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Abstract Wound dressings have experienced continuous
and significant changes over the years based on the
knowledge of the biochemical events associated with
chronic wounds. The development goes from natural
materials used to just cover and conceal the wound to
interactive materials that can facilitate the healing process,
addressing specific issues in non-healing wounds. These
new types of dressings often relate with the proteolytic
wound environment and the bacteria load to enhance the
healing. Recently, the wound dressing research is focusing
on the replacement of synthetic polymers by natural protein
materials to delivery bioactive agents to the wounds. This
article provides an overview on the novel protein-based
wound dressings such as silk fibroin keratin and elastin.
The improved properties of these dressings, like the release
of antibiotics and growth factors, are discussed. The
different types of wounds and the effective parameters of
healing process will be reviewed.
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Introduction

In the past, traditional dressings such as plant fibers, honey
and animal fat were used to cover the wound, keeping it dry
by allowing the evaporation of wound exudate and
preventing the entry of harmful bacteria into the wound.

Nowadays, the development of new biopolymers and
fabrication techniques creates wound dressings with im-
proved properties that enhance the healing process. Effective
wound management requires the understanding of the type of
wound and healing process. The physical, mechanical and
chemical properties of the dressing must also be taken into
consideration. The new biomaterials to be applied as wound
dressings should create a moist environment around the
wound, effective oxygen circulation, cellular guidance and
low bacterial load. This review discusses the basic principles
of wound healing, type of wounds and the type of wound
dressings. An overview will be given on the properties of
fibrous proteins and their characteristics as wound dressings.

Wounds and wound healing process

A wound, according to the Wound Healing Society, is the
result of “disruption of normal anatomic structure and
function” (Lazarus et al. 1994). Based on the nature of the
repair process, wounds can be classified in acute wounds
and chronic wounds. Acute wounds usually heal complete-
ly within 8–12 weeks with minimal scarring (Nicholas
2002). The primary causes of acute wounds include
mechanical injuries and burns.

Chronic wounds fail to heal in the expected time frame
and persist beyond 12 weeks, with the possibility to reoccur
(Harding et al. 2002). A chronic wound does not heal
properly because the orderly sequence of events is
disrupted at one or more stages of the healing. The factors
that inhibited or negatively influence the healing can be
divided into systemic and local (Table 1). A chronic wound
is usually a permanent inflammatory state comprising a
high and constant proteolytic activity. This will diminish
the recognition and subsequent removal of cells by macro-
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phages promoting a necrotic disintegration. Chronic
wounds include decubitus wounds (pressure sores); venous,
arterial and diabetic foot ulcers; and wounds due to
autoimmune disease. Although chronic wounds are a
clinical and economic burden, there has been little
consensus on how to diagnose and treat them (Kuehn
2007).

Principles of wound healing

Wound healing is a specific biological process related to the
general phenomenon of growth and tissue regeneration.
There are several reports describing the various biological
and physiological stages of healing (Boateng et al. 2008;
Queen et al. 2004; Strodtbeck 2001). The wound healing
process can be summarized into five independent and
overlapping stages, including hemostasis, inflammation,
migration, proliferation and maturation (Fig. 1). The
healing process is not linear and can progress forward and
backwards through the phases depending on various
factors.

Hemostasis and inflammation occurs soon after the
damage of the skin, which is often accompanied by
bleeding. This activates hemostasis through fibrinogen that
leads to the coagulation of exudates (blood without cells
and platelets) and, together with the formation of a fibrin
network, produces a clot in the wound that stops the
bleeding and provides a temporary matrix for cellular
migration. Inflammation occurs almost simultaneously with
hemostasis, from within a few minutes to 24 h and lasts for
about 3 days, involving the infiltration of the wound with
polymorphonuclear leukocytes (neutrophil granulocytes)
whose main function is to minimize bacterial contamination
of the wound preventing infection. At later stages of

inflammation, macrophages are the most important cells
being the principal producer of growth factors responsible
for the proliferation.

Migration and proliferation involves the movement of
epithelial cells and fibroblasts to the injured area to replace
damaged and lost tissue. These cells regenerate from the
margins, rapidly growing over the wound under the clot
followed by deposition of the extracellular matrix. With the
progression of the proliferative phase, the temporary fibrin/
fibronectin matrix is replaced by the newly formed
granulation tissue and collagen synthesis.

Maturation is also named the remodeling phase and
involves the formation of cellular connective tissue and
strengthening of the new epithelium, which determines the
nature of the final scar. There is continuous synthesis and
breakdown of collagen as the extracellular matrix is
constantly remodeled, equilibrating to a steady state after
approximately 21 days after wounding.

The most important cells involved in the various steps of
wound healing are summarized in Table 2.

