
Acta Biomaterialia 6 (2010) 4034–4041
Contents lists available at ScienceDirect

Acta Biomaterialia

journal homepage: www.elsevier .com/locate /ac tabiomat
Improving bacterial cellulose for blood vessel replacement: Functionalization with
a chimeric protein containing a cellulose-binding module and an adhesion peptide

Fábia K. Andrade a, Raquel Costa b, Lucília Domingues a, Raquel Soares b, Miguel Gama a,*

a Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
b Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal

a r t i c l e i n f o
Article history:
Received 29 November 2009
Received in revised form 24 April 2010
Accepted 27 April 2010
Available online 14 May 2010

Keywords:
Bacterial cellulose
Cellulose-binding module
Cell adhesion
Endothelial cells
Vascular grafts
1742-7061/$ - see front matter � 2010 Acta Material
doi:10.1016/j.actbio.2010.04.023

* Corresponding author. Tel.: +351 253 604400; fax
E-mail address: fmgama@deb.uminho.pt (M. Gam
a b s t r a c t

Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or
GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells
(HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC–BC interaction was studied.
The results obtained demonstrated that recombinant proteins containing adhesion sequences were able
to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequence. The images
obtained by scanning electron microscopy showed that the cells on the RGD-treated BC present a more
elongated morphology 48 h after cell seeding. The results also showed that RGD decreased the in-growth
of HMEC cells through the BC and stimulated the early formation of cord-like structures by these endo-
thelial cells. Thus, the use of recombinant proteins containing a CBM domain, with high affinity and spec-
ificity for cellulose surfaces allows control of the interaction of this material with cells. CBM may be
combined with virtually any biologically active protein for the modification of cellulose-based materials,
for in vitro or in vivo applications.

� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction Many strategies have been pursued to improve the compatibil-
Cardiovascular disease is the leading cause of mortality in Wes-
tern countries. Surgical bypass with autologous grafts remains the
most used treatment, saphenous veins and mammary arteries
being preferably used. However, many patients do not have suit-
able vessels, due to pre-existing vascular disease, amputation or
previous harvest for prior vascular procedures. Moreover, a second
surgical procedure is needed to obtain the vessel [1,2]. For the
reconstruction of arteries of large caliber currently available syn-
thetic grafts (e.g. Dacron, ePTFE and polyurethane) offer a reason-
able solution and proven clinical efficacy. However, for small sized
(<6 mm) grafts these materials generally give poor performance,
due to anastomotic intimal hyperplasia and surface thrombogenic-
ity [3–5]. This scenario prompts the search for new materials suit-
able for the effective replacement of small blood vessels.

Bacterial cellulose (BC) produced by Acetobacter spp. is a bioma-
terial that has gained interest in the field of tissue engineering due
to its unique properties. BC has been studied by several research
groups as a scaffold for cartilage [6–8], wound dressing [9,10], den-
tal implants [11–17], nerve regeneration [18,19] and vascular
grafts [18,20–23]. The in vivo biocompatibility of BC was also eval-
uated in a study conducted by Helenius and colleagues [24].
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ity and effectiveness of vascular grafts, through the production of
unreactive surfaces, the surface modification of existing synthetic
grafts (e.g. modifying surface properties and the incorporation of
biologically active substances) and coating with autologous cells
[4]. Seeding the graft surface with endothelial cells [25] is a prom-
ising approach; this mimicks the native vessel, thereby decreasing
thrombosis. However, the high loss of endothelial cells on the res-
toration of blood flow after implantation presents a major chal-
lenge [4,26,27]. The rate and quality of endothelialization of a
synthetic vascular graft depends on the interaction of endothelial
cells with these cardiovascular materials. Several approaches have
been attempted to increase endothelial cell adhesion to typically
non-adhesive polymeric biomaterials used for synthetic vascular
grafts [28]. One such approach involves pre-coating with endothe-
lial cell-specific adhesives. The tripeptide Arg–Gly–Asp (RGD), an
amino acid sequence found in many adhesive plasma and extracel-
lular matrix proteins, has been used to enhance cell adherence.
Binding of cells to the RGD sequence occurs via integrin receptors
on the cell membrane. An improvement in the biocompatibility
and performance of BC – envisaging its use as small diameter vas-
cular grafts – by enhancing adhesion to human microvascular
endothelial cells (HMEC-1) was attempted in this work by coating
BC with adhesion peptides.

Many strategies have been developed to modify the materials
used as synthetic grafts (e.g. Dacron, ePTFE and polyurethane).
The adsorption of active substances like heparin, RGD, albumin–
ll rights reserved.
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heparin conjugates, dipyridamole have little or no effect, due to the
coatings being washed away [27]. In a previous work we described
the production of recombinant proteins containing adhesion se-
quences fused to a CBM (cellulose-binding module) [29]. For artifi-
cial grafts based on cellulose the use of a CBM (exhibiting high
affinity and specificity for cellulose surfaces) that can be combined
with virtually any biologically active protein is an important strat-
egy to avoid loss of the biological agents coating the graft.
2. Materials and methods

2.1. Cell culture assays

Human microvascular endothelial cells (HMECs) (kindly pro-
vided by Dr. João Nuno Moreira, Coimbra University) were used be-
tween passages 13 and 22. HMECs were cultured in RPMI 1640
medium (Invitrogen Life Technologies, UK) supplemented with
10% fetal bovine serum (FBS) (Invitrogen Life Technologies, UK),
1% penicillin/streptomycin (Invitrogen Life technologies, UK),
1.176 g l�1 sodium bicarbonate, 4.76 g l�1 HEPES, 1 ml l�1 EGF
and 1 mg l�1 hydrocortisone (>98% purity, Sigma, Portugal) and
maintained at 37 �C in a humidified 5% CO2 atmosphere.

