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Abstract

For a family of differential equations with infinite delay, we give sufficient conditions for the
global asymptotic, and global exponential stability of an equilibrium point. This family includes
most of the delayed models of neural networks of Cohen-Grossberg type, with both bounded
and unbounded distributed delay, for which general asymptotic and exponential stability criteria
are derived. As illustrations, the results are applied to several concrete models studied in the
literature, and a comparison of results is given.
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1 Introduction

Since the pioneering work of Hopfield in 1982 [14], several classes of neural network models have been
the subject of an active research, due to their large application in a variety of scientific areas, such
as combinatorial optimization, content-addressable memory, pattern recognition, signal and image
processing, associative memory.

In 1983, Cohen and Grossberg [3] proposed and studied the artificial neural network described by
a system of ordinary differential equations (ODEs),

ẋi = −ki(xi)

bi(xi)− n∑
j=1

aijfj(xj)

 , i = 1, . . . , n, (1.1)

and in 1984 Hopfield [15] studied the particular situation of (1.1) with ki ≡ 1,

ẋi = −bixi +
n∑
j=1

aijfj(xj), i = 1, . . . , n. (1.2)

In order to be more realistic, differential equations describing neural networks should incorporate
time delays to take into account the synaptic transmission time among neurons, or, in artificial
neuron networks, the communication time among amplifiers. In 1989, Marcus and Westervelt [20]
introduced for the first time a discrete delay in the Hopfield model (1.2), and observed that the delay
can destabilize the system; it can also lead to periodic behaviours, not shown in the Hopfield model,
reproducing some biological aspects related to neuron circuits that control rhythmic activities, such
as breathing, heart beating, walking.

For over two decades, several different generalizations of model (1.1), with and without delays,
have been proposed, to include static neural networks, cellular networks, bidirectional associative
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memory neural network systems, etc. Recently, the study of delayed differential equations (DDEs)
modelling physiological or artificial neural networks has attracted a great attention among mathe-
maticians and other scientists, and a significant number of publications has been produced. For this
reason, here we avoid to give any description or realistic explanation of the models presented, since
this can be easily found in the literature.

This paper deals with the analysis of the global stability for a very general class of Cohen-
Grossberg-type autonomous neural network models with infinite distributed delay, of the form

ẋi(t) = −ai(xi(t))

bi(xi(t)) +
n∑
j=1

P∑
p=1

f
(p)
ij

(∫ 0

−∞
g
(p)
ij (xj(t+ s))dη(p)

ij (s)
) , i = 1, . . . , n, (1.3)

which includes all the particular models mentioned above. The results here extend the previous
work in [6] and [22], where the case of bounded distributed delays was studied. See also [4], for
the attractivity of equilibrium points to multi-species Lotka-Volterra systems with unbounded delay.
We recall that systems with an infinite time-delay or “infinite memory” have been considered in
population dynamics since the works of Volterra.

In fact, the Cohen-Grossberg model (1.3) will be treated here as a particular case of a much more
general family of DDEs of the form

ẋi(t) = −ρi(t, xt) [bi(xi(t)) + fi(xt)] , i = 1, . . . , n, (1.4)

where ρi, bi, fi are continuous real functions, ρi are positive, and xt is defined by xt(s) = x(t+ s) for
s ≤ 0.

For DDEs with infinite delay, the choice of an admissible Banach phase space (usually called fading
memory space) should be made with special care, in order to obtain standard results of well-posedness
of the initial value problem, existence, uniqueness and continuation of solutions, and precompactness
of bounded positive orbits. Here, this task is facilitated since we shall always assume that the initial
conditions are bounded on (−∞, 0]. This is the usual setting in the literature on neural network
systems with unbounded delay, and the reason why in most of the papers an explicit choice of the
phase space is not even mentioned.

Many authors have investigated and analyzed several features of delayed differential equations
representing neural networks, and it is impossible to mention all the significant works in the area.
We however would like to refer to [1, 10, 21, 23, 27, 29] for their work on local stability and Hopf
bifurcations, and [1, 2, 9, 19, 24, 25, 26] for several criteria to ensure existence, global asymptotic
stability, and global exponential stability of an equilibrium point.

Besides the above cited works, there is an extensive literature dealing with global stability of
neural network models with delays. We emphasize however that the usual approach to study the
global asymptotic stability of an equilibrium of a system relies on the Lyapunov functional technique.
In general, constructing a Lyapunov functional for a concrete n-dimensional DDE is rather complex,
and frequently a new Lyapunov functional for each model under consideration is required. In contrast
with the usual method, our techniques (also in [5, 6]) do not involve Lyapunov functionals, and apply
to general systems. Moreover, most of the works on delayed neural networks consider only the case
of a finite number of discrete delays, whereas we here treat the case of unbounded distributed delays.

The paper is organized as follows: In Section 2, we briefly present adequate Banach phase spaces
for DDEs with infinite delay written in abstract form as ẋ(t) = f(t, xt), and establish a general
condition for the boundedness of solutions and existence and uniform stability of the zero solution.
In Section 3, we present the main results of the paper, on the existence, global asymptotic, and
global exponential stability of an equilibrium point for the general class of DDEs with infinite delay
(1.4), which includes most of the autonomous models of neural network systems. In Section 4, these
results are applied to establish criteria for the global asymptotic, and the global exponential stability
of equilibria for neuron network models (1.3). Section 5 is dedicated to applications of these criteria
to concrete models. Throughout this section, a comparison of results with the literature is given,
showing the advantage of our method when applied to several different models, such as cellular
networks or bidirectional associative memory neural models. A short section with conclusions ends
the paper.
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2 Uniform stability

Consider the following space, often referred to as “fading memory” space [11],

UCg =
{
φ ∈ C((−∞, 0]; Rn) : sup

s≤0

|φ(s)|
g(s)

<∞, φ(s)
g(s)

is uniformly continuous on (−∞, 0]
}

where g : (−∞, 0]→ [1,+∞) is a given function satisfying:

(g1) g is a non-increasing continuous function and g(0) = 1;

(g2) lim
u→0−

g(s+ u)
g(s)

= 1 uniformly on (−∞, 0];

(g3) g(s)→∞ as s→ −∞.