Proteolytic and microbiological environment of wounds

Wounds, acute or chronic, are characterized by the
production of fluid, exudate, which is a key component in
all stages of wound healing, irrigating the wound continu-
ously and keeping it moist (Gray and White 2004). Exudate
supplies nutrients and leukocytes to the wound, which helps
control bacteria and infection. In chronic wounds, there is
excessive amount of exudate that can cause maceration of
healthy tissue around the wound (Cutting and White 2002).
In addition, exudate from chronic wounds differs from that
of acute wounds with relatively higher levels of tissue
destructive proteases, namely metalloproteinases (MMPs)

Local factors Systemic factors

Scalds and burns (physical and chemical) Advanced age and immobility

Local pressure Obesity

Compromised vascular perfusion (arterial, venous or mixed) Malnutrition and nutritional deficiencies

Neurologic defects Systemic malignancy and terminal illness

Inadequate blood supply Immunodeficiency

Poor venous drainage Trauma (initial or repetitive)

Foreign body and foreign body responses Chemotherapy and radiotherapy

Infection Immunosuppressive drugs, corticosteroids
and anticoagulants

Excess local mobility Psychosocial stress

Underlying osteomyelitis Systemic diseases (diabetes, rheumatoid
arthritis, connective tissue diseases,
metabolic diseases)

Malignant transformation (Marjolin’s ulcer) Inherited neutrophil disorders

Impaired macrophage activity

Table 1 Factors that inhibit
wound healing (Enoch
and Leaper 2008; Thomas
et al. 2010)
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and polymorphonuclear elastase (Chen et al. 1992).
Exudate obtained from chronic wounds has been shown
to contain human neutrophil elastase, cathepsin G,
urokinase-type plasminogen activator and gelatinase
(MMP-9; Chen et al. 1992; Cutting and White 2002).

A wound often provides a moist, warm and nutritious
environment to microbial colonization and proliferation.
The number and diversity of microorganisms will depend
on the type of wound, depth, location and the antimicrobial
efficacy of the host immune response. Wound colonization
is most frequently polymicrobial (Bowler 1998; Bowler and
Davies 1999; Bowler et al. 2001), involving numerous
microorganisms that are potentially pathogenic, which may
lead to infection. When infection is present, the wound fails
to heal, and there is increased trauma to the patient and
increased treatment costs. Infection should be considered if

one of the following is present: pyrexia, increased pain,
increasing erythema of surrounding skin, lymphangitis and
rapid increase in wound size (Douglas and Simpson 1995).
Nevertheless, since chronic wounds may not always display
the classic symptoms of infection, signs such as serous
exudate plus concurrent inflammation, delayed healing,
discoloration of granulation tissue, friable granulation
tissue, foul odor and wound breakdown should also be
used to identify infection (Gardner et al. 2001).

It is widely recognized that aerobic or facultative
pathogens such as Staphylococcus aureus, Pseudomonas

aeruginosa and β-hemolytic streptococci are the primary
causes of infection of both acute and chronic wounds
(Daltrey et al. 1981; Halbert et al. 1992; Sehgal and
Arunkumar 1992). However, the distinction between
infected and colonized wounds has to be done on a clinical

Fig. 1 Phases of cutaneous wound healing (adapted from Strodtbeck 2001)
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perspective instead of microbiological analysis due to the
universal colonization of chronic wounds. This frequently
presents a wrong diagnosis that leads to the unnecessary
use of antibiotics.

Wound dressings

The wound requires a protective barrier to promote the
healing. Early humankind employed many different materi-
als from the natural surroundings to treat the wounds. These
include natural fibers such as wool and linen, honey, eggs
and animal fat (Inngjerdingen et al. 2004; Mensah et al.
2006). Continuous development results in the development
of wound dressings with improved performance. Wound
dressings can be classified covering different aspects (Sai
and Babu 2000; Thomas 2004) as follows:

1. Passive dressings such as gauze and tulle that act to
cover the wound. Gauze can stick to the wound and
disrupt the wound bed when removed, thus are suitable
for minor wounds. Tulle is as greasy gauze suitable for
minimal to moderate exudates.

2. Interactive dressings contain polymeric films, foams
and hydrogels which are transparent and permeable to
water and atmospheric oxygen. These are suitable for
heavily exudating wounds (foams and hydrogels) and
good barriers against permeation of bacteria to the
wound environment.

3. Bioactive dressings such as hydrocolloids, alginates,
collagen and hydrofibers produced from a variety of
biopolymers such as collagen, hyaluronic acid, chitosan,
alginate and elastin (Falabella 2006; Queen et al. 2004).
These types of dressings have the ability to modify
facing the physiological condition of the wound,

promoting the healing. The bioactive dressings normally
contain active ingredients such as antimicrobials and
antibiotics (Queen et al. 2004) or can target the reduction
of high protease levels on the wound (Cullen et al. 2002;
Vachon and Yager 2006). Depending on the wound type
and its healing, one or more different types of dressings
can be applied. Table 3 describes the desirable properties
of wound dressings and their impact on the healing
process.

Considering the above characteristics, biomaterials have
soon been used as wound dressing materials. They are
designed to have an impact in the local wound environment
beyond moisture management. Herein, the characteristics of
protein-based materials and their action on the wound
healing will be described.