2.2. Cell attachment, proliferation and viability

2.2.1. Production and purification of recombinant proteins
The recombinant peptides (RGD–CBM, RGD–CBM–RGD,

GRGDY–CBM, GRGDY–CBM–GRGDY) have been previously cloned
in Escherichia coli and their production and purification were con-
ducted as previously described [29].

2.2.2. Production of bacterial cellulose and coating with the
recombinant peptides

Gluconacetobacter xylinus (ATCC 53582 and DSMZ 46604) pur-
chased from the American Type Culture Collection and from the
German Collection of Microorganisms and Cell Cultures were
grown in Hestrin–Schramm medium, pH 5.0. The medium was
inoculated with the culture, added to 24- or 96-well polystyrene
plates (1 or 0.2 ml per well, respectively) and incubated statically
at 30 �C for 5 (ATCC 53582) or 10 days (DSMZ 46604). BC pellicles
were purified by 2% SDS treatment at 60 �C for 12 h followed by 4%
NaOH at 60 �C for 90 min. Samples were autoclaved and stored in
phosphate-buffered saline (PBS), pH 7.4, at 4 �C prior to use. The
pellicles produced by the DSMZ 46604 strain (BC-L) had a thick-
ness of about 0.5 mm, while the pellicles produced by the ATCC
53582 strain (BC-H) were approximately 3 mm thick. The recombi-
nant proteins CBM and RGD–CBM (0.25 mg protein per membrane)
were left adsorbing to BC for 12 h at 4 �C. Then, the membranes
were washed with PBS.

2.2.3. HMEC-1 adhesion and proliferation
The mitochondrial activity of the cultured cells was determined

using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymeth-
oxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) colorimetric assay,
which is related to cell viability. BC-H or BC-L membranes treated
with the recombinant peptides were added to the wells of 24-well
polystyrene plates. The BC sheets were produced in similar 24-well
polystyrene plates, such that they fitted tightly in the wells, com-
pletely covering the bottom surface. The HMEC-1 cells were seeded
on the BC at a density of 12 � 104 cells well�1 in RPMI medium
without serum. The plates were incubated at 37 �C in a 5% CO2,
95% humidified air atmosphere. Two hours after addition of the
cells the wells were washed with PBS and RPMI with 10% FBS
was added. MTS assay of the adsorbed HMEC-1 cells was carried
out to evaluate adhesion of the cells after 2 h and proliferation
24 and 48 h and 7 days after cell seeding. The results were ob-
tained from at least three separate assays, each one done in
triplicates.

In order to evaluate the effect of RGD on the rate of cell adhe-
sion a similar assay was performed at 15, 30, 60, 90 and 120 min
after cell seeding, with the non-adherent cells being washed out
before carrying out the MTS assay.

2.2.4. Live and dead assay
The viability of the cells coating the cellulose (BC-L), treated or

not with the recombinant peptides, was also analyzed using a Live/
Dead� viability/cytotoxicity kit for mammalian cells (Invitrogen,
UK). This kit provides a two-color fluorescence cell viability assay,
based on the simultaneous determination of live and dead cells
with two probes that measure intracellular esterase activity and
plasma membrane integrity. This assay employs calcein, a polyan-
ionic dye, which is retained within living cells, producing a green
fluorescence. It also employs an ethidium bromide homodimer
dye (red fluorescence), which can enter the cells through damaged
membranes, binding to nucleic acids, but is excluded by the intact
plasma membrane of living cells. The experiment was developed as
described for the MTS assay. Fluorescence microscopy observations
of the cells were carried out after 24 h incubation. Cells seeded on
polystyrene were used as a positive control (living cells), and cells
further treated with 70% methanol for 30 min were taken as a neg-
ative control (dead cells). The Live/Dead assay was also used to
determine apoptosis (qualitatively), in combination with the TUN-
EL assay (quantitatively). Samples were visualized and imaged
using an Olympus BX51 fluorescence microscope (Olympus Portu-
gal SA, Porto, Portugal).

