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Abstract

In this study, we tested the effects of transcranial Direct Current Stimulation (tDCS) on two set shifting tasks. Set shifting
ability is defined as the capacity to switch between mental sets or actions and requires the activation of a distributed neural
network. Thirty healthy subjects (fifteen per site) received anodal, cathodal and sham stimulation of the dorsolateral
prefrontal cortex (DLPFC) or the primary motor cortex (M1). We measured set shifting in both cognitive and motor tasks.
The results show that both anodal and cathodal single session tDCS can modulate cognitive and motor tasks. However, an
interaction was found between task and type of stimulation as anodal tDCS of DLPFC and M1 was found to increase
performance in the cognitive task, while cathodal tDCS of DLPFC and M1 had the opposite effect on the motor task.
Additionally, tDCS effects seem to be most evident on the speed of changing sets, rather than on reducing the number of
errors or increasing the efficacy of irrelevant set filtering.
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Introduction

The capacity for shifting cognitive processes, such as shifting

attention, learning or simply adapting to new environmental

changes, is one of the most distinctive human abilities. In this

study, set is defined as the property of the stimulus that is relevant

for the task [1], namely color, shape or the specific motor sequence

that the participant has to sequentially reproduce (A or B). Set

shifting ability may be defined as the capacity to switch between

sets (e.g. from color to shape in two consecutive trials in the

cognitive task, or from A to B in the motor sequence task) while the

goal is maintained [2], or the capacity to move back and forth

between mental sets or tasks [3]. Set shifting has been associated

with executive control [4], involving processes such as planning,

goal-directed behavior, and cognitive flexibility [5].

Set shifting ability is thought to involve a highly engaged

network within the brain that consists of several cortical and

subcortical structures. Neuroimaging studies have reported

evidence of increased activation of the pre-frontal cortex (PFC)

in set shifting tasks [6,7]. Impairments in set shifting have been

shown in patients with damage to the prefrontal cortex [4,8,9],

particularly in the left hemisphere [10].

Although higher hierarchical cognitive functions, such as set

shifting, are associated with neocortical areas, there is increasing

evidence that subcortical structures, such as the basal ganglia, are

also involved and operate, particularly, as gating mechanisms

[11,12,13]. In fact, there are an impressive number of inputs from

sensory, premotor and motor areas, as well as from association

areas in the frontal, parietal, medial, and temporal cortices to the

basal ganglia [14,15,16,17,18]. And there is clear evidence of set-

shifting deficits in clinical disorders associated with basal ganglia

dysfunction, such as Parkinson’s [8], Huntington’s [19], eating

disorders [20], and Obsessive-compulsive disorder [21,22]. Taken

together, the data from the literature suggest that a distributed, but

highly engaged neural network is involved in set shifting.

As previous research has shown, modification of the excitability

of the left dorsolateral prefrontal cortex (DLPFC) and the primary

motor cortex (M1) can significantly change behavior associated

with these areas [23,24,25]. The aim of this study is to test if

anodal, cathodal and sham transcranial direct current stimulation

(tDCS) in DLPFC and M1 can modulate set shifting tasks.

Objectively, we aim to test if the effects of tDCS on performance

are due to changes in the speed of processing, shift costs,

alterations in irrelevant set filtering or in the number of errors.

Results

None of the participants in this study reported mood alterations

due to stimulation or have experienced any adverse effects. In the

sham condition, participants reported a tingling sensation, as in

the active tDCS conditions. The present section discusses each task

independently, analyzing them with regard to the following: (i) the

Reaction Time (RT) required to perform the task; (ii) the number

of errors in task performance; and (iii) the time difference between

PLoS ONE | www.plosone.org 1 September 2011 | Volume 6 | Issue 9 | e24140

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55614228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


shift and no shift trials (i.e., shift cost). Additionally, task

characteristics were analyzed to test if the task revealed shifting

and filtering differences. Because of the limited power of this study

to conduct a model including all the factors, we show an additional

exploratory analysis at the end of this section testing the

interaction between task and the polarity of tDCS.

Cognitive Task: (i) Reaction Time
a. Analysis of the task. There was a shifting effect (F

(1,28) = 69.174, p,.001, gp
2 = .712). As expected in the No Shift

condition (M = 880.208, SE = 18.518), participants showed sig-

nificantly smaller RTs than in the Shift condition (M = 997.874,

SE = 18.697) (p,.001). In terms of filtering competing sets, RTs

were significantly different across all conditions (F(2,56) = 336,260,

p,.001, gp
2 = .923) showing a gradation effect: Alone (M = 845.368,

SE = 16.712),Neutral (M = 950.019, SE = 16.871),Incongruent

(M = 1021.736, SE = 19.274) (p,.001) (see Fig. 1).

b. Effects of polarity. There was a significant effect of tDCS

on task performance (F(2,56) = 7.763, e= .834, p = .002, gp
2 =

.217). Anodal stimulation (M = 873.040, SE = 22.835) decreased

RTs significantly when compared to either sham (M = 937.937,

SE = 25.172) (p = .046) or cathodal stimulation (M = 1006.145,

SE = 29.578) (p = .004). Cathodal stimulation was not significantly

different from sham (p = .226) (see Fig. 2).