Commercial protein-based wound dressings

Collagen

The development of collagen wound dressings is a
consequence of its structural and functional significance in
wound healing process. Collagen is the most abundant
protein of extracellular matrix (ECM) providing support to
connective tissues such as skin, tendons, bones, cartilage,
blood vessels and ligaments (Eyre 1980; Lee et al. 2001a;
Wong Po Foo and Kaplan 2002). It constitutes 30% of all
protein found in the body acting as a natural scaffold for
cell attachment, migration, proliferation, differentiation and
survival (Yang et al. 2004). Collagen possesses high
mechanical strength, good biocompatibility, low antigenicity,
biodegradability, and the ability to promote cellular attach-
ment and growth, which makes this a valuable protein for

Cell type Function in wound healing

Platelets Involved in thrombus formation

Rich source of inflammatory mediators including cytokines

Major initial stimulus for inflammation

Neutrophils First cells to infiltrate the wound

Phagocytosis and intracellular killing of invading bacteria

Monocytes (macrophages) Phagocytosis and killing of invading bacteria

Clear debris and necrotic tissue

Rich source of inflammatory mediators including cytokines

Stimulate fibroblasts division, collagen synthesis and angiogenesis

Lymphocytes Not clearly defined

May produce cytokines in certain types of wounds

Fibroblasts Produce various components of the ECM including collagen,
fibronectin, hyaluronic acid, proteoglycans

Synthesized granulation tissue

Help reorganize the temporary ECM

Table 2 Type of cells involved
in the wound healing process
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biomedical applications (Lee et al. 2001a). Furthermore,
the abundance of functional groups along the collagen
polypeptide backbone allows the incorporation of genes,
growth factors and other biological molecules (Harley and
Gibson 2008).

Collagen sutures and extrude fibers were used to cover
the exposed areas of wounded skin during the Second
World War. Since then, collagen has been extensively
applied for the development of wound dressings. Collagen
films are made by casting collagen solutions onto methac-
rylate surfaces, which are thin and difficult to handle; thus,
cross-linking is necessary. UV irradiation increased the
mechanical strength of the films, and when implanted in
animals, a very mild inflammatory response was observed
along with fibroblast attachment to the collagen surface
(Dunn et al. 1967). Blends of collagen films with nylon and
silicon increased the mechanical strength and have been
shown to be potential wound dressings exhibiting rapid
epithelialization with little inflammatory response (Shettigar
et al. 1982; Smith 1995). The incorporation of antimicrobial
agents (Man et al. 2007) and antioxidants (Gopinath et al.
2004) on collagen films was released in a controlled manner,
promoting the wound healing.

Collagen sponges are normally produced by lyophilization
of collagen gel dispersions or acidic solutions (Zhong et al.
2010). These are suitable platforms for wound dressings
because the large pores and interconnectivity enhances in
vitro cellular attachment and growth and promote wound
tissue infiltration in vivo (Doillon 1987). As advantages,
collagen sponges often have poor biostability and low
mechanical strength, and wound contraction easily occurs

(Auger et al. 1998; Berry et al. 1998; Ono et al. 1999).
Extensive modifications by cross-linking (Garcia et al. 2008;
Powell and Boyce 2007) or blending with other natural and
synthetic polymers such as ECM components (Ding et al.
2008; Doillon et al. 1987; Ruszczak 2003), chitosan (Man et
al. 2007; Wang et al. 2008a), polycaprolactone (Dai et al.
2004; McClure et al. 2011), polylactide–polyglycolide
(PLGA; Chen et al. 2004, 2006a) and polyurethane (Wu et
al. 2003) improved the mechanical properties due to the
formation of intra- and intermolecular covalent bonds.
Moreover, these collagen-based sponges inhibited the colla-
gen matrix from contracting, accelerating the healing. The
incorporation of ECM components such as fibronectin,
elastin and glycosaminoglycans (GAGs) are important in
guiding the cell physiology and behavior in wound healing
(Ding et al. 2008; Doillon et al. 1987; O’Brien et al. 2004;
Ruszczak 2003). Addition of growth factors (Ono et al.
1998; Wang et al. 2008a) onto collagen sponges prevents
wound contraction by promoting faster wound closure.
Recently, the same behavior was observed by the incorpo-
ration of a herbal formulation into a collagen sponge, with
improved tissue regeneration and collagen content at the
wound site (Kumar et al. 2010). The ECM is composed of
collagen nanoscale fibers which provide structural integrity
and mechanical strength to the skin. Electrospun collagen
was found to be the most biomimetic nanofibrous scaffolds
similar to the native ECM. Electrospun collagen matrices
exhibited excellent biocompatibility and accelerated wound
healing, along with inhibition of wound contraction in the
early stage of wound healing (Powell et al. 2008; Rho et al.
2006). Moreover, electrospun collagen blends with chitosan

Properties Impact on wound healing

Debridement (wound
cleansing)

Enhances migration of leukocytes into the wound bed

Supports accumulation of enzymes

Provide and maintain moist Prevents desiccation and cell death

Promotes epidermal migration, angiogenesis and
connective tissue synthesis

Supports autolysis by rehydration of desiccated tissue

Absorption (blood and
excess of exudate)

Excessive exudate blocks the proliferation and cellular activity
and degrades connective tissue, factors that delay the healing

Causes maceration of healthy tissue surrounding the wound

Permeable (water, vapor, air) Permeability to water vapor controls the management of exudate

Low tissue oxygen levels stimulate angiogenesis

High tissue of oxygen stimulates ephitelialization and fibroblasts

Bacterial barrier Infection prolongs the inflammatory phase and delays collagen
synthesis, inhibits epidermal migration and induces additional
tissue damage

Provide thermal insulation Normal tissue temperature improves the blood flow
to the wound bed and enhances epidermal migration

Low adherence Adherent dressings may be painful and difficult to
remove causing further tissue damage

Table 3 Properties of wound
dressings and their impact on
healing
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(Chen et al. 2008) and PLGA (Liu et al. 2010) also showed
accelerated wound healing when compared to collagen
sponges. There are several commercially available
collagen-based wound dressings. Table 4 describes their
composition and function observed during wound healing.