For example, the function g(s) = e−αs with α > 0 satisfies (g1)-(g3). The space UCg with the
norm

‖φ‖g = sup
s≤0

|φ(s)|
g(s)

,

where | · | is a fixed norm in Rn, is a Banach space.
Consider also the spaceBC = BC((−∞, 0]; Rn) of bounded and continuous functions φ : (−∞, 0]→

Rn, and let ‖ · ‖∞ denote the supremum norm, ‖φ‖∞ = sup
s≤0
|φ(s)|. It is clear that BC ⊆ UCg, with

‖φ‖g ≤ ‖φ‖∞ for φ ∈ BC. When BC is considered as a subspace of UCg, we often write BCg.
For an open set D ⊆ UCg and f : [0,∞)×D → Rn continuous, consider the functional differential

equation (FDE)

ẋ(t) = f(t, xt), t ≥ 0, (2.1)

where, as usual, xt denotes the function xt : (−∞, 0] → Rn defined by xt(s) = x(t + s) for s ≤ 0.
Since g satisfies (g1)-(g3), the phase space UCg is an admissible Banach space for (2.1) in the sense
of [11] and therefore standard existence, uniqueness and continuation type results are valid [13]. We
always assume that f is regular enough in order to have uniqueness of solution for the initial value
problem. The solution of (2.1) with initial condition xt0 = ϕ is denoted by x(t, t0, ϕ).

In view of our applications to neural network systems, we restrict our attention to initial bounded
conditions, i.e.,

xt0 = ϕ, with ϕ ∈ BC, (2.2)

for some t0 ≥ 0. From [13], if f takes closed bounded subsets of its domain into bounded sets of Rn,
then the solution of (2.1)-(2.2) is extensible to intervals [0, a] whenever it is bounded.

In [5], a result on the boundedness of solutions for a general FDE (2.1) with finite delay was
established, when the norm |x| = max{|xi| : i = 1, . . . , n}, x = (x1, . . . , n) ∈ Rn, is chosen in Rn.
Here, a generalization of such result is given, with the same norm in Rn, but for the case of unbounded
delays.

Lemma 2.1. Consider equation (2.1) in UCg, and suppose that f transforms closed bounded sets of
[0,∞)×D into bounded sets of Rn. Assume also that

(H1) for all t ≥ 0 and ϕ ∈ UCg such that |ϕ(s)|
g(s) < |ϕ(0)|, for s ∈ (−∞, 0), then ϕi(0)fi(t, ϕ) < 0

for some i ∈ {1, . . . , n} such that |ϕ(0)| = |ϕi(0)|.

Then, the solutions x(t) = x(t, 0, ϕ), ϕ ∈ UCg, of (2.1) are defined on [0,∞) and satisfy |x(t, 0, ϕ)| ≤
‖ϕ‖g for t ≥ 0.
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Proof. From [13], it follows that a solution with an initial condition x0 = ϕ ∈ UCg is defined for
t ≥ 0 if it is bounded on every interval [0, a] (a > 0). We now prove that solutions x(t) defined on
[0, a] satisfy |x(t)| ≤ ‖x0‖g for 0 ≤ t ≤ a. The proof is similar to the one of Lemma 3.2 of [5] (see
also Theorem 3.1 of [4]). For convenience of the reader, we include it here.

Let x(t) = x(t, 0, ϕ) be a solution of (2.1) on [0, a] for some a > 0, with ‖ϕ‖g = k. Suppose that
there is t1 > 0 such that |x(t1)| > k and define

T = min
{
t ∈ [0, t1] : max

s∈[0,t1]
|x(s)| = |x(t)|

}
.

We have |x(T )| > k and

|xT (s)|
g(s)

=
|x(T + s)|
g(s)

≤ |x(T + s)|
g(T + s)

≤ k < |x(T )| for s ≤ −T,

and
|xT (s)|
g(s)

≤ |xT (s)| = |x(T + s)| < |x(T )| for s ∈ [−T, 0).

Hence |xT (s)|/g(s) < |x(T )| for s ∈ (−∞, 0). By (H1) there is i ∈ {1, . . . , n} such that |xi(T )| =
|x(T )| and xi(T )fi(T, xT ) < 0. Suppose that xi(T ) > 0 (the situation xi(T ) < 0 is analogous). Since
xi(t) ≤ |x(t)| < xi(T ) for t ∈ [0, T ), then ẋi(T ) ≥ 0. On the other hand we have ẋi(T ) = fi(T, xT ) <
0, a contradiction. This proves that |x(t, 0, ϕ)| ≤ ‖ϕ‖g for all t ≥ 0, whenever x(t, 0, ϕ) is defined.

In order to obtain boundedness of solutions and uniform stability of the zero solution in BC,
rather than (H1) we can impose a less restrictive hypothesis, as stated in the next lemma. The proof
is similar to the one above, and therefore omitted.

Lemma 2.2. Consider equation (2.1) in UCg, and suppose that f transforms closed bounded sets of
[0,∞)×D into bounded sets of Rn. Assume also that

(H2) for all t ≥ 0 and ϕ ∈ BC such that |ϕ(s)| < |ϕ(0)|, for s ∈ (−∞, 0), then ϕi(0)fi(t, ϕ) < 0 for
some i ∈ {1, . . . , n} such that |ϕ(0)| = |ϕi(0)|.

Then, all solutions of (2.1) with initial conditions in BC are defined and bounded on [0,∞). Moreover,
if x(t) = x(t, 0, ϕ), ϕ ∈ BC, is a solution of (2.1) then |x(t, 0, ϕ)| ≤ ‖ϕ‖∞ for all t ≥ 0.

3 Main results

In this section, we study the global asymptotic and the global exponential stability of an equilibrium
point for a family of FDEs with infinite delays given in abstract form as

ẋi(t) = −ρi(t, xt)[bi(xi(t)) + fi(xt)], i = 1, . . . , n, t ≥ 0, (3.1)

where ρi : [0,∞)× UCg → (0,∞), bi : R→ R and fi : UCg → R are continuous, i = 1, . . . , n.
This general class of FDEs includes most of the (autonomous) neural network models with infinite

delay present in the literature, as shown in Sections 4 and 5. As mentioned before, for neural network
models with unbounded delays, the initial conditions are always assumed to be bounded. Therefore,
throughout the paper we take BC as the set of admissible initial conditions, and only consider
solutions of general models (3.1) with initial conditions (2.2).

As usual, for a vector a = (a1, . . . , an) ∈ Rn, we also write a to denote the constant function
ϕ(s) ≡ a in BC, or UCg.

Definition 3.1. If x∗ ∈ Rn is an equilibrium of (3.1), x∗ is said to be globally asymptotically stable
(in the set of admissible solutions) if it globally attractive in Rn, i.e., x(t) → x∗ as t → ∞, for all
solutions x(t) with initial conditions in BCg, and is stable in UCg; and x∗ is said to be globally
exponentially stable if there are positive constants ε,M such that

|x(t, 0, ϕ)− x∗| ≤Me−εt‖ϕ− x∗‖∞, for all t ≥ 0, ϕ ∈ BC.
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It should be mentioned that the above definition of global exponential stability of an equilibrium
x∗ is the usual in the literature on neural networks with unbounded delay, but it does not even imply
the stability of x∗ in the phase space UCg, i.e., relative to the norm ‖ · ‖g.