There was no significant interaction between polarity and

the filtering of the competing set(F(4,112) = 1.850, p = .124,

gp
2 = .062).

c. Site effects. There were no significant effects associated

with the site of stimulation (F(1,28) = .115, p = .737, gp
2 = .004).

Cognitive Task: (ii) Number of errors
a. Analysis of the task. There were no significant differences

in the number of errors in terms of shifting (F(1,28) = 1.334,

p = .258, gp
2 = .045).

There were differences in terms of the number of errors due to set

filtering (F(2,56) = 11.912, p,.001, gp
2 = .298). Incongruent filtering

(M = 1.939, SE = .262) significantly increased the number of errors

compared to both Neutral (M = 1.161, SE = .188) (p = .002) and

Figure 1. Performance as indexed by RT in the Cognitive Task. Columns represent the MEAN and the bars the SEM for the RT (95% CI) in the
Cognitive Task. Shifting: No shift trials represent the RT when the set remained the same (e.g. color – color) while Shift represents the RT when there
were changes in the set (e.g. shape – color). Filtering: For Alone there was no competing set; for Neutral there was an irrelevant competing set, and
for Incongruent there was a relevant competing set.
doi:10.1371/journal.pone.0024140.g001

Figure 2. Performance as indexed by RT: Polarity and Site effects. Columns represent the MEAN and the bars the SEM for the RT (95% CI) in
the Cognitive Task. tDCS: Represents the polarity effects in RT. Site: Represents the estimates of the RT per site of stimulation.
doi:10.1371/journal.pone.0024140.g002
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Alone (M = 1.194, SE = .191) (p = .002). There were no differences

between Alone and Neutral filtering (p = 1,000) (see table 1).

b. Effects of polarity. There were no differences in terms of

the number of errors due to polarity (F(2,56) = .274, p = .762,

gp
2 = .010). There was no significant interaction on the number of

errors between polarity and the filtering of the competing set

(F(4,112) = 1.928, p = .111, gp
2 = .064).

c. Site effects. There were no significant differences in the

number of errors associated with the site of stimulation

(F(1,28) = .028, p = .869, gp
2 = .001).

Cognitive Task: (iii) Shift costs
a. Analysis of the task. There were differences in terms of

Shift costs due to set filtering (F(2,56) = 34.979, p,.001, gp
2 = .555).

Incongruent filtering (M = 58.885, SE = 18.965) decreased the Shift

costs significantly compared to both Neutral (M = 162.310, SE =

13.005) (p,.001) and Alone (M = 131.802, SE = 15.269) (p = .001).

In addition, Alone filtering showed significantly smaller Shift costs

than Neutral (p = .031).

b. Effects of polarity. There were no significant differences

in terms of Shift costs due to polarity (F(2,56) = 1.407, p = .253,

gp
2 = .048).

There was no significant interaction in terms of Shift costs between

polarity and the filtering of the competing set (F(4,112) = .373,

p = .827, gp
2 = .013).

c. Site effects. There were no significant effects associated

with the site of stimulation (F(1,28) = 1.249, p = .273, gp
2 = .043).

Motor Task: (i) Reaction Time (RT)
a. Analysis of the task. There was a shifting effect

(F(1,28) = 49.043, p,.001, gp
2 = .637). As expected in the No

Shift condition (M = 237.297, SE = 8.256), participants showed

significantly smaller RTs than in the Shift condition (M = 254.160,

SE = 9.300) (p,.001) (see Fig. 3).

b. Effects of polarity. There was a significant effect of tDCS

on task performance (F(2,56) = 8.945, e= .740, p = .002,

gp
2 = .242). Cathodal stimulation (M = 272.604, SE = 13.793)

increased RTs significantly when compared to both sham

(M = 237.049, SE = 9.370) (p = .012) and anodal stimulation

(M = 227.531, SE = 8.705) (p = .009). Anodal stimulation was not

significantly different from sham (p = .697).

c. Site effects. There were no significant effects associated

with the site (F(1,28) = .357, p = .555, gp
2 = .013).

Motor Task: (ii) Number of errors
a. Analysis of the task. There were significant differences in

the number of errors in terms of shifting (F(1,28) = 9.833, p = .004,

gp
2 = .260). The No Shift condition (M = .278, SE = .084) showed

significantly fewer errors than the Shift condition (M = .722,

SE = .188) (see table 2).

b. Effects of polarity. There were no differences in terms of

the number of errors due to polarity (F(2,56) = .224, e= .770,

p = .742, gp
2 = .008).

c. Site effects. There were no significant differences in the

number of errors associated with the site (F(1,28) = .008, p = .931,

gp
2 = .000).

Figure 3. Performance as indexed by RT in the Motor Task. Columns represent the MEAN and the bars the SEM (95% CI) for the RT in the
Motor Task. Shifting: No shift represents the RT when the motor sequence remained the same (e.g., AA or BB), while Shift represents the RT when
there were changes in the motor sequence set (e.g., AB or BA). tDCS: Represents the effects of polarity on performance. Site: Represents the estimates
of the RT per site.
doi:10.1371/journal.pone.0024140.g003

Table 1. Mean Number of errors and percentage of correct responses for the cognitive task.