Gelatin

Gelatin is a natural polymer that is derived from collagen
and is commonly used for pharmaceutical and medical
applications because of its biodegradability (Balakrishnan
and Jayakrishnan 2005; Ikada and Tabata 1998; Kawai et
al. 2000; Yamamoto et al. 2001) and biocompatibility in
physiological environments (Kuijpers et al. 2000; Yao et al.
2004). Due to its easy processability and gelation proper-
ties, gelatin has been manufactured in a range of shapes
including sponges, injectable hydrogels and gelatin micro-
spheres which normally are incorporated in a second
scaffold such as a hydrogel.

Gelatin has been applied as a dressing showing
improved wound healing. Cationized gelatin hydrogel
incorporating growth factors was applied to the round
corneal defects in rabbits (Hori et al. 2007). This resulted in
a reduction in the epithelial defect in rabbit corneas
accompanied by a significantly enhanced epithelial prolif-
eration with accelerated ocular surface wound healing. In a
similar study, gelatin sponges incorporating growth factor
were used to treat pressure-induced decubitus ulcers (Jiang
et al. 2008; Kawai et al. 2005). It was shown that the
release of growth factors promotes accelerated wound
healing and induces neovascularisation. A bilayer wound
dressing prepared from gelatin sponges and elastomeric

polyurethane membranes were used for the incorporation of
epidermal growth factor (EGF; Huang et al. 2006;
Ulubayram et al. 2001). The prepared systems were tested
in vivo experiments on full-thickness skin defects created
on rabbits with no foreign body reaction.

The release of antimicrobials agents such as catechol
(Adhirajan et al. 2009), cyclic adenosine monophosphate
which is a second messenger and regulator of human
keratinocyte proliferation (Balakrishnan et al. 2006) had
been shown to avoid wound infection and promoted
accelerated healing and re-epithelialization of full-
thickness wounds. Gelatin blends with alginate (Balakrishnan
et al. 2005) applied to full-thickness wounds showed the
formation of new skin; chitosan (Deng et al. 2007) has been
shown to have antimicrobial properties with improved
mechanical properties (Yang et al. 2011). A bilayer gelatin/
chondrointin-6-sulfate/hyaluronic acid dressing grafted to the
dorsum of mice has positive effect on promoting wound
healing, but also has a high rate of graft take (Wang et al.
2006). Electrospun gelatin and poly(L-lactide) (Gu et al.
2009) and gelatin/fibrinogen (Dainiak et al. 2011) showed
controlled evaporative water loss and promoted fluid
drainage ability and excellent biocompatibility, therefore
having potential application as wound dressing.

Fibrin

Fibrin is a protein matrix produced from fibrinogen, which
can be autologously harvested from the patient (Aper et al.
2007), providing an immunocompatible carrier for the
delivery of active biomolecules, especially cells. Polymerized
fibrin is a major component of blood clots and plays a vital

Table 4 Commercial collagen-based wound dressings

Dressing Composition Application

Alloderm™ Acellular dermis from cadaveric skin origin Autograft in the resurfacing of burn wounds
reconstruction due to its human origin
(Kearney 2001)

Integra™ Bovine tendon collagen and shark GAGs Split-thickness skin grafts; treatment of leg ulcers
and wound closure of severe burn wounds
(Fitton et al. 2001)

Promogram® Animal collagen (55%) with oxidized
regenerated cellulose (45%)

Absorb excess proteases from the wound surface
(Schönfelder et al. 2005)

Puraply® Reconstructed type I porcine collagen Partial- and full-thickness wounds including
chronic wounds, donor sites and for MOHS
surgery (Sanjay et al. 2009)

Fibrocol Plus® Animal collagen 90% with an alginate 10% Partial thickness wounds, venous ulcers,
acute traumatic wounds, second degree burns

Apligraft™/Graftskin™ Human fibroblasts and bovine tendon collagen gel Venous leg ulcers and diabetic foot ulcers
(Curran and Plosker 2002)

Orcel™ Human epidermal keratinocytes and dermal
fibroblasts) cultured in a type I
bovine collagen sponge

Acute surgical excisions (Still et al. 2003)
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role in the subsequent wound healing response (Neidert et al.
2002). Fibrin naturally contains sites for cell binding and
therefore has been investigated as a substrate for cell
adhesion, spreading, migration and proliferation (Ehrbar et
al. 2005). Fibrin glue is a biological adhesive also used in
surgery (abdominal, thoracic, vascular, oral, endoscopic) due
to its haemostatic, chemotactic and mitogenic properties (Le
Nihouannen et al. 2006). Fibrin glue mimics the last step of
the in vivo coagulation cascade through the activation of
fibrinogen by thrombin, resulting in a clot of fibrin with
adhesive properties (Oju et al. 2005). Fibrinogen is con-
verted into a monomeric form of fibrin by thrombin, forming
a clot. The concentration of fibrinogen is 20–40 times higher
in fibrin sealant products than in body fluid. Fibrin provides
a material that can be rapidly invaded, remodeled and
replaced by cell associated proteolytic activity (Schmoekel et
al. 2004). Moreover, due to its biomimetic and physical
properties, it is also widely used as a cell carrier to many cell
types, such as keratinocytes, urothelium cells, tracheal
epithelial cells (Wechselberger et al. 2002), murine embry-
onic stem cells (Willerth et al. 2006) and mesenchymal
progenitor cells (Schantz et al. 2005).

