
A correlation-aware data placement strategy for
key-value stores ?

Ricardo Vilaça, Rui Oliveira, and José Pereira

High-Assurance Software Laboratory
University of Minho

Braga, Portugal
{rmvilaca,rco,jop}@di.uminho.pt

Abstract. Key-value stores hold the unprecedented bulk of the data
produced by applications such as social networks. Their scalability and
availability requirements often outweigh sacrificing richer data and pro-
cessing models, and even elementary data consistency. Moreover, existing
key-value stores have only random or order based placement strategies.
In this paper we exploit arbitrary data relations easily expressed by the
application to foster data locality and improve the performance of com-
plex queries common in social network read-intensive workloads.
We present a novel data placement strategy, supporting dynamic tags,
based on multidimensional locality-preserving mappings.
We compare our data placement strategy with the ones used in existing
key-value stores under the workload of a typical social network appli-
cation and show that the proposed correlation-aware data placement
strategy offers a major improvement on the system’s overall response
time and network requirements.

Keywords: Peer-to-Peer; DHT; Cloud Computing; Dependability

1 Introduction

Highly distributed and elastic key-value stores are at the core of the management
of sheer volumes of data handled by very large scale Internet services. Major ex-
amples such as Google, Facebook and Twitter rely on key-value stores to handle
the bulk of their data where traditional relational database management sys-
tems fail to scale or become economically unacceptable. To this end, distributed
key-value stores invariably offer very weak consistency guarantees and eschew
transactional guarantees. These first generation distributed key-value stores are
built by major Internet players, like Google [4], Amazon [8], FaceBook [17] and
Yahoo [6], by embracing the Cloud Computing model.

While common applications leverage, or even depend on, general multi-item
operations that read or write whole sets of items, current key-value stores only

? Partially funded by the Portuguese Science Foundation (FCT) under project Stra-
tus – A Layered Approach to Data Management in the Cloud (PTDC/EIA-
CCO/115570/2009) and grant SFRH/BD/38529/2007.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


offer simple single item operation or at most range queries based on the primary
key of the items [23]. These systems require that more general and complex
multi-item queries are done outside of the system using some implementation
of the Map Reduce[7] programming model: Yahoo’s PigLatin, Google’s Sawzall,
Microsoft’s LINQ.

However, if the API does not provide enough operations to efficiently retrieve
multiple items for the general multi-item queries they will have a high cost in
performance. These queries will mostly access a set of correlated items. Zhonk
et al. have shown that the probability of a pair of items being requested together
in a query is not uniform but often highly skewed [27]. They have also shown
that correlation is mostly stable over time for real applications. Furthermore,
when involving multiple items in a request to a distributed key-value store, it is
desirable to restrict the number of nodes who actually participate in the request.
It is therefore more beneficial to couple related items tightly, and unrelated items
loosely, so that the most common items to be queried by a request would be those
that are closed to each other.

Leveraging the items correlation and the biased access patterns requires the
ability to reflect that correlation into the items placement strategies[26]. How-
ever, data placement strategies in existing key-value stores [4,6,8,17] only sup-
port single item or range queries. If the data placement strategy places correlated
items on the same node the communication overhead for multi-items operations
is reduced. The challenge here is to achieve such placement in a decentralized
fashion, without resorting to a global directory, while at the same time ensuring
that the storage and query load on each node remains balanced.

We address this challenge with a novel correlation-aware data placement
strategy that allows the use of dynamic and arbitrary tags on data items and
combines the usage of a Space Filling Curve (SFC) with random partitioning to
store and retrieve correlated items. This strategy was built into DataDroplets, an
ongoing effort to build an elastic data store supporting conflict-free strongly con-
sistent data storage. Multi-item operations leverage disclosed data relations to
manipulate dynamic sets of comparable or arbitrarily related elements. DataDroplets
extends the data model of existing key-value stores with tags allowing appli-
cations to establish arbitrary relations among items. It is suitable to handle
multi-tenant data and is meant to be run in a Cloud Computing environment.