COGNITIVE (Error) COGNITIVE (Correct Responses %)

ANODAL SHAM CATODAL ANODAL SHAM CATODAL

NS S NS S NS S NS S NS S NS S

DLPFC 4,53 (5,25) 5,47 (4,70) 3,93 (3,22) 4,60 (3,76) 4,60 (5,26) 4,47 (5,33) 93,70 (7,29) 92,41 (6,53) 94,54 (4,47) 93,61 (5,22) 93,61 (7,31) 93,80 (7,40)

M1 4,13 (3,07) 6,20 (5,10) 4,73 (5,24) 7,20 (7,59) 4,67 (3,94) 6,47 (6,14) 94,26 (4,26) 91,39 (7,09) 93,43 (7,28) 90,00 (10,54) 93,52 (5,47) 91,02 (8,53)

NS- No Shift Trial; S – Shift Trial. The values are means and the standard deviation is showed in brackets. On the left, table 1 represents the total number of errors for the
cognitive task. On the right, the percentage of correct responses to the same task is showed. Percentage of correct responses is included in order to provide a
comparison between tasks.
doi:10.1371/journal.pone.0024140.t001
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Motor Task: (iii) Shift costs
a. Effects of polarity. There were no differences in terms of

Shift costs due to polarity (F(2,56) = 1.491, p = .234, gp
2 = .051).

b. Site effects. There were no significant effects associated

with the site of stimulation (F(1,28) = 1.205, p = .282, gp
2 = .041).

Interaction testing between task and tDCS polarity
There was a significant effect of the polarity interacting with

the task performance in terms of RTs (F(2,56) = 5.015,p = .010,

gp
2 = .152). No statistically significant interactions between tasks

and tDCS polarity were found in terms of shift costs (F(2,56) = .815,

p = .448, gp
2 = .028) and the percentage of correct responses (F

(2,56) = .100, p = .905, gp
2 = .004).

Discussion

The present study tested the effects of tDCS-induced cortical

excitability changes (anodal, cathodal and sham tDCS) in DLPFC

and M1 on two different set shifting tasks (cognitive and motor).

For the cognitive task, anodal stimulation was found to increase

performance as indicated by an RT decrease compared to both

sham and cathodal conditions. Although cathodal tDCS decreased

overall performance, there was no statistically significant difference

when compared to sham tDCS. However, in the motor task,

cathodal stimulation significantly decreased performance when

compared to sham and anodal stimulation.

One important finding is that these results are independent of

the stimulation site, suggesting a non-specific site effect probably

due to interactions among the several neural networks that have

been shown to be activated when performing set shifting/task

switching tasks [26,27,28,29,30,31]. Task switching research has

demonstrated that performing one task and then another could

activate a common frontal parietal network [32]. Moreover, both

motor and executive functioning areas could be responsible for

distinct cognitive processes involved in a broader cognitive control

process [33]. However, that does not entirely explain the tDCS

effects found in this study, especially the task polarity interaction.

One hypothesis is that the effects are dependent on the level of

activation of this network. In other words, for the cognitive task, in

which the demand on motor systems is less intense, anodal tDCS

was able to enhance performance as the system was likely engaging

a more reduced neural network as compared to that engaged by

the motor task. In fact, for the motor task, because the co-

activation of motor and executive areas was likely more intense, an

increase in activity induced in only one area was not sufficient to

enhance performance. On the other hand, the cathodal-induced

excitability decrease in motor or prefrontal areas was associated

with a performance reduction in the motor task due to activity

reduction in one region of this highly engaged network required

for performance of both tasks.

There are also alternative hypotheses to explain our results. For

instance, the lack of specific effects might be explained by the lack

of focality of the tDCS. In this scenario, DLPFC tDCS induced

similar effects as M1 tDCS due to the lack of focality. However,

modeling and behavioral studies tend not to support this

alternative explanation, as they show that the peak of the current

is induced under the electrode [34,35] and also that DLPFC and

M1 tDCS induce different behavioral effects [24,36,37]. Alterna-

tively, as the ‘‘reference’’ electrode was positioned over the

contralateral supraorbital area, it is also possible that this electrode

exerted an effect on our results. This hypothesis arises because

Brodmann Area (BA) 10 has been associated with these particular

types of tasks [38,39,40] and because tDCS studies have shown

effects on cognitive processing induced by that particular site [41].

Future studies need to assess other electrode montages to rule out

this effect, namely, by using extra-cephalic reference electrodes.

Using smaller electrodes will also be a future option for testing

non-specific results.

In terms of the filtering of irrelevant information, the pattern

found in this study was Alone,Neutral,Incongruent, which is

consistent with previous studies [27]. The explanation that has been

provided for this is that as the distracting set gets more challenging,

there is an increased demand on filtering [27]. This study shows that

anodal and cathodal tDCS both modulate cognitive and motor

tasks. They had a consistent effect on results independent of the site

of stimulation (anodal improved and cathodal decreased task

performance), suggesting that the cortical stimulation is modulating

this highly engaged network involved in set shifting.

There were no specific effects of tDCS on the filtering of

irrelevant information or on Shift costs. There were also no errors

related to tDCS. The error effects found were related to shift or

filtering conditions, and are being interpreted as more demand on

resources due to normal task performance.