In the sequel, for (3.1) the following hypotheses will be considered:

(A1) For any M > 0, sup{ρi(t, φ) : φ ∈ BC, ‖φ‖∞ ≤ M, t ≥ 0} < ∞ and ri(t) := inf{ρi(t, φ) : φ ∈
BC, ‖φ‖∞ ≤M} satisfies

∫∞
0
ri(t)dt =∞, i ∈ {1, . . . , n};

(A2) for each i ∈ {1, . . . , n}, there is βi > 0 such that

(bi(u)− bi(v))/(u− v) ≥ βi, ∀u, v ∈ R, u 6= v;

(A3) fi : UCg → R is a Lipschitz function with Lipschitz constant li, i ∈ {1, . . . , n};

(A4) βi > li for all i ∈ {1, . . . , n}.

Lemma 3.1. Assume (A2), (A3) and (A4). Then system (3.1) has a unique equilibrium point
x∗ = (x∗1, . . . , x

∗
n) ∈ Rn.

Proof. Define the continuous function H : Rn → Rn, H(x) = (b1(x1) + f1(x), . . . , bn(xn) + fn(x))
for x = (x1, . . . , xn). Under the assumptions, reasoning as Lemma 2.4 in [22] one proves that H is
injective and that |H(x)| → ∞ as |x| → ∞. For more details, cf. [22]. Making use of a lemma in [8],
we conclude that H is a homeomorphism of Rn, and therefore there is a unique x∗ ∈ Rn such that
H(x∗) = 0.

Now, we state our main result on the global asymptotic stability of the equilibrium x∗ of (3.1).

Theorem 3.2. Assume (A1)–(A4). Then system (3.1) has a unique equilibrium point which is
globally asymptotically stable.

Proof. From Lemma 3.1, system (3.1) has a unique equilibrium point x∗ = (x∗1, . . . , x
∗
n) ∈ Rn.

Translating x∗ to the origin by the change x̄(t) = x(t)− x∗, (3.1) becomes

˙̄xi(t) = −ρ̄i(t, x̄t))[b̄i(x̄i(t)) + f̄i(x̄t)], i = 1, . . . , n, t ≥ 0, (3.2)

where ρ̄i(t, ϕ) = ρi(t, ϕ + x∗), b̄i(u) = bi(u + x∗i ) and f̄i(ϕ) = fi(x∗ + ϕ), with zero as the unique
equilibrium point, i.e. b̄i(0) + f̄i(0) = 0 for i = 1, . . . , n. Clearly ρi, bi and fi satisfy (A1)–(A4) if
and only if ρ̄i, b̄i and f̄i satisfy (A1)–(A4). Hence, we consider (3.2), where, for simplicity, we drop
the bars.

Let ϕ ∈ BCg be such that ‖ϕ‖g = |ϕ(0)| > 0 and consider i ∈ {1, . . . , n} such that |ϕi(0)| = ‖ϕ‖g.
If ϕi(0) > 0 (the situation ϕi(0) < 0 is analogous), then ‖ϕ‖g = ϕi(0) and from the hypotheses we
conclude that

bi(ϕi(0)) + fi(ϕ) = [bi(ϕi(0))− bi(0)] + [fi(ϕ)− fi(0)]

≥ (βi − li)‖ϕ‖g > 0. (3.3)

In particular, (H1) holds and from Lemma 2.1 we deduce that all solutions are defined and bounded
on [0,∞), and that x = 0 is uniformly stable. It remains to prove that zero is globally attractive.

For x(t) = (xi(t))ni=1 a solution of (3.2), define the limits

−vi = lim inf
t→∞

xi(t), ui = lim sup
t→∞

xi(t), i = 1, . . . , n,

and
v = max

i
{vi}, u = max

i
{ui}.
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Note that u, v ∈ R and −v ≤ u. It is sufficient to prove that max(u, v) = 0. Assume e.g. that |v| ≤ u,
so that max(u, v) = u. (The situation is analogous for |u| ≤ v.)

Let i ∈ {1, . . . , n} be such that ui = u. Now we denote hi(ϕ) := −[bi(ϕi(0))+fi(ϕ)], for ϕ ∈ BCg,
and prove that there is a sequence (tk)k∈N such that

tk ↗∞, xi(tk)→ u, and hi(xtk)→ 0, as k →∞. (3.4)

Case 1. Assume that xi(t) is eventually monotone. In this case, limt→∞ xi(t) = u and for t large,
either ẋi(t) ≤ 0 or ẋi(t) ≥ 0. Assume e.g. that ẋi(t) ≤ 0 for t large (the situation ẋi(t) ≥ 0 is
analogous). Then hi(xt) ≤ 0 for t large, hence

lim sup
t→∞

hi(xt) := c ≤ 0.

For M = supt∈R |x(t)|, consider ri(t) = inf{ρi(t, φ) : ‖φ‖∞ ≤M}. If c < 0, then there is t0 > 0 such
that hi(xt) < c/2 for t ≥ t0, implying that

xi(t) ≤ xi(t0) +
c

2

∫ t

t0

ri(s)ds.

From (A1) and the above inequality, we obtain xi(t)→ −∞ as t→∞, which is not possible. Thus
c = 0, which proves (3.4).

Case 2. Assume that xi(t) is not eventually monotone. In this case there is a sequence (tk)k∈N
such that tk ↗∞, ẋi(tk) = 0 and xi(tk)→ u, as k →∞. Then hi(xtk) = 0 for all k ∈ N, and (3.4)
holds.

Next, we show that u = 0, hence v = 0 as well.
Since x(t) is bounded on [0,∞), then there is L > 0 such that ‖xt‖g < L for all t ≥ 0. Hence, from

(A1), (A3) we conclude that there is K > 0 such that |ẋj(t)| =
∣∣ρj(t, xt)[bj(xj(t)) + fj(xt)]

∣∣ < K,
for all t ≥ 0 and j ∈ {1, . . . , n}. Together with the fact that the initial condition x0 is bounded on
(−∞, 0] and Theorem 3.1 in [11], this estimate implies that {xt : t ≥ 0} is precompact in UCg. Thus,
for a subsequence of (xtk)k, still denoted by (xtk)k, there is φ ∈ UCg such that xtk → φ in UCg as
k →∞. On the other hand, let ε > 0 be fixed. There is T = T (ε) > 0 such that |x(t)| < uε := u+ ε
for t ≥ T , therefore for any s ≤ 0 we obtain |φ(s)|/g(s) ≤ ‖xtk−φ‖g+|x(tk+s)|/g(s) ≤ ‖xtk−φ‖g+uε
for k large, hence ‖φ‖g ≤ u2ε. Since ε > 0 is arbitrary, we conclude that ‖φ‖g ≤ u. From (3.4), we get
φi(0) = u and hi(φ) = 0. Clearly ‖φ‖g = |φi(0)| = u. Now, if u > 0, arguing as in (3.3) we conclude
that hi(φ) < 0, which is not possible. As a consequence, u = 0 and the theorem is proven.