Fibrin is applied as a wound dressing specially because
of its sealant properties showing to be effective as an
adhesive bandage for treating major renal stab wounds
(Griffith et al. 2004; Morey et al. 2001); also, the use of
fibrin glue on wound healing in the oral cavity has a
positive effect when compared with traditional suture
techniques (Baughman et al. 2003; Yücel et al. 2003).
The biomechanical strength of skin incision wounds was
increased when treated with a fibrin sealant (Jørgensen et
al. 1987). Moreover, in vivo wound healing requires
fibroblast growth and collagen synthesis, which is stimu-
lated in the presence of fibrin (Michel and Harmand 1990).
Wound contraction was also found to be inhibited by the
presence of fibrin (Farahani 2007). Fibrin scaffold was used
in order to enhance the delivery of adenovirus encoding
endothelial nitric oxide synthase (eNOS; Breen et al. 2008).
It was shown that fibrin delivery of adenovirus enhanced
eNOS expression, inflammatory response and a faster rate
of re-epithelialisation. Full-thickness wounds treated with
fibrin scaffolds seeded with keratinocytes were shown to
promote wound closure (Bannasch et al. 2008) and promote
the delivery of epithelial cells that assist wound healing
(Grant et al. 2002). Autologuous fibrin sealants produced
with commercially available devices (CryoSeal® and
Vivostat®) and those industrially produced homologous
fibrin sealant Tissucol/Tisseel® were compared in their
ability for the formation and stability of clots in an in vitro
model mimicking in vivo conditions (diffusion of protease
inhibitors and proteolytic digestion; Buchta et al. 2005). It
was shown that clot liquefaction occurs faster for all
autologous fibrin sealants clots. A novel chimeric protein

produced by the fusion of the fibrin-binding domain with
epidermal growth factor demonstrated its potential for
repairing injured tissues (Kitajima et al. 2009).

Innovative protein-based wound dressings

Silk fibroin

Silks are naturally occurring protein polymers produced by
a wide variety of insects and spiders (Kaplan et al. 1994,
1998; Vollrath and Knight 2001). The diverse functions of
silks range from web construction and prey capture (spider
webs), safety lines (draglines) to reproduction (cocoons;
Altman et al. 2003; Winkler and Kaplan 2000; Wong Po
Foo and Kaplan 2002). Silk in its natural form is composed
of a filament core protein, silk fibroin, and a glue-like
coating consisting of sericin proteins. The most widely
studied silks are cocoon silk from the silkworm Bombyx

mori and dragline silk from the spider Nephila clavipes (Jin
and Kaplan 2003; Vollrath and Knight 2001). Silk fibers
from the domesticated silkworm B. mori consist of two
proteins—a light chain (≈26 kDa) and a heavy chain
(≈390 kDa)—which are present in a 1:1 ratio and are
linked by a single disulfide bond that holds the fibroin
together (Zhou et al. 2000). These proteins are coated with
a family of hydrophilic proteins, sericin (20–310 kDa),
which accounts for 25% of the silk cocoon’s mass (Inoue et
al. 2000; Kaplan et al. 1998; Zhou et al. 2000). The amino
acid composition of silk fibroin from B. mori consists
mainly of glycine (Gly, 44%), alanine (Ala, 29%) and
serine (Ser, 11%; Vasconcelos et al. 2008). The crystalline
domains in the fibers consist of Gly-X repeats, with X
being Ala, Ser, threonine and valine (Val; Zhou et al. 2001).
In the solid state, silk fibroin can assume two polymorphs:
The silk I structure is water-soluble, and upon exposure to
heat, physical spinning and organic solvents easily converts
to silk II structure (Jin and Kaplan 2003; Kaplan et al.
1998; Zhou et al. 2001). The β-sheet structures (silk II) are
asymmetrical, with one side occupied by hydrogen side
chains from glycine and the other occupied by the methyl
side chains from the alanine that populates the hydrophobic
domains. Silk II is water-insoluble as well in several
solvents, including mild acid and alkaline conditions and
several chaotropes.

Silk fibers from B. mori have been primarily used in
biomedical applications as sutures (Zhang 2002) and,
during decades of use, silk fibers proven to be effective in
many clinical applications. Nevertheless, immunological
reactions observed to virgin silk suture have been attributed
to the sericin protein (Moy et al. 1991). It has been shown
that sericin is a potential allergen causing a type I allergic
reaction (Panilaitis et al. 2003; Rossitch et al. 1987). In this
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way, removal of sericin from silk is necessary to prepare non-
allergic and non-cytotoxic silk-based materials. However, a
recent study using sericin/gelatin blends for the fabrication of
films and sponges reported cytocompatibility using feline
fibroblast cells and low immunogenicity (Mandal et al.
2009b).