2.3. Morphological analysis by fluorescence and scanning electron
microscopy (SEM)

BC-L membranes treated with recombinant peptides were
seeded with cells as previously described. For fluorescence micros-
copy the membranes were washed with pre-warmed PBS 14 days
after cell seeding. Then the cells were fixed in 4% formaldehyde
(Pierce, Rockford, IL) in PBS, permeabilized with acetone (Sigma)
at �20 �C and stained with Alexa Fluor 546-phalloidin (Molecular
Probes). Nuclei were visualized by staining with DAPI. Microscopy
observations were performed using an Olympus BX51 (Olympus
Portugal SA) fluorescence microscope. Fluorescence microscopic
observations were carried out only on the BC-L membranes, which
allowed proper visualization of the cells due to their thinness. For
SEM microscopy the medium was removed 48 h after cell seeding
and the BC pellicles were washed twice with PBS. Next, 1 ml of
2.5% glutaraldehyde in PBS was poured into each well and the
materials were maintained at room temperature for 1 h, in order
to fix the cells on the membrane. Afterwards the membranes were
rinsed with distilled water, dehydrated by successive immersion in
a series of aqueous ethanol solutions (55, 70, 80, 90, 95 and 100
vol.%) for 30 min each, and allowed to evaporate at room temper-
ature. The surfaces of the membranes with adherent cells were ob-
served by SEM (Leica S360) after gold sputtering.

2.4. TUNEL assay for cell apoptosis

HMEC-1 cells (12 � 104 cells well�1) were seeded on BC-L as de-
scribed for the MTS assay and after 24 h incubation the TUNEL (ter-
minal deoxynucleotidyl transferase-mediated deoxyuridine
triphosphate nick-end labeling) assay, which examines DNA strand
breaks during apoptosis, was performed using an In Situ Cell Death
Detection kit (Roche Diagnostics, Basel, Switzerland), according to
the manufacturer’s instructions and as previously described [30].
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To facilitate counting of the total number of nucleus, the cells were
also stained with DAPI.
2.5. Cell invasion

To evaluate the effect of RGD on the migration of endothelial
cells through the BC a migration chamber and an attractant were
used to stimulate cell growth into the BC. The migration chamber
consisted of cell culture inserts with a membrane pore size of
8.0 lm in a 24-well plate (BD Biocoat™ Matrigel™ Invasion Cham-
ber, BD Biosciences, Franklin Lakes, NJ). Initially, HMEC-1 cells
were seeded onto BC-L (treated with the recombinant peptides)
at a density of 2.5 � 104 cell well�1 in RPMI medium without ser-
um. After 4 h 10% FBS was added to the wells. The plates were
incubated at 37 �C in an atmosphere of 5% CO2 and 95% humidified
air for 24 h. The next day the cell-coated BC pellicles were trans-
ferred to the invasion chamber containing medium with 2% FBS.
To stimulate the cells to migrate into the cellulose 20% FBS were
added to the cell culture medium in the wells. Cell cultures were
incubated for 72 h. After the conclusion of the experiments the
Matrigel membranes were removed from the inserts with a scalpel.
The cellulose and Matrigel membranes were fixed and stained with
methanol–DAPI solution and observed by fluorescence microscopy.
The cells that migrated from the cellulose into the Matrigel were
counted.
Fig. 1. MTS assays of HMEC-1 cultures on BC–H pellicles treated with the
recombinant proteins (CBM, RGD–CBM, RGD–CBM–RGD, GRGDY–CBM and
2.6. Angiogenesis

BC-L pellicles produced in a 24-well polystyrene plate were
treated with the recombinant proteins and coated with HMEC cells
(4 � 104 cells well�1) in serum-free medium for 2 h. Then 10% FBS
was added to the wells. The pellicles were incubated for 24 h at
37 �C in an atmosphere of 5% CO2 and 95% humidified air. After-
wards the medium was removed and fresh medium with 10% ser-
um was added. The plates were incubated for 4 days. To evaluate
the effect of the recombinant peptides on the morphology and
assembly of endothelial cells into capillary-like structures when
cultured on BC pellicles, the cord-like structures were observed
qualitatively using a Leica DM IL inverted microscope (Leica Micro-
systems, Wetzlar, Germany).
GRGDY–CBM–GRGDY) and buffer. The MTS assay was developed at 2, 24 and
48 h and 7 days after cell addition. Results are expressed as absorbance values at
490 nm.
2.7. Immunocytochemistry

The cells were grown on BC treated with the recombinant pep-
tides (RGD–CBM or CBM) or buffer for 14 days, then fixed with
methanol at �20 �C. To avoid non-specific interactions the cellu-
lose membranes were blocked with 4% bovine serum albumin in
PBS. The primary antibody was von Willebrand factor (vWF)
(1:100) (Chemicon, Hofheim, Germany) and the secondary anti-
body FITC-conjugated anti-rabbit (1:1000) (Santa Cruz Biotechnol-
ogy, Santa Barbara, CA). The nuclei were counterstained with DAPI
(Sigma Aldrich, Portugal). Cells were observed by fluorescent
microscopy (Nikon Eclipse 50i, Japan). The endothelial specificity
of the cells was also verified by the uptake of DiL-labelled acety-
lated low density lipoprotein (Biomedical Techologies, USA) an-
other specific marker for these cells.
Fig. 2. MTS assays of HMEC-1 cultures on BC-L pellicles treated with the
recombinant proteins (CBM, RGD–CBM, RGD–CBM–RGD, GRGDY–CBM and
GRGDY–CBM–GRGDY) and buffer. The MTS assay was developed at 2, 24 and
48 h and 7 days after cell addition. Results are expressed as absorbance values at
490 nm.
2.8. Statistical analyses