Remark 3.1. As a particular case, we can consider the subclass of FDEs (3.1) where ρi(t, φ) =
ri(t)ai(φi(0)), with ri : [0,∞)→ (0,∞) and ai : R→ (0,∞) continuous, so that (3.1) becomes

ẋi(t) = −ri(t)ai(xi(t))[bi(xi(t)) + fi(xt)], i = 1, . . . , n, t ≥ 0. (3.5)

In this situation, hypothesis (A1) is written in a simpler form as follows:

(A1’) ri(t) is uniformly bounded on [0,∞) and
∫∞
0
ri(t)dt =∞, i ∈ {1, . . . , n}.

Remark 3.2. In the proof of Therorem 3.2, it was crucial to have a result on precompactness for
positive orbits of (3.1). (In fact, the same argument shows that ‖xt − x∗‖g → 0 as t → ∞ for any
solution x(t) with initial data in BC, hence x∗ is globally attractive in UCg.) From [11], positive
orbits of solutions x(t) which are bounded and uniformly continuous on [0,∞) are always precompact
in UCg, provided that |x(s)|/g(s) → 0 as s → −∞. Clearly this latter condition always holds if we
only consider initial conditions x0 = φ with φ ∈ BC. On the other hand, Theorem 3.2 in [11] asserts
that, if UCg is a “strong fading memory” space, then the positive orbit {xt : t ≥ 0} of a solution x(t)
which is bounded and uniformly continuous on [0,∞) is precompact. Therefore, for this situation we
can relax our initial constraint, and take the full space UCg as the set of admissible initial conditions.

We now address the global exponential stability of systems (3.1). For that, we consider the space
UCg with g(s) = e−αs, s ∈ (−∞, 0], for some α > 0. Recall that, with such choice of g, UCg is a
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strong fading memory space (see Theorem 3.2 of [11]). In the literature, we find examples of neural
networks given by FDEs with infinite delays, for which UCg with g of the above form g(s) = e−αs (for
some α > 0 to be fixed) may be taken as the phase space, although that is not always explicit (see
e.g. in [23]). In fact, as already noticed, most papers dealing with neural networks with unbounded
delay do not provide an explicit phase space. In the sequel, as before we always consider bounded
initial conditions x0 = φ ∈ BC.

Theorem 3.3. Consider system (3.1) in UCg, for g(s) = e−αs, s ∈ (−∞, 0], for some α > 0.
Assume (A2), (A3), (A4), and

(A1*) ρ := inf{ρi(t, ϕ) : t ≥ 0, ϕ ∈ BCg, 1 ≤ i ≤ n} > 0.

Then the unique equilibrium x∗ of (3.1) is globally exponentially stable.

Proof. As in the above proof, after a translation, we may assume that the equilibrium point is zero,
i.e., bi(0) + fi(0) = 0 for i = 1, . . . , n.

Since βi > li and ρ > 0, choose ε ∈ (0, α) such that ε− ρ(βi − li) < 0 for all i = 1, . . . , n.
Let x(t) = x(t, 0, ϕ) be a solution of (3.1). The change of variables z(t) = eεtx(t) transforms (3.1)

into

ż(t) = Fi(t, zt), t ≥ 0, i = 1, . . . , n, (3.6)

where
Fi(t, φ) = εφi(0)− ρi(t, e−ε(t+·)φ)eεt

[
bi(e−εtφi(0)) + fi(e−ε(t+·)φ)

]
.

Let t ≥ 0 and φ ∈ BC such that |φ(s)| < |φ(0)|, for s ∈ (−∞, 0), and consider i ∈ {1, . . . , n} such
that |φi(0)| = |φ(0)|.

If φi(0) > 0 (the situation φi(0) < 0 is analogous), then our hypotheses imply that

Fi(t, φ) = εφi(0)− ρi(t, e−ε(t+·)φ)eεt
[
bi(e−εtφi(0))− bi(0) + fi(e−ε(t+·)φ)− fi(0)

]
≤ εφi(0)− ρi(t, e−ε(t+·)φ)eεt

[
βie
−εtφi(0)− li‖e−ε(t+·)φ‖g

]
≤ εφi(0)− ρeεt

[
βie
−εtφi(0)− li sup

s≤0

e−εte−εs|φ(s)|
e−αs

]
≤ εφi(0)− ρ

[
βiφi(0)− li sup

s≤0
e(α−ε)s|φ(s)|

]
.

(3.7)

Since α− ε > 0, we have
Fi(t, φ) ≤ φi(0)[ε− ρ(βi − li)] < 0,

and (H2) holds for F = (F1, . . . , Fn). From Lemma 2.2, the solution z(t) is defined on [0,∞) and
satisfies |z(t)| ≤ sup

s≤0
|z(s)| for t ≥ 0. Thus we obtain

|x(t, 0, ϕ)| = |e−εtz(t, 0, eε·ϕ)| ≤ e−εt sup
s≤0
|ϕ(s)|, t ≥ 0, ϕ ∈ BC.

We remark that the above result extends to the infinite delay case a previous criterion presented
in [6] for FDEs with finite delays.

Clearly, the above theorems can be generalized for non-autonomous models as follows:
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Theorem 3.4. Consider

ẋi(t) = −ρi(t, xt)[bi(xi(t)) + fi(t, xt)], i = 1, . . . , n, t ≥ 0,

with ρi, bi as in (3.1) and fi : [0,∞)×UCg → R continuous, and assume that there is an equilibrium
point x∗ = (x∗1, . . . , x

∗
n) ∈ Rn. Then, the statements of Theorems 3.2 and 3.3 on the stability of x∗

are valid with (A3) replaced by the condition of fi being uniformly li-Lipschitzian with respect to the
variable ϕ ∈ UCg, i.e., for i = 1, . . . , n,

(A3*) |fi(t, ϕ)− fi(t, ψ)| ≤ li‖ϕ− ψ‖g, for t ≥ 0 and ϕ,ψ ∈ UCg.