Future research using an fMRI paradigm should explore the

assumption that cortical tDCS could interfere with shift ability by

affecting this highly engaged network (with cortical and even-

tually subcortical processing) to establish the cortical tDCS effects

and possible cortical-striatum interactions. In addition, future

studies should also explore neuromodulation of cortical-subcortical

activity in different pathologies with set shifting impairments,

namely Obsessive-compulsive disorder, eating disorders, Parkin-

son’s and Huntington’s disease, as well as in aging.

Future research should also focus on the effects of tDCS on

dopamine receptors using these set shifting tasks, as the

administration of D2 antagonists in healthy subjects [42] showed

an effect on set shifting similar to the one found in this study with

cathodal stimulation.

Table 2. Mean Number of errors and percentage of correct responses for the motor task.

Motor (Error) Motor (Correct Responses%)

ANODAL SHAM CATODAL ANODAL SHAM CATODAL

NS S NS S NS NS NS S NS S NS S

DLPFC 0,07 (0,26) 0,73 (0,96) 0,27 (0,59) 1,27 (2,37) 0,33 (0,62) 0,40 (0,91) 99,83 (0,65) 98,17 (2,40) 99,33 (1,48) 96,83 (5,94) 99,17 (1,54) 99,00 (2,28)

M1 0,27 (0,59) 0,53 (0,83) 0,27 (0,59) 0,27 (0,59) 0,47 (1,36) 1,13 (2,88) 99,33 (1,48) 98,67 (2,08) 99,33 (1,48) 99,33 (1,48) 98,83 (3,39) 97,17 (7,19)

NS- No Shift Trial; S – Shift Trial. The values are means and the standard deviation is showed in brackets. On the left, table 2 represents the total number of errors for the
motor task. On the right, the percentage of correct responses to the same task is showed. Percentage of correct responses is included in order to provide a comparison
between tasks.
doi:10.1371/journal.pone.0024140.t002
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One of the limitations of this study was the lack of statistical

power to include all the factors in a full multifactorial analysis.

Thus some of the results need to be seen as exploratory and need

to be confirmed with larger sample sizes. Also future research

should apply tDCS during the actual task, in order to compare the

results from learning phase to actual performance, as there could

be specific learning phase effects [43].Also, the cognitive task took

longer to perform than the motor one. This time difference found

in performance between tasks may be a limitation of the present

study. Future studies should match the duration of the cognitive

and the motor task (possibly by establishing a time limit rather

than number of trials). In conclusion, the present study found that

both anodal and cathodal tDCS can modulate a cognitive–motor

task. The non-specific site effects could be related to an interaction

within this neural network, to the network demand involved in

these two tasks, or to the enrollment of the right supraorbital in

this highly engaged network. Finally, a single session of tDCS to

the left DLPFC or to M1 (or the right supraorbital) seemed to have

a greater result on the speed of changing sets than on Shift costs,

either by reducing the number of errors or by increasing the

efficacy of irrelevant set filtering.

Methods

Study overview
In the present study, we tested the effects of anodal, cathodal

and sham stimulation of DLPFC (F3 electrode site) and M1 (C3

electrode site) in separate experiments on two different set shifting

tasks, one motor and one cognitive [27]. Participants were divided

into two groups of fifteen, namely, to receive tDCS on DLPFC or

M1. They performed both tasks in three distinct sessions (one per

polarity of tDCS).

In the cognitive set-shifting task, the participants were instructed

to respond either to color or shape having previously associated

two colors and two shapes to the same response buttons: 1 and 2.

In the motor set-shifting task, there were two sequences of three

keystrokes that they should perform using only the index finger of

the right hand. These two sequences were performed in response

to the stimulus that appeared randomly on the screen. The

stimulus consisted of a pair of letters, each one associated with a

three-keystroke sequence learned previously. In both tasks, using

two consecutive stimuli, the set either remained the same (e.g.

color-color or same letter) or was different (e.g. color-shape or

different letter) (as depicted in Fig. 4).

Participants
Thirty university student volunteers participated in the study.

All of the participants were healthy, with normal or corrected-to-

normal visual acuity, with a score on the Edinburgh Handedness

Inventory (EHI) [44] of $80 (right handed) and without present or

past history of neurological or psychiatric disorder. Participants

were excluded if any medication or psychotropic drugs had been

used during the 4 weeks prior to the study. Participants were

advised to avoid alcohol, cigarettes and caffeinated drinks on the

day of the experiment, and none reported fatigue due to

insufficient sleep.

Ethics Statement
All of the participants gave their written informed consent prior

to their inclusion in the study. The study was approved by the local

Figure 4. Schematic Representation of the tasks used in the experiment. Each trial started with a next trial message on the center of the
screen. Cognitive task: In this task, each trial consisted of a pair of stimulus. The set that the participant was required to respond could remain the
same (e.g. Color S1 and Color S2) or could be different (e.g. Shape S1 and Color S2). Motor Task: In each trial a pair of letters appeared on screen (each
letter represents a motor sequence of three key presses previous learned).
doi:10.1371/journal.pone.0024140.g004
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ethics committee Centro de Investigação em Psicologia (CIPsi) and

was in accordance with the Declaration of Helsinki.

