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This study describes the developmental physicochemical properties of silk fibroin scaffolds derived from
high-concentration aqueous silk fibroin solutions. The silk fibroin scaffolds were prepared with different
initial concentrations (8, 10, 12 and 16%, in wt.%) and obtained by combining the salt-leaching and freeze-
drying methodologies. The results indicated that the antiparallel b-pleated sheet (silk-II) conformation
was present in the silk fibroin scaffolds. All the scaffolds possessed a macro/microporous structure.
Homogeneous porosity distribution was achieved in all the groups of samples. As the silk fibroin concen-
tration increased from 8 to 16%, the mean porosity decreased from 90.8 ± 0.9 to 79.8 ± 0.3% and the mean
interconnectivity decreased from 97.4 ± 0.5 to 92.3 ± 1.3%. The mechanical properties of the scaffolds
exhibited concentration dependence. The dry state compressive modulus increased from 0.81 ± 0.29 to
15.14 ± 1.70 MPa and the wet state dynamic storage modulus increased by around 20- to 30-fold at each
testing frequency when the silk fibroin concentration increased from 8 to 16%. The water uptake ratio
decreased with increasing silk fibroin concentration. The scaffolds present favorable stability as their
structure integrity, morphology and mechanical properties were maintained after in vitro degradation
for 30 days. Based on these results, the scaffolds developed in this study are proposed to be suitable
for use in meniscus and cartilage tissue-engineered scaffolding.

� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The development of novel three-dimensional degradable por-
ous scaffolds is of great interest for tissue engineering and regener-
ative medicine [1]. There are several critical requirements in the
design and preparation of the scaffolds [2,3]. With these require-
ments in mind, different biomaterials have been explored as matri-
ces to be used in tissue-engineered scaffolding, such as synthetic
and naturally occurring polymers and bioactive calcium phosphate
ceramics [4–10]. Among these, silk fibroin derived from the silk-
worm Bombyx mori has proved to be a promising candidate as a
scaffolding material [11,12]. In vivo, its foreign body response is
dependent on the implantation site and the model chosen; in most
cases, the response is low and subsides with time [11]. Addition-
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ally, it is a versatile material for tissue-engineered scaffolding as
its degradability and mechanical properties can be tailored by
chemical cross-linking or by the introduction of b-sheet conforma-
tion [13]. Moreover, it can be processed easily into various
structures, such as fiber meshes, membranes, hydrogels, three-
dimensional porous scaffolds, and microspheres [14–21]. For the
above reasons, silk-based scaffolds have been successfully applied
in tissue engineering of skin, bone, cartilage, tendon and ligament
[11,12]. These structures have produced favorable outcomes in
previous biomedical explorations [22–26].

In order to produce porous silk fibroin scaffolds, a diversity of
methods have been used, such as salt leaching, gas foaming,
freeze-drying and rapid prototyping [14,19,26–28]. Kim et al.
[14] proposed a new strategy to prepare porous silk fibroin scaf-
folds by means of using aqueous-derived silk fibroin solutions
and the salt-leaching method. The whole preparation procedure
was undertaken in an aqueous environment, and the scaffolds pro-
duced presented new features regarding the biodegradation and
mechanical properties [14,17]. Makaya et al. [28] developed a
modified method to prepare salt-leached silk fibroin scaffolds via
a size-reduced porogen (250–500 lm) for cartilage regeneration.
ll rights reserved.

roin scaffolds with potential for articular cartilage and meniscus tissue
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Wang et al. [29] further studied the synergistic effects of salt-lea-
ched silk fibroin and a hydrodynamic environment in cartilage tis-
sue regeneration. However, to the authors’ knowledge, salt-leached
porous scaffolds prepared with more than 10% aqueous silk fibroin
solution have not yet been reported [14,17]. Although there are a
few reports about the use of high-concentration silk fibroin solu-
tion [15,19,23,30,31], none of them involved processing routes to
form different structures by comprising combination of salt-leach-
ing and freeze-drying methodologies.

The previous studies indicated that the compressive modulus
values of the salt-leached silk fibroin/cell constructs were still very
low, although they were higher than the silk scaffold controls, as
reported by Marolt et al. [32] and Kim et al. [33]. Preparing silk
or silk-based scaffolds with initial improved mechanical properties
for specific tissue engineering applications is of great interest
[34,35]. In the present work, highly concentrated aqueous silk
fibroin solutions were used to prepare silk-based scaffolds, with
the aim of improving the obtained physicochemical properties.
The mechanical properties and three-dimensional architecture
were tailored to make them suitable for cartilage and meniscus
tissue engineering. The aqueous-derived silk fibroin scaffolds were
prepared by the salt-leaching method, with different initial con-
centrations (8, 10, 12 and 16%, in wt.%), followed by freeze-drying.
The structural conformation of silk fibroin was confirmed by
Fourier transform infra-red spectroscopy (FTIR) and X-ray diffrac-
tion (XRD). The morphology and microstructure of the scaffolds
were assessed by scanning electron microscopy (SEM) and micro-
computed tomography (micro-CT). The static and dynamic
mechanical properties were characterized by both compressive
tests and dynamic mechanical analysis (DMA). The water uptake
and degradation ratios were registered for different time periods,
ranging from 3 h to 30 days. Finally, the morphology and mechan-
ical properties of the scaffolds were also analyzed, by SEM and
DMA, respectively.
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2. Materials and methods

