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Abstract: During the last few years Strontium has been shown to have beneficial effects when

incorporated at certain doses in bone by stimulating bone formation. It is believed that its

presence locally at the interface between an implant and bone will enhance osteointegration

and therefore, ensure the longevity of a joint prosthesis. In this study we explore the possibility

of incorporating Sr into nano-apatite coatings prepared by a solution-derived process

according to an established biomimetic methodology for coating titanium based implants. The

way this element is incorporated in the apatite structure and its effects on the stereochemistry

and morphology of the resulting apatite layers was investigated, as well as its effect in the

mineralization kinetics. By using the present methodology it was possible to incorporate

increasing amounts of Sr in the apatite layers. Sr was found to incorporate in the apatite layer

through a substitution mechanism by replacing Ca in the apatite lattice. The presence of Sr in

solution induced an inhibitory effect on mineralization, leading to a decrease in the thickness

of the mineral layers. The obtained Sr-substituted biomimetic coatings presented a bone-like

structure similar to the one found in the human bone and therefore, are expected to enhance

bone formation and osteointegration. ' 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl

Biomater 83B: 258–265, 2007

Keywords: apatite coating; biomimetic synthesis; calcium phosphate; titanium (alloys);

strontium (ion substitution)

INTRODUCTION

Skeletal metabolism of Strontium (Sr) has been the subject

of extensive study over the past several years. Because of

its chemical and physical similarity to calcium, Sr is a nat-

ural bone-seeking trace element that accumulates in the

skeleton.1 There is growing evidence that Sr influences

bone remodeling by affecting both bone resorption and

bone formation.2

Several studies3–5 indicate that Sr can affect the activity

of cells in vitro, acting directly on osteoclasts to inhibit

bone resorption. The presence of this trace element on the

surface of bone at a level higher than that required for nor-

mal cell physiology, can be effective in blocking osteoclas-

tic bone resorption without apparent cytotoxic effect on

osteoblasts.4 Consistent with the in vitro data, available in
vivo studies indicate that Sr has a metabolic effect on

bone.5–9 Positive effects were observed in different animal

models namely those with predominant bone remodeling,

like monkeys.10 The presence of Sr can enhance endosteal

and trabecular bone formation without affecting bone min-

eralization and reducing bone resorption. These effects can

directly influence the mechanical properties of bone,

increasing the bone strength, while maintaining the bone

physiological balance. These in vivo studies support the

concept that Sr administration at a correctly defined dose

can act on bone resorption, increasing bone formation, and

reducing bone loss in animal models of osteopenia, sug-

gesting that controlled doses of Sr may have potential ben-

efits in the treatment of osteopenic disorders, like

osteoporosis.8,11 In dental enamel, Sr was also found to sta-

bilize the apatitic structure and induce higher resistance to

degradation by bacterial acids.12,13

In the recent years clinical trials have been conducted on

humans using a specific molecule, Sr ranelate, composed of

an organic moiety that binds two stable Sr atoms for

increasing Sr bioavailability. Low doses of Sr ranelate,

when orally supplemented, were reported to increase verte-

bral bone calcification in osteoporotic patients.12,14–16 Im-
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portant pharmacological and clinical data have clearly dem-

onstrated that the presence of this Sr-based drug reduces the

risk of vertebral17,18 and nonvertebral fractures19 in post-

menopausal women with good tolerability in patients.

When orally supplemented, Sr can be retained in bone

at a certain extent. A study in monkeys by Boivin et al.10

reported that when large doses of Sr were supplemented

over a long period of time the calcium to Sr ratio reached

a maximum of 10:1. This means that, low doses of Sr are

required to elicit positive effects. In newly formed bone, Sr

atoms are incorporated into the crystal by ionic substitution

for calcium.9 Newly formed apatite crystals are more reac-

tive and incorporate more Sr ions than the larger crystals,

which grow more slowly. Complex effects of Sr on apatite

crystals have been reported,1,11 such as a decrease in the

apatite carbonate content and in crystal length. However,

crystals containing Sr have demonstrated to be more stable

and show more regular shapes.1,11 In this sense, Sr may

also indirectly inhibit the resorption of the calcified matrix

by stabilizing hydroxyapatite (HA) crystals.

When considering load-bearing cementless metallic

implants, biological fixation is crucial for ensuring its long-

term viability. Because of this osteoconductivity, hydroxy-

apatite ceramic has been used as a coating in joint recon-

struction devices such as hip stems and acetabular cups.

