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Abstract 

Ferroelectric macroporous poly(vinylidene fluoride-trifuoroethylene) membranes have 

been produced by isothermal crystallization from the solution at different temperatures 

starting from different diluted solutions of the co-polymer in dimethylformamide. In 

this way pore architecture, consisting in interconnected spherical pores can be obtained. 

The mechanism and kinetics of solvent evaporation was investigated and related to the 

evolution of the polymer microstructure. The mechanism underlying the pattern 

formation has been discussed on the light of the Flory-Huggins (FH) lattice teory, grain 
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boundary effects and the Cahn-Hilliard equation for mass conservation systems.  It was 

also observed that the temperature or initial concentration of the crystallization process 

does not affect the phase, ferroelectric transition temperature or the melting temperature 

of the polymer. 

 

Keywords: electroactive membranes, porous membranes, PVDF, solvent evaporation, 

phase diagram  

 

1. Introduction 

Poly(vinylidene fluoride), PVDF and VDF (vinylidene fluoride) copolymers like 

P(VDF-TrFE) (Poly(vinylidene fluoride – co – trifluorethylene)) are polymer materials 

known for their interesting electroactive properties, which allow electro-optical, electro-

mechanical and biomedical applications [1, 2]. In particular, fabrication of porous 

membranes of these materials has attracted interest due to their potential applications as 

filters; as polymer electrolyte for applications in rechargeable batteries [3, 4]; and in 

biomedical applications [5, 6]. Phase separation of the polymer solution for the 

preparation of porous membranes can be induced by several methods, including 

immersion precipitation, precipitation from the vapour phase, and thermally induced 

phase separation (TIPS) [7, 8]. Until now, only a few works have been reported on 

preparation of PVDF microporous membrane via TIPS [4, 7-10]. This processing 

technique has proven to be a valuable method for making commercial membranes as it 

shows advantages such as low tendency for defect formation, high degrees of porosity 

and effective control of the pore size. In the membrane preparation by TIPS, 

thermodynamic properties, such as the shape of the phase diagram can strongly affect 

the pore size and degree of porosity. Selecting the proper solvent is also one of the key 
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factors for controlling the pore size as  the compatibility of polymer and solvent affects 

the solution thermodynamic properties such as the binodal line and crystallization 

temperature. Furthermore, different quenching conditions also affect the polymer 

crystallization microstructure [10-12]. 

Through it has been previously proven that the isothermal evaporation from a 

homogeneous P(VDF-TrFE) copolymer solution produce a well-organized porous 

structure in membranes from 1  to 250 m [13], the different experimetal conditions that 

can allow tayloring membrane characteristics have not been explored and the 

mechanism responsible for the pattern fomation has to be further explained.   

In the present work, that initial work has been systematically extended by preparing 

electroactive P(VDF-TrFE) membranes with controlled porosity by solvent evaporation 

at different temperatures and from different polymer/solvent relative concentrations. 

Most important, the origin of the microstructure formation is investigated by relating it 

to the solvent evaporation kinetics. In this way, both a method for processing 

electroactive P(VDF-TrFE) membranes and the understanding of the process have been 

achieved, which ensures reproducibility and further development. 

 

 

2. Experimental 

Poly(vinylidene fluoride-trifuoroethylene) (PVDF-TrEF) (72/28) (Solvay, Brussels, 

Belgium ) was dissolved in N,N-dimethyl formamide (DMF - Merck). After total 

dissolution of the polymer, the solution was placed in a 10 μL pan with a micropipette 

(PIPP-003-500, Labbox) and then kept inside of a thermogravimetric oven (Perkin-

Elmer Pyris-1 TGA) at isothermal temperature between 20 to 60 ºC. The initial polymer 
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concentrations were 5, 10, 15 and 20 % volume fractions. All experiments were carried 

out under nitrogen atmosphere with gas flow at 60 ml/h and balance 40 ml/h.  

The microstructure of the samples was measured by scanning electron microscopy 

(SEM) with a FEI Nova 200 apparatus at room temperature. The crystalline phase of the 

samples was confirmed by Fourier Transformed Infrared Spectroscopy (FTIR) 

(Spectrum 100) in range between 650– 4000 cm
-1

. FTIR spectra were collected with 32 

scans and a resolution of 4 cm
-1

.The thermal behavior of the samples was analyzed by 

differential scanning calorimetry (DSC) measurements with a Perkin Elmer Diamond 

DSC apparatus. The samples were cut into small pieces from the middle region of the 

membranes, placed into 40 µl aluminum pans and heated between 30 and 200 ºC at a 

heating rate of 10 ºC.min
-1

. 