2.1. Materials

Cocoons of Bombyx mori were supplied by the Portuguese Asso-
ciation of Parents and Friends of Mentally Disabled Citizens (APPA-
CDM, Portugal). In this study, commercial grade granular sodium
chloride (Portugal) was used. Silicon tubing was purchased from
Deltalab (Spain). The remaining materials and reagents were ob-
tained from Sigma–Aldrich, unless otherwise indicated.
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2.2. Preparation of concentrated silk fibroin aqueous solution

Bombyx mori silk fibroin was prepared as reported elsewhere
with minor modifications [16]. In brief, cocoons were boiled for
1 h in an aqueous sodium carbonate solution (0.02 M) and then
rinsed thoroughly with distilled water in order to extract the
glue-like protein sericine and wax. The purified silk fibroin was
dissolved in 9.3 M lithium bromide solution at 70 �C for 1 h, yield-
ing a 16% (w/v) solution. The solution was dialyzed in distilled
water using a benzoylated dialysis tubing (molecular weight cut-
off: 2000) for 48 h. Next, the silk fibroin aqueous solution was
dialyzed against a 20 wt.% poly(ethylene glycol) solution
(20,000 g mol�1) for 6 h [31]. Finally, the dialysis tubing was care-
fully washed in distilled water and the silk fibroin solution was col-
lected in a flask. The final concentration of the concentrated silk
fibroin was about 20 wt.%, as determined by measuring the dry
weight of the silk fibroin solutions. The prepared silk fibroin solu-
tion was stored at 4 �C until further use.
Please cite this article in press as: Yan L-P et al. Macro/microporous silk fib
engineering applications. Acta Biomater (2011), doi:10.1016/j.actbio.2011.0
2.3. Preparation of salt-leached silk fibroin scaffolds

Granular sodium chloride was prepared by sieving the sodium
chloride in an analytical sieve shaker (Retsch) in the range 500–
1000 lm. The prepared concentrated silk fibroin solution was
diluted to 8, 10, 12 and 16 wt.%, respectively. The scaffolds were
prepared by transferring 1 ml of silk fibroin solution (8–16%) into
a silicon tubing (9 mm inner diameter), followed by the addition
of 2 g of granular sodium chloride (500–1000 lm) [14]. In the case
of the preparation of scaffolds from the 12 and 16% silk fibroin
solutions, the sodium chloride particles were slowly added to the
silicon tubing, which was gently tapped to facilitate the precipita-
tion of the salt particles. Following this, the silicon tubing was
placed in a Petri dish and dried at room temperature for 48 h. In or-
der to extract the sodium chloride, the tubing was immersed in
distilled water for 3 days. Finally, the scaffolds were obtained by
using a stainless steel punch (inner diameter: 6 mm) in order to re-
move the outer skin that is generated, followed by freezing at
�80 �C for 1 day and freeze-drying (Telstar-Cryodos-80, Spain).
The prepared silk fibroin scaffolds are designated here as silk-8,
silk-10, silk-12 and silk-16, according to the initial concentration
(in wt.%) of the aqueous silk fibroin solution used to prepare the
scaffold (Fig. S1).

2.4. Physicochemical characterization

2.4.1. X-ray diffraction
An X-ray diffractometer (Philips PW 1710, The Netherlands)

employing Cu Ka radiation (k = 0.154056 nm) was used to analyze
the crystallinity of the silk scaffolds on powder. Data were col-
lected for 2h values of 0–60�, with a step width of 0.02� and a
counting time of 2 s per step. The test was repeated three times
for each condition.

2.4.2. Fourier transform infra-red spectroscopy
The infrared spectra of the silk fibroin powders were recorded

on a FTIR spectroscopy (Perkin-Elmer 1600 series equipment,
USA). Prior to the analysis, the silk fibroin powders were mixed
with potassium bromide in a ratio of 1:100 (by wt.), followed by
uniaxially pressing into a disk. All spectra were obtained between
4000 and 400 cm�1 at a 4 cm�1 resolution with 32 scans. Each con-
dition was examined for at least three times.

2.4.3. Scanning electron microscopy
The cross-sectional morphology of the prepared scaffolds was

observed under the scanning electron microscope (Leica Cam-
bridge S-360, UK). Prior to the analysis, specimens were coated
with gold using a Fisons Instruments Coater (Polaron SC 502,
UK). The cross-sectional morphology of scaffolds after 30 days of
degradation was also observed under the scanning electron micro-
scope (NanoSEM-FEI Nova 200). The specimens were coated with
Au/Pd SC502-314B using a high-vacuum evaporator coater (E
6700, Quorum/Polaron). Three samples were tested for each
condition.