All experiments were performed in triplicate. Quantifications
are expressed as means ± SD of three independent experiments.
The statistical significance of differences between various groups
were evaluated by one-way analysis of variance (ANOVA) followed
by the Bonferroni test.
3. Results

The results of the MTS assay demonstrate that the recombinant
peptides containing adhesion sequences were able to significantly
increase the attachment of HMEC to BC-H surfaces (Fig. 1). Two
hours after cell seeding approximately 140–150% and 60–80%
more cells adhered to BC treated with the peptides containing
the RGD and GRGDY sequences, respectively, when compared with
untreated BC-H. The results demonstrate that the peptides con-
taining RGD sequence had a stronger effect than the peptides con-
taining GRGDY sequences. Moreover, it seems that the presence of
a second adhesion sequence at the C-terminus did not significantly
enhance the effect of the recombinant peptides when compared
with peptides containing only one copy of the sequence. Moreover,
the results indicate that adsorption of the CBM peptide on BC-H
slightly decreased cell adhesion (Fig. 1) by 14%. When the assay
was developed with BC-L membranes coated with peptides con-
taining one or two RGD copies approximately 108% and 77% more
cells adhered to the material than to untreated BC-L. The proteins
containing the GRGDY sequence promoted an increase of only 22–
40% in cell adhesion (Fig. 2). Fig. 3 shows that the improvement in
cell attachment was significant as early as 15 min after cell seed-



Fig. 3. MTS assays of HMEC-1 cultures on BC-H pellicles treated with CBM, RGD–
CBM and buffer. The MTS test was developed at 15, 30, 60, 90 and 120 min after
addition of cells. Results are expressed as absorbance values at 490 nm.

Fig. 5. Apoptosis was quantitatively evaluated by the TUNEL assay. HMEC cells
were seeded on BC–L and after 24 h incubation a TUNEL assay was performed. Bars
represent the percentage of apoptotic cells evaluated by the ratio between TUNEL
stained cells and DAPI stained nuclei in each culture. Experiments were repeated
three times with identical results.
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ing. No proliferation was detected 24 and 48 h following cell seed-
ing (Figs. 1 and 2), irrespective of the BC membrane or treatment
used. However, after 7 days proliferation was noticeable on BC-H
treated with the RGD- and GRGDY-containing peptides (in contrast
to BC-H treated with CBM or buffer), while no proliferation was
visible when cells were cultured on BC-L.

To estimate the viability of cells on the protein-coated BC a Live/
Dead assay was performed 24 h after cell adhesion. The fluores-
cence images obtained show that, irrespective of the treatment,
the cells remained viable on the BC pellicles (Fig. 4). The TUNEL as-
say results corroborated the Live/Dead assay, showing no signifi-
cant differences between BC pellicles treated with the
recombinant peptides (RGD–CBM and CBM) when compared with
the control (buffer) (Fig. 5).

We next investigated whether RGD affected HMEC invasion
capacity using a double chamber assay. The cells were seeded on
the BC-L pellicle treated with the RGD or CBM sequence or buffer.
The number of migrating cells was then quantified through the
double chamber assay, using serum at 20% as a chemoattractant.
In comparison with the controls, RGD decreased the in-growth of
Fig. 4. Fluorescence photographs of endothelial cells stained using a Live/Dead� viability/
treated with (a) RGD–CBM, (b) CBM or (c) buffer. Controls contained (d) live and (e) dea
HMEC cells through BC. Four and 2.4-fold increases in the number
of cells migrating through the membrane were obtained for the BC
treated with buffer and CBM, respectively, taking as a reference BC
treated with RGD (Fig. 6).

Optical microscopy indicated that RGD stimulated the forma-
tion of cellular cord-like structures at an earlier stage as compared
with the other groups. These findings showed that 24 h after seed-
ing most of the cells had a round shape in all groups (data no
shown). However, after 96 h the cells on the RGD-treated BC were
more elongated than those on the buffer control, starting to form
cord-like structures, while the cells in the CBM group remained
round shaped (Fig. 7). In fact, the structure shown in Fig. 7d, ob-
tained by fluorescent microscopy, was found only on the BC sur-
faces treated with RGD. Details of the morphology of the cells
48 h after cell seeding were obtained by SEM. Cells on the RGD-
treated BC presented an elongated shape; in fact, as can be seen
in Fig. 8a, most of the cells were so elongated that they were hardly
noticeable by SEM, unlike cells observed on the untreated or CBM-
cytotoxicity kit for mammalian cells. Live cells are stained green, dead cells red. BC-L
d cells on polystyrene. Images were acquired using a 40� objective (scale 50 lm).



