₩WILEY ONLINE LIBRARY >>> SEARCH BY	✓ Titles ✓ Authors
ADVANCED SEARCH over 5 million articles	✓ Keywords ✓ References
Journals Books Databases Lab Protocols	✓ Funding Agencies

Phaeomoniella chlamydospora-induced Oxidative Burst in Vitis vinifera Cell Suspensions: Role of NADPH Oxidase and Ca²⁺

- 1. Marta R. M. Lima,
- 2. Alberto C. P. Dias

Article first published online: 22 DEC 2011

DOI: 10.1111/j.1439-0434.2011.01871.x

© 2011 Blackwell Verlag GmbH

Issue

Journal of Phytopathology

Early View (Online Version of Record published before inclusion in an issue)(/journal/10.1111/(ISSN)1439-0434/earlyview)

Additional Information

How to Cite

Lima, M. R. M. and Dias, A. C. P. (2011), *Phaeomoniella chlamydospora*-induced Oxidative Burst in *Vitis vinifera* Cell Suspensions: Role of NADPH Oxidase and Ca²⁺. Journal of Phytopathology. doi: 10.1111/j.1439-0434.2011.01871.x

Author Information

Authors' address: Departamento de Biologia, CITAB – Centro de Investigação e Tecnologias Agro-Ambientais e Biológicas, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal (correspondence to A. C. P. Dias. E-mail: acpdias@bio.uminho.pt(mailto:acpdias@bio.uminho.pt))

1 de 2 31-12-2011 10:40

^{*}Correspondence: Universidade do Minho, Braga, Portugal

Publication History

- 1. Article first published online: 22 DEC 2011
- 2. Received April 21, 2011; accepted August 17, 2011
- Abstract
- Article(full)
- References(references)
- Cited By(citedby)

<u>View Full Article (HTML)(/doi/10.1111/j.1439-0434.2011.01871.x/full)</u> <u>Get PDF (283K)(/doi/10.1111/j.1439-0434.2011.01871.x/pdf)</u>

Keywords:

esca disease; measles; reactive oxygen species; grapevine; in vitro cultures; Ca²⁺ chelators; Ca²⁺ c

Abstract

The biphasic oxidative burst induced by *Phaeomoniella chlamydospora* extract (Pce) in *Vitis vinifera* (Vv) cell suspensions was investigated. Treatment of cell suspensions with diphenyleneiodonium chloride, an inhibitor of NADPH oxidase, prevented the Pce-induced biphasic reactive oxygen species (ROS) accumulation, suggesting that NADPH oxidase is the primary ROS source in the oxidative burst induced by Pce elicitation of Vv cells. The role of Ca²⁺ in the oxidative burst was also investigated using a Ca²⁺ chelator and several Ca²⁺ channel blockers. The treatment of Vv cell suspensions with the Ca²⁺ chelator ethylene glycol-bis(2-aminoethylether)-N, N, N'; N'-tetraacetic acid (EGTA) completely inhibited Pce-induced ROS accumulation, suggesting that Ca²⁺ availability is necessary for occurrence of the induced oxidative burst. However, only the Ca²⁺ channel blocker ruthenium red strongly inhibited the Pce-induced ROS accumulation, suggesting that the specific Ca²⁺ channel types from which Ca²⁺ influx is originated also play an important role in the Pce-induced oxidative burst. Furthermore, Ca²⁺ availability seems to be necessary for the Pce-induced activity of NADPH oxidase.

View Full Article (HTML)(/doi/10.1111/j.1439-0434.2011.01871.x/full) Get PDF (283K)(/doi/10.1111/j.1439-0434.2011.01871.x/pdf)

More content like this

Find more content:

• <u>like this article(/advanced/search/results?articleDoi=10.1111/j.1439-0434.2011.01871.x&scope=allContent&start=1&resultsPerPage=20)</u>

Find more content written by:

- Marta R. M. Lima(/advanced/search/results?searchRowCriteria[0].queryString="Marta R. M. Lima"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)
- Alberto C. P. Dias(/advanced/search/results?searchRowCriteria[0].queryString="Alberto C. P. Dias"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)
- <u>All Authors(/advanced/search/results?searchRowCriteria[0].queryString="Marta R. M. Lima" "Alberto C. P. Dias"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)</u>

2 de 2 31-12-2011 10:40