2.4.4. Micro-computed tomography
The architecture of the silk scaffolds was evaluated using a

high-resolution micro-CT Skyscan 1072 scanner (Skyscan, Kontich,
Belgium) with a pixel size of �8 lm and an integration time of
1.3 s. The X-ray source was set at 40 keV and 248 lA. Approxi-
mately 300 projections were acquired over a rotation range of
180�, with a rotation step of 0.45�. Data sets were reconstructed
using standardized cone-beam reconstruction software (NRecon
v1.4.3, SkyScan). The output format for each sample was 300 serial
1024 � 1024 bitmap images. Representative data set of the slices
was segmented into binary images with a dynamic threshold of
roin scaffolds with potential for articular cartilage and meniscus tissue
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Fig. 1. XRD patterns of the silk fibroin scaffolds obtained by combining the salt-
leaching and freeze-drying methodologies.

Fig. 2. FTIR spectra of the silk fibroin scaffolds obtained by combining the salt-
leaching and freeze-drying methodologies.
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40–255 (grey values). Then, the binary images were used for mor-
phometric analysis (CT Analyser, v1.5.1.5, SkyScan) and to build
the three-dimensional models (ANT 3D creator, v2.4, SkyScan).
Three samples were tested for each condition.

2.4.5. Compression tests
Compressive tests (dry state) were performed by using a Univer-

sal Testing Machine (Instron 4505) with a 1 kN load cell at room
temperature. The size of the tested specimens was measured with
a micrometer. The lengths of the tested specimens for silk-8, silk-10,
silk-12 and silk-16 were 5.593 ± 0.242, 5.593 ± 0.330, 5.935 ± 0.257
and 5.503 ± 0.187 mm, respectively. The diameters of the tested
specimens for silk-8, silk-10, silk-12 and silk-16 were 5.355 ±
0.182, 5.534 ± 0.154, 5.435 ± 0.093 and 5.203 ± 0.062 mm, respec-
tively. The cross-head speed was set at 2 mm min�1 and tests were
run until a 60% reduction in specimen height had been achieved.
The elastic modulus (E) was defined by the slope of the initial linear
section of the stress–strain curve. A minimum number of seven
specimens were tested, with E being the average of all the
measurements.

2.4.6. Dynamic mechanical analysis
The viscoelastic measurements were performed using a TRI-

TEC8000B dynamic mechanical analyzer (Triton Technology, UK)
in the compressive mode. The measurements were carried out at
37 �C. Samples were cut into cylindrical shapes of approximate
6 mm diameter and 5 mm thickness (measured each sample accu-
rately with a micrometer). The scaffolds were always analyzed
whilst immersed in a liquid bath placed in a Teflon� reservoir.
The scaffolds had previously been immersed in a phosphate-buf-
fered saline solution (PBS) until equilibrium was reached (37 �C
overnight). The geometry of the samples was then measured and
the samples were clamped in the DMA apparatus and immersed
in PBS solution. After equilibration at 37 �C, the DMA spectra were
obtained during a frequency scan between 0.1 and 10 Hz. The
experiments were performed under a constant strain amplitude
(50 lm). A small preload was applied to each sample to ensure that
the entire scaffold surface was in contact with the compression
plates before testing, and the distance between plates was equal
for all scaffolds being tested. A minimum of three samples were
used for each condition.

2.4.7. Water uptake and weight-loss-related tests
The water uptake and degradation behaviour of the silk fibroin

scaffolds were assessed after immersion in an isotonic saline solu-
tion (ISS; 0.154 M sodium chloride aqueous solution, pH 7.4) for
time periods ranging from 3 h to 30 days [36]. All experiments were
conducted at 37 �C and dynamic condition (60 rpm) in a water bath
(GFL 1086). After each time point, the specimens were removed
from the ISS and the weights were determined immediately after
adsorption of the excess of surface water using a filter paper. The
water uptake was calculated using the following expression:

water uptake ¼ ½ðmw;t �m0Þ=m0� � 100% ð1Þ

where m0 is the initial weight of the specimen before hydration, and
mw,t is the wet weight of the specimens at time t after being re-
moved from the ISS.

After determination of the water uptake, the specimens were
washed with distilled water and dried in an oven at 60 �C for
24 h. The weight loss was determined using the following
expression:

weight lossð%Þ ¼ ½ðm0 �md;tÞ=m0� � 100% ð2Þ

where md,t is the dry weight of the specimen degraded for a certain
period of time, after drying at 60 �C until a constant weight was
reached. Six specimens were used for each condition.
Please cite this article in press as: Yan L-P et al. Macro/microporous silk fib
engineering applications. Acta Biomater (2011), doi:10.1016/j.actbio.2011.0
The surface morphology and dynamic mechanical properties of
the specimens were analyzed as aforementioned, after 30 days of
soaking. Three specimens were tested for each condition.

2.5. Statistical analysis

The mean pore size, mean pore size distribution, mean trabecu-
lar thickness, mean trabecular thickness distribution, mean poros-
ity, mean interconnectivity, mechanical results, water uptake ratio
and degradation ratio were presented as means ± standard devia-
tion. First, a one-way analysis of variance was used to evaluate
the data, then comparisons between two means were analyzed
using Tukey’s test, with statistical significance set at p < 0.05. At
least three specimens were used in each condition.