4 Cohen-Grossberg neural networks

In this section, we apply the previous results to the following generalized Cohen-Grossberg neural
network model with infinite distributed delays:

ẋi(t) = −ai(xi(t))

bi(xi(t)) +
n∑
j=1

P∑
p=1

f
(p)
ij

(∫ 0

−∞
g
(p)
ij (xj(t+ s))dη(p)

ij (s)
) , i = 1, . . . , n, (4.1)

where ai : R → (0,∞), bi : R → R and f
(p)
ij , g

(p)
ij : R → R are continuous functions, and η

(p)
ij :

(−∞, 0]→ R are non-decreasing bounded functions, normalized so that η(p)
ij (0)− η(p)

ij (−∞) = 1, for
all i, j ∈ {1, . . . , n}, p ∈ {1, . . . , P}. We further assume that the functions bi satisfy (A2) and that
f

(p)
ij , g(p)

ij are Lipschitzian with Lipschitz constants µ(p)
ij , σ(p)

ij , respectively. For (4.1), BC is taken
as the set of initial conditions, which guarantees that solutions are extensible to [0,∞). Model (4.1)
is particularly relevant in terms of applications, as we shall illustrate extensively in the next section
with several examples.

Define the square real matrices,

B = diag(β1, . . . , βn), L = [lij ] and N = B − L, (4.2)

where β1, . . . , βn are as in (A2) and

lij =
P∑
p=1

µ
(p)
ij σ

(p)
ij , i, j = 1, . . . , n.

We now prove an auxiliary result which is a generalization of a result in [12].

Lemma 4.1. Consider ηi : (−∞, 0] → R, i = 1, . . . ,m, non-decreasing and bounded functions, and
α > 0 such that ∫ 0

−∞
dηi(s) < α, i = 1, . . . ,m.

Then, there is a continuous function g : (−∞, 0] → [1,+∞) satisfying (g1), (g2) and (g3), and
such that ∫ 0

−∞
g(s)dηi(s) < α, i = 1, . . . ,m.

Proof. We use arguments similar to the ones in [12]. First, define

αi := ηi(0)− η(−∞) =
∫ 0

−∞
dηi(s) < α, i = 1, . . . ,m. (4.3)

For each n ∈ N and i ∈ {1, . . . ,m}, let εi,n = (α − αi)/[2n+1(n + 1)]. Since ηi is non-decreasing
and bounded, there is a sequence (rn)n∈N of positive real numbers (independent of i) such that
rn+1 ≥ rn + 1 and ∫ −rn

−∞
dηi(s) < εi,n, i = 1, . . . ,m, n ∈ N.

Now, define g : (−∞, 0]→ [1,+∞) as follows:
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(i) g(s) = 1 on [−r1, 0];

(ii) g(−rn) = n, n ∈ N;

(iii) g is continuous and piecewise linear (linear on intervals [−rn+1,−rn]).

From (i) and (4.3), we have ∫ 0

−r1
g(s)dηi(s) <

α+ αi
2

.

Hence, for each i = 1, . . . ,m, we have∫ 0

−∞
g(s)dηi(s) =

∫ 0

−r1
g(s)dηi(s) +

∞∑
n=1

∫ −rn

−rn+1

g(s)dηi(s)

<
α+ αi

2
+
∞∑
n=1

g(−rn+1)
∫ −rn

−rn+1

dηi(s)

≤ α+ αi
2

+
∞∑
n=1

(n+ 1)εi,n =
α+ αi

2
+
∞∑
n=1

α− αi
2n+1

= α.

The stability of (4.1) is strongly related to the algebraic properties of the associated matrix N
defined in (4.2). We recall here the definition of a non-singular M-matrix. For further properties of
M-matrices, we refer the reader to Chapter 5 of [7].

Definition 4.1. If D = [dij ] is a square matrix with non-positive off-diagonal entries, i.e., dij ≤ 0
for all i 6= j, we say that D is a non-singular M-matrix if all the eigenvalues of D have positive real
part, or, equivalently, if all the principal minors of D are positive.

Theorem 4.2. For system (4.1), assume (A2), that f (p)
ij , g(p)

ij are Lipschitz functions with Lipschitz

constants µ(p)
ij , σ(p)

ij , respectively, and that η(p)
ij are non-decreasing bounded functions, normalized so

that η(p)
ij (0)− η(p)

ij (−∞) = 1, for all i, j ∈ {1, . . . , n}, p ∈ {1, . . . , P}.
For N defined in (4.2), if N is a non-singular M-matrix, then there is a unique equilibrium point

of (4.1), which is globally asymptotically stable.

Proof. If N is a non-singular M-matrix, then (see [7]) there is d = (d1, . . . , dn) > 0 such that Nd > 0,
i.e.,

βidi >

n∑
j=1

lijdj , i = 1, . . . , n,

hence, there is δ > 0 such that

βidi >

n∑
j=1

lij(1 + δ)dj , i = 1, . . . , n. (4.4)

Since
∫ 0

−∞ dη
(p)
ij (s) < 1 + δ for i, j = 1, . . . , n, p = 1, . . . , P , from Lemma 4.1 we conclude that there

is g : (−∞, 0]→ [1,+∞) satisfying (g1)-(g3) such that∫ 0

−∞
g(s)dη(p)

ij (s) < 1 + δ.

The change yi(t) = d−1
i xi(t) transforms (4.1) into the system

ẏi(t) = −ai(diyi(t))d−1
i

bi(diyi(t)) +
n∑
j=1

P∑
p=1

f
(p)
ij

(∫ 0

−∞
g
(p)
ij (djyj(t+ s))dη(p)

ij (s)
) , (4.5)
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for which we consider UCg as the phase space. For each i ∈ {1, . . . , n}, define

f̄i(φ) = d−1
i

n∑
j=1

P∑
p=1

f
(p)
ij

(∫ 0

−∞
g
(p)
ij (djφj(s))dη

(p)
ij (s)

)
, φ = (φ1, . . . , φn) ∈ UCg,

and
b̄i(u) = d−1

i bi(diu), āi = ai(diu), u ∈ R.
System (4.5) is written as

ẏi(t) = −āi(yi(t))[b̄i(yi(t)) + f̄i(yt)], i = 1, . . . , n, t ≥ 0. (4.6)

For φ, ψ ∈ UCg and i = 1, . . . , n, since fpij , g
p
ij are Lipschitz continuous and η

(p)
ij are non-decreasing,

we have

|f̄i(φ)− f̄i(ψ)| = d−1
i

∣∣∣∣∣∣
n∑
j=1

P∑
p=1

(
f

(p)
ij

(∫ 0

−∞
g
(p)
ij (djφj(s))dη

(p)
ij (s)