DataDroplets supports also the usual random and order based strategies.
This allows it to adapt and to be optimized to the different workloads and, in
the specific context of Cloud Computing, to suit the multi-tenant architecture.
Moreover, as some data placement strategies may be non-uniform, with impact
on the overall system performance and fault tolerance, we implemented a load
balancing mechanism to enforce uniformity of data distribution among nodes.

We have evaluated our proposal with a realistic environment and workload
that mimics the Twitter social network.

The remainder of the paper is organized as follows. Section 2 presents Data-
Droplets and Section 3 describes the correlation-aware placement strategy. Sec-



tion 4 presents a thorough evaluation of the three placement strategies. Section 5
discusses related work and Section 6 concludes the paper.

2 DataDroplets Key-value store

DataDroplets is a key-value store targeted at supporting very large volumes
of data leveraging the individual processing and storage capabilities of a large
number of well connected computers. It offers a low level storage service with
a simple application interface providing the atomic manipulation of key-value
items and the flexible establishment of arbitrary relations among items.

In [23] we introduced DataDroplets and presented a detailed comparison
against existing systems regarding their data model, architecture and trade-offs.

2.1 Data Modeling

DataDroplets assumes a very simple data model. Data is organized into disjoint
collections of items identified by a string. Each item is a triple consisting of
a unique key drawn from a partially ordered set, a value that is opaque to
DataDroplets and a set of free form string tags.

DataDroplets use tags to allow applications to dynamically establish arbi-
trary relations among items. The major advantage of tags is that they are free
form strings and thus applications may use them in different manners.

Applications migrated from relational databases with relationships between
rows of different tables and frequent queries over this relationships may have
tags as foreign keys. Therefore, they will efficiently retrieve correlated rows.

Social applications may use as tags the user’s ID and the IDs of the user’s
social connections allowing that most operations will be restricted to a small set
of nodes. Also, tags can be used to correlate messages of the same topic.

2.2 Overlay management

DataDroplets builds on the Chord [22] structured overlay network. Physical
nodes are kept organized on a logical ring overlay where each node maintains
complete information about the overlay membership as in [12,18]. This fits our
informal assumptions about the size and dynamics of the target environments
(tens to hundreds of nodes with a reasonably stable membership) and allows
efficient one-hoping routing of requests [12].

On membership changes (due to nodes that join or leave the overlay) the
system adapts to its new composition updating the routing information at each
node and readjusting the data stored at each node according to the redistribution
of the mapping interval. In DataDroplets this procedure follows closely the one
described in [12].1

1 To the reviewer: since in this paper we do not assess the impact of dynamic mem-
bership changes and because the algorithm has been described in [12], we omit most
of the details of the procedure.



Besides the automatic load redistribution on membership changes, because
some workloads may impair the uniform data distribution even with a random
data placement strategy the system implements dynamic load-balancing as pro-
posed in [15]. Roughly, the algorithm is as follows. Periodically, a randomly
chosen node contacts its successor in the ring to carry a pairwise adjustment of
load.

DataDroplets uses synchronous replication to provide fault-tolerance and au-
tomatic fail-over on node crashes [23].

2.3 Data placement strategies

Nodes in the DataDroplets overlay have unique identifiers uniformly picked from
the [0, 1] interval and ordered along the ring. Each node is responsible for the
storage of buckets of a distributed hash table (DHT) also mapped into the same
[0, 1] interval. The data placement strategy is defined on a collection basis.

In the following we describe the commonly used data placement strategies
for DataDroplets.

The first is the random placement, the basic load-balancing strategy present
in most DHTs [22,12] and also in most key-value stores [8,6,17]. This strategy
is based on a consistent hash function [14]. When using consistent hashing each
item has a numerical ID (between 0 and MAXID) obtained, for example, by
hashing the item’s key. The output of the hash function is treated as a circu-
lar space in which the largest value wraps around the smallest value. This is
particularly interesting when made to overlap the overlay ring. Furthermore, it
guarantees that the addition or removal of a bucket (the corresponding node)
incurs in a small change in the mapping of keys to buckets.

