        4         5         6        7        8          9    

 

                      Blue arrow indicates 1000bp band (1000-10000bp ladder) 
                      Yellow arrow indicates 100bp band (100-1000bp ladder) 
*(For the constituents of the positive and negative controls, see Table 7.5) 

 

Legend 7. 4: Legend for Figure 7.4 

        *(For the constituents of the positive and negative controls, see Table 7.6) 

 

 

 

Lane Content 
1 Negative Control* 1 
2 1000bp ladder 
3 Positive Control 1* 
4 Positive Control 2* 
5 Positive Control 3* 
6 iNOS  
7 eNOS 
8 Hsp72 
9 1000bp ladder 
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 From the Figure 7.4  it can be seen that the Negative Control, 

in Lane 1, has no product band but Positive Control 1 (β-Actin RT-PCR 

product using control RNA) and Positive Control 3 (β-Actin RT-PCR product 

using sample RNA), in Lanes 3 and 5, respectively, have a product band each 

that have been illuminated by UV light at about the 500bp mark. The iNOS 

RT-PCR product in Lane 6 produced a faint band at about the 500bp mark. The 

RT-PCR products for eNOS (Lane 7) and Hsp72 (Lane 8) did not produce any 

bands. The above experiment was repeated for each of the 20 post CPB 

myocardial samples with similar results. 
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7.5  Discussion 

The objective of this part of this study was to develop a RT-

PCR method for analysing the expression of eNOS, iNOS and Hsp72 mRNA 

in the collected right atrial biopsies. Based on the results from this study, it is 

not possible to deduce any conclusion with regards to the effects of HBO2 

preconditioning on myocardial eNOS, iNOS and Hsp72 mRNA in the patients 

recruited to this study.  

 The results from the One Step RT-PCR experiment in section 

7.4.4.3 showed that in the 20 analysed post CPB right atrial biopsies from 

patients who were preconditioned with HBO2 prior to CABG and IRI, in 

addition to β-Actin [from Positive Control 1 (using the Control RNA and β-

Actin primers provided by the One Step RT-PCR kit) and Positive Control 3 

(using sample myocardial RNA and purchased β-Actin primers)], only a faint  

iNOS DNA band was detectable. It suggests that, of the 3 genes (eNOS, iNOS 

and Hsp72) examined for mRNA expression at the time point ‘5 minutes post 

CPB’ in these 20 patients, there was only low level expression of myocardial 

iNOS mRNA with no mRNA for eNOS or Hsp72. From the series of 

experiments involving the methods used in section 7.4.4.3, it is unclear why no 

DNA band was observed for the Positive Control 2 (using Control RNA from 

the One Step RT-PCR kit and the purchased β-Actin primers).  

In this study, the iNOS protein was not measured in the 

myocardial samples that were obtained. This was because it had been 

demonstrated, in an experimental model of HBO2 and IRI, that HBO2 had no 
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effect on iNOS protein expression (Buras et al., 2000). iNOS is not a 

constitutive protein and its expressions needs to be induced by a stress event, 

such as an oxidative stress or ischaemia and reperfusion, which initiates its 

transcription. As such, instead of attempting  to determine the expression of 

iNOS protein, this study attempted to determine if the oxidative stress of HBO2 

preconditioning in patients with CAD disease, administered prior to CABG 

and IRI, had any effect on the mRNA expression of iNOS. The results of this 

study appear to indicate that in patients who were exposed to the oxidative 

stress of HBO2 preconditioning prior to on CPB CABG and IRI,  by the end of 

the period of ischaemia and reperfusion and, CPB (i.e. at the time point ‘5 

minutes post CPB’), there was some expression of iNOS mRNA.  

With respect to eNOS and Hsp72 expression, in this study it was 

observed that, in the HBO2 Group, following the termination of CPB, while 

there was no eNOS and Hsp72 mRNA detected, there was an abundance of 

eNOS (see section 6.4.2) and Hsp72 (see section 6.4.3)  protein present. Could 

this suggest that by the time point ‘5 minutes post CPB’ in this study, the RNA 

turnover process leading to eNOS and Hsp72 protein synthesis was complete, 

leaving only the final products of this process i.e. eNOS and Hsp72 protein, 

with no detectable mRNA for these proteins? To answer this questions, the 

expression of eNOS and Hsp72 mRNA in myocardial samples from earlier 

time points in this study need to be determined and, comparisons made with 

other patients in the HBO2 and Control Groups. 
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7.6  Future Molecular Work 