Procedure
a. Cognitive Task. Two colors, red and blue, were assigned,

respectively, to response keys 1 and 2. A third color, green, was not

assigned to any key and acted as a neutral distractor. The colors

appeared as a circle with a diameter of approximately 2.0u of

visual angle (viewing distance was approximately 1 meter). Two

shapes, triangle and square, were assigned to the same two

response keys, 1 and 2, respectively. A third shape, hexagon, was

not assigned to any key and functioned as a neutral distractor. The

shapes appeared as non-filled figures outlined with a line weight of

three pixels. In height and width, each shape subtended a visual

angle of approximately 3.8u in width and 3.2u in height at

1.5 meters of viewing distance.

Each stimulus figure was accompanied by a set instruction (the

word Color or Shape) informing participants in which set they were

required to respond. The word appeared on the fixation point at

the center of the screen. The word was approximately 0.6u of

visual angle in height and 1.5u in width.

Participants were instructed that they should associate the two

colors and the two shapes with the same response buttons (1: red

or triangle; 2: blue or square). They were also instructed that a

word Color or Shape would appear on the center of the screen that

would identify the set in which they were required to respond.

In all sessions, the participants performed the training phase

that lasted 5 min. During this phase, after the participant

responded there was a 500 msec interval before the next trial

began with the ‘‘Next trial’’ message. If, for either stimulus, the

subject pressed any key other than the correct response, the

incorrect response was immediately followed by a 1 sec error

message before the program continued (during the task phase

there was no error message). There were a total of 30 trials that the

participant should correctly answer in order to finish the training

phase. The task consisted of two paired stimuli, S1 and S2, about

which the participant was asked to make the same judgment.

Immediately after responding to S1 (or automatically after

3000 msec if no key was pressed), S2 appeared on screen. If S1

and S2 had the same set (color or shape), it was considered a no

shift trial. Instead, if S1 and S2 differed in set (e.g. S1 color and S2

shape), it was considered a shift trial.

There were also three types of filtering conditions, namely:

Alone, Neutral, and Incongruent. For the Alone filtering

condition, a color or shape appeared without any distractor from

the other set. For the Neutral filtering condition, a color or shape

appeared with the neutral distractor (green or hexagon) from the

other set. For the Incongruent filtering condition, a color or shape

appeared with the distractor that had the alternative response key

associated with it. Alone and Neutral consisted of four possibilities:

Alone (red, blue, triangle, square); Neutral (red and hexagon, blue

and hexagon, triangle and green, square and green). The

Incongruent condition only consisted of two possibilities (red and

square, blue and triangle). There was no congruent condition (e.g.

red and triangle, blue and square). For the Neutral and

Incongruent figures, the circular color patch appeared centered

within the outlined shape.

These conditions were designed to test filtering effects on

response selection, i.e., the competing set that should be irrelevant

to task performance. The Alone condition had no competing set,

the Neutral condition had a neutral distractor competing set, and

the Incongruent condition had an incongruent response compet-

ing set.

Stimuli were presented on a white background on a total of 144

trials, and each experimental condition was fully randomized and

had the same probability.

b. Motor Task. In this task, the central fixation point

presented at the beginning was replaced by a pair of letters (AA,

BB, AB, BA). Both the fixator and the pair of letters had the height

and width of approximately 0.6u of visual angle. The letters and

the fixation cross were black on a white background.

A keypad with three response keys was placed in front of the

participant, allowing access with the dominant hand. The three

keys on the pad were labeled 1, 2, and 3 and were arranged in an

equilateral triangle approximately 1.5 cm apart from one another.

The letters A and B were associated with the sequences 1–2–3 and

1–3–2, respectively, in the training phase, that consisted of twenty

four correct self-paced trials. In the training phase, the order in

which the participant should perform the cognitive and motor

tasks was randomized and counterbalanced across participants

and sessions, and both of them were performed during the last five

minutes of active stimulation. The task consisted of two different,

previously learned sequences: A (123) and B (132), and then

reproducing them in pairs, using only the index finger, following

the instruction on the screen. Each trial consisted of a total of six

self-paced key presses.

Each trial had the following sequence: a fixating cross in the

middle of the screen that should elicit a response with a key

marked with a cross. This key was at the center of the equilateral

triangle formed by the other response keys (1, 2 and 3). This was

chosen because it allowed for experimental control of the starting

point of each experiment. 1000 msec after pressing the key with

the cross, the two letters appeared on the screen. Those two letters

represented the two sequences that would be required for the

participant (e.g., BA) and remained on the screen until the 4th key

of the sequence (first of the second sequence) was pushed.

Immediately after the final key had been pressed, a screen that

lasted for 500 msec appeared with the following instruction: ‘‘Next

Trial’’.

The four possible letter pairs were AA, BB, AB and BA.

Participants were instructed to initiate their response as quickly as

possible once the letter pairs appeared. Trials were presented in a

random order, and each condition consisted of 20 trials. In total

there were 40 trials for no shift (i.e., same letter in the pair) and 40

trials for shift (i.e., different letters in the pair) conditions.