3. Results and discussion

3.1. Chemical structure

Several conformations (random coil, silk-I, silk-II and 310-helix)
of silk fibroin have been identified previously by means of XRD,
infra-red spectroscopy and 13C nuclear magnetic resonance
(NMR) [37–42]. Random coil is an amorphous structure presented
in aqueous silk fibroin solution of low concentration, in lyophilized
silk fibroin, and also in silk fibroin films cast under controlled con-
ditions [31,43,44]. Silk-I is a metastable form which can be pro-
duced by drying the silk gland contents or by controlling the
roin scaffolds with potential for articular cartilage and meniscus tissue
9.037

http://dx.doi.org/10.1016/j.actbio.2011.09.037


284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317
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water annealing of silk fibroin films at room temperature [42–44].
Silk-II is an antiparallel b-pleated sheet structure which exists in
natural silk fibroin fibers or can be produced from aqueous silk fi-
broin solutions treated with physical shear or organic solvents
[31,38]. The 310-helix structure can be produced by casting silk fi-
broin solution in a fluoro-based solvent system [41,42].

Jin and Kaplan [31] listed the fingerprint reflection of XRD for
silk-I and silk-II (in angstroms): 9.8 (II), 7.4 (I), 5.6 (I), 4.8 (II), 4.4
(I), 4.3 (II), 4.1 (I), 3.6 (I), 3.2 (I), 2.8 (I). Kim et al. [14] defined the
crystal structure of silk fibroin in the aqueous-derived salt-leached
scaffold as silk-II, as evidenced by XRD peaks at 2h of 8.5� (10.37 Å),
20.8� (4.35 Å) and 24.6� (3.62 Å). Other studies [43,44] have de-
scribed the preparation of water-insoluble silk fibroin, mainly of
the silk-I structure. These studies reported that XRD peaks (2h) at
24.2� (3.7 Å) and at around 22.2� and 25� were assigned to the
silk-I structure. Moreover, these studies showed that both silk-I
and silk-II structures coexisted in a methanol-annealed silk fibroin
Please cite this article in press as: Yan L-P et al. Macro/microporous silk fib
engineering applications. Acta Biomater (2011), doi:10.1016/j.actbio.2011.0
film. Tamada [45] reported that 2h = 24–25� was attributed to the
silk-I structure and both the silk-I and silk-II conformations pre-
sented in the same scaffold. These observations are supported by
another interesting study [37], which reported the production of
silk fibroin with variable amounts of silk-I and silk-II.

In this study, XRD analysis was performed to determine the
crystalline structure in the scaffolds (Fig. 1). From Fig. 1, it is pos-
sible to observe that there were no significant differences between
the four groups in respect to the peak positions. The peaks at 20.5–
20.8� can be assigned to silk-II based on the previous studies in the
literature [14,31,37,43,44]. All these peaks are broad and of low
intensity, which is an indication that the prepared scaffolds pos-
sess low crystallinity and an uncertain amount of random coil.

FTIR is also a reliable technique to further confirm the crystal
conformation in silk fibroin [37,43–45]. Fig. 2 shows the FTIR spectra
of silk fibroin scaffolds obtained by combining sat-leaching and
freeze-drying methodologies. The peaks located at 1701–
roin scaffolds with potential for articular cartilage and meniscus tissue
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1704 cm�1 and 1622–1627 cm�1 can be attributed to the silk-II
structure [43,44,46]. The corresponding peak positions of the main
groups are mostly the same for all scaffolds. It should be noted that
the way the FTIR was performed can also affect the final spectra, as
reported by Demura et al. [47].

By correlating the XRD and FTIR results, it is possible to state
that the prepared silk fibroin scaffolds possess a silk-II structure.
This observation is consistent with those reported in previous
studies using the salt-leaching methodology [14,28]. In this study,
it was not possible to determine the content of the structure con-
formation in the different scaffolds. Further quantitative 13C NMR
analysis [28,37] and studies on conformational changes in a real-
time manner need to be addressed.

3.2. Morphology and microstructure

Salt leaching is a versatile method that has attracted a great
deal of attention with regard to tissue-engineered scaffolding
[14,19,28]. In this study, the pores morphology of the prepared silk
fibroin scaffolds was investigated using SEM. From the obtained
images, mainly two types of pore size were observed among the
cross-section of the scaffolds (Fig. 3). The morphology of the devel-
oped scaffolds varied among the different initial concentrations
used. Silk-8 and silk-10 both presented a branched-like morphol-
ogy (Fig. 3a and c), while silk-12 and silk-16 seemed to possess
thicker trabecular structures, based on SEM observation (Fig. 3e
and g). From Fig. 3, pores of several hundred micrometers were ob-
served (named L-pores; Fig. 3a, c, e and g). There were also pores
less than 100 lm in size (named S-pores) distributed inside the
trabeculae of the L-pores (Fig. 3b, d, f and h).