  To further develop a functional method for the molecular 

analysis of myocardial eNOS, iNOS and Hsp72 mRNA, using the samples 

obtained from study, the following future work is proposed: 

a.  As optimisation of the conditions for use of the purchased eNOS and 

iNOS primers were not done, a set of experiments will be required to 

confirm the optimal conditions required for the function of these 

purchased primers, using an appropriate polymerase enzyme and PCR 

cycling conditions. 

b. Reducing cDNA contamination during the reverse transcriptase process 

by preparing cDNA in a room that is separate from the room where 

PCR products are analysed. In addition to this, it would be important to 

verify that the purity of the cDNA is >1.65 before using in the PCR 

process.  

c. Further optimisation of the RT-PCR process is required. As the best 

PCR result in this study were obtained when individual PCR 

components were used, as was done in section 7.4.3.1, as part of the 

second step of the Two Step RT-PCR, perhaps a return to this method 

of RT-PCR, using purer cDNA, may lead to more positive outcomes 

following gel electrophoresis. The use of individual PCR components, 

rather than a commercially available master mixes, will allow for 

further individualisation and optimisation of each of the PCR 
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components in particular, the magnesium and primer concentration 

used. 

d. mRNA analysis in myocardial samples from time points earlier than the 

time point ‘5 minutes post CPB’ in the HBO2 Group. This will allow 

comparisons to be made with other time points in this group and hence 

enable deductions to be drawn on the effects of HBO2 preconditioning 

on mRNA expression and mRNA turnover in this group of patients. 

e. mRNA analysis in myocardial samples from patients in the Control 

Group. This will enable a comparison to be made with the HBO2 Group 

and conclusions to be made on the possible molecular cardioprotective 

effects of HBO2 preconditioning in this study. 
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8.  Discussion 

8.1  Cardioprotection Via Systemic HBO2 

Remote Preconditioning?  

 This small, pilot, proof of concept, phase 2, randomised 

controlled clinical study provides some level 2a evidence (Phillips B, March 

2009) that remotely preconditioning CAD patients with systemic HBO2, prior 

to first time elective on CPB CABG, with the use of intermittent ischaemic 

fibrillatory arrest, may be capable of leading to beneficial clinical, health 

economic and biological outcomes in a low risk group of patients.  It met its 

primary objective and demonstrated that this modality of treatment was 

capable of improving myocardial LVSW following CABG. In addition to this, 

it was also observed that it may potentially improve  peri-operative SV, 

pulmonary vascular flow prior to CABG and may also be a safe modality of 

treatment as it had the capacity to limit myocardial injury and post operative 

AEs. Furthermore, it was also shown that it may even be a cost effective 

treatment as it reduced the post operative length of stay in ICU.  

Biologically, where the serum biomarkers were concerned, this 

study indirectly provided some evidence to suggest that HBO2 preconditioning 

of this group of patients may be capable of facilitating endothelial protection 

by possibly causing the shedding of endothelial and/or platelet and, 

neutrophilic adhesion molecules into the circulation, hence leading to an 

increased post operative circulating load of soluble adhesion molecule. This 
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may lead to less neutrophil-endothelial adhesion and thus limit the ensuing 

deleterious consequences of this interaction. It was also observed that 

preconditioning with HBO2 prior to ischaemia and reperfusion leads to a 

reduction in the amount of eNOS and Hsp72. This indirectly suggests (see 

section 6.5) that NO from the catalytic action of eNOS and Hsp72 are 

functioning to protect the myocardium via their individual mechanisms of 

action, hence accounting for the limited detection of free eNOS and Hsp72 in 

the myocardium. Furthermore, it was also observed that HBO2 preconditioning   

may be able to further induce the endogenous expression of these biomarkers 

thus providing additional protection to the myocardium during the period of 

ischaemia and reperfusion.  

All these observations, appear to suggest that preconditioning 

CAD patients with HBO2, prior to on CPB CABG and IRI, may have the 

ability  to enhance the cardiovascular protection available to this group of 

patients to allow for the better tolerance of the stress of IRI during CABG. 