The porosity of the samples was estimated by pycnometry. The porosity ( ) was 

measured by an improved weight-method [14]. The weight of the pycnometer, filled 

with ethanol, was measured (W1); the sample, whose weight was Ws, was immersed in 

ethanol. After the pore of the scaffolds was saturated by ethanol, additional ethanol was 

added to complete the volume of the pycnometer. Then, the pycnometer was weighted 

(W2); the sample filled with ethanol was taken out of the pycnometer. The residual 

weight of the ethanol and the pycnometer was labeled W3. The porosity of the scaffold 

was calculated according to: 

31

32

WW

WWW s
 

Mean porosity of each membrane was obtained as the average of the values determined 

in three samples and the results are presented in table 1. 

Eq. 1 
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Table 1: Influence of the viscosity on the P(VDF-TrFE) (72/28)/DMF samples porosity 

obtained by solvent evaporation at 20 ºC. 

Polymer/Solvent Fraction Polymer 

Concentration 

Viscosity Porosity 

g.cm
-3

 cP % 

1g P(VDF-TrFE) / 4 mL 

DMF 

0,25  956,6 

70 

1g P(VDF-TrFE) / 5 mL 

DMF 

0,20 629,3 

72 

1g P(VDF-TrFE) / 6.7 mL 

DMF 

0,15  267,6 

76 

1g P(VDF-TrFE) / 10 mL 

DMF 

0,10  81,2 

80 

3. Results 

 

After polymer dissolution, isothermal evaporation at different temperatures from 20 to 

60 ºC was performed in an oven in order to obtain P(VDF-TrFE)  membranes and to 

study the influence of the polymer concentration and evaporation temperature and rate 

on the sample morphology.  

 

a) Thermogravimetric analysis 

 

In the TGA experiments the weight-loss, α, is given by [15, 16]: 
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where w0, wt(t) and w∞ are the weights of the sample before solvent evaporation, at a 

given time t and after complete drying, respectively. An analysis of the kinetics of 

solvent evaporation can be performed in terms of the general equation [16]: 

 

)()( tfTk
dt

d
 

 

where f(α) is the reaction model, k(T) is the temperature dependent rate constant, T is 

the temperature and t is the time. The rate constant is assumed to obey the Arrhenius 

equation: 

 

RT

E
ZTk exp)(  

 

where Z  is the pre-exponential factor, E is the activation energy  and R is the ideal gas 

constant. If the process is a simple n
th

 order reaction, the conversion dependence can be 

written as:  

 

nf )1()(  

 

Eq. 3 

Eq. 4 

Eq. 5 

Eq. 2 
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Substituting equation 4 and 5 into equation 3 and taking logarithm, equation 6 is 

obtained:  

 

RT

E
nZ

dt

d
1ln)ln(ln  

 

In the case of isothermal evaporation, this equation allows to determine the kinetics 

order n of the solvent evaporation and the activation energy. The weight loss of the 

P(VDF-TrFE) sample during the isothermal experiments was measured for temperatures 

between 20 and 60 ºC.  

Figure 1.a shows the isothermal TGA traces at different temperatures obtained for the 

5/95 P(VDF-TrFE)/DMF solution at different temperatures and figure 1 b the solvent 

weight loss conversion factor for the same sample. Figure 1 c shown the solvent weight 

loss,  at 20ºC for the P(VDF-TrFE)-DMF solutions at different initial concentrations. 
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Eq. 6 
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Figure 1 – a) Weight loss curves and b) solvent weight loss,  for the P(VDF-

TrFE)/DMF solution at several isothermal temperatures for the solution 5/95 c) Solvent 

weight loss,  at 20ºC for the P(VDF-TrFE)/DMF solutions of varying initial 

concentration 

 

Figure 1 shows that after complete solvent evaporation a weight plateau was reached, 

corresponding to the mass of the polymer initially present in the solution. This plateau is 

reached more quickly as the isothermal temperature increases, as the evaporation of the 

solvent is faster for higher temperatures. The evolution of the P(VDF-TrFE)/DMF 

weight loss conversion factor ( ) is represented in figure 1b for the different 
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temperatures and in figure 1c for the different initial concentrations at a given 

temperature. The graphs presented in figure 1 are representative of the obtained results 

for the rest of the polymer/solvent ratios. 