The RT established for the cognitive task was the time that the

participant required to respond to the second stimulus of each trial

upon presentation. For the motor task, it was the time required to

press the 4th key of the sequence, starting immediately after the

pressing of the third one. For both tasks, only correct responses to

the entire trial were submitted for further analysis. The remaining

responses were considered errors, and their RTs, were not

included in the estimations per sessions. Table 1 and 2 shows

the number of errors, for the cognitive and the motor task,

respectively. The percentage of correct responses for each task is

also shown on the same tables.

tDCS Parameters
Two regions were selected as cortical targets: DLPFC (F3)

[24,45] and M1 (C3) [46].

The stimulation was delivered by a battery driven Eldith

Stimulator DC+ and consisted of 15 min of 1 mA (15 sec ramp up

and down) applied by 35 cm2 saline soaked sponge electrodes

(current density of 0.029 mA/cm2). The active electrode was

placed over F3 or C3 in a 10–20 electrode system [47], while the

reference was placed on the contralateral supraorbital area.
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The type of tDCS was balanced between subjects, and the wash

out was at least 90 minutes between sessions. We used this wash-

out period based upon previous data [48].

To balance the stimulation to prevent order effects on the task,

there were three sequences (with five participants each per site)

that were applied: 1- anodal, sham and cathodal; 2- sham,

cathodal and anodal; 3 – cathodal, anodal and sham.

When the wash-out period was only 90 minutes between the

first and the second session, the sham condition (second sequence

described above) was performed first to prevent carry over effects

to one of the posterior active conditions. The third session for that

participant was delivered 24 hours later. All the other sequences (1

and 3) were performed with a wash-out period of 24 hours. The

sham condition was performed with only 15 sec ramp up and

down (the electrodes remained on the head for the entire 15 min),

with an anodal electrode configuration.

Experimental Design
Fifteen participants were randomly assigned only to one site,

namely left DLPFC or left M1. The stimulation started prior to the

training phase and the last 5 min were delivered while the

participants were performing the 5 min of training, because this

could improve learning related NMDA receptor strengthening

[49,50] with longer lasting effects than training alone [51]. No

tDCS was applied during the actual task, as the aim was to test the

after effects of the polarity in task performance. The cognitive and

the motor experiment were collected in the same session, and the

order in each they were performed was randomized and

counterbalanced across participants and sessions, in order to

prevent order effects due to possible task difficulty differences. The

cognitive task had an average duration of 12 min, while the motor

task had an average duration of 7 min. The order in which each

task (cognitive or motor) was performed was fully randomized and

counterbalanced across participants and sessions. Because the

objective of the study was to test the aftereffects of tDCS in set

shifting, both tasks were performed ‘‘offline’’ (i.e. with no tDCS

during the actual task performance) (as depicted in Fig. 5).

Data analysis
General linear model analysis was used. To test the effects of tDCS

on the speed of processing and irrelevant set filtering in the cognitive

task, mixed model ANOVAs were used, with three within subject

levels as TDCS (anodal, sham and cathodal), two within subject levels

as SHIFTING (No Shift and Shift), three within subject levels as

FILTERING (Alone, Neutral, Incongruent) and two between

subjects levels as SITE (DLPFC and M1).

For the tDCS effects on the speed of processing in the motor task,

mixed model ANOVAs were performed, with three within subject

levels as TDCS (anodal, sham and cathodal), two within subject levels

as SHIFTING (No Shift and Shift) and two between subjects levels as

SITE (DLPFC and M1).

For error analysis in the cognitive task, mixed model ANOVAs

were performed, with three within subject levels as TDCS (anodal,

sham and cathodal), two within subject levels as SHIFTING (No

Shift and Shift), three within subjects levels as FILTERING

(Alone, Neutral and Incongruent), and two between subject levels

Figure 5. Schematic Representation of the experimental design used in this experiment.
doi:10.1371/journal.pone.0024140.g005
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as SITE (DLPFC and M1). For the motor task similar analysis was

performed, with three within subject levels as TDCS (anodal,

sham and cathodal), two within subject levels as SHIFTING (No

Shift and Shift) and two between subject levels as SITE (DLPFC

and M1).

For tDCS effects on shift cost (i.e., Reaction Time (RT)

difference between shift and no shift trials) on both tasks, mixed

model ANOVAs were performed, with three within subject levels

as TDCS (anodal, sham and cathodal) and two between subject

levels as SITE (DLPFC and M1).

Although this study was underpowered to include all the factors

in a full multifactorial analysis, we conducted an exploratory

analysis in order to investigate the possible interaction between

TASK and TDCS. Therefore two multifactorial analysis of TDCS

(with three levels), SHIFTING (No shift and Shift), TASK (with

two levels cognitive and motor) and SITE as between subject

factor (DLPFC and M1) were performed, one for the RTs and the

other for the percentage of correct responses (because of the

number of trials between the two tasks was different). A

multifactorial analysis of TDCS (with three levels), TASK (with

two levels cognitive and motor) and SITE as between subject

factor (DLPFC and M1) was performed for shift costs.

When sphericity was not met, the Greenhouse-Geisser correc-

tion was applied to degrees of freedom in all cases, with the

corrected probabilities and partial eta-squared (gp
2) statistic

reported. Post hoc comparisons of the mean values were carried

out by paired multiple comparisons (adjusted to Bonferroni) when

the ANOVAs revealed significant effects due to the factors and

their interactions. The criterion for statistical significance was

established at p,.05. All statistical analyses were performed with

IBM SPSS for Windows (version 19.0.1).