Fig. 4 shows the SEM images of the surface of silk fibroin scaf-
folds obtained by combining the salt-leaching and freeze-drying
methodologies. From Fig. 4, it can be seen that the surfaces of
the different scaffolds are distinct. An interesting finding was the
presence of silk fibroin microspheres on the surface of silk-8 and
silk-10, of sizes ranging from several hundred nanometers to sev-
eral micrometers (Fig. 4a and b). Additionally, pores less than
10 lm in size were observed on the surface of silk-12 and silk-16
(Fig. 4c and d).
Please cite this article in press as: Yan L-P et al. Macro/microporous silk fib
engineering applications. Acta Biomater (2011), doi:10.1016/j.actbio.2011.0
In previous studies [14,28], uniform pore size distribution was
achieved since the salt particles used were all within a narrow size
range. The pore sizes of the scaffolds produced in the present study
are not as homogeneous as those one found in the literature, since
NaCl particles across a wide size range were used in this study. The
L-pores are formed by the extraction of the salt particles and, since
the salt particles partially dissolve during the precipitation, the L-
pores are not the same size as the original NaCl particles [14,28].
The sizes of the L-pores in this work are adequate for bone tissue
engineering, as proposed elsewhere [2,48]. The finding of S-pores
in the trabeculae of L-pores is consistent with the observations re-
ported by Makaya et al. [28], though presenting different
morphology.

As can be seen in Fig. S2, there are also microporous structures
in the trabeculae of all the air-dried scaffolds that were produced
by the salt-leaching methodology. In this case, the porosity is ex-
plained as being the result of some recrystallization of the dis-
solved salt in the system inside the silk structure. When
compared with the S-pores within the scaffolds produced by the
combination of the salt-leaching and freeze-drying methodologies,
the latter seem to possess high porosity in the trabeculae. Thus, it
is clear that the microporosity presented by the scaffolds produced
by combining salt leaching and freeze-drying may result from the
combined effect of the recrystallization of the dissolved salt parti-
cles in the system and the lyophilization process. This unique
macro/microporous structure is of great interest for tissue engi-
neering. The size of the macropores (L-pores) is adequate for the
transmission of nutrients and metabolic products, for cell ingrowth
and for the growth of new vessels [2,48]. The micropores (S-pores)
could help to tailor the degradation of the scaffolds, increase the
cell seeding efficiency and enhance the cells’ adhesion in future
applications.

Regarding the formation of the silk fibroin microspheres, our
observations are in agreement with previous findings [14,31]. Dur-
ing the precipitation of the silk fibroin, residue silk fibroin in aque-
ous solution tends to form micelles, which will subsequently self-
assemble into microspheres with increasing ion concentration. In
the case of highly concentrated silk fibroin solutions, such as
silk-12 and silk-16, the gelation of the silk fibroin was dominant
roin scaffolds with potential for articular cartilage and meniscus tissue
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Fig. 5. Scanning electron micrographs of the cross-sectional morphology of the silk fibroin scaffolds obtained by combining the salt-leaching and freeze-drying
methodologies, after 30 days of degradation in 0.154 M sodium chloride solution (pH 7.40) in a water bath at 37 �C with agitation (60 rpm). (a, b) Silk-8; (c, d) silk-10; (e, f)
silk-12; (g, f) silk-16.
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without the formation of self-assembled microspheres at the
surface.

The microstructure and architecture of the scaffolds are crucial
parameters for tissue engineering applications since they can affect
the final outcome of the tissue regeneration. Compared to conven-
Please cite this article in press as: Yan L-P et al. Macro/microporous silk fib
engineering applications. Acta Biomater (2011), doi:10.1016/j.actbio.2011.0
tional methods in determination of the pore size and porosity of
the scaffold, such as liquid displacement, mercury and flow poros-
imetry, gas pycnometry, gas adsorption and SEM (combine with
computer software), micro-CT emerges as a promising alternative
[49,50]. It is not only non-destructive, fast and accurate, but also
roin scaffolds with potential for articular cartilage and meniscus tissue
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Fig. 6. Three-dimensional micro-CT images of the silk fibroin scaffolds obtained by combining the salt-leaching and freeze-drying methodologies. (a, b) Silk-8; (c, d) silk-10;
(e, f) silk-12; (g, f) silk-16. The inset images are two-dimensional images of the scaffolds.
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provides a comprehensive overview of the microstructure of the
scaffolds. In this study, micro-CT was employed to investigate
the architecture of the scaffolds (Fig. 6). From the three- and
two-dimensional images (Fig. 6, inset), it was observed that the
scaffolds were highly porous and presented interconnected pores,
and the thickness of the pore walls for the larger pores (L-pores)
Please cite this article in press as: Yan L-P et al. Macro/microporous silk fib
engineering applications. Acta Biomater (2011), doi:10.1016/j.actbio.2011.0
seemed to increase with increasing silk fibroin concentration.
These results were consistent with the SEM observations.