The other is the ordered placement that takes into account order relationships
among items’ primary key favoring the response to range oriented reads and is
present in some key-value stores [6,4,17]. This order needs to be disclosed by the
application and can be per application, per workload or even per request. We use
an order-preserving hash function [11] to generate the identifiers. Compared to a
standard hash function, for a given ordering relation among the items, an order-
preserving hash function hashorder() has the extra guarantee that if o1 < o2,
then hashorder(o1) < hashorder(o2).

The major drawback of the random placement is that items that are com-
monly accessed by the same operation may be distributed across multiple nodes.
A single operation may need to retrieve items from many different nodes leading
to a performance penalty.

Regarding the ordered placement, in order to make the order-preserving hash
function uniform as well we need some knowledge on the distribution of the item’s
keys [11]. For a uniform and efficient distribution we need to know the domain
of the item’s key, the minimum and maximum values. This yields a tradeoff
between uniformity and reconfiguration. While a pessimistic prediction of the
domain will avoid further reconfiguration it may break the uniformity. In the
current implementation of DataDroplets the hash function is not made uniform
but, as described later, we use a more general approach to balance load.



0 n

p
a

b

(a) Hilbert Map-
ping

N
2

p

(b) Hybrid-n
placement strat-
egy

0 n

a

(c) Query example

Fig. 1. Tagged placement strategy

3 Correlation-aware strategy

A key aspect of DataDroplets is the multi-item access that enables the efficient
storage and retrieval of large sets of related data at once. Multi-item operations
leverage disclosed data relations to manipulate sets of comparable or arbitrarily
related elements. The performance of multi-item operations depends heavily on
the way correlated data is physically distributed.

The balanced placement of data is particularly challenging in the presence of
dynamic and multi-dimensional relations. This aspect is the main contribution
of the current work describing a novel data placement strategy based on multi-
dimensional locality-preserving mappings. Correlation is derived from disclosed
tags dynamically attached to items.

3.1 Tagged placement

The placement strategy, called hereafter tagged, realizes the data distribution
according to the set of tags defined per item. A relevant aspect of our approach
is that these sets can be dynamic. This allows us to efficiently retrieve correlated
items, that were previously attached by the application. The strategy uses a di-
mension reducing and locality-preserving indexing scheme that effectively maps
the multidimensional information space to the identifier space, [0, 1].

Tags are free-form strings and form a multidimensional space where tags are
the coordinates and the data items are points in the space. Two data items are
collocated if they have equal sized set of tags and tags lexicographically close,
or if one set is a sub-set of the other.

This mapping is derived from a locality-preserving mapping called Space
Filling Curves (SFCs) [19]. A SFC is a continuous mapping from a d-dimensional
space to a unidimensional space (f : Nd → N). The d-dimensional space is
viewed as a d-dimensional cube partitioned into sub-cubes, which is mapped
onto a line such that the line passes once through each point (sub-cube) in the
volume of the cube, entering and exiting the cube only once. Using this mapping,



a point in the cube can be described by its spatial coordinates, or by the length
along the line, measured from one of its ends.

SFCs are used to generate the one-dimensional index space from the multidi-
mensional tag space. Applying the Hilbert mapping [3] to this multidimensional
space, each data element can be mapped to a point on the SFC. Figure 1(a) shows
the mapping for the set of tags {a, b}. Any range query or query composed of
tags can be mapped into a set of regions in the tag space and corresponding
to line segments in the resulting one-dimensional Hilbert curve. These line seg-
ments are then mapped to the proper nodes. An example for querying tag {a}
is shown in Figure 1(c), which is mapped into two line segments.

An update to a previous item without knowing its previous tags must find
which node has the requested item and then update it. If the update also updates
its tags the item will be moved from the old node, defined by old tags, to the
new node, defined by new tags.