Drying of the polymer solution in the nitrogen flow atmosphere of the 

thermogravimeter can be also seen as a desorption process, governed by the diffusion 

coefficient of the solvent in the solution. In fact accepting a Fickian desorption kinetics, 

at least at the beginning of evaporation, the diffusion coefficient could be estimated 

from the slope of the  against the squared root of time.  The plots of Figure 1 show that 

diffusion coefficient of the solvent, as corresponds to a thermally activated process, 

decreases with increasing temperature, but also that an increase of initial concentration 

of the solution hinders solvent diffusion and so decreases the initial evaporation rate.    

The time derivative of the weight loss curves (figure 2) reveals that the maximum rate 

of evaporation occurs at the initial steps of the measurements, right before each 

isothermal temperature is reached. Furthermore, the derivative of the weight loss curves 

is larger for higher temperatures, showing the increase of the evaporation rate with 

increasing temperature, while it decreases with time due to the progressive increase of 

solvent concentration during the evaporation process. This behaviour was already 

observed in the homopolymer PVDF [15]. 

Figure 2.a shows that the weight-loss rate (d /dt) as a function of time shows two 

different regimes. The transition to the second regime in which the solvent evaporation 

rate rapidly collapses can be associated to liquid-liquid phase separation, consisting in 

the segregation of solvent from a polymer-rich liquid phase and further crystallization of 

the polymer to give the morphology shown by the SEM pictures of Figure 6 (see later 

the discussion about morphology evolution). The solvent evaporation rate in the second 
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regime decreases faster as temperature increases (Figure 2a) or initial polymer 

concentration in the solution decreases (Figure 2b).  
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Figure 2 – Time dependence of the weight-loss rate (d /dt) for the P(VDF-

TrFE)/DMF: a) 5/95 at different isothermal temperatures, b) evaporated at 50 ºC for 

different initial polymer/solvent concentrations. 

 

In order to properly quantify the process, the plots of ln(d /dt) against ln(1- ) for 

isothermal evaporation (Figure 3) can be fitted by linear relations and correlated using 

the n
th

 order method (Pearson R
2
 > 93 % confidence). In this way, the reaction order n 

can be obtained (“general rate expression”, equation 6). The values obtained for the 

reaction order of the P(VDF-TrFE)/DMF system evaporation under isothermal 

conditions varies from 0.14 to 0.18 with increasing temperatures from 20 to 60 ºC. Chen 

et al. [17, 18] proposed a model for drying processes called the Reaction Engineering: 

in this approach, evaporation appears as a zero order thermally activated process, a 

feature that is coincident with our finding for the solvent evaporation.   
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Figure 3 – ln(d /dt) against ln(1- ) plots for isothermal evaporation for the P(VDF-

TrFE)/DMF 95/5 solution measured at different temperatures. 

 

The determination of the kinetic parameters over a series of weight losses has more 

accuracy than the method of the “general rate expression”. Flynn developed a method to 

calculate the kinetic parameters at different conversion levels using isothermal 

techniques [10-19]: 

 

RT

E
Aft act)ln())(ln()ln(  

 

In equation 7, t is time, f( ) is constant (calculations will be performed at different  

intervals), A is a constant, R is the ideal gas constant, T is the temperature of isothermal 

measurement and Eact is the activation energy. Equation 7 also provides a way of 

calculating Eact if the evaporation mechanism remains unchanged during the isothermal 

Eq. 7 
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experiment [20]. This method is based on the slope of a plot of natural logarithm of time 

vs inverse absolute test temperature, as presented in figure 4a. . 

Data presented in figure 4.a shows good linearity. The linear correlation coefficients 

obtained by fitting to equation 7 are higher than 0.90 and the slope of these linear 

fittings (Figure 4.a) remains constant with the increase of weight loss  over the range 

30 – 90 %. This indicates that activation energy is independent of the conversion ratio, 

as represented in figure 4.b. The obtained results show a strong dependence of the  Eact 

with the initial polymer/solvent concentration. The values found for the activation 

energies are constant for the various conversion rates, for the same P(VDF-TrFE)/DMF 

concentration, while in the case of the homopolymer PVDF the activation energy 

increases with the increase of [15]. Furthermore, when compared the Eact for the 

different polymer/solvent concentrations, the activation energy increases with the 

decrease of the amount of solvent present in the system. Moreover, for the same  it 

was observed a linear dependence of the Eact with the polymer concentration (figure 5).  
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Figure 4 – a) Estimation of activation energy by the Flynn method for the P(VDF-

TrFE)/DMF (5/95) under isothermal conditions and b) evolution of the activation 

energy obtained by the Flynn method for different levels of conversion for the 

polymer/solvent concentrations of the samples obtained at room temperature. 
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Figure 5 – Evolution of the activation energy with P(VDF-TrFE) concentration present 

in the polymer/solvent system. The figure corresponds to  = 50 %.  