8.2  Study Limitations 

 Despite encouraging results from this study, the strength of the 

evidence is weak, particularly with respect to the secondary objectives. This is 

a consequence of the major limitation of this study, which was that the sample 

size was not large enough to assess multiple secondary endpoints. The 90% 

probability (power of the study) of detecting a difference of only 7.5% between 

the groups, and hence the sample size determination, was only estimated to be 

sufficient to assess the primary endpoint between the groups. As the pre-
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defined statistical plan did not include a statistical analysis for the correction 

for multiple statistical testing when comparing the differences in the secondary 

endpoints between the groups, it was not possible to draw any statistical 

conclusions from the secondary endpoints. Hence, firm statistical conclusions 

could only be drawn from the primary endpoint. In keeping with this, from the 

analysis of the secondary endpoints, only comparative descriptive estimates 

between the groups were possible. The statistical results which accompanied 

any of the comparisons between those descriptive estimates, only provided a 

sensitivity analysis for the observed difference in estimates of the secondary 

endpoints between the groups. While no firm conclusions could be made from 

the results of the secondary endpoints, where possible and reasonable, an 

appropriate explanation was offered for the observed differences.  

The patients recruited to this study had a relatively low 

operative risk. As such, the actual impact of HBO2 preconditioning may not 

have been easy to appreciate. This low risk group of patients was selected for 

this study as the safety of HBO2 in this group of patients is not well 

documented. It is quite to assume that more encouraging results may have been 

observed if the patients recruited to this study had a higher operative risk. In 

the case report by Yacoub et.al (Yacoub and Zeitlin, 1965), a clinically 

significant improvement was observed in a post operative, cardiac patient with 

low cardiac output following treatment with HBO2. If a high risk post 

operative patient, following IRI, responded well to post operative adjunctive 

treatment involving HBO2 (i.e. HBO2 post conditioning), it is also possible that 

high risk pre-operative patients may be preconditioned with HBO2, prior to 
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IRI, to enable better tolerance to the stress of IRI. Furthermore, in the clinical 

study by Thurston et.al (Thurston, 1971), it was observed that AMI patients 

with more severe MIs, cardiogenic shock or heart failure, performed better 

following treatment with HBO2 compared to those patients who were less 

unwell. This further re-inforces the suggestion that this modality of treatment 

may be more beneficial for high risk patients. 

In this study, the Control Group of patients were, pre-

operatively, slightly more unwell compared to those in the HBO2 Group. The 

former had a higher mean EUROSCORE and, consisted of more patients with 

a history of unstable angina, previous MIs, hypertension and diabetes mellitus. 

While all these are chance occurance despite randomisation, it may have led to 

a selection bias in the Control Group, which resulted in the slightly poorer 

outcomes of this group. Furthermore, in this group, the mean ischaemic and 

CPB times were also slightly longer. An attempt to minimise the confounding 

effects of ischaemic and CPB time were done by performing linear 

multivariate analysis that adjusted for longest cross-clamp time and CPB time. 

Moreover, as the number of coronary bupass to be performed has an impact on 

the duration of ischaemia and reperfusion and, hence the degree of IRI during 

CABG, the number of coronary bypasses can also be regarded as another 

potential confounder. In retrospect, the confounding effect of this could have 

been limited by startifying patients according to the number of coronary artety 

bypasses that were plan for them pre-operatively.   

Finally, there was also no attempt to measure ROS, NO, the 

expression of adhesion molecules on the neutrophilic and endothelial surfaces, 
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neutrophil-endothelial interaction or an assessment of the long term effects of 

HBO2 preconditioning on quality of life. As such, it was not possible to 

correlate the changes in ROS and NO generation with the changes in the 

expression of surface adhesion molecules or the expression of serum soluble 

adhesion molecules and, the long term effects this may have had on quality of 

life. 

8.3  HBO2 Preconditioning: A Method For 

ROS Preconditioning 

Essentially, HBO2 preconditioning prior to ischaemia and 

reperfusion is a mode of pharmacological preconditioning involving ROS. 

Various studies have demonstrated that low doses of ROS (Hegstad et al., 

1997, Valen et al., 1996, Ytrehus et al., 1995) and ROS preconditioning (Sun 

et al., 1996, Takeshima et al., 1997, Valen et al., 1998) leads to myocardial 

protection. In fact, it has also been demonstrated that ROS preconditioning 

leads to better myocardial protection than just IPC alone (Yaguchi et al., 2003). 

Both HBO2 therapy (Conconi et al., 2003) and, ischaemia and 

reperfusion (Robin et al., 2007) generate ROS. By preconditioning patients 

with HBO2, which indirectly means exposing them to a non-lethal, controlled 

dose of ROS, a complex set of  yet to be fully understood, biological pathways 

are initiated. As suggested by this study, the two possible pathways that maybe 

induced by HBO2 are the peri-operative increase in circulating soluble 

adhesion molecules and the increased expression of cardioprotective proteins 
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(e.g. eNOS and Hsp72) during ischaemia and reperfusion. As such, when 

patients are later exposed to a further, possibly lethal, burst of ROS during 

ischaemia and reperfusion, which normally leads to cellular injury and clinical 

dysfunction (Moens et al., 2005), not only is there a protective mechanism (as 

a result of myocardial eNOS and Hsp72 expression) already in place to enable 

better tolerance to this insult but, there is possibly also a diminished ability to 

propagate the insult of IRI as there may be a reduced capacity for neutrophilic 

attachment to the endothelium (due to the increase in circulating soluble 

adhesion molecules).  