These coatings, commonly produced using a plasma spray-

ing technique,20,21 have demonstrated direct bone apposi-

tion.22 However, concerns about delamination of the plasma-

sprayed HA coating and the potential for generating ceramic

particles have discouraged its widespread acceptance. This

fact has motivated a continuous search for effective ways of

producing calcium phosphates more similar to those formed

by the natural processes of bone mineralization, driving the

attention over the last years to biomimetic methodolo-

gies.23–27 When coated with a layer similar to the natural

mineral of bone, an orthopaedic implant besides exhibiting

adequate mechanical properties to be used as bone replace-

ment can also conduct bone formation and thereby, firmly

integrate to bone. Following this idea, a solution-derived

process was designed to produce a nano-apatite coating with

a composition and structure equivalent to bone mineral. This

coating is achieved by the immersion of titanium substrates

in an aqueous solution comprising all major inorganic com-

ponents present in the body, mainly, HCO3
�, Ca2+, HPO4

2�,
and Mg2+ ions.28 The resulting apatite layers have demon-

strated by in vivo studies to be capable of inducing bone for-

mation and promoting direct bone apposition.28 Moreover,

because of the physiologically related conditions for the for-

mation of these coatings (in a solution with temperature, pH

and inorganic composition close to human blood plasma)

they present a high carrier potential at the surface of an

implant, since, in this environment the biomolecules with

therapeutic relevance can preserve their activity. The load-

ing options are therefore numerous, going from protein

growth factors29–31 to different therapeutic agents32 used in

the treatment of bone related diseases.

Considering the beneficial effects of the presence of Sr

in bone, reported in literature over the last years and herein

shortly summarized, it is believed that its presence locally

at the interface between the implant and bone via a calcium

phosphate coating will stimulate bone formation, enhance

osteointegration, and therefore ensure the longevity of a

cementless implant. In this work we studied the possibility

of incorporating different amounts of Sr onto the nano-apa-

tite layers during the coating process. The effect on the

coating properties like the morphology, chemistry and crys-

tallinity was then evaluated.

MATERIALS AND METHODS

Materials

Titanium alloys are currently used in the manufacturing of

joint implants. Twelve Ti-6A1-4V disks with a 16 mm in

diameter and 2 mm in thickness were polished to have a

reflective mirror-like finish, and another twelve disks were

grit blasted using 20-mm alumina particles, per coating con-

dition. A total of 48 polished and 48 grit blasted samples

were used in the study. The distribution of the samples was

as following: 3 samples/assay (all 3 used for TF-XRD fol-

lowed by DR-FTIR and finally 2 for SEM) 34 [Sr] 3 4

time periods in solution: 24 and 50 h, 4 and 7 days. In this

paper we are reporting the results concerning the obtained

coating after 7 days of coating. The specimens were ultra-

sonically cleaned first in a detergent solution, then in ace-

tone, ethanol and finally in de-ionized water and then dried

at 608C.

Apatite Coating Formation

A biomimetic nano-crystalline apatite coating was grown on

the titanium specimens according to a procedure which was

adapted from a previously developed process described by

Li et al.28,33 An aqueous solution was prepared comprising

all major inorganic ions present in the body, based in a

simulated body fluid solution (SBF) initially proposed by

Kokubo et al.27 CaCl2, NaCl, KCl, K2HPO4, MgCl2,

NaSO4, and NaHCO3 were dissolved in de-ionized H2O and

the pH adjusted to neutral using tris(hydroxymethyl)amino-

methane-hydrochloric acid. The solution was buffered at

time 0. The concentrations of NaCl, KCl, NaHCO3, MgCl2,

and NaSO4 were designed to correspond to the nominal lev-

els of human blood plasma, whereas the concentrations of

Ca2+ and HPO4
2� were 5.0 and 2.4 mM, respectively. Three

other solutions were prepared based on the same procedure

with the supplement of 0.5, 1.0, and 1.5 mM SrCl2 that

results in the atomic ratio of Ca to Sr in solution of 10:1,

5:1, and 10:3, respectively.34 The lowest concentration of Sr

is in the therapeutic range, when compared with the values

found in human blood plasma in a study carried out in

patients receiving a daily Sr supplement.12 Concerning the

ideal concentration of Sr in bone a consensus has not been

reached. In the literature several studies report different
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amounts of Sr found in bone1,6,12,35–38 which, however, can-

not be directly compared, since they are referred to either

different animal models or human subjects and different Sr

therapies. Nevertheless in a review by Dahl et al.9 10:1 is

indicated as the theoretical maximum of the Ca to Sr ratio

in bone, based on studies by Boivin et al.10 The as-prepared

solutions were loaded in a 2L double-jacketed glass reactor

and the temperature was kept constant at 458C using a water

circulating controller. The samples were fixed in tailor-

made Teflon holders and placed in the reactors standing ver-

tically. Such arrangement ensures that the coating formed

on the surface of Ti disks will not result from sedimentation

of precipitates in the solution. Figure 1 illustrates schemati-

cally the process. The disks were removed from solution af-

ter 7 days and cleaned with deionized water.