Silk fibroin-based biomaterials can be obtained with
different morphologies: Silk films can be prepared by
solvent casting or layer-by-layer deposition of solutions
(Hofmann et al. 2006; Huemmerich et al. 2006); SF
sponges or scaffolds can be formed after lyophilization,
porogens or gas foaming (Wang et al. 2008b); SF hydrogels
are formed via sol–gel transitions, sonication, vortexing or
the presence of acid and/or ions (Mandal et al. 2009a); SF
nanofibers are prepared by electrospinning (Unger et al.
2004); and SF micro/nanospheres have been prepared by
water/oil emulsion, spray drying, lipid vesicles, salt leach-
ing and sonication (Hino et al. 2003; Wang et al. 2007). To
be further used, it is necessary to induce β-sheet crystal-
lization so that silk-based materials become water-insoluble
and more slowly degraded. This can be achieved through
the use of organic solvents such as methanol and formic
acid, mechanical stress, high concentrations of salts and
thermal treatment (Drummy et al. 2005; Um et al. 2001).
Water-based annealing procedure and very slow drying
have been shown to induce the formation of the β-sheet
crystal of SF materials (Jin et al. 2005; Lu et al. 2011).
According to the US Pharmacopeia, a degradable material
is defined as one that “loses most of its tensile strength
within 60 days” post-implantation in vivo. By this
definition, silk is classified as non-degradable. However,
based on the literature, fibroin is proteolytically degradable
over longer time periods (Horan et al. 2005). Pure SF and
blend systems had been applied in the development of new
wound dressing materials, and they have been extensively
studied using animal models. Table 5 describes some of the
applications of silk fibroin as a wound dressing.

Overall, the healing properties presented by the SF-based
materials are related to the physical properties of SF such as
water absorption and vapor permeability. The ability to
absorb wound exudate forms a flexible dressings that sticks
to the wound, preventing excessive flow cell-proliferating
substances, exudate and proteins. At the same time, smooth
regeneration of the skin is accelerated because the flexible
dressings moves when the skin moves, without stimulating
the wound

Keratin

Keratin is the major structural fibrous protein providing
outer covering such as hair, wool, feathers, nails and horns
of mammals, reptiles and birds (Feughelmann 1985).
Keratin fibers, such as wool and human hair, consist of

two major morphological parts: the cuticle layer which is
composed of overlapping cells that surround the cortex and
the inner part of the fiber. Keratin proteins can be roughly
classified into two groups: the intermediate filament
proteins (IFPs) and the matrix proteins. The most abundant
are the IFPs, also known as α-keratin, that reside in the
fiber cortex. They have an α-helical secondary structure,
are low in sulfur content and have an average molecular
mass in the range of 40–60 kDa. The matrix proteins or γ-
keratin are globular, have low molecular weights and are
noted for the high content in either cysteine, glycine or
tyrosine residues. The ones with high sulfur content can be
divided into high sulfur proteins or ultra-high sulfur
proteins depending on their cysteine content and have a
molecular weight in the range of 11–26 kDa. The high
glycine–tyrosine proteins have a molecular weight between
6 and 9 kDa. The matrix proteins function to surround the
IFPs and interact with them through intermolecular disul-
fide bonds (Plowman 2003). The formation of the cross-
linked IF–matrix composite is crucial in conferring to α-
keratins their high mechanical strength, inertness and
rigidity (Parry and Steinert 1992). There is also another
group of keratin proteins, the β-keratin. These form the
majority of the cuticle, and their function is to protect
keratin fibers from physical and chemical damage. β-
keratin is difficult to extract and do not form especially
useful reconstituted structures (Crewther et al. 1965).

Keratins are extracted from the fibers through the use of
chemicals to break the disulfide bonds. The IF and matrix
proteins are converted into their non-cross-linked forms by
oxidation (Breinl and Baudisch 1907; Buchanan 1977;
Crewther et al. 1965; Earland and Knight 1956) or
reduction (Crewther et al. 1965; Goddard and Michaelis
1934; Maclaren 1962; O’Donnell and Thompson 1964),
during which cysteine is converted to either cysteic acid or
cysteine, respectively. Oxidative extraction yields keratins
that are hygroscopic, non-disulfide cross-linkable, water-
soluble and susceptible to hydrolytic degradation at
extremes pH values due to polarization of the backbone
caused by the electron-withdrawing properties of the
cysteic acid. These characteristics lead to biomaterials that
can degrade relatively fast in vivo, i.e. in the order of days
to weeks. Reduced keratins are less polar and, as a
consequence, less soluble in water, more stable at extreme
pH and can be re-cross-linked through oxidative coupling
of cysteine groups. This results in biomaterials that persist
in vivo for weeks to months. The interest of using keratin as
a biomaterial in medical applications is based on several
key properties that contribute to the overall physical,
chemical and biological behaviors of these biomaterials.
Extracted keratin proteins have an intrinsic ability to self-
assemble and polymerize into fibrous and porous films gels
and scaffolds. Furthermore, the presence of cell adhesion
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sequences, arginine–glycine–aspartic acid and leucine–
aspartic acid–valine on the keratin protein derived from
wool and hair, makes keratin biomaterials able to support
cell attachment and growth (Tachibana et al. 2002; Verma
et al. 2008). These are the same sequences found in several
ECM proteins (Hamasaki et al. 2008; Humphries et al.
1987). In the field of wound healing, several patents have
been published using keratin materials as wound-healing
promoters (Blanchard et al. 2001, 2000; Cowsar 2003; Van
Dyke 2008; Van Dyke et al. 2001a; b). Keratin powder used
as an absorbent wound dressing showed the promotion of
skin healing due to the release of keratin derivative peptides
to the wound (Van Dyke et al. 2001b). Cross-linked
keratin powder, films and hydrogels showed significant
proliferation of wound healing cell lines like microvascular
endothelial cells, keratinocytes and fibroblasts. Moreover,
incubation of keratin materials with lymphocytes (T cells)
and activated lymphocytes showed, respectively, no
proliferation and normal growth, indicating that keratin
materials are non-immunogenic and that the body’s normal
cell-mediated immune response is not inhibited by keratin
materials. These were also applied to wounds on animals
(rats) and humans, and a faster healing of the wounds
treated with keratin materials was observed and, in the

