
Data Mining with Neural Networks and Support
Vector Machines using the R/rminer Tool?

Paulo Cortez

Department of Information Systems/R&D Centre Algoritmi,
University of Minho, 4800-058 Guimarães, Portugal,

pcortez@dsi.uminho.pt, WWW home page: http://www3.dsi.uminho.pt/pcortez

Abstract. We present rminer, our open source library for the R tool
that facilitates the use of data mining (DM) algorithms, such as neural
Networks (NNs) and support vector machines (SVMs), in classification
and regression tasks. Tutorial examples with real-world problems (i.e.
satellite image analysis and prediction of car prices) were used to demon-
strate the rminer capabilities and NN/SVM advantages. Additional ex-
periments were also held to test the rminer predictive capabilities, re-
vealing competitive performances.
Keywords: Classification, Regression, Sensitivity Analysis, Neural Net-
works, Support Vector Machines.

1 Introduction

The fields of data mining (DM)/business intelligence (BI) arose due to the ad-
vances of information technology (IT), leading to an exponential growth of busi-
ness and scientific databases. The aim of DM/BI is to analyze raw data and
extract high-level knowledge for the domain user or decision-maker [16].

Due to its importance, there is a wide range of commercial and free DM/BI
tools [7]. The R environment [12] is an open source, multiple platform (e.g.
Windows, Linux, Mac OS) and high-level matrix programming language for sta-
tistical and data analysis. Although not specifically oriented for DM/BI, the
R tool includes a high variety of DM algorithms and it is currently used by
a large number of DM/BI analysts. For example, the 2008 DM survey [13] re-
ported an increase in the R usage, with 36% of the responses [13]. Also, the 2009
KDnuggets pool, regarding DM tools used for a real project, ranked R as the sec-
ond most used open source tool and sixth one overall [10]. When compared with
commercial tools (e.g. offered by SAS: http://www.sas.com/technologies/bi/) or
even open source environments (e.g. WEKA [18]), R presents the advantage of
being more flexible and extensible by design, thus integration of statistics, pro-
gramming and graphics is more natural. Also, due to its open source availability
and users’ activity, novel DM methods are in general more quickly encoded into
R than into commercial tools. The R community is very active and new pack-
ages are being continuously created, with more than 2321 packages available
? This work is supported by FCT grant PTDC/EIA/64541/2006.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55611503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

at http://www.r-project.org/. Thus, R can be viewed as worldwide gateway for
sharing computational algorithms.

DM software suites often present friendly graphical user interfaces (GUI). In
contrast, the most common usage of R is under a console command interface,
which may require a higher learning curve from the user. Yet, after mastering
the R environment, the user achieves a better control (e.g. adaptation to a spe-
cific application) and understanding of what is being executed (in contrast with
several “black-box” DM GUI products). Nevertheless, for those interested in
graphical DM suites for R, there is the Rattle tool [17].

In this work, we present our rminer library, which is an integrated framework
that uses a console based approach and that facilitates the use of DM algorithms
in R. In particular, it addresses two important and common goals [16]:

classification – labeling a data item into one of several predefined classes; and
regression – estimate a real-value (the dependent variable) from several (inde-

pendent) input attributes.

While several DM algorithms are available for these tasks, the library is par-
ticularly suited for using neural networks (NNs) and support vector machines
(SVMs). Both are flexible models that can cope with complex nonlinear map-
pings, potentially leading to more accurate predictions [8]. Also, it is possible
to extract knowledge from NNs and SVMs, given in terms of input relevance
[4]. When compared to Rattle, rminer can be viewed as a lightweight command
based alternative, since it is easier to install and requires much less R packages.
Moreover, rminer presents more NN and SVM capabilities (e.g. in Rattle version
2.5.26, SVM cannot be used for regression tasks). While adopting R packages
for the DM algorithms, rminer provides new features:

i) it simplifies the use of DM algorithms (e.g. NNs and SVMs) in classification
and regression tasks by presenting a short and coherent set of functions (as
shown in Section 3.1);

ii) it performs an automatic model selection (i.e. tuning of NN/SVM);
iii) it computes several classification/regression metrics and graphics, including

the sensitivity analysis procedure for input relevance extraction.

The rminer/R tool has been used by both IT and non-IT specialists (e.g. man-
agers, biologists or civil engineers), with applications in distinct domains, such
as civil engineering [15], wine quality [4] or spam email detection [5]. In this
paper, we address several real-world problems from the UCI repository [1] to
show the rminer capabilities.

2 Data Mining

DM is an iterative process that consists of several steps. The CRISP-DM [2], a
tool-neutral methodology supported by the industry (e.g. SPSS, DaimlerChrys-
lyer), partitions a DM project into 6 phases (Fig. 1): 1 - business understanding;

Explanatory Knowledge

−−?
?−−
???

....

....

....

...

evaluation.R

modeling.R

read.table()
...

mining()
savemining()...

file .csv/...

mining
model/

processed
pre−

file .csv/...

preparation.R

Understanding Understanding

Preparation

1. Business 2. Data

3. Data

4. Modeling

5. Evaluation6. Deployment

graphic/...
table/

...

metrics()
mmetric()
mgraph()

fit(); predict()

Dataset
processed
Pre−

Dataset

Models

CRISP−DM process model R/rminer tool

Database/
Data Warehouse

Predictive Knowledge/

Fig. 1. The CRISP-DM and proposed R/rminer tool use

2 - data understanding; 3 - data preparation; 4 - modeling; 5 - evaluation; and
6 - deployment.