Solution Analysis

During the entire process the pH and temperature of the

solutions were monitored (recorded every 10 min) by a pH/

ion meter (pH/ion Meter 692, Metrohm, Switzerland). The

change of Ca, P, and Sr concentrations in the coating solu-

tions was followed by means of removing aliquots of 5 mL

of solution every 10 to 12 h. Atomic Absorption Spectros-

copy (AA800, Perkin-Elmer, Norwalk, CT) was used to

Figure 1. Schematic drawing of the coating experiments in double-

jacked glass reactors.

Figure 2. Evolution of Ca, P, and Sr composition of the different solutions during the coating pro-
cess: (a) solution in the absence of Sr and with (b) 0.5, (c) 1.0, and (d) 1.5 mg/mL of Sr.
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quantify the amount of the Ca and Sr present. To eliminate

the interference of phosphate in the measurement of cal-

cium and Sr, 0.1 mL of the sample solution was diluted in

5 mL of 0.625 % wt of LaCl3 that acts as a release agent.

The P concentration was analyzed by the \molybdenum

blue" method39 using a UV-light spectrophotometer (Gen-

esys 2, Spectronic Instruments). For both methods, for each

time point 3 repetitions/5 replicates were analyzed, and the

average values calculated.

Characterization of the Apatite Coatings

The formed apatite coatings were analyzed using Diffuse

Reflectance Fourier Transform Infra-Red spectroscopy

(DR-FTIR, Magna-IR 550, Nicolet, Madison, WI), Thin-

Film X-Ray Diffractometry (TF-XRD, X’Pert PW3040,

Philips, The Netherlands), and Scanning Electron Micros-

copy (SEM, S-3500N, Hitashi, Japan) linked with

Energy-Dispersive Spectroscopy (EDS). Two samples

were used for each assay. To perform the SEM analysis

all the samples were coated with a thin film of carbon,

by ion sputtering, prior to any observation. The cross-

sections of the coatings were also observed by SEM and

its thickness calculated from the average of measure-

ments performed in 5 equidistant points (5 mm) along the

cross-sections.

RESULTS

Apatite Formation: The Solution Side

The evolution of the Ca, P, and Sr composition in solution

is presented in Figure 2.

When comparing the presented curves for each different

solution, a concurrent drop in the concentration of Ca, P,

and Sr is observed, indicating that these ions are being con-

sumed from solution while the apatite coating is being

formed. The solution without supplement of SrCl2 [Figure

2(a)], shows a drop in the concentration of Ca from *200

to 123 mg/L and the P concentration from *70 to 40 mg/

mL between the first 24 and 48 h. When 0.5 mM of Sr is

added to the solution [Figure 2(b)] the change of Ca and P

concentrations is not considerably altered, suggesting that

this amount of Sr does not affect significantly the driving

forces for apatite formation. However, when Sr is raised to

1.0 [Figure 2(c)] and 1.5 mM [Figure 2(d)] the Ca and P

drop is delayed to *77 and 90 h respectively. A retarding

effect of Sr is, therefore, observed at these concentrations.

This indicates an inhibitory effect of Sr. At the same time

the concentration of this element in solution follows the

same trend as of Ca and P concentration [Figure 2(a-c)].

This result indicates that the Sr ions can be incorporated in

the structure of the apatite, possibly by competing with Ca

ions for its substitution.

Apatite Formation: The Coating Side

Figure 3 presents the morphologies of the apatite coatings

formed after 7 days in the solution without Sr and with

increasing concentrations of this element. The coating shows

similar morphologies when formed on polished surfaces as

compared with the coating on grit-blasted samples. There-

fore, these micrographs concern the polished samples, being

representative of the obtained morphologies for both cases.

After immersion in solution without the presence of Sr

[Figure 3(a)], it was possible to observe a uniform coating

on the surface of the samples, exhibiting a needle-like

structure. When adding 0.5 mM of Sr to the solution the

structure of crystals presented a more regular shape [Figure

3(b)]. These morphologies are typically found when octa-

calcium phosphate is present.40 When the amount of Sr in

solution rises to 1.0 and 1.5 mM [Figure 3(c,d)] a remark-

able change in the morphology is observed. The apatite

crystals decrease from an approximate size of %2.5 mm to

the sub-micron level. This result indicates that the presence

of Sr inhibits the apatite crystals from growing, leading to

the formation of a nano-apatite structure.