Fig. 6. Effect of RGD on HMEC cell invasion of bacterial cellulose pellicles. Invasion
was quantified in a double chamber assay using medium complemented with 20%
FBS as a chemoattractant. Bars represent the number of invasive cells.
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treated BC, where most remain round (Fig. 8). vWF expression is a
widely used criterion in defining the endothelial cell phenotype
[31–33], thus to determine whether HMECs maintain this endothe-
lial phenotype characteristic after 14 days culture on BC vWF
expression was evaluated. The immunocytochemistry results show
that cells grown on BC treated with the recombinant peptides or
buffer maintained their positive staining for vWF (Fig. 9).
4. Discussion

G. xylinus constructs a BC pellicle with a denser and flatter sur-
face on one side and a gelatinous layer on the other [18]. In this
study all the experiments were conducted on the denser side of
both BC-H and BC-L, because a smooth surface, being similar to
the basal membrane of the luminal side of blood vessels, is prefer-
able for the attachment of endothelial cells [20]. Analysis by SEM
Fig. 7. (a–c) Optical micrographs showing the effect of RGD on the assembly of endothel
buffer. Images were acquired using a 20� objective (scale 200 lm). (d) Fluorescent micro
RGD–CBM recombinant protein. Nuclei were visualized by staining with DAPI (blue) an
objective (scale 100 lm).
showed that G. xylinus ATCC 53582 produced a thicker and more
compact cellulose pellicle than strain DSMZ 46604 (data not
shown). Therefore, the BC-H pellicle presents a smoother surface
than BC-L. This may lead to differences between BC-H and BC-L
in the adhesion and proliferation of cells in the MTS test. The re-
sults of the attachment assay were similar to those obtained in
our previous work, when fibroblasts were seeded on BC produced
by strain ATCC 53582 coated with adhesion peptides [29]. In that
previous work RGD improved the adhesion of fibroblasts to cellu-
lose, while the presence of a second RGD did not enhance the effect
of the recombinant peptide, probably because the RGD sequence at
the C-terminus of the peptide was not exposed in such a way as to
be recognized by integrins. However, unlike the results with endo-
thelial cells, the GRGDY sequence had no effect on the adhesion of
fibroblasts. Apparently, microvascular endothelial cells adhere
more strongly than fibroblasts to recombinant peptides containing
RGD sequences. Indeed, endothelial cells may have substantially
more avb3 integrin than fibroblasts [34]. The results also demon-
strate that pre-coating BC with the RGD-containing peptides de-
creased the incubation time required for adsorption. A short
incubation period is particularly important in single stage seeding
as the incubation time is kept to a minimum to fit within the time
frame of the surgical procedure [26].

Several works have been developed to improve the interaction
of cells with BC [21,29,35,36]. However, only a few have studied
the migration and in-growth of cells on BC [20,21,6,37]. The migra-
tion of cells is mainly mediated by integrins, a diverse family of
glycoproteins that form heterodimeric receptors for extracellular
matrix (ECM) molecules. During migration cells project lamellipo-
dia that attach to the ECM and simultaneously break existing ECM
contacts at their trailing edge. This allows the cell to pull itself for-
ward. Integrins are essential for cell migration and invasion, not
only because they directly mediate adhesion to the ECM, but also
because they regulate intracellular signaling pathways that control
cytoskeleton organization, force generation, gene transcription and
survival [38].

Endothelialization may either be developed ex vivo or post-
implantation, stimulating endothelial cells (from tissues adjacent
ial cells into capillary-like structures: (a) BC-L treated with RGD–CBM; (b) CBM; (c)
scopy image showing HMECs cells cultured for 14 days on BC-L pellicles treated with
d F-actin with Alexa Fluor 546-phalloidin (red). Images were acquired using a 20�



Fig. 8. SEM micrographs of bacterial cellulose. BC treated with: (a and b) RGD–CBM; (c and d) CBM; (e and f) buffer. The arrows mark cells with an elongated morphology. (a,
c, and e) Scale 50 lm; (b, d, and f) scale 5 lm.