)
− f (p)

ij

(∫ 0

−∞
g
(p)
ij (djψj(s))dη

(p)
ij (s)

))∣∣∣∣∣∣
≤ d−1

i

n∑
j=1

P∑
p=1

µ
(p)
ij

∣∣∣∣∫ 0

−∞
g
(p)
ij (djφj(s))− g(p)

ij (djψj(s))dη
(p)
ij (s)

∣∣∣∣
≤ d−1

i

n∑
j=1

dj

P∑
p=1

µ
(p)
ij σ

(p)
ij

∫ 0

−∞
g(s)
|(φj − ψj)(s)|

g(s)
dη

(p)
ij (s)

≤

d−1
i

n∑
j=1

dj

P∑
p=1

µ
(p)
ij σ

(p)
ij

∫ 0

−∞
g(s)dη(p)

ij (s)

 ‖φ− ψ‖g
≤

d−1
i

n∑
j=1

lij(1 + δ)dj

 ‖φ− ψ‖g.
This means that

|f̄i(φ)− f̄i(ψ)| ≤ li‖φ− ψ‖g, i = 1, . . . , n,

for li := d−1
i

∑n
j=1 lij(1 + δ)dj . Moreover, b̄i satisfies (A2) with β̄i = βi, and from (4.4) we have

βi > li, i = 1, . . . , n. The conclusion follows now from Theorem 3.2.

In order to apply the exponential stability criterion in Theorem 3.3 to model (4.1), we now assume
that there exists a constant γ > 0 such that all the normalized non-decreasing and bounded functions
η
(p)
ij in (4.1) satisfy ∫ 0

−∞
e−γsdη

(p)
ij (s) <∞. (4.7)

Theorem 4.3. Consider (4.1), where ai : R → (0,+∞) and bi : R → R are continuous, f (p)
ij , g(p)

ij

are Lipschitz functions with Lipschitz constants µ(p)
ij , σ(p)

ij respectively, and η
(p)
ij are non-decreasing

and bounded functions, normalized so that η(p)
ij (0) − η

(p)
ij (−∞) = 1, i, j = 1, . . . , n, p = 1, . . . , P .

Assume in addition that:
(i) (A2) is satisfied;
(ii) there exists a constant γ > 0 such that η(p)

ij satisfy (4.7), i, j = 1, . . . , n, p = 1, . . . , P ;
(iii) ai := inf{ai(x) : x ∈ R} > 0 for i = 1, . . . , n.

If the matrix N defined in (4.2) is a non-singular M-matrix, then there is a unique equilibrium point
of (4.1), which is globally exponentially stable.
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Proof. Since N is a non-singular M-matrix, there is d = (d1, . . . , dn) > 0 and δ > 0 such that (4.4)
holds. We now claim that there is α ∈ (0, γ) such that∫ 0

−∞
e−αsdη

(p)
ij (s) < 1 + δ, i, j = 1, . . . , n, p = 1, . . . , P. (4.8)

To prove the claim, we first note that, for each η := η
(p)
ij fixed, the function F (t) := F

(p)
ij (t) =∫ 0

−∞ e−tsdη
(p)
ij (s) is non-decreasing on [0, γ]. On the other hand, F (γ) =

∫ 0

−∞ e−γsdη
(p)
ij (s) <∞ and

F (0) =
∫ 0

−∞ dη
(p)
ij (s) = 1. We now prove that F is continuous on [0, γ].

Fix ε > 0. From (4.7), there is M > 0 such that∫ −M
−∞

e−αs dη(s) ≤
∫ −M
−∞

e−γs dη(s) < ε/3, α ∈ [0, γ].

Since f(α, s) = e−αs is uniformly continuous on [0, γ] × [−M, 0], there is σ > 0 such that |e−αs −
e−βs| ≤ ε/(3M) for all s ∈ [−M, 0], α, β ∈ [0, γ] with |α− β| < σ, implying that∣∣∣∣∫ 0

−M
e−αs dη(s)−

∫ 0

−M
e−βs dη(s)

∣∣∣∣ ≤ ε/3.
Hence, we deduce that |F (α)−F (β)| < ε, for α, β ∈ [0, γ] with |α−β| < σ, proving the continuity of
F . From the intermediate value theorem, it follows that for each η(p)

ij there is α(p)
ij ∈ (0, γ) such that∫ 0

−∞ e−α
(p)
ij sdη

(p)
ij (s) < 1 + δ. Taking α = min{α(p)

ij : i, j = 1, . . . , n, p = 1, . . . , P}, then (4.8) holds.
Now, we argue as in the proof of Theorem 4.2 with g(s) = e−αs, and obtain that (A3) is fulfilled.

The result follows from Theorem 3.3.

5 Applications

In this section, we shall apply the criteria in Section 4 to a large number of neural networks with
infinite delay. The broad framework of our general results allows us to treat most of the neural
network models considered in the literature (as well as some FDEs from population dynamics) as
particular cases of the family of FDEs (3.1). Moreover, by presenting a comparison of results, we
shall also show that our criteria improve in many cases those in recent papers.

We recall that the stability of a solution means stability relative to the set of solutions with initial
conditions in BC.

Example 5.1. The cellular neural network with distributed delays

ẋi(t) = −bixi(t) +
n∑
j=1

fij

(∫ 0

−∞
xj(t+ s)dηij(s)

)
, i = 1, . . . , n, (5.1)

is a delayed version of the model (1.2) proposed by Hopfield [15], and a special case of (4.1). Here,
bi > 0, fij : R → R are continuous and ηij : (−∞, 0] → R are normalized, non-decreasing, and
bounded functions. Applying Theorems 4.2 and 4.3 to this system, we have:

Corollary 5.1. Assume that fij : R → R are Lipschitz functions with Lipschitz constants µij for
i, j = 1, . . . , n. If

N := B − L, where B = diag(b1, . . . , bn), L = [µij ],

is a non-singular M-matrix, then there is a unique equilibrium point of (5.1), which is globally asymp-
totically stable. Moreover, if there is γ > 0 such that

∫ 0

−∞ e−γs dηij(s) < ∞ for i, j = 1, . . . , n, then
the equilibrium is globally exponentially stable.
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Example 5.2. In [26], the following Cohen-Grossberg neural network model was studied:

ẋi(t) = −ai(xi(t))

bi(xi(t)) +
n∑
j=1

aijfj

(∫ 0

−∞
kij(−s)xj(t+ s)ds

) , i = 1, . . . , n, (5.2)

where aij ∈ R, ai : R→ (0,+∞) and bi : R→ R are continuous functions, fj : R→ R are Lipschitz
functions, and the delay kernel functions kij : [0,∞)→ [0,∞) are piecewise continuous and such that∫ ∞

0

kij(s)ds = 1. (5.3)

In [26], the author established sufficient conditions for the global asymptotic stability of the equilib-
rium point of (5.2), assuming, as usual, bounded initial conditions.