Figure 4 presents SEM micrographs of the apatite layers’

cross-sections after 7 days, for polished and grit-blasted

samples as function of the amount of Sr in solution. The cor-

respondent thickness evolution is plotted in Figure 5.

When comparing the apatite layers formed on the two

types of surfaces studied, it is possible to observe that nei-

ther the morphology nor the thickness were influenced by

the roughness of the Ti substrates [Figure 4(a-h)]. How-

ever, an increase in substrate roughness have improved ad-

hesion of apatite coating to substrate because of a better

mechanical interlocking with the apatite layer.25 When add-

ing only 0.5M Sr to the solution, a marked decrease in the

thickness of the coating is observed.

Figure 6 shows a typical EDS spectrum obtained after 7

days for the coating produced in a solution containing

Figure 3. Morphologies of the apatite coatings formed after 7 days

in the solutions containing: (a) 0, (b) 0.5, (c) 1.0, and (d) 1.5 mM of

Sr, concerning a polished sample.
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1 mM of Sr, where it is possible to identify the presence of

this element. This spectrum is representative of the profiles

obtained after Sr was incorporated at the different doses. Af-

ter the coating process, the samples were washed in de-ion-

ized water to remove a residue of coating source solution.

The absence of Na or Cl indicates that the surface is clean.

The Sr detected on the surface is the element that is chemi-

cally incorporated in the apatite structure. Sr was identified

even when a lower amount of Sr (0.5 mM) was added to so-

lution. Trace amounts of Mg were also detected together

with Sr. In fact the affinity of this ion for the apatite struc-

ture increased with the presence of Sr. Titanium and Alumi-

num are also detected from the substrate, which is

composed of a commercially available Ti alloy (Ti6Al4V).

Figure 7 presents the most important region of the DR-

FTIR spectra of the apatite coatings produced in the vari-

ous solutions.

The bands detected at 1636 cm�1 are assigned to water

molecules in the apatite structure. Another broad band

assigned to water was also detected in the region of

Figure 4. Morphology and thickness of the apatite layers formed on

polished (a,c,e,g) and grit-blasted (b,d,f,h) surfaces after 7 days in
SBF containing increasing amounts of Sr in solution: (a, b) 0 mM, (c,

d) 0.5 mM, (e, f) 1.0 mM, and (g, h) 1.5 mM.

Figure 5. Average thickness of the apatite layers formed in solu-

tions containing increasing amounts of Sr.

Figure 6. Typical EDS spectra obtained for the formed Sr-apatite
layers after 7 days of the coating process.

Figure 7. DR-FTIR of the apatite coatings formed in the solutions

containing increasing concentrations of Sr.
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3200 cm�1 (data not shown). In fact, apatite contains water

incorporated in its structure, either chemically bonded, i.e.

structural water or also adsorbed because of its hydroscopic

character.41 The bands at 870, 1410, and 1446 cm�1 result

from the presence of carbonate (CO3
2�) incorporated in the

apatite lattice.41,42 The presence of these bands clearly indi-

cates that a carbonated apatite was formed, as it is found in

bone apatite. The bands at 602 and 578 are assigned to the

m4 bending mode of the O��P��O bonds in the apatite.

The bands at 1072 and 1112 cm�1 indicate the (3 stretch-

ing mode of P��O bonds.41

Figure 8 presents the TF-XRD spectra of the apatite

coatings with increasing Sr content. Figure 9 presents in

detail the region of the (002) plane.

By TF-XRD (Figure 8) it was possible to identify the

main characteristic peaks attributed to HA. The peak at

2h ¼ 268 is assigned to (002) plane in the lattice of apatite

crystal. The strong diffraction intensity of this peak sug-

gests a preferential orientation of the crystals. Another im-

portant diffraction peak is detected around 2h ¼ 328 and is

related to the overlapping of planes (211), (112), and (300).

This broad peak indicates that the apatite is poorly crystal-

line. When comparing in detail the apatite peaks it is possi-

ble to note a shift to the left that is progressive as function

of the amount of Sr in the coating solution. An example of

this shift is found in Figure 9, in a detailed analysis of the

region correspondent to the (002) plane. This shift is a

close match to the reference pattern for composition

(Ca)9Sr(PO4)6(HO)2, indicating that Ca is being replaced

by Sr during the coating process.