8.4  The Future For HBO2 Preconditioning 

The area of HBO2 preconditioning is intriguing as it opens up 

the concept that prophylactic treatment with HBO2 may be capable of inducing 

cellular protection to enable better tolerance to a subsequent stressful event. 

Despite interesting, the future of HBO2 preconditioning remains unclear. This 

is primarily because the field of HBO2 medicine is still not widely appreciated 

as a possible treatment option in any particular area of unmet medical need. As 

such, it is not an area of high priority academic or pharmaceutical research. 

Moreover, as a modality of treatment without a specific disease area to treat, 

interest in using HBO2 to treat patients is further impeded by the lack of it’s  

availability in major tertiatry hospitals. Where it is available, its feasibility for 

providing treatment to patients, particularly the critically ill, is challenged by 

chamber design and size issues which may make it unsuitable for routine 

clinical use. This particular obstacle has recently been addressed by a number 



 

 
282 

 

of centres around the world (USA, Sweden, Norway and Australia), by 

customising the design of HBO2 chambers so that they resemble and function 

more like hospital wards and ICUs. This has enabled these centres to address 

the other challenge to HBO2 medicine, which is the shortage of well-conducted 

randomised control clinical trials to demonstrate its efficacy and safety across 

therapeutic areas. While there are ample experimental studies and case reports 

demonstrating the biological and potential clinical benefits of HBO2 treatment, 

there has been a shortage of clinical trials which support its beneficial use in a 

patient populations.  

HBO2 treatment is after all a therapy which involves the use of a 

drug, oxygen, at a dose of 100%, that is delivered at a pressure above 

atmospheric pressure, in a pressurised chamber. Just like any other drug, for 

HBO2 to become a drug that is confidently used, its characteristics as a drug in 

clinical practice needs to be better understood. This can only be done by 

appropriately designed randomised control clinical trials to assess its clinical 

efficacy, safety and longer term side effects in a wide variety of clinical 

indications, other than CAD. Of particular interest would be the area of 

oncology and stem cell therapy. Early clinical trials appear to indicate that 

there may be a role for HBO2, as a chemotherapeutic drug to adjunct other 

oncological agents, in the treatment of cancer (Ohguri et al., 2009). Where 

stem cells are concerned, HBO2 treatment has been shown to enhance stem cell 

growth (Milovanova et al., 2009), mobilisation (Thom et al., 2006) and 

survival (Khan et al., 2009) and, thus may be utilised to adjunct to therapies 

which rely on stem cells. 
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With respect to HBO2 preconditioning, CABG, IRI and 

myocardial protection, larger randomised control clinical studies are required 

to determine the not only the early effects of HBO2 on myocardial function but 

also its delayed effects and, its durability over a longer period of time. Studies 

should be designed to compare HBO2 to the current standard of care (SOC) 

treatment for inducing myocardial protection during CABG and IRI (e.g. 

anaesthetic agents). Instead of attempting to prove that HBO2 is better than or 

superior to the current SOC treatment, studies should be designed to 

demonstrate the equivalence or non-inferiority of HBO2 treatment compared to 

the SOC treatment. This is because demonstrating equivalence or non-

inferiority, provides physicians with an alternative means, which is just as 

good or no worse than the current SOC treatment but, possibly safer and more 

tolerable, for optimising their patient’s clinical condition prior to a planned 

clinical oxidative stress such as IRI as a result of vascular interventions. This 

message is not conveyed in a superiority trial which only demonstrates one 

drug as being better than the other instead of demonstrating one drug as being 

just as good as the other. As echoed by the Cochrane Collaborative (Bennett et 

al., 2005), methodological rigour is crucial in the assessment of the 

effectiveness of HBO2 as a treatment option. As the awareness of the potential 

therapeutic benefits of HBO2 preconditioning and, the commericial interest in 

this modality of treatment grows, so will more robust clinical studies. While 

the momentum in this area of research builds up, HBO2 therapy will be highly 

reliant on on small focus groups that continue to pasionately investigate the its 

benefits.  
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