Fig. 9. Immunocytochemical analyses using anti-vWF antibody. The results showed that HMEC cells cultured for 14 days on BC-L treated with recombinant proteins or buffer
stained positively for vWF: (a) RGD–CBM; (b) CBM; (c) buffer. Images were acquired using a 20� objective (scale 100 lm).
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to the anastomosis or from the circulation) to adhere and prolifer-
ate on the graft. The rate and quality of vascular graft endothelial-
ization depends on cell–material interaction, leading to such as
adhesion and migration. Several studies have shown that cell
adhesiveness to the substratum modulates cell migration on sur-
faces coated with ECM proteins [25,39–41]. Our results have
shown that a small number of cells migrated through the cellulose
when compared with the rather large number of cells added
(2.5 � 104 cells well�1). During invasion cells release proteases that
degrade and remodel the ECM, promoting cell passage through to
the stroma and entrance into the new tissue [38]. However, animal
cells cannot degrade cellulose [24] and in order to migrate in a fi-
brous hydrogel such as BC the cells must push the nanofibrils aside
when migrating into the cellulose network [20]. Probably the time
course of the experiment (72 h) was too short to enable cells to mi-
grate through a BC pellicle of �0.5 mm thickness. Nevertheless, the
results obtained allow the observation that the migration of endo-
thelial cells on BC was decreased by the presence of RGD. Since
adhesion involves receptor/ligand binding, cell migration can be
regulated by controlling cell integrin expression, integrin–ECM
binding affinity or substratum ECM surface density. However, if
other stimuli are added, such as growth factors that affect signaling
processes of the cell, the migration/adhesion relationship can be
dramatically altered [42,43]. The migration rates of cells are influ-
enced by chemical and physical interaction with the surface of the
material. Previous research has shown that cell migration capacity
presents a biphasic behavior depending on the attachment
strength. Optimal migration speed can be achieved with interme-
diate strengths of adhesiveness, since when adhesion to the sub-
stratum is weak no traction occurs, so that movement is
impossible and the cell spreads poorly. On the other hand, with
strong adhesion the cell is well-spread and immobilized, so dy-
namic disruption of cell–substratum attachments is difficult and
movement again does not occur [28,39,40,44,45]. The CBM used
in this work had a high affinity for cellulose and was adsorbed in
a specific and very stable way. Probably the amount of protein used
in the experiments was enough to saturate the surface of the cellu-
lose pellicle with RGD-containing peptides, resulting in a very high
affinity of the cells for the substratum and negatively affecting
migration through the BC. Saturation of the surface of the cellulose
pellicle with RGD-containg peptides is corroborated by the results
of our previous work [29]. In order to enhance endothelialization of
BC vascular grafts it is important to promote not only the adhesion
of endothelial cells, but also to allow migration through the mate-
rial. The treatment used in this work greatly improved adhesion,
however, migration was negatively affected by the presence of
RGD, because the affinity of HMECs for the material surface be-
came to strong. However, it is probably possible to improve migra-
tion of the cells on BC by optimizing the concentration of RGD-
containing peptide, in an attempt to reach a compromise between
adsorption and migration. However, longer experiments are
needed to better assess the effect of RGD on cell migration through
BC.

The effect of RGD on HMEC morphology was observed by
SEM. The cells on the RGD-coated BC exhibited a more elon-
gated, flattened morphology, while those on ‘‘bare” BC were
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round (Fig. 8a and b). The more extended morphology of HMECs
upon interaction with the adhesive peptides is likely driven by
the greater number of focal contacts between integrins and
RGD-containing peptides linked to the BC surface. It is well
known that a critical RGD density is essential for the establish-
ment of mature and stable integrin adhesions, which, in turn, in-
duce efficient cell migration, spreading and formation of focal
adhesions [46–49].

During angiogenesis cells must adhere to one another and to
the ECM to construct and extend new microvessels [50]. Angiogen-
esis depends not only on growth factors and their receptors, but is
also influenced by receptors for ECM proteins. Our results show
that the RGD-containing recombinant peptide (RGD–CBM) stimu-
lated the early formation of cellular cord-like structures on BC
when compared with BC treated with a recombinant peptide with-
out the adhesion sequence (CBM) or buffer. HMEC-1 cells express
aVb3 and aVb5 integrins [51] that can bind an array of ligands, such
as vitronectin, fibronectin, vWF, fibrinogen, osteopontin, thrombo-
spondin and RGD-containing peptides [50,52]. Moreover, these
two complexes have also been identified as having an especially
interesting expression pattern among vascular cells during angio-
genesis and vascular remodeling.

Immunocytochemistry results showed that cells grown on BC
maintained their positive staining for vWF. This glycoprotein is
one of the various secretory and membrane-bound molecules pro-
duced by the endothelium. vWF mediates the interaction of plate-
lets with damaged endothelial surfaces at sites of vascular injury
and has long been favored as an endothelial cell marker, with
expression of this factor being highly restricted to endothelial cells,
platelets and megakaryocytes [33].

In the current scenario of regenerative medicine there is a great
demand for the production of new materials appropriate for small
diameter blood vessel replacements. In this work BC, a promising
cardiovascular biomaterial, was successfully functionalized. The
strategy used was aimed at improving microvascular cell adhesion
to BC, through recombinant peptides containing adhesion se-
quences and a CBM. For artificial grafts based on cellulose the
use of a CBM (exhibiting a high affinity and specificity for cellulose
surfaces) is an excellent feature, as a CBM can be combined with
virtually any biologically active protein and used to modify cellu-
lose-based materials. The chimeric peptides were able to enhance
endothelial cell adhesion to BC and stimulate angiogenesis. How-
ever, the in-growth of cells into cellulose was decreased. We be-
lieve that improved migration of the cells on BC will be achieved
with intermediary concentrations of the peptides used in this
work.
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Appendix A. Figures with essential colour discrimination

Certain figures in this article, particularly Figs. 4, 7 and 9, are dif-
ficult to interpret in black and white. The full colour images can be
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References

[1] Isenberg BC, Williams C, Tranquillo RT. Small-diameter artificial arteries
engineered in vitro. Circ Res 2006;98(1):25–35.

[2] Wang X, Lin P, Yao Q, Chen C. Development of small-diameter vascular grafts.
World J Surg 2007;31(4):682–9.
[3] Conte MS. The ideal small arterial substitute: a search for the Holy Grail?
FASEB J 1998;12(1):43–5.