Micro-CT morphometric analysis of the silk fibroin scaffolds
obtained by combining the salt-leaching and freeze-drying meth-
odologies can be seen in Figs. 7–10. The mean pore size of the scaf-
folds was between 200 and 300 lm (Fig. 7a). No statistically
roin scaffolds with potential for articular cartilage and meniscus tissue
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Fig. 7. (a) Mean pore size, (b) mean trabecular thickness, (c) mean porosity and (d) representative porosity distribution along the length of the silk fibroin scaffolds obtained
by combining the salt-leaching and freeze-drying methodologies as determined by micro-CT. ⁄Statistically significant when compared with silk-8 (p < 0.05); +statistically
significant when compared with silk-8, silk-10 and silk-12 (p < 0.05).

Fig. 8. Mean pore distribution of silk fibroin scaffolds obtained by combining the salt-leaching and freeze-drying methodologies as determined by micro-computed
tomography. (a) Silk-8; (b) silk-10; (c) silk-12; (d) silk-16.
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significant differences for pore size were found among the scaf-
folds, though silk-16 presented the highest mean pore size. Silk-
16 also presented a wider pore distribution than the other scaffolds
(Fig. 8). A higher mean trabecular thickness (Fig. 7b) and a wider
trabecular distribution (Fig. 9) in silk-16 were also observed. As
can be seen in Fig. 7c, the porosity decreased from 90.8 ± 0.9 to
Please cite this article in press as: Yan L-P et al. Macro/microporous silk fib
engineering applications. Acta Biomater (2011), doi:10.1016/j.actbio.2011.0
79.8 ± 0.3% when the silk fibroin concentration was increased from
8 to 16%. The porosity is homogeneously distributed (Fig. 7d) in the
core of all the developed scaffolds. In this study, the interconnec-
tivity of the prepared scaffolds was also evaluated (Fig. 10). The
interconnectivity values of the prepared scaffolds were between
92.3 ± 1.3 and 97.4 ± 0.5%. As the silk fibroin concentration in-
roin scaffolds with potential for articular cartilage and meniscus tissue
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Fig. 9. Mean trabecular distribution of silk fibroin scaffolds obtained by combining the salt-leaching and freeze-drying methodologies as determined by micro-CT. (a) Silk-8;
(b) silk-10; (c) silk-12; (d) silk-16.

Fig. 10. Mean interconnectivity of the silk fibroin scaffolds obtained by combining
the salt-leaching and freeze-drying methodologies, as determined by micro-
computed tomography. ⁄Statistically significant when compared with silk-8, silk-
10 and silk-12 (p < 0.05).

Fig. 11. Compressive modulus of the silk fibroin scaffolds obtained by combining
the salt-leaching and freeze-drying methodologies. ⁄Statistically significant when
compared with silk-8 (p < 0.05); #statistically significant when compared with silk-
8 and silk-10 (p < 0.05); +statistically significant when compared with silk-8, silk-10
and silk-12 (p < 0.05).
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creased, the mean interconnectivity tended to decrease. Even
though the lowest interconnectivity was observed in silk-16, it
was still as high as 92.3 ± 1.3%.

The microstructure results were related to the initial silk fibroin
concentrations. During the precipitation, the amount of silk fibroin
precipitated increased by means of increasing the concentration of
the silk solution. The higher the concentration of silk fibroin solu-
tions used, the lower the porosity and higher trabecular thickness
can be achieved. Since the salt particles used in each case were in
the same range of size, the differences in the mean pore sizes of
the scaffolds were not statistically significant. The mean pore size
was obtained from measuring the sizes of the L-pores and S-pores.
This explains why the value is lower than the size of the L-pore
Please cite this article in press as: Yan L-P et al. Macro/microporous silk fib
engineering applications. Acta Biomater (2011), doi:10.1016/j.actbio.2011.0
observed under SEM. In this study, both the L-pores and the S-pores
contributed to the interconnectivity of the scaffolds. From the SEM
images (Fig. 3), the L-pores were nearly completely interconnected,
while the S-pores inside the trabeculae of the L-pores were not as
well interconnected as the L-pores. Silk-16 presented the highest
trabecular thickness (Fig. 7b), which could result in the greatest
amount of S-pores (Fig. 3b, d, f and h). This explains the lowest
interconnectivity of the silk-16. Moreover, the homogeneous poros-
ity distribution inside the scaffolds indicated that the wide size
range of salt particles did not affect the homogeneity of the
scaffolds.
roin scaffolds with potential for articular cartilage and meniscus tissue
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Fig. 12. Stress–strain plot of the silk fibroin scaffolds obtained by combining the
salt-leaching and freeze-drying methodologies.

Fig. 14. (a) Water uptake and (b) degradation profile of the silk fibroin scaffolds
obtained by combining the salt-leaching and freeze-drying methodologies for times
of up to 30 days.
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It has been reported that a pore size larger than 300 lm is suit-
able for the formation of new bone and capillaries [48]. In Fig. 8, it
was found that silk-8, silk10 and silk-12 possessed about 15% pores
of size larger than 300 lm, while silk-16 presented an even higher
ratio. It has also been suggested that a highly interconnected pore
network with high porosity would benefit cell growth, the trans-
port of nutrients and metabolic waste, the deposit of cellular ma-
trix and the ingrowth of the newly formed tissue [2,28]. In this
study, by developing silk fibroin scaffolds that combine high inter-
connectivity (all above 90%), high porosity (all above 79%) and a
macro/microporous architecture, we firmly expect to obtain prom-
ising scaffold candidates for tissue engineering applications.