As this strategy only takes into account tags, all items with the same set
of tags will have the same position in the identifier space and therefore will be
allocated to the same node. To prevent this we adopt a hybrid-n strategy. Basi-
cally, we divide the set of nodes into n partitions and the item’s tags instead of
defining the complete identifier into the identifier space define only the partition,
as shown in Figure 1(b). The position inside the partition is defined by a random
strategy. Therefore, the locality is only preserved inter partition.

3.2 Request handling

The system supports common single item operations such as put, get and delete,
multi item put (multiPut) and get (multiGet) operations, and set operations
to retrieve ranges (getByRange) and equally tagged items (getByTags). The
details of DataDroplets operations are presented in [23].

Any node in the overlay can handle client requests. When handling a request
the node may need to split the request, contact a set of nodes, and compose the
clients reply from the replies it gets from the contacted nodes. This is particularly
so with multi item and set operations. When the collection’s placement is done
by tags, this also happens for single item operations.

Indeed, most request processing is tightly dependent of the collection’s place-
ment strategy. For the put and multiPut this is obvious as the target nodes result
from the chosen placement strategy.

For operations that explicitly identify the item by key, get, multiGet and
delete the node responsible for the data can be directly identified when the
collection is distributed at random or ordered. Having the data distributed by
tags all nodes need to be searched for the requested key.

For getByRange and getByTags requests the right set of nodes can be directly
identified if the collection is distributed with the ordered and tagged strategies,
respectively. Otherwise, all nodes need to be contacted and need to process the
request.



4 Experimental evaluation

We ran a series of experiments to evaluate the performance of the system, in
particular the suitability of the different data placement strategies, under a
workload representative of applications currently exploiting the scalability of
emerging key-value stores. In the following we present performance results for
the three data placement strategies previously described both in simulated and
real settings.

4.1 Test workload

For the evaluation of DataDroplets we have defined a workload that mimics the
usage of the Twitter social network.

Twitter is an online social network application offering a simple micro-blogging
service consisting of small user posts, the tweets. A user gets access to other user
tweets by explicitly stating a follow relationship, building a social graph.

Our workload definition has been shaped by the results of recent studies on
Twitter [13,16,2] and biased towards a read intensive workload based on dis-
cussions that took place during Twitter’s Chirp conference (the Twitter official
developers conference). In particular, we consider just the subset of the seven
most used operations from the Twitter API2 (Search and REST API as of March
2010): statuses user timeline, statuses friends timeline,
statuses mentions, search contains hashtag, statuses update,
friendships create and friendships destroy.

Twitter’s network belongs to a class of scale-free networks and exhibit a
small world phenomenon [13]. The generation of tweets, both for the initialization
phase and for the workload, follows observations over Twitter traces [16,2]. First,
the number of tweets per user is proportional to the user’s followers [16]. From
all tweets, 36% mention some user and 5% refer to a topic [2]. Mentions in
tweets are created by randomly choosing a user from the set of friends. Topics
are chosen using a power-law distribution [13].

Each run of the workload consists of a specified number of operations. The
next operation is randomly chosen and, after it had finished, the system waits
some pre configured time, think-time, and only afterwards sends the next op-
eration. The probabilities of occurrence of each operation and a more detailed
description of the workload can be found in [24].

The defined workload may be used with both key-value stores and relational
databases.3

4.2 Experimental Setting

We evaluate our implementation of DataDroplets using the ProtoPeer toolkit [9].
ProtoPeer is a toolkit for rapid distributed systems prototyping that allows

2 http://apiwiki.twitter.com/Twitter-API-Documentation
3 The workload is available at https://github.com/rmpvilaca/UBlog-Benchmark

http://apiwiki.twitter.com/Twitter-API- Documentation
https://github.com/rmpvilaca/UBlog-Benchmark


switching between event-driven simulation and live network deployment without
changing the application code.

For all experiments presented next the performance metric has been the
average request latency as perceived by the clients. The system was populated
with 64 topics for tweets and a initial tweet factor of 1000. A initial tweet factor
of n means that a user with f followers will have n×f initial tweets. For each run
500000 operations were executed. Different request loads have been achieved by
varying the clients think-time between operations. Throughout the experiments
no failures were injected.