If P = 1, f (1)
ij (u) = aijfj(u), g(1)

ij (u) = u with u ∈ R, and the bounded non-drecreasing functions

η
(1)
ij are of the form

η
(1)
ij (s) =

∫ s

−∞
kij(−u)du, s ∈ (−∞, 0], i, j = 1, . . . , n,

then system (4.1) reduces to (5.2). Consequently, Theorem 4.2 applied to system (5.2) gives the
following result:

Corollary 5.2. Consider (5.2), and, for i, j = 1, . . . , n, assume that:
(i) bi : R→ R satisfy (A2);
(ii) the positive kernels kij satisfy (5.3);
(iii) fi : R→ R are µi-Lipschitz functions;
(iv) the matrix N = B − L, where B = diag(β1, . . . , βn) for βi as in (A2) and L =

[
|aij |µj

]
, is

a non-singular M-matrix.
Then there is a unique equilibrium x∗ of (5.2), which is globally asymptotically stable.

Remark 5.1. For system (5.2), L. Wang [26] obtained the existence and global asymptotic stability
of an equilibrium point assuming the following hypotheses:

(a) For each i ∈ {1, . . . , n}, bi is increasing and satisfies (A2);
(b) For each i ∈ {1, . . . , n}, fi is bounded and µi-Lipschitz continuous;
(c) For each i ∈ {1, . . . , n}, there exist ai, ai > 0 such that

0 < ai ≤ ai(u) ≤ ai, ∀u ∈ R;

(d) For each i, j ∈ {1, . . . , n}, the kernels kij(t) ≥ 0 satisfy (5.3) and∫ ∞
0

tkij(t)dt <∞;

(e) The matrix N := BA − LTA is a non-singular M-matrix, where B = diag(β1, . . . , βn), A =
diag(a1, . . . , an), A = diag(a1, . . . , an) and L = [lij ] with lij = |aij |µj , for βi as in (A2), i = 1, . . . , n.

For N = B−L as above, note that N ≤ NTA, and therefore if N is a non-singular M-matrix then
NT is also a non-singular M-matrix, and N as well [7]; however, the reverse is not true in general.
It is clear that this set of assumptions is much more restrictive than the one assumed in Corollary
5.2, which strongly improves the criterion in [26]. In particular, in this corollary no restrictions were
imposed on the positive functions ai.

Next, the application of Theorem 4.3 to (5.2) leads to sufficient conditions for its exponential
stability, as follows:
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Corollary 5.3. Consider (5.2), and for i, j = 1, . . . , n assume hypotheses (i)-(iv) in Corollary 5.2,
and the additional conditions:

(v) there are constants ai > 0 such that 0 < ai ≤ ai(x) for all x ∈ R;
(vi) for some γ > 0, the positive kernels kij satisfy∫ ∞

0

kij(t)eγtdt <∞, i, j = 1, . . . , n. (5.4)

Then, there is a unique equilibrium of (5.2), which is globally exponentially stable.

Remark 5.2. For system (5.2), Wu et al. [30] obtained the existence and global exponential stability
of an equilibrium point under the conditions of bi differentiable with b′i(x) ≥ βi for all x ∈ R, for
some βi > 0, ∫ ∞

0

kij(t)dt < 1, i, j = 1, . . . , n,

and the above hypotheses (iii), (vi), (c), (e). It is clear that the above Corollary 5.3 improves signif-
icantly the main result in [30].

Example 5.3. In [16], the authors studied the global asymptotic stability of the equilibrium point
of the following Cohen-Grossberg neural networks model:

ẋi(t) = −ai(xi(t))
[
bi(xi(t)) +

n∑
j=1

aijfj(xj(t)) +
n∑
j=1

cij

∫ 0

−∞
kij(−s)gj(xj(t+ s))ds

]
, i = 1, . . . , n,(5.5)

where aij , cij ∈ R, fj , gj : R→ R are Lipschitz functions and the kernels kij(t) are non-negative and
normalized, so that (5.3) holds, i, j = 1, . . . , n.

System (5.5) is another special case of model (4.1), when P = 2, f (1)
ij (u) = aijfj(u), g(1)

ij (u) = u,

f
(2)
ij (u) = ciju, g(2)

ij (u) = gj(u) with u ∈ R, and the bounded variation functions η(1)
ij and η

(2)
ij are of

the form

η
(1)
ij (s) =

{
1 s = 0
0 s < 0 η

(2)
ij (s) =

∫ s

−∞
kij(−u)du, s ∈ (−∞, 0], i, j = 1, . . . , n.

Consequently, from Theorems 4.2 and 4.3 we obtain the result:

Corollary 5.4. Assume (A2), fj , gj : R→ R are Lipschitz functions with Lipschitz constant µj , σj
respectively, and the non-negative kernels kij satisfy (5.3) for all i, j ∈ {1, . . . , n}. Suppose also that
N := B − L, where B = diag(β1, . . . , βn) for βi as in (A2) and L = [lij ] with lij = |aij |µj + |cij |σj,
is a non-singular M-matrix.

Then there is a unique equilibrium x∗ of (5.5), which is globally asymptotically stable. Moreover,
if the conditions (v) and (vi) in Corollary 5.3 hold, then x∗ is globally exponentially stable.

Remark 5.3. For system (5.5), T. Huang et al. [16] proved the global asymptotic stability of the
equilibrium assuming in addition that, for each i = 1, . . . , n, bi is differentiable with b′i(u) ≥ βi > 0,
and that there exist ai, ai > 0 such that 0 < ai ≤ ai(u) ≤ ai, u ∈ R. Thus the above Corollary 5.4
clearly improves the main result in [16].

Example 5.4. Consider the bidirectional associative memory (BAM) Cohen-Grossberg neural net-
works model

ẋi(t) = −ai(xi(t))

bi(xi(t)) +
m∑
j=1

fij(yj(t− τij))

 , i = 1, . . . , n,

ẏj(t) = −dj(yj(t))

[
cj(yj(t)) +

n∑
i=1

mji

∫ 0

−∞
kji(−s)gji(xi(t+ s))ds

]
, j = 1, . . . ,m,

(5.6)
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where mji ∈ R, ai, dj : R → (0,+∞) and bi, cj : R → R are continuous functions, fij , gji : R → R
are Lipschitz functions and the kernels kji : [0,∞) → [0,∞) satisfy (5.3). For a description and
explanation of the model, see [3, 17, 18], also for further references.