3.3. Mechanical properties

Fig. 11 shows the mechanical properties of silk fibroin scaffolds
obtained by combining the salt-leaching and freeze-drying meth-
Fig. 13. (a) Storage modulus (E’) and (b) loss factor (tand) of the silk fibroin scaffolds obta
immersing the scaffold in PBS at 37 �C. (c) Storage modulus (E’) and (d) loss factor (tand) o
methodologies measured by immersing the scaffold in PBS at 37 �C, after 30 days of soa

Please cite this article in press as: Yan L-P et al. Macro/microporous silk fib
engineering applications. Acta Biomater (2011), doi:10.1016/j.actbio.2011.0
odologies evaluated under compression testing. The static com-
pressive modulus of the dried silk fibroin scaffolds increased
dramatically with increasing silk fibroin concentration: it in-
creased from 0.81 ± 0.29 to 15.14 ± 1.70 MPa as the silk fibroin
concentration increased from 8 to 16%. The representative
ined by combining the salt-leaching and freeze-drying methodologies measured by
f the silk fibroin scaffolds obtained by combining the salt-leaching and freeze-drying
king.

roin scaffolds with potential for articular cartilage and meniscus tissue
9.037

http://dx.doi.org/10.1016/j.actbio.2011.09.037


472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

L.-P. Yan et al. / Acta Biomaterialia xxx (2011) xxx–xxx 11

ACTBIO 1938 No. of Pages 13, Model 5G

19 October 2011
stress–strain plot (Fig. 12) shows that the compressive strength of
the scaffolds improved remarkably, from 0.05 to 0.79 MPa, when
the silk fibroin concentration increased from 8 to 16%. Regardless
of the different characterization conditions, the compressive mod-
uli of silk-8 and silk-10 were lower than those of scaffolds with the
same concentrations reported in the previous studies [14]. This can
be explained by the homogeneous pore size distribution reported
by Kim et al. [14]. The compressive modulus of silk-16 was higher
compared to other previously reported data for pure silk fibroin
scaffolds prepared by the salt-leaching or gas-forming method
[14,19,28]. Notably, it was higher than that of the scaffolds pre-
pared with 17% silk fibroin in hexafluoroisopropanol [19].

Since the scaffolds are expected to be used in a hydrated envi-
ronment, it is of relevance to predict their biomechanical behavior
by testing the mechanical properties in realistic conditions, using
DMA analysis. Fig. 13 shows the mechanical properties of silk fi-
broin scaffolds obtained by combining the salt-leaching and
freeze-drying methodologies determined by DMA analysis. From
the obtained data, we can observe that the storage modulus of
all the groups increased with increasing frequency from 0.1 to
10 Hz, although the increase profiles were different (Fig. 13a).
The modulus values of silk-8 and silk-10 increase at lower rates
compared to silk-12 and silk-16. For the tested frequencies, the
moduli incresed from 12.8 ± 4.2 to 33.7 ± 7.5 kPa, 37.6 ± 1.7 to
77.9 ± 4.4 kPa, 158.0 ± 16.8 to 264.1 ± 26.8 kPa and 399.2 ± 19.6
to 630.3 ± 49.8 kPa for silk-8, silk-10, silk-12 and silk-16, respec-
tively. These results proved that the stiffness of the scaffolds im-
proved with increasing silk fibroin concentration.

Additionally, at each testing frequency, the modulus of the scaf-
folds exhibited concentration dependence, and its trend was the
same as that observed in the static and dry status compressive test
(Fig. 11). The distinct mechanical properties of the developed scaf-
folds can be explained by the differences in porosity and micro-
structure for each group. On the other hand, previous studies
have shown that the value of the equilibrium compressive modu-
lus of silk fibroin scaffolds (prepared from 17% silk fibroin in hexa-
fluoroisopropanol) is less than 10 kPa – which is lower than the
values obtained for human meniscus (23.6–47.8 kPa) and articular
cartilage (0.4–0.8 MPa) [32,51–53]. Although the analysis in this
study was not performed under equilibrium conditions, the values
of compressive modulus obtained for silk-12 and silk-16 are com-
parable with those found in the literature [14,19]. Based on the
higher compressive modulus values of silk-12 and silk-16 com-
pared to the literature values [14,19], the equilibrium moduli of
silk-12 and silk-16 are expected to be higher than those of the silk
fibroin scaffolds prepared in the previous studies, making them
suitable to be used in meniscus (silk-10 and silk12) and cartilage
(silk-16) tissue engineering. At present, studies are ongoing to
evaluate the aggregate and equilibrium moduli of the silk fibroin
scaffolds, as well as to test their biological performance.