Simulated setting From ProtoPeer we have used the network simulation model
and extended it with simulation models for CPU as per [25]. The network model
was configured to simulate a LAN with latency uniformly distributed between 1
ms and 2 ms. For the CPU simulation we have used a hybrid simulation approach
as described in [21]. All data has been stored in memory, persistent storage was
not considered. Briefly, the execution of an event is timed with a profiling timer
and the result is used to mark the simulated CPU busy during the corresponding
period, thus preventing other event to be attributed simultaneously to the same
CPU. A simulation event is then scheduled with the execution delay to free the
CPU. Further pending events are then considered. Therefore, only the network
latency is simulated and the other execution times are profiled from real execu-
tion. Each node was configured and calibrated to simulate one dual-core AMD
Opteron processor running at 2.53GHz.

The system was populated with 10000 concurrent users and the same number
of concurrent users were simulated (uniformly distributed by the number of
configured nodes).

Real setting We used a machine with 24 AMD Opteron Processor cores running
at 2.1GHz, 128GB of RAM and a dedicated SATA hard disk.

We ran 20 instances of Java Virtual Machine (1.6.0) running ProtoPeer.
ProtoPeer uses Apache MINA4 for communication in real settings. We have
used Apache Mina 1.1.3. All data has been stored persistently using Berkeley
DB Java edition 4.0 5.

The system was populated with 2500 concurrent users and the same number
of concurrent users were run (uniformly distributed by the number of configured
instances). During all the experiment IO was not the bottleneck.

4.3 Evaluation of data placement strategies

Simulated setting The graphs in Figure 2 depict the performance of the system
when using the different placement strategies available in the simulated setting.

4 http://mina.apache.org/
5 http://www.oracle.com/technetwork/database/berkeleydb/overview/

index-093405.html

http://mina.apache.org/
http://www.oracle.com/technetwork/database/berkeleydb/overview/index-093405.html
http://www.oracle.com/technetwork/database/berkeleydb/overview/index-093405.html


0

20

40

60

80

L
a
te
n
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(a) statuses update op

0

20

40

60

80

L
a
te
n
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(b) friendships destroy op

0

50

100

150

200

250

L
at
en

cy
(m

s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(c) friendships create op

0

50

100

150

200

250

L
at
en

cy
(m

s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(d) statuses user timeline op

0

50

100

150

200

250

L
at
en

cy
(m

s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(e) statuses mentions op

0

50

100

150

200

250

L
at
en

cy
(m

s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(f) search contains hashtag op

0

10

20

30

40

L
at
en
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(g) statuses friends timeline op

0

50

100

150

200

L
at
en

cy
(m

s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(h) Overall workload

Fig. 2. System’s response time with 100 simulated nodes



The workload has been firstly configured to only use the random strategy (the
most common in existing key-value stores), then configured to use the ordered
placement for both the tweets and timelines collections (for users placement
has been kept at random), and finally configured to exploit the tagged placement
for tweets (timelines were kept ordered and users at random). The lines
random, ordered and tagged in Figure 2 match these configurations.

We present the measurements for each of the seven workload operations
(Figure 2(a) through 2(g)) and for the overall workload (Figure 2(h)). All runs
were carried with 100 nodes.

We can start by seeing that for write operations (statuses_update and
friendships_destroy) the system’s response time is very similar for all sce-
narios (Figures 2(a)and 2(b)). Both operations read one user record and subse-
quently add or update one of the tables. The costs of these operations is basically
the same in all the placement strategies.

The third writing operation, friendships_create, has a different impact,
though (Figure 2(c)). This operation also has a strong read component. When
creating a follow relationship the operation performs a statuses_user_timeline
which, as can be seen in Figure 2(d), is clearly favored when tweets are stored
in order.

Regarding read-only operations, the adopted data placement strategy may
have an high impact on latency, see Figures 2(d) through 2(g).