The existence and global asymptotic stability of an equilibrium point of (5.6) were recently studied
in [17]. As in the above examples, it is easy to see that (5.6) is a special case of model (4.1), thus
from Theorem 4.2 we obtain the following result:

Corollary 5.5. For all i = 1, . . . , n, j = 1, . . . ,m, assume that:
(i) bi(u) and cj(u) satisfy (A2) with constants βi > 0 and γj > 0, respectively;
(ii) the kernels kij(t) satisfy (5.3);
(iii) fij , gji : R→ R are Lipschitzian and have Lipschitz constants µij , σji, respectively;
(iv) N is a non-singular M-matrix, where N is defined by

N :=
[

B −U
−S G

]
(n+m)×(n+m)

,

for
B = diag(β1, . . . , βn), G = diag(γ1, . . . , γm), U = [µij ] S = [|mji|σji].

Then, there is a unique equilibrium of (5.6), which is globally asymptotically stable.

In [17], the authors assumed a different set of hypotheses to get the global asymptotic stability
of the equilibrium point, since different norms in Rn were considered.

To the best of our knowledge, the global exponential stability of the BAM model (5.6) was never
studied before. As an immediate consequence of Theorem 4.3, here we obtain the following criterion:

Corollary 5.6. Assume conditions (i)-(iv) in Corollary 5.5, and the additional hypotheses:
(v) there are ai > 0, dj > 0 such that 0 < ai ≤ ai(u), 0 < dj ≤ dj(u) for all u ∈ R;
(vi) the kernels kji satisfy (5.4), i = 1, . . . , n, j = 1, . . . ,m.

Then the unique equilibrium of (5.6) is globally exponentially stable.

Example 5.5. Consider (4.1) with P = 2, ai(u) = 1, f (1)
ij (u) = −aijfj(u), g(1)

ij (u) = u, f (2)
ij (u) =

−biju − Ii, g
(2)
ij (u) = gj(u), for u ∈ R, and η

(1)
ij (s) =

{
0, s < 0
1, s = 0 , and η

(2)
ij (s) = ηj(s), i, j ∈

{1, . . . , n}. Then, we obtain a model known as interval cellular neural network with S-type distributed
delays (see [31]):

ẋi(t) = −bi(xi(t)) +
n∑
j=1

aijfj(xj(t)) +
n∑
j=1

bij

∫ 0

−∞
gj(xj(t+ s))dηj(s) + Ii, i = 1, . . . , n. (5.7)

Sufficient conditions for the existence and global exponential stability of an equilibrium of (5.7)
are given from Theorem 4.3, and stated below.

Corollary 5.7. Assume that (A2) holds, fi, gi : R → R are Lipschitz functions with Lipschitz
constants µi and σi respectively, and the bounded variation functions ηi : (−∞, 0] → R are non-
decreasing, normalized and satisfy∫ 0

−∞
e−γs dηi(s) <∞, i = 1, . . . , n,

for some γ > 0. If

N := B − L, where B = diag(β1, . . . , βn), L =
[
|aij |µj + |bij |σj

]
is a non-singular M-matrix, then there is a unique equilibrium of (5.7), which is globally exponentially
stable.
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Remark 5.4. For the particular system (5.7), R. Zhang & L. Wang [31] obtained the existence and
global exponential stability of an equilibrium assuming the general conditions on fi, gi as above, and
the following additional hypotheses:

(a) The functions bi are differentiable, with βi = infu∈R b
′
i(u) > 0;

(b) For each i ∈ {1, . . . , n}, βi >
∑n
j=1(|aji|µi + |bji|σi).

Note that condition (b) implies that N = B−
[
|aij |µj + |bij |σj

]
is a diagonally dominant matrix,

and therefore a non-singular M-matrix [7]. Hence, it is clear that the above corollary improves the
main result in [31].

Neural networks (5.7) with bounded distributed delays were considered in [28] and [22]: in these
papers, the bounded variation functions ηij(s) are zero on (−∞,−τ ], for some τ > 0. It is easy to
see that the above results strongly improve the criteria established in [28] and [22], where only the
global asymptotic stability of the equilibrium was addressed.

6 Conclusions

We have presented general criteria for the global asymptotic and global exponential stabilities of an
equilibrium, for a large family of DDEs with infinite delay given here by equation (1.4). These criteria
are simple to verify, do not involve the use of Lyapunov functionals, and are directly applicable to most
of the autonomous neural network models with unbounded delay investigated in recent literature.
All these models fall into the category of generalized Cohen-Grossberg neural networks.

This work complements that of [6, 22], where the situation of neural networks with distributed
bounded delay was considered. In general, the introduction of large delays in systems of differential
equations is not harmless. It can produce oscillations, loss of stability of equilibria, existence of
unbounded solutions. For the situation of infinite delay, typically the “memory functions” appear as
integral kernels, diminish when going back in time, and finally disappear at −∞. Roughly speaking,
in this paper the results on the global stability of an equilibrium have been obtained by assuming
that the instantaneous negative feedback terms dominate the delay effect, so that in spite of the
unbounded delays, the DDE behaves similarly to an ODE.

As illustration, we have applied our general results to a significant number of concrete Cohen-
Grossberg neural networks, and provided immediate sufficient conditions for their global stability.
Since Volterra’s works, it is well known that the global stability of ODE systems which serve as models
in population dynamics is strongly related to the algebraic properties of the so-called competition
matrix, whose entries reflect the relationships among species, determined by the response of the
growth rate of each species to the increase of each other. This has led to the concept of M-matrix,
or matrices with similar algebraic properties. As usual, in order to show the global attractivity
of an equilibrium for DDEs modelling neural networks, here we have required that the network
“connection” matrix is a non-singular M-matrix. This means that the instantaneous self-connections
overpower the connections among neurons. To obtain the global exponential stability, we have further
assumed that the memory functions have a kind of exponential decay at −∞.

We have also discussed and compared our results with those of other authors, showing the ad-
vantage of our method. Not only have we often obtained better criteria, but also our general ap-
proach applies directly to all autonomous generalized Cohen-Grossberg neural models. In contrast,
the results on global stability for delayed neural networks in the literature are usually obtained by
considering a specific Lyapunov functional for each particular model under study.

In a forthcoming work, we shall exploit the ideas beyond our general method to address the
global attractivity of equilibria for non-autonomous neuron networks with unbounded time-dependent
discrete delays.
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