The loss factor is the ratio of the amount of energy dissipated by
viscous mechanisms relative to energy stored in the elastic compo-
nent. Comparing the loss factor data of the four groups of scaffolds,
it is found that the viscosity values decreased as the silk fibroin
concentration increased at the tested frequency (Fig. 13b). Con-
cerning the damping property of each group, it is shown that there
are not many differences in silk-10, silk-12 and silk-16 at all the
tested frequencies, evidencing that these three groups of scaffolds
present stable elasticity and viscosity. This property endows the
prepared scaffolds with potential to be applied for engineering
elastic tissues, such as articular cartilage and meniscus. With high-
er standard deviations, however, the loss factor of silk-8 seems to
decrease with increasing frequency, indicating the weaker stiffness
of this group compared with the other groups.

There were distinct differences in mechanical performance be-
tween the scaffolds tested in the dry status and in the wet. These
Please cite this article in press as: Yan L-P et al. Macro/microporous silk fib
engineering applications. Acta Biomater (2011), doi:10.1016/j.actbio.2011.0
differences can be associated to the seven smaller internal hydro-
philic blocks and two large hydrophilic blocks at the chain ends
among the silk fibroin heavy chain [14]. In the wet status, the
hydrophilic groups in silk fibroin are hydrated and consequently
the stiffness of the scaffolds decreases.

The mechanical properties of the scaffolds were also investi-
gated by DMA analysis after 30 days of soaking (Fig. 13c and d).
It was observed that all the scaffolds maintained their original
mechanical strength. There were no statistical differences in re-
spect to mechanical properties before and after soaking. The ability
of the scaffolds to maintain their mechanical performance during
tissue regeneration is very important.

By correlating the previous analyses on the conformation and
microstructure of the scaffolds, it is found that the mechanical
properties of these scaffolds depended greatly on their conforma-
tion and porosity. The crystal conformation obtained is responsi-
ble for the water stability, while the decrease in porosity resulted
in improved mechanical properties, in both the wet and dry
states.
3.4. Water uptake and degradation-related properties

The ability to take up fluids from the surrounding medium plays
an important role in tissue engineering. As can be seen in Fig. 14a,
the water uptake ratio of all the scaffolds reached equilibrium after
only 3 h of immersion in aqueous solutions, and can be maintained
for up to 30 days. This result shows that the scaffolds possess a
good hydration capability and are able to maintain their structural
integrity. The water uptake ratios of the scaffolds decreased with
increasing silk fibroin concentration (Fig. 14a). The differences in
water uptake can be attributed to the different porosities of the
scaffolds. It was observed that for the scaffolds with higher poros-
ity, the water uptake ratio increased. This trend is in agreement
with previously reported observations [14].

All the scaffolds maintained their original weights after soaking
in aqueous solutions for 30 days (Fig. 14b). From XRD and FTIR
data, it was possible to observe that the silk fibroin crystal confor-
mation in the scaffolds is responsible for the stability of the scaf-
folds during the in vitro degradation test. Furthermore, the
morphology of the scaffolds after immersion in ISS for 30 days
was assessed by SEM (Fig. 5). It can be seen that there were no dif-
ferences in the scaffolds’ morphology before and after 30 days deg-
radation, which is evidence of their stability.

The stable water uptake ratio, the negligible weight loss and
the maintenance of the original morphology of the produced
scaffolds during the degradation study are clearly related to
the silk fibroin crystal conformation. The differences in the water
uptake ratios were related to their varied porosities. These re-
sults can provide a valuable reference for the future application
of these structures in cartilage and meniscus tissue-engineered
scaffolding.
4. Conclusions

In this study, an initial physicochemical characterization is pre-
sented of silk fibroin scaffolds derived from high-concentration
aqueous silk fibroin solution and prepared by combining the salt-
leaching and freeze-drying methodologies. The results indicate
that the developed scaffolds presented silk-II conformation, as con-
firmed by FTIR and XRD. Morphological study revealed that the
scaffolds possessed both macro- and microporous structures, and
the morphology varied depending on the initial concentration. Mi-
cro-CT analysis further demonstrated that the prepared scaffolds
possessed high porosity and interconnectivity, which seemed to
decrease with increasing silk fibroin concentration. An opposite
roin scaffolds with potential for articular cartilage and meniscus tissue
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trend was exhibited in terms of the trabecular thickness of the
scaffolds. Compressive testing and DMA analysis showed that the
mechanical properties of the silk fibroin scaffolds increased dra-
matically with increasing of silk fibroin concentration. The viscos-
ity properties of silk-10, silk-12 and silk-16 were stable at the
testing frequencies. Water uptake data demonstrated that the scaf-
folds presented a large swelling capability that increased with
increasing porosity. It should be highlighted that the prepared scaf-
folds kept their original structure and morphology, as well as their
original mechanical properties, after 30 days of immersion. There-
fore, the developed silk fibroin scaffolds are good candidates for
use in tissue-engineered scaffolding, namely for cartilage and
meniscus regeneration.

This study also opens a new window to preparing load-bearing
multifunctional silk fibroin-based scaffolds for other specific tissue
engineering applications. Based on the promising physicochemical
performance of the developed scaffolds, further in vitro (with cell
lines, primary cells) and in vivo studies are envisioned in order
to fully evaluate the biological performance of the developed silk
scaffolds.
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