Data are presented as Mean (M) and SEM (SE) (CI 95%). In

order to deal with possible outliers, there was an established cut off

point for each task: responses with scores over 2000 msec in the

cognitive task were considered outliers, as well as scores over

700 msec for the motor task (this represents less than 2.5% of the

total number of scores).

Author Contributions

Conceived and designed the experiments: JL SC FF OFG. Performed the

experiments: JL SC. Analyzed the data: JL SC FF OFG. Wrote the paper:

JL SC FF OFG.

References

1. Rushworth MF, Passingham RE, Nobre AC (2005) Components of attentional

set-switching. Exp Psychol 52: 83–98.

2. Ravizza SM, Carter CS (2008) Shifting set about task switching: behavioral and

neural evidence for distinct forms of cognitive flexibility. Neuropsychologia 46:

2924–2935.

3. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, et al. (2000)

The unity and diversity of executive functions and their contributions to

complex. Cogn Psychol 41: 49–100.

4. Rogers R, Sahakian B, Hodges J, Polkey C, Kennard C, et al. (1998)

Dissociating executive mechanisms of task control following frontal lobe damage

and Parkinson’s disease. Brain 121: 815–842.

5. Spiro R, Jehng J (1990) Cognitive flexibility and hypertext: Theory and

technology for the nonlinear and multidimensional traversal of complex subject

matter. In: Nix D, RJ S, eds. Cognition, Education and Multimedia: Exploring

Ideas in High Technology. New Jersey: Lawrence Erlbaum Associates, Inc. pp

163–205.

6. Rogers R, Andrews T, Grasby P, Brooks D, Robbins T (2000) Contrasting

cortical and subcortical activations produced by attentional-set shifting and

reversal learning in humans. J Cogn Neurosci 12: 142–162.

7. Konishi S, Nakajima K, Uchida I, Kameyama M, Nakahara K, et al. (1998)

Transient activation of inferior prefrontal cortex during cognitive set shifting.

Nat Neurosci 1: 80–84.

8. Owen A, Roberts A, Hodges J, Robbins T (1993) Contrasting mechanisms of

impaired attentional set-shifting in patients with frontal lobe damage or

Parkinson’s disease. Brain 116: 1159–1175.

9. Robinson A, Heaton R, Lehman R, Stilson D (1980) The utility of the Wisconsin

Card Sorting Test in detecting and localizing frontal lobe lesions. J Consul Clin

Psychol 48: 605–614.

10. Konishi S, Hayashi T, Uchida I, Kikyo H, Takahashi E, et al. (2002)

Hemispheric asymmetry in human lateral prefrontal cortex during cognitive set

shifting. Proc Natl Acad Sci U S A 99: 7803–7808.

11. Frank M, Loughry B, O’Reilly R (2001) Interactions between frontal cortex and

basal ganglia in working memory: a computational model. Cogn Affect Behav

Neurosci 1: 137–160.

12. O’Reilly R, Frank M (2006) Making working memory work: a computational

model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18:

283–328.

13. Maia TV, Frank MJ (2011) From reinforcement learning models to psychiatric

and neurological disorders. Nat Neurosci 14: 154–162.

14. Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical

inputs define a large striatal region in primates that interface with associative

cortical connections, providing a substrate for incentive-based learning.

J Neurosci 26: 8368–8376.

15. Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network:

the role of the thalamus. Brain Res Bull 78: 69–74.

16. Calzavara R, Mailly P, Haber SN (2007) Relationship between the

corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal

and rostral premotor cortex and area 24c: an anatomical substrate for cognition

to action. Eur J Neurosci 26: 2005–2024.

17. Leichnetz GR (2001) Connections of the medial posterior parietal cortex (area

7 m) in the monkey. Anat Rec 263: 215–236.

18. Ferry AT, Ongur D, An X, Price JL (2000) Prefrontal cortical projections to the

striatum in macaque monkeys: evidence for an organization related to prefrontal

networks. J Comp Neurol 425: 447–470.

19. Lawrence A, Sahakian B, Rogers R, Hodges J, Robbins T (1999) Discrimina-

tion, reversal, and shift learning in Huntington’s disease: mechanisms of

impaired response selection. Neuropsychologia 37: 1359–1374.

20. Steinglass JE, Walsh BT, Stern Y (2006) Set shifting deficit in anorexia nervosa.

J Int Neuropsychol Soc 12: 431–435.

21. Lawrence N, Wooderson S, Mataix-Cols D, David R, Speckens A, et al. (2006)

Decision making and set shifting impairments are associated with distinct

symptom dimensions in obsessive-compulsive disorder. Neuropsychology 20:

409–419.

22. Purcell R, Maruff P, Kyrios M, Pantelis C (1998) Cognitive deficits in obsessive-

compulsive disorder on tests of frontal-striatal function. Biol Psychiatry 43:

348–357.

23. Boggio PS, Bermpohl F, Vergara AO, Muniz AL, Nahas FH, et al. (2007) Go-

no-go task performance improvement after anodal transcranial DC stimulation

of the left dorsolateral prefrontal cortex in major depression. J Affect Disord 101:

91–98.

24. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, et al. (2005) Anodal

transcranial direct current stimulation of prefrontal cortex enhances working

memory. Exp Brain Res 166: 23–30.

25. Nitsche MA, Roth A, Kuo MF, Fischer AK, Liebetanz D, et al. (2007) Timing-

dependent modulation of associative plasticity by general network excitability in

the human motor cortex. J Neurosci 27: 3807–3812.

26. Fales C, Vanek Z, Knowlton B (2006) Backward inhibition in Parkinson’s

disease. Neuropsychologia 44: 1041–1049.

27. Hayes A, Davidson M, Keele S, Rafal R (1998) Toward a functional analysis of

the basal ganglia. J Cogn Neurosci 10: 178–198.

28. Meiran N, Friedman G, Yehene E (2004) Parkinson’s disease is associated with

goal setting deficits during task switching. Brain Cogn 54: 260–262.

29. Ravizza SM, Ciranni MA (2002) Contributions of the prefrontal cortex and

basal ganglia to set shifting. J Cogn Neurosci 14: 472–483.

30. Cools R, Barker R, Sahakian B, Robbins T (2001) Mechanisms of cognitive set

flexibility in Parkinson’s disease. Brain 124: 2503–2512.

31. Cools R, Ivry R, D’esposito M (2006) The human striatum is necessary for

responding to changes in stimulus relevance. J Cogn Neurosci 18: 1973–1983.

32. Dreher JC, Grafman J (2003) Dissociating the roles of the rostral anterior

cingulate and the lateral prefrontal cortices in performing two tasks

simultaneously or successively. Cereb Cortex 13: 329–339.

33. Crone EA, Wendelken C, Donohue SE, Bunge SA (2006) Neural evidence for

dissociable components of task-switching. Cereb Cortex 16: 475–486.

34. Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, et al. (2007)

Transcranial direct current stimulation: a computer-based human model study.

Neuroimage 35: 1113–1124.

35. Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution

during transcranial direct current stimulation. Clin Neurophysiol 117:

1623–1629.

36. Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, et al. (2006) Effects of

transcranial direct current stimulation on working memory in patients with

Parkinson’s disease. J Neurol Sci 249: 31–38.

tDCS-Induced Changes on Set Shifting Performance

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e24140



37. Fregni F, Boggio P, Santos M, Lima M, Vieira A, et al. (2006) Noninvasive

cortical stimulation with transcranial direct current stimulation in Parkinson’s
disease. Mov Disord 21: 1693–1702.

38. Smith AB, Taylor E, Brammer M, Rubia K (2004) Neural correlates of

switching set as measured in fast, event-related functional magnetic resonance
imaging. Hum Brain Mapp 21: 247–256.

39. Rubia K, Smith AB, Woolley J, Nosarti C, Heyman I, et al. (2006) Progressive
increase of frontostriatal brain activation from childhood to adulthood during

event-related tasks of cognitive control. Hum Brain Mapp 27: 973–993.

40. Pollmann S, Weidner R, Muller HJ, von Cramon DY (2000) A fronto-posterior
network involved in visual dimension changes. J Cogn Neurosci 12: 480–494.

41. Keeser D, Padberg F, Reisinger E, Pogarell O, Kirsch V, et al. (2011) Prefrontal
direct current stimulation modulates resting EEG and event-related potentials in

healthy subjects: a standardized low resolution tomography (sLORETA) study.
Neuroimage 55: 644–657.

42. Mehta M, Manes F, Magnolfi G, Sahakian B, Robbins T (2004) Impaired set-

shifting and dissociable effects on tests of spatial working memory following the
dopamine D 2 receptor antagonist sulpiride in human volunteers. Psychophar-

macology 176: 331–342.
43. Dockery C, Hueckel-Weng R, Birbaumer N, Plewnia C (2009) Enhancement of

planning ability by transcranial direct current stimulation. J Neurosci 29:

7271–7277.

44. Oldfield R (1971) The assessment and analysis of handedness: the Edinburgh

inventory. Neuropsychologia 9: 97–113.

45. Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10–

20 EEG system for positioning of transcranial magnetic stimulation. Brain

Topogr 16: 95–99.

46. Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, et al. (2003)

Facilitation of implicit motor learning by weak transcranial direct current

stimulation of the primary motor cortex in the human. J Cogn Neurosci 15:

619–626.

47. Jasper H (1958) The ten-twenty electrode system of the International Federation.

Electroen Clin Neuro 10: 371–375.

48. Nitsche M, Paulus W (2001) Sustained excitability elevations induced by

transcranial DC motor cortex stimulation in humans. Neurology 57: 1899–1901.

49. Antal A, Nitsche MA, Paulus W (2006) Transcranial direct current stimulation

and the visual cortex. Brain Res Bull 68: 459–463.

50. Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological

approach to the mechanisms of transcranial DC-stimulation-induced after-

effects of human motor cortex excitability. Brain 125: 2238–2247.

51. Galea JM, Celnik P (2009) Brain polarization enhances the formation and

retention of motor memories. J Neurophysiol 102: 294–301.

tDCS-Induced Changes on Set Shifting Performance

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e24140