 

After complete crystallization of the polymer, the samples morphology was 

characterized by SEM in order to study the evolution of the pore structure. The obtained 

results are presented in figures 6 and 7. 

In general, the crystallized material at room temperature and for decreasing polymer 

concentration presents the highest porosity and the porosity decreases with increasing 

crystallization temperature. For all the samples crystallized at 20 ºC, the pores are 

spherical and with diameter around 30-35 m for the lower polymer concentration 

(5/95) and approximately 10-15 m for the sample with higher polymer content in the 

solution (80/20). The pore walls are formed by adhered microspheres with diameter of 

around 4 m (figure 6d, inset). The interconnectivity of the pores results from the 

spaces between the polymer microspheres that form the pore walls, while larger pore 

throats appear due to some defects in the structure. The membrane thickness does not 
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have influence on the final microstructure of the membrane and the solvent diffusion is 

fast enough to make the solution concentration homogeneous across the sample during 

the evaporation process [13].   

 

Figure 6 – SEM microphotographs of the surface and cross section (a,b) for 5/95 

P(VDF-TrFE)/DMF and (c,d) 20/80 P(VDF-TrFE)/DMF  samples obtained by solvent 

evaporation at room temperature. 

 

For samples crystallized at 60 ºC, a spherulitic structure similar to the one obtained for 

the PVDF homopolymer [8, 21] was observed (Figure 7), independently of the 

polymer/solvent ratio. It was also observed some porosity between the spherulites that 

can be correlated to the sample crystallization kinetics. As the spherulite grows, more 

polymer in the liquid state will be joined to the crystallization interface and, at the end, 

when no liquid are present in the interface between spherulites, a open space will be left 

giving origin to the small pores appearing among the spherulites. 
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Figure 7 – SEM microphotographs of the samples surface crystallized at 60 ºC: a) 

P(VDF-TrFE)/DMF (10/90) and b) P(VDF-TrFE)/DMF (20/80). 

 

In figure 8 the liquid/liquid phase diagram for (PVDF-TrFE)/DMF solution at different 

crystallization temperatures (between 20 and 60 ºC) and different polymer/solvent ratio 

is presented.  
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Figure 8 – Phase diagram for the P(VDF-TrFE)/DMF solution, the dashed line 

corresponds to the initial volume faction for the different temperatures. The arrow 

represents the system evolution due to solvent evaporation. 

 

In this figure the initial experimental conditions (temperature and volume fraction) are 

indicated (open dots) and also the shift toward higher volume fractions due to the 

isothermal solvent evaporation (arrow). This evolution can produce polymer 

crystallization if the state of the system falls into a liquid/solid binary region, before a 

liquid/liquid phase separation takes place. 

The morphology shown in figures 6 and 7 indicates a spidonal liquid/liquid phase 

separation and are according to what was found in PVDF homopolymer membranes 

produced by TIPS from a solution in a solvent/nonsolvent mixture [7, 10, 12, 13, 22]. 

Crystallization process of the P(VDF-TrFE) is quite different from that obtained for the 

PVDF due to the irregularity introduced in the polymer chain by the TrFE groups [23]. 

The observed shift to the crystallization line in the phase diagram with respect to the 
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PVDF makes the liquid /liquid binary region to appear before crystallization takes 

place. Further, the solvent evaporation produces P(VDF-TrFE) crystallization.  

The shape of the phase diagram in the region of the liquid/liquid coexistence region can 

be predicted with the help of the Flory-Huggins (FH) lattice teory [13]. 

In the phase diagram (figure 8) two mechanisms have to be considered: nucleation and 

growth (NG) and spinodal decomposition (SD). The first one occurs in a metastable 

region of the phase diagram between spinodal and binodal lines, while SD occurs in a 

unstable region under spinodal lines. In the SD region, small variations in the 

composition destabilizes the system, separating it into two phases with lower free 

energy. In the metastable region a large flutuation in the composition is needed to create 

a domain larger than some crtical ratio, in order to enable the NG process [13, 24]. 