human model, with reduced pain (Blanchard et al. 2001,
2000). Water-soluble keratin peptides derived from an
oxidative extraction from human hair were shown to be
wound-healing agents enhancing the proliferation of human
dermal fibroblasts (Van Dyke et al. 2001a). More recently,
keratin derivatives obtained either by oxidative and
reductive methods were applied to burn wounds using
animal and human models. The burn wounds treated with
keratin materials showed a decrease in wound size and
accelerated wound healing. When applied to bleeding
wounds, the keratin materials formed a physical seal of
the wound site, providing a porous scaffold for cell
infiltration and granulation tissue formation compared to
clotted blood (Van Dyke 2008). Keratin was also effectively
blended with other components to form new wound
dressings. Keratin–collagen sponges were used in rats
showing tissue compatibility and accelerated wound
healing by stimulating cell proliferation and vascularization
(Chen et al. 2006b). An analogue keratin–collagen sponge
containing poly 2-hydroxyethylmethacrylate was applied to
burn wounds in rats. The composite showed healing
promotion by allowing in vivo construction of tissue
engineered epidermis (Chen et al. 2007). In another recent
study, keratin–gelatin used in full-thickness wounds in dogs

Table 5 Application of SF as wound dressings

Dressing Wound Result

PVA/Chitosan/SF (PCS) sponges Excision rat wound Absorption of wound exudate with accelerated
wound healing (Yeo et al. 2000)

SF films Full-thickness mice skin wound Reduced wound size by 10, faster healing about
7 days shorter when compared to control dressing
(DuoActive); higher collagen regeneration and
reduce inflammation (Bidwell et al. 2007)

SF/alginate sponges Full-thickness mice skin wound Reduced healing time in comparison to control or
pure SF and alginate; significant increase of
re-ephitelialization and in the number of
proliferative cells (Negri et al. 1993)

Polarized hydroxyapatite (pHA)
and SF composite gel

Full-thickness porcine skin wound Higher promotive effects, re-ephitelialization and
matrix formation (Okabayashi et al. 2009)

SF/sericin powder combined
with amorphous SF film

NA Inhibition of edematization (Tsubouchi 2001)

SF fiber dressing NA Selective sequestration of targeted proteases from
wound exudate (Mcdevitt 2002)

Electrospun silk mats NA Loading of electrospun silk mats with EGF
promoted a faster wound closure up to 90%
(Schneider et al. 2009)

SF/chitosan scaffold Murine soft tissue wound Incorporation of human adipose-derived stem
cells (ASCs) onto scaffolds enhanced wound
healing and show differentiation into fibrovascular,
endothelial and epithelial components of
restored tissue (Altman et al. 2003)

SF/keratin films NA Incorporation a small inhibitor peptide showed
to reduce elastase activity through the
controlled release of inhibitor from the films
(Vasconcelos et al. 2008)
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promoted the healing due to the early presence of hair
follicles, sebaceous gland and normal thickness of the
epidermis (Thilagar et al. 2009).

Elastin

Elastin is an ECM protein known for providing elasticity to
tissues and organs. As a result, elastin is most abundant in
organs that need to stretch and recoil, like blood vessels,
elastic ligaments, lungs and skin (Faury 2001; Martyn and
Greenwald 2001; Pasquali-Ronchetti and Baccarani-Contri
1997). Elastin is synthesized by a variety of cells, including
smooth muscle cells, endothelial cells, fibroblasts and
chondrocytes. Elastin is an amorphous protein with about
75% of hydrophobic amino acid residues (Gly, Ala, Val)
and is highly insoluble due to interchain cross-links (Ayad
et al. 1994). Elastin is secreted as the precursor tropoelastin
(≈72 kDa) that is soluble, non-glycosylated and highly
hydrophobic (Long and Tranquillo 2003; Madsen et al.
1983; Mecham et al. 1983), which will be further converted
into the insoluble elastin polymer. The tropoelastin mole-
cule consists of two types of domains encoded by separate
exons: hydrophobic domains with many Gly, Val, Ala and
Pro residues which often occur in repeats of several amino

acids, like Gly-Val-Gly-Val-Pro, Gly-Val-Pro-Gly-Val and
Gly-Val-Gly-Val-Ala Pro, and hydrophilic domains with
many Lys and Ala residues that correspond to the potential
cross-linking domains of tropoelastin. The two predominant
cross-links of native elastin are desmosine and isodesmo-
sine, each involving four Lys residues that are cross-linked
by lysyl oxidase. The assembly of tropoelastin into a
polymeric matrix is accompanied by the elastin-binding
protein (67 kDa) that releases tropoelastin into a pre-formed
microfibrillar network, which serves as a scaffold for
tropoelastin deposition (Hinek and Rabinovitch 1994;
Hinek et al. 1988; Rosenbloom et al. 1993; Ross and
Bornstein 1969). The lysine residues become further
modified by lysyl oxidase, allowing cross-linking into a
stable polymeric matrix.