[4] Bos GW, Poot AA, Beugeling T, van Aken WG, Feijen J. Small-diameter
vascular graft prostheses: current status. Arch Physiol Biochem 1998;106(2):
100–15.

[5] Zilla P, Bezuidenhout D, Human P. Prosthetic vascular grafts: wrong models,
wrong questions and no healing. Biomaterials 2007;28(34):5009–27.

[6] Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, et al.
Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.
Biomaterials 2005;26(4):419–31.

[7] Oliveira RCB, Souza FC, Castro M. Avaliação da resposta tecidual quando da
substituição da cartilagem do septo nasal de coelhos por manta de celulose
bacteriana. Estudo experimental. Acta ORL/Técnicas em Otorrinolaringol
2007;25(4):267–77.

[8] Bodin A, Concaro S, Brittberg M, Gatenholm P. Bacterial cellulose as a potential
meniscus implant. J Tissue Eng Regen Med 2007;1(5):406–8.

[9] Fontana JD, de Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, et al.
Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem
Biotechnol 1990;24–25:253–64.

[10] Pippi NL, Sampaio AJSA. Estudos preliminares sobre o comportamento do
Biofill na ceratoplastia lamelar em coelhos. Rev Centro Ciên Rurais 1990;20(3/
4):297–302.

[11] dos Anjos B, Novaes Jr AB, Meffert R, Barboza EP. Clinical comparison of
cellulose and expanded polytetrafluoroethylene membranes in the treatment
of class II furcations in mandibular molars with 6-month re-entry. J
Periodontol 1998;69(4):454–9.

[12] Novaes Jr AB, Novaes AB, Grissi MFM, Soares UN, Gabarra F. Gengiflex, an
alkali-cellulose membrane for GTR: histologic observations. Braz Dent J
1993;4(2):65–71.

[13] Novaes Jr AB, Novaes AB. Immediate implants placed into infected sites: a
clinical report. Int J Oral Maxillofac Implants 1995;10(5):609–13.

[14] Novaes Jr AB, Novaes AB. Bone formation over a TiAl6V4 (IMZ) implant placed
into an extraction socket in association with membrane therapy (Gengiflex).
Clin Oral Implants Res 1993;4(2):106–10.

[15] Novaes Jr AB, Novaes AB. Soft tissue management for primary closure in
guided bone regeneration: surgical technique and case report. Int J Oral
Maxillofac Implants 1997;12(1):84–7.

[16] Salata LA, Craig GT, Brook IM. In-vivo evaluation of a new membrane
(Gengiflex�) for guided bone regeneration (GBR). J Dent Res 1995;74(3):825.

[17] Sonohara MK, Greghi SLA. Avaliação da resposta biológica a diferentes
barreiras mecânicas, utilizadas na técnica de regeneração tecidual guiada
(RTG). Rev Fac Odontol Bauru 1994;2(4):96–102.

[18] Klemm D, Schumann D, Udhardt U, Marsch S. Bacterial synthesized
cellulose – artificial blood vessels for microsurgery. Prog Polym Sci
2001;26(9):1561–603.

[19] Brancher JA, Torres MF. Reparação microcirúrgica de nervo facial de ratos
Wistar por meio de sutura–Parte II. Rev Sul-Bras Odontol 2005;2(2):34–8.

[20] Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, et al.
Mechanical properties of bacterial cellulose and interactions with smooth
muscle cells. Biomaterials 2006;27(9):2141–9.

[21] Backdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P. Engineering
microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med
2008;2(6):320–30.

[22] Negrão SW, Bueno RRL, Guérios EE, Ultramari FT, Faidiga AM, de Andrade PMP,
et al. A eficácia do stent recoberto com celulose biosintética comparado ao
stent convencional em angioplastia em coelhos. Rev Bras Cardiol Invasiva
2006;14(1):10–9.

[23] Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T.
Preliminary results of small arterial substitute performed with a new
cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc
Surg 2009;37(5):592–6.

[24] Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B. In vivo
biocompatibility of bacterial cellulose. J Biomed Mater Res A
2006;76(2):431–8.

[25] Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. Integrin–
ligand binding properties govern cell migration speed through cell–
substratum adhesiveness. Nature 1997;385(6616):537–40.

[26] Salacinski HJ, Tiwari A, Hamilton G, Seifalian AM. Cellular engineering of
vascular bypass grafts: role of chemical coatings for enhancing endothelial cell
attachment. Med Biol Eng Comput 2001;39(6):609–18.

[27] Hoenig MR, Campbell GR, Campbell JH. Vascular grafts and the endothelium.
Endothelium 2006;13(6):385–401.

[28] Kouvroukoglou S, Dee KC, Bizios R, McIntire LV, Zygourakis K. Endothelial cell
migration on surfaces modified with immobilized adhesive peptides.
Biomaterials 2000;21(17):1725–33.

[29] Andrade FK, Moreira SM, Domingues L, Gama FM. Improving the affinity of
fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to
RGD. Biomed Mater Res A 2010;92(1):9–17.