In the PVDF-TrFE copolymer, the pattern is formed by an initial low concentration that 

will put the system in the metastable region of the phase diagram (figure 9). As the 

solvent evaporates, the polymer concentration will enter in the unstable region of the 

phase diagram. Here the grain boundary (GB) constructs the observed bands, supressing 

the grains growth while in the interior the SD continues. As the system continues to 

evolve in the phase diagram to the metastable region (nucleation and growth) the GB 

effects decrease and the interior of the grain have the circular shape predicted by the 

Cahn-Hilliard equation for mass conservation systems [13, 25, 26], which implies that 

inside the grain the mass is conserved. 

Finally, two factors have to be considered to the formation of such patterns: a) initial 

volume fration of the polymer/solvent and b) the initial position in the metastable 

region. Volume fraction near the binodal line are highly affected by the NG process 

leading to close porous; volume fraction near the spinodal will not be affect by the 

initial NG, leading to structures without the grain growth. 
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The differences in the final microstructure found among the samples crystallized at 

different temperatures are related to the polymer concentration in the solution when 

liquid-liquid transition takes place and the solvent evaporation rate changes. The former 

can be calculated by extrapolation of the two regimes straight lines in the evaporation 

rate against time plot of Figure 3. The intersection allows estimating the time onset of 

phase separation and this value allows calculating, with the data of Figure 2, the 

polymer concentration at that moment. It is found that by increasing initial polymer 

concentration in the solution, the polymer/solvent ratio at the phase separation onset 

increases. Thus at 20 ºC P(VDF-TrFE)/DMF ratio is 22/78, 28/72, 39/61, 47/53 at the 

phase separation when the initial concentrations are 5/95, 10/90, 15/85 and 20/80 

respectively. Slower solvent evaporation and more diluted solution when phase 

separation takes place yields a more mobile polymer-rich phase and, as shown in Figure 

6, smaller aggregates of the liquid solvent segregated. On the other hand, as temperature 

increases, this phenomenon is more pronounced, and in fact at 60 ºC nearly no presence 

of the macropores originated in liquid-liquid phase separation are observed in the dry 

material. The structure is then nearly the same than that produced in PVDF by liquid-

solid phase transition [15]. 

The nature of the crystalline phase present in the polymer can be identified by DSC and 

FTIR. FTIR spectra for the samples crystallized at room temperature shows that the 

crystallization of the polymer occurs in the ferroelectric phase (figure 9a) due to the 

presence of the characteristic absorption band at 840 cm
-1

 [2, 27]. 
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Figure 9 – a) Infrared measurements for the PVDF-TrFE samples obtained by room 

temperature crystallization from different P(VDF-TrFE)/DMF solutions and b) DSC 

curves for the same samples. 

 

In the DSC thermograms (figure 9b) two peaks are observed, the one that occurs at the 

lower temperature corresponds to the ferroelectric-paraelectric transition (FE-PE) with 

maxima at ca. 117 ºC. The higher DSC endotherm corresponds to the melting of the 

paraelectric phase and it located at ca.145 ºC. It can be observed that the temperature or 

initial concentration in the crystallization process does not affect the FE-PE transition 

temperature or the melting temperature of the polymer, what leads to the conclusion that 

solvent evaporation rate does not  play an important role in the final polymer crystalline 

properties, but in the crystallization dynamics, which affects the porosity and 

consequently the microstructure of the P(VDF-TrFE) membranes depending on the 

specific place of the polymer/solvent solution phase diagram in which the isothermal 

crystallization begins. 
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Conclusions 

 

Ferroelectric macroporous poly(vinylidene fluoride-trifuoroethylene) membranes with 

tailored interconnected porosity and with great potential for biomedical and energy 

applications have been produced by isothermal crystallization from the solution at 

different temperatures starting from different diluted solutions of the co-polymer in 

dimethylformamide.  

It is concluded that the temperature or initial concentration of the crystallization process 

does not affect neither the phase content of the polymer, nor its ferroelectric transition 

temperature or the melting temperature of the polymer. In this way, the solvent 

evaporation rate does not play an important role in the final polymer crystalline 

properties, but in the crystallization dynamics, which affects the porosity and the 

microstructure of the P(VDF-TrFE) membranes. 

The microstructure depends on the specific place of the polymer/solvent solution phase 

diagram in which the isothermal crystallization begins. The shape of the phase diagram 

in the region of the liquid/liquid coexistence region can be predicted with the help of the 

Flory-Huggins (FH) lattice teory and for the patterning formation two mechanisms have 

to be considered: nucleation and growth and spinodal decomposition. These 

mechanism, toghether with the Cahn-Hilliard equation for mass conservation systems 

give a theoretical explanation of the observed microstructural evolution along the phase 

diagram.   
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