The statuses_user_timeline operation (Figures 2(d)) is mainly composed
by a range query (which retrieves a set of the more recent tweets of the user) and
is therefore best served when tweets are (chronologically) ordered minimizing
this way the number of nodes contacted. Taking advantage of SFC’s locality
preserving property grouping by tags still considerably outperforms the random
strategy before saturation.

Operations status_mentions and search_contains_hashtag are essentially
correlated searches over tweets, by user and by topic, respectively. Therefore,
as expected, they perform particularly well when the placement of tweets uses
the tagged strategy. For status_mentions the tagged strategy is twice as fast
as the others, and for search_contains_hashtag keeps a steady response time
up to ten thousand ops/sec while with the other strategies the systems struggle
right from the beginning.

Operation statuses_friends_timeline accesses the tweets collection di-
rectly by key and sparsely. To construct the user’s timeline the operation gets
the user’s tweets list entry from timelines and for each tweetid reads it from
tweets. These end up being direct and ungrouped (i.e.. single item) requests and,
as depicted in Figure 2(g) best served by the random and ordered placements.

Figure 2(h) depicts the response time for the combined workload. Overall,
the new SFC based data placement strategy consistently outperforms the others
with responses 40% faster.

Finally, it is worth noticing the substantial reduction of the number of ex-
changed messages attained by using the tagged strategy. Figure 3(a) compares
the total number of messages exchanged when using the random and tagged



strategies. This reduction is due to the restricted number of contacted nodes by
the tagged strategy in multi-item operations.

0

2.5 · 106

5 · 106

7.5 · 106

1 · 107

T
ot
al

M
es
sa
ge
s

0 50 100 150 200

Nodes

random
tagged

(a) Total number of messages exchanged
with system size

0

100

200

300

L
at
en

cy
(m

s)

0 100 200 300 400 500

Throughput (ops/sec)

random
ordered
tagged

(b) System’s response time

Fig. 3. Additional evaluation results

Real setting Figure 3(b) depicts the response time for the combined workload
in the real setting. The results in the real setting confirm the previous results
from the simulated setting. Overall, the new SFC based data placement strategy
consistently outperforms the others.

The additional response time in the real setting, compared with the simulated
setting, is due to the use of a persistent storage.

5 Related Work

There are several emerging decentralized key-value stores developed by major
companies like Google, Yahoo, Facebook and Amazon to tackle internal data
management problems and support their current and future Cloud services.
Google’s BigTable[4], Yahoo’s PNUTS[6], Amazon’s Dynamo[8] and Facebook’s
Cassandra[17] provide a similar service: a simple key-value store interface that
allows applications to insert, retrieve, and remove individual items. BigTable,
Cassandra and PNUTS additionally support range access in which clients can
iterate over a subset of data. DataDroplets extends these systems’ data models
with tags allowing applications to run more general operations by tagging and
querying correlated items.

These systems define one or two data placement strategies. While Cassandra
and Dynamo use a DHT for data placement and lookup, PNUTS and BigTable
have special nodes to define data placement and lookup. Dynamo just imple-
ments a random placement strategy based on consistent hashing. Cassandra
supports both random and ordered data placement strategies per application
but only allows range queries when using ordered data placement. In PNUTS,
special nodes called routers, maintain an interval mapping that divides the over-
all space into intervals and define the nodes responsible for each interval. It also



supports random and ordered strategies, and the interval mapping is done by
partitioning the hash space and the primary key’s domain, respectively. BigTable
only supports an ordered data placement. The items’ key range is dynamically
partitioned into tablets that are the unit for distribution and load balancing.
With only random and ordered data placement strategies, existing decentral-
ized data stores can only efficiently support single item operations or range
operations. However, some applications, like social networks, need frequently to
retrieve general multi correlated items.

Our novel data placement strategy that allows to dynamically correlate items
is based on Space Filing Curves(SFCs). SFCs had been used to process multi-
dimensional queries in P2P systems. PHT [5] applies SFC indexing over generic
multi hop DHTs, while SCRAP [10] and Squid [20] apply SFC indexing to Skip
graphs [1] and Chord [22] overlay, respectively.