[30] Costa R, Carneiro A, Rocha A, Piarraco A, Falcão M, Vasques L, et al.
Bevacizumab and ranibizumab on microvascular endothelial cells. A
comparative study. J Cell Biochem 2009;108(6):1410–7.

[31] Jaffe EA, Hoyer LW, Nachman RL. Synthesis of von Willebrand factor by
cultured human endothelial cells. Proc Natl Acad Sci USA 1974;71(5):1906–9.

[32] Monteiro R, Calhau C, Silva AO, Pinheiro-Silva S, Guerreiro S, Gartner F, et al.
Xanthohumol inhibits inflammatory factor production and angiogenesis in
breast cancer xenografts. J Cell Biochem 2008;104(5):1699–707.

http://dx.doi.org/10.1016/j.actbio.2010.04.023


F.K. Andrade et al. / Acta Biomaterialia 6 (2010) 4034–4041 4041
[33] Jahroudi N, Lynch DC. Endothelial-cell-specific regulation of von Willebrand
factor gene expression. Mol Cell Biol 1994;14(2):999–1008.

[34] Joshi P, Chung CY, Aukhil I, Erickson HP. Endothelial cells adhere to the RGD
domain and the fibrinogen-like terminal knob of tenascin. J Cell Sci
1993;106(Pt 1):389–400.

[35] Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S. A new
bacterial cellulose substrate for mammalian cell culture. A new bacterial
cellulose substrate. Cytotechnology 1993;13(2):107–14.

[36] Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P. Modification
of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and
proliferation of endothelial cells: implications for tissue engineering.
Biomacromolecules 2007;8(12):3697–704.

[37] Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T,
Pavasant P, Phisalaphong M. Growth of human keratinocytes and fibroblasts
on bacterial cellulose film. Biotechnol Prog 2006;22(4):1194–9.

[38] Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev
Cancer 2002;2(2):91–100.

[39] DiMilla PA, Barbee K, Lauffenburger DA. Mathematical model for the effects
of adhesion and mechanics on cell migration speed. Biophys J 1991;60(1):
15–37.

[40] DiMilla PA, Stone JA, Quinn JA, Albelda SM, Lauffenburger DA. Maximal
migration of human smooth muscle cells on fibronectin and type IV collagen
occurs at an intermediate attachment strength. J Cell Biol 1993;122(3):729–37.

[41] Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated
molecular process. Cell 1996;84(3):359–69.

[42] Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG. Cell adhesion
and motility depend on nanoscale RGD clustering. J Cell Sci 2000;113(10):
1677–86.
[43] Maheshwari G, Wells A, Griffith LG, Lauffenburger DA. Biophysical integration
of effects of epidermal growth factor and fibronectin on fibroblast migration.
Biophys J 1999;76(5):2814–23.

[44] Wacker BK, Alford SK, Scott EA, Das Thakur M, Longmore GD, Elbert DL.
Endothelial cell migration on RGD-peptide-containing PEG hydrogels in the
presence of sphingosine 1-phosphate. Biophys J 2008;94(1):273–85.

[45] Cox EA, Huttenlocher A. Regulation of integrin-mediated adhesion during cell
migration. Microsc Res Tech 1998;43(5):412–9.

[46] Heilshorn SC, Liu JC, Tirrell DA. Cell-binding domain context affects cell
behavior on engineered proteins. Biomacromolecules 2005;6(1):318–23.

[47] Kurihara H, Nagamune T. Cell adhesion ability of artificial extracellular matrix
proteins containing a long repetitive Arg–Gly–Asp sequence. J Biosci Bioeng
2005;100(1):82–7.

[48] Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP. Cell
spreading and focal adhesion dynamics are regulated by spacing of integrin
ligands. Biophys J 2007;92(8):2964–74.

[49] Singer II, Kazazis DM. J Cell Sci 1989;93(Pt 1):147–54.
[50] Bischoff J. Cell adhesion and angiogenesis. Cell adhesion in vascular biology. J

Clin Invest 1997;99(3):373–6.
[51] Xu Y, Swerlick RA, Sepp N, Bosse D, Ades EW, Lawley TJ. Characterization of

expression and modulation of cell adhesion molecules on an immortalized
human dermal microvascular endothelial cell line (HMEC-1). J Invest Dermatol
1994;102(6):833–7.

[52] Eliceiri BP, Cheresh DA. The role of alpha integrins during angiogenesis:
insights into potential mechanisms of action and clinical development. J Clin
Invest 1999;103(9):1227–30.


	Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide
	Introduction
	Materials and methods
	Cell culture assays
	Cell attachment, proliferation and viability
	Production and purification of recombinant proteins
	Production of bacterial cellulose and coating with the recombinant peptides
	HMEC-1 adhesion and proliferation
	Live and dead assay

	Morphological analysis by fluorescence and scanning electron microscopy (SEM)
	TUNEL assay for cell apoptosis
	Cell invasion
	Angiogenesis
	Immunocytochemistry
	Statistical analyses

	Results
	Discussion
	Acknowledgements
	Figures with essential colour discrimination
	References