DISCUSSION

The process of apatite formation in the herein studied solu-

tion is a complex phenomenon.28 It involves a number of

reactions concerning the association/dissociation of the var-

ious ions and ion groups in solution, which will be affected

by interactions with the titanium substrate and with the

environment to which the solution is exposed. During apa-

tite coating formation, a concurrent drop in the concentra-

tions of Ca, P, and Sr (when present) in solution is

detected, together with a drop of the solutions’ pH (data

not shown). This phenomenon has been studied and

reported in a previous work.28 In brief, at the initial stage

of the coating processes the pH of the solution increases

because of the release of CO2 from the dissociation of

HCO3
� ions, resulting in the generation of hydroxyl ions.

This is a rather well known phenomena studied by several

authors28,43,44 when using comparable supersaturated solu-

tions. However, at a certain time point a pH drop is

observed that is coincident with a drop in the Ca and P

composition. The pH drop results from the dissociation of

HPO4
2� and H2PO4

� ionic groups into PO4
3� which will

then bond to Ca2+ to the form the apatite coating.

When Sr is present in higher amounts in solution the Ca

and P drop is delayed (as well as the correspondent pH

drop), indicating delay in the coating formation due to an

inhibitory effect of this ion. This effect was reflected in the

resulting apatite layers’ morphology. A decrease in the

crystal size was observed when adding increasing amounts

of Sr to the solution, indicating that its presence inhibits

the growing of the apatite crystals, increasing the nano-

character of the apatite structure. This result suggests that

Sr can have an inhibitory effect similar to the well-known

effect of Mg, as reported by several authors.40,45,46 A pro-

nounced inhibitory effect is observed when only 0.5 mM Sr

is added to the solution, resulting in a marked decrease in

the thickness of the apatite layer. When increasing the Sr

content the thickness continues to decrease, however not in

such a prominent way. Therefore, it can be said that

increasing [Sr] in solution has a negligible effect on the

coating thickness.

When comparing the FTIR spectra, the intensity of the

band at 1072 cm�1 (m3 stretching mode of P��O bonds)

Figure 8. TF-XRD of the apatite coatings formed in the solutions

containing increasing concentrations of Sr.

Figure 9. Detail of the XRD peaks assigned to the (002) lattice
plane indicating a shift to the left on coatings formed in solutions

with increasing Sr.
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increases in case of the coatings formed in solutions contain-

ing 1.0 and 1.5 mM of Sr. This type of profile was also

observed in the case of apatite coatings formed in the ab-

sence of Sr in the first days of the coating process (data not

shown). The higher intensity of this band might be related to

the thickness of the coating or to its overall composition. In

fact, absorbance is related to the quantity of function group

determined by the coating thickness. On the other hand,

since the solution is not replenished during the 7 days of the

experiment, the degree of solution supersaturation decreases

over time, which might be affecting the composition of the

apatite over time of immersion. Nevertheless, FTIR analysis

neither reveals a significant shift of PO4 bands nor demon-

strates addition of any other bands, indicating that these pos-

sible compositional changes are not significant.

Although FTIR analysis did not reveal any significant

difference between the spectra of the Sr-free and Sr-con-

taining apatite coatings, by TF-XRD analysis a progressive

shift of the main apatite peaks was observed towards the

typical composition of Sr substituted apatite. Sr atoms,

although having a higher ionic radii than Ca are able to

replace them, which will lead to a distortion in the crystal

lattice and consequently to a deviation of the diffraction

planes. These results qualitatively associate with the obser-

vations made of the solutions evolution during the process.

The mechanism by which Sr is being incorporated in the

apatite structure is, therefore, by the substitution of Sr for

Ca. Further studies, however, are required in order to deter-

mine the exact composition of these new biomimetic Sr-

substituted apatite coatings.

CONCLUSIONS

In this study it was possible to incorporate different

amounts of Sr into the structure of the apatite layer by add-

ing SrCl2 in biomimetic apatite coating source solution. Sr

ions are extracted from the solution to substitute for Ca in

apatite coating during its formation, leading to the forma-

tion of a Sr-substituted apatite coating. The presence of Sr

ions in solution could inhibit the coating formation and

results in the decrease of coating thickness. The formed Sr-

containing biomimetic coatings presented a bone-like struc-

ture similar to the one found in the human bone. This new

Sr-apatite coatings are expected to have a positive effect in

enhancing bone formation and therefore to contributing to

better osteointegration.
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