While in all other systems the multi-dimensional queries are based on pre-
defined keywords and keywords set DataDroplets is more flexible, allowing free
form tags and tags set. Therefore, tags are used by applications to dynamically
define items correlation. Additionally, in DataDroplets the SFC based strategy is
combined with a random placement strategy and with a generic load balancing
mechanism to improve uniformity even when the distribution of tags is highly
skewed.

Moreover, while all other systems using SFCs in P2P systems run over multi
hop DHTs, our tagged data placement strategy runs over a one hop DHT. There-
fore, while in these other systems the query processing is done recursively over
several nodes in the routing path, with increasing latency, our strategy allows the
node that receives the query to locally know the nodes that need to be contacted
to answer the query.

6 Conclusion

Cloud Computing and unprecedented large scale applications, most strikingly,
social networks such as Twitter, challenge tried and tested data management so-
lutions and call for a novel approach. In this paper, we introduce DataDroplets,
a key-value store whose main contribution is a novel data placement strategy
based on multidimensional locality preserving mappings. This fits access pat-
terns found in many current applications, which arbitrarily relate and search
data by means of free-form tags, and provides a substantial improvement in
overall query performance. Additionally, we show the usefulness of having mul-
tiple simultaneous placement strategies in a multi-tenant system, by supporting
also ordered placement, for range queries, and the usual random placement.

Finally, our results are grounded on the proposal of a simple but realistic
benchmark for elastic key-value stores based on Twitter and currently known
statistical data about its usage. We advocate that consensus on benchmarking
standards for emerging key-value stores is a strong requirement for repeatable
and comparable experiments and thus for the maturity of this area. This proposal
is therefore a first step in that direction.



References

1. Aspnes, J., Shah, G.: Skip graphs. In: Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms. pp. 384–393. SODA ’03, So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA (2003),
http://portal.acm.org/citation.cfm?id=644108.644170

2. Boyd, D., Golder, S., Lotan, G.: Tweet tweet retweet: Conversational aspects of
retweeting on twitter. In: Society, I.C. (ed.) Proceedings of HICSS-43 (January
2010)

3. Butz, A.R.: Alternative algorithm for hilbert’s space-filling curve. IEEE Trans.
Comput. 20(4), 424–426 (1971)

4. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. In: OSDI ’06: Proceedings of the 7th symposium on Operating
systems design and implementation. pp. 205–218. USENIX Association, Berkeley,
CA, USA (2006)

5. Chawathe, Y., Ramabhadran, S., Ratnasamy, S., LaMarca, A., Shenker, S., Heller-
stein, J.: A case study in building layered DHT applications. In: SIGCOMM ’05:
Proceedings of the 2005 conference on Applications, technologies, architectures,
and protocols for computer communications. pp. 97–108. ACM, New York, NY,
USA (2005)

6. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data
serving platform. Proc. VLDB Endow. 1(2), 1277–1288 (2008)

7. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: OSDI’04: Sixth Symposium on Operating System Design and Implementation.
San Francisco, CA (December 2004)

8. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP ’07: Proceedings of twenty-first ACM SIGOPS sym-
posium on Operating systems principles. pp. 205–220. ACM, New York, NY, USA
(2007)

9. Galuba, W., Aberer, K., Despotovic, Z., Kellerer, W.: Protopeer: From simulation
to live deployment in one step. In: Peer-to-Peer Computing , 2008. P2P ’08. Eighth
International Conference on. pp. 191–192 (Sept 2008)

10. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: multi-
dimensional queries in p2p systems. In: WebDB ’04: Proceedings of the 7th In-
ternational Workshop on the Web and Databases. pp. 19–24. ACM, New York,
NY, USA (2004)

11. Garg, A.K., Gotlieb, C.C.: Order-preserving key transformations. ACM Trans.
Database Syst. 11(2), 213–234 (1986)

12. Gupta, A., Liskov, B., Rodrigues, R.: Efficient routing for peer-to-peer overlays.
In: First Symposium on Networked Systems Design and Implementation (NSDI).
San Francisco, CA (Mar 2004)

13. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblog-
ging usage and communities. In: WebKDD/SNA-KDD ’07: Proceedings of the 9th
WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network
analysis. pp. 56–65. ACM, New York, NY, USA (2007)

14. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: distributed caching protocols for relieving hot

http://portal.acm.org/citation.cfm?id=644108.644170


spots on the world wide web. In: STOC ’97: Proceedings of the twenty-ninth an-
nual ACM symposium on Theory of computing. pp. 654–663. ACM, New York,
NY, USA (1997)

15. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer
systems. In: SPAA ’04: Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures. pp. 36–43. ACM, New York, NY, USA
(2004)

16. Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter. In: WOSP ’08:
Proceedings of the first workshop on Online social networks. pp. 19–24. ACM, New
York, NY, USA (2008)

17. Lakshman, A., Malik, P.: Cassandra - A Decentralized Structured Storage System.
In: SOSP Workshop on Large Scale Distributed Systems and Middleware (LADIS)
2009. Big Sky, MT (Ocotber 2009)

18. Risson, J., Harwood, A., Moors, T.: Stable high-capacity one-hop distributed hash
tables. In: ISCC ’06: Proceedings of the 11th IEEE Symposium on Computers and
Communications. pp. 687–694. IEEE Computer Society, Washington, DC, USA
(2006)

19. Sagan, H.: Space-Filling Curves. Springer-Verlag, New York (1994)
20. Schmidt, C., Parashar, M.: Flexible information discovery in decentralized dis-

tributed systems. In: HPDC ’03: Proceedings of the 12th IEEE International Sym-
posium on High Performance Distributed Computing. p. 226. IEEE Computer
Society, Washington, DC, USA (2003)

21. Sousa, A., Pereira, J., Soares, L., Jr., A.C., Rocha, L., Oliveira, R., Moura, F.: Test-
ing the Dependability and Performance of Group Communication Based Database
Replication Protocols. In: International Conference on Dependable Systems and
Networks (DSN’05) (june 2005)

22. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: Proceedings of the
2001 ACM SIGCOMM Conference. pp. 149–160 (2001)

23. Vilaça, R., Cruz, F., Oliveira, R.: On the expressiveness and trade-offs of large
scale tuple stores. In: Meersman, R., Dillon, T., Herrero, P. (eds.) On the Move
to Meaningful Internet Systems, OTM 2010, Lecture Notes in Computer Science,
vol. 6427, pp. 727–744. Springer Berlin / Heidelberg (2010)

24. Vilaça, R., Oliveira, R., Pereira, J.: A correlation-aware data placement strategy
for key-value stores. Tech. Rep. DI-CCTC-10-08, CCTC Research Centre, Univer-
sidade do Minho (2010), http://gsd.di.uminho.pt/members/rmvilaca/papers/
ddtr.pdf

25. Xiongpai, Q., Wei, C., Shan, W.: Simulation of main memory database parallel
recovery. In: SpringSim ’09: Proceedings of the 2009 Spring Simulation Multicon-
ference. pp. 1–8. Society for Computer Simulation International, San Diego, CA,
USA (2009)

26. Yu, H., Gibbons, P.B., Nath, S.: Availability of multi-object operations. In:
NSDI’06: Proceedings of the 3rd conference on 3rd Symposium on Networked Sys-
tems Design & Implementation. pp. 16–16. USENIX Association, Berkeley, CA,
USA (2006)

27. Zhong, M., Shen, K., Seiferas, J.: Correlation-aware object placement for multi-
object operations. In: ICDCS ’08: Proceedings of the 2008 The 28th International
Conference on Distributed Computing Systems. pp. 512–521. IEEE Computer So-
ciety, Washington, DC, USA (2008)

http://gsd.di.uminho.pt/members/rmvilaca/papers/ddtr.pdf
http://gsd.di.uminho.pt/members/rmvilaca/papers/ddtr.pdf

	A correlation-aware data placement strategy for key-value stores 