Elastin can be used in biomaterials in different forms
including insoluble elastin, occurring in autografts, allografts
and xenografts, decellularized extracellular matrix and in
purified elastin preparations. By synthetic or recombinant
techniques, repeated elastin-like sequences had also been used
in biomaterials. Soluble elastin is obtained from the hydrolysis
of insoluble elastin with oxalic acid or potassium hydroxide
(Jacob and Robert 1989; Partridge et al. 1955). These
treatments will not release tropoelastin from insoluble

Table 6 Application of elastin-based wound dressings to different types of wounds

Dressing Wound Result

Collagen scaffolds coated with elastin Full-thickness skin wound Improved dermal regeneration and reduce
wound contraction (De Vries et al. 1995)

Collagen scaffolds coated with elastin Porcine excision wound Reduced wound contraction, improved tissue
regeneration and absence of myofibroblasts
when compared to control (Lamme et al. 1996)

Collagen/elastin dermal substitute Porcine excision wound Fibroblasts proliferation and reduced migration
of unwanted subcutaneous fibroblasts into the
wound; reduced degradation of the implanted
dermal substitute (Lamme et al. 1998)

Collagen/elastin membranes Rat excision wound Serves as a template for the formation of
neo-dermis (Hafemann et al. 1999)

Collagen/elastin dermal substitute Clinical trial Skin elasticity was improved (Cullen et al. 2002;
Hinek et al. 2005) and other parameters like rete
ridges, basement membrane maturation and
epidermal thickness were also improved
(van Zuijlen et al. 2002).

Alginate/hybrid elastin-derived peptides Rabbit ear skin defect
wound model

Promotion of attachment of human dermal
fibroblasts; significantly greater ephitelialization
and a larger volume of regenerated tissue
(Hashimoto et al. 2004)

Elastin proteolytic digested Skin of nude mice Enhanced elastic fiber deposition and synthesis
(Hinek et al. 2005).

Matriderm® collagen/elastin
commercial dressing

Hand burns and joint-associated defects Dermal substitute for the treatment of severe
hand burns (Haslik et al. 2007) and for the
reconstruction of joint-associated defects
(Haslik et al. 2010). Full range of motion
was achieved in both cases with no
blisters and scars.
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elastin, but will break peptide bonds, yielding soluble
fragments of elastin and leaving the cross-links intact (Jacob
and Robert 1989; Partridge et al. 1955). It has been shown
that elastin-soluble peptides influence signaling, chemotaxis,
proliferation and protease release via the elastin receptor
(Duca et al. 2004). Therefore, biomaterials containing
solubilized elastin may exert biological effects like
increasing elastin synthesis. The self-assembly behavior
of elastin was used to obtain different biomaterials like
hydrogels (Mithieux et al. 2004; Wright et al. 2002), films
(Daamen et al. 2007), nanoparticles (Herrero-Vanrell et al.
2005), sponges (Bellingham et al. 2003) and nanoporous
materials (Reguera et al. 2004). These forms can be further
applied in cellular orientation, small-diameter blood vessels
and drug or growth factor delivery systems. Elastin-like
polymers and hybrids of the same with other proteins have
been extensively studied. These offer the possibility to
produce an assortment of biomaterials with specific functions
like manipulation of the transition temperature (Urry 1997)
and high-molecular-mass polymers (Lee et al. 2001b, c;
Wood et al. 1986). Elastin-based materials have been applied
as skin substitutes to treat burn or chronic wounds. Table 6
presents some examples of elastin-based dressings applied to
different types of wound models.

As a final remark, the use of collagen and elastin for the
development of biomaterials and wound dressings leads to
minor failures because these proteins will mimic their
function as ECM. On the other hand, using fibrous proteins
such as silk fibroin and keratin, due to their place in nature,
one would not expect that they could be such valuable
materials. Silk fibroin and keratin are characterized by
highly repetitive amino acid sequences that result in the
formation of relatively homogeneous secondary structures
via self-assembly. The ability of these proteins to self-
assemble into various physical states was exploited for the
development of new biomaterials. These have been shown
to undergo materials with improved mechanical strength,
control of morphology and surface modifications options,
allowing their application in controlled delivery systems
and tissue engineering. This review showed that wounds
treated with these materials have been shown to promote
the healing by enhanced cellular proliferation, growth and
differentiation, and reduced inflammation when applied to
in vivo models. Despite the advantages shown by collagen-
based dressings and the availability in the market, there are
still concerns related to wound contraction and scarring, as
mentioned. The high cost of pure collagen, the variability in
the physicochemical and degradation properties, which are
dependent on the collagen source and processing (Lee et al.
2001a), lead to the use of other natural proteins for wound
dressing applications. In addition, the sterilization of
collagen constitutes a problem because almost all steriliza-
tion methods induce modifications to collagen (Reis et al.

1996). In this way, due to the low cost and the easy process,
silk fibroin and keratin are presented as good candidates for
wound dressing materials.
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