This work addresses steps 4 and 5, with an emphasis on the use of NNs and
SVMs to solve classification and regression goals. Both tasks require a super-
vised learning, where a model is adjusted to a dataset of examples that map I
inputs into a given target. The rminer models output a probability p(c) for each
possible class c, such that

∑Nc

c=1 p(c) =1 (if classification) or a numeric value
(for regression). For assigning a target class c, one option is to set a decision
threshold D ∈ [0, 1] and then output c if p(c) > D, otherwise return ¬c. This
method is used to build the receiver operating characteristic (ROC) curves. An-
other option is to output the class with the highest probability and this method
allows the definition of a multi-class confusion matrix.

To evaluate a model, common metrics are [18]: ROC area (AUC), confusion
matrix, accuracy (ACC), true positive/negative rates (TPR/TNR), for classifi-
cation; and mean absolute deviation (MAD), relative absolute error (RAE), root
mean squared (RMSE), root relative squared error (RRSE) and regression error
characteristic (REC) curve, for regression. A classifier should present high values
of ACC, TPR, TNR and AUC, while a regressor should present low predictive
errors and an high REC area. The model’s generalization performance is often
estimated by the holdout validation (i.e. train/test split) or the more robust
k-fold cross-validation [8]. The latter is more robust but requires around k times
more computation, since k models are fitted.

Before fitting the DM models, the data needs to be preprocessed. This in-
cludes operations such as selecting the data (e.g. attributes or examples) or deal-
ing with missing values. Since functional models (e.g. NN or SVM) only deal with
numeric values, discrete variables need to be transformed. In R/rminer, the nom-
inal attributes (with Nc = 3 or more non-ordered values) are encoded with the
common 1-of-Nc transform, leading to Nc binary variables. Also, all attributes
are standardized to a zero mean and one standard deviation [8].

For NN, we adopt the popular multilayer perceptron, as coded in the R
nnet package. This network includes one hidden layer of H neurons with logistic
functions (Fig 2). The overall model is given in the form:

yi = fi(wi,0 +
∑I+H

j=I+1 fj(
∑I

n=1 xnwm,n + wm,0)wi,n) (1)

where yi is the output of the network for node i, wi,j is the weight of the
connection from node j to i and fj is the activation function for node j. For a
binary classification (Nc = 2), there is one output neuron with a logistic function.
Under multi-class tasks (Nc > 2), there are Nc linear output neurons and the
softmax function is used to transform these outputs into class probabilities:

p(i) =
exp(yi)∑Nc

c=1 exp(yc)
(2)

where p(i) is the predicted probability and yi is the NN output for class i.
In regression, the output neuron uses a linear function. The training (BFGS
algorithm) is stopped when the error slope approaches zero or after a maximum
of Me epochs. For regression tasks, the algorithm minimizes the squared error,
while for classification it maximizes the likelihood [8]. Since NN training is not
optimal, the final solution is dependent of the choice of starting weights. To
solve this issue, the solution adopted is to train Nr different networks and then
select the NN with the lowest error or use an ensemble of all NNs and output
the average of the individual predictions [8]. In rminer, the former option is set
using model="mlp", while the latter is called using model="mlpe". In general,
ensembles are better than individual learners [14]. The final NN performance
depends crucially on the number of hidden nodes. The simplest NN has H = 0,
while more complex NNs use a high H value.

j

i ŷ
i,jw

input layer hidden layer output layer

1
x

2
x

x
3

vectors

Real Space Feature Space

transformation

support

Fig. 2. Example of a multilayer perceptron (left) and SVM transformation (right)

When compared with NNs, SVMs present theoretical advantages, such as the
absence of local minima in the learning phase [8]. The basic idea is transform
the input x ∈ <I into a high m-dimensional feature space by using a nonlinear
mapping. Then, the SVM finds the best linear separating hyperplane, related to
a set of support vector points, in the feature space (Fig. 2). The transformation
(φ(x)) depends of a kernel function. In rminer, we use the kernlab package,

which uses the sequential minimal optimization (SMO) learning algorithm. We
also adopt the popular gaussian kernel, which presents less parameters than
other kernels (e.g. polynomial): K(x,x′) = exp(−γ||x− x′||2), γ > 0.

The classification performance is affected by two hyperparameters: γ, the
parameter of the kernel, and C, a penalty parameter. The probabilistic SVM
output is given by [19]:

f(xi) =
∑m

j=1 yjαjK(xj ,xi) + b

p(i) = 1/(1 + exp(Af(xi) +B))
(3)

where m is the number of support vectors, yi ∈ {−1, 1} is the output for a binary
classification, b and αj are coefficients of the model, and A and B are determined
by solving a regularized maximum likelihood problem. When Nc > 2, the one-
against-one approach is used, which trains Nc(Nc−1)/2 binary classifiers and the
output is given by a pairwise coupling [19]. For regression there is an additional
hyperparameter ε, used to set an ε-insensitive tube around the residuals, being
the tiny errors within this tube discarded. The SVM algorithm finds the best
linear separating hyperplane:

yj = w0 +
m∑

i=1

wiφi(x) (4)

Since the search space for these parameters is high, we adopt by default
the heuristics [3]: C = 3 (for a standardized output) and ε = 3σy

√
log (N)/N ,

where σy denotes the standard deviation of the predictions of given by a 3-nearest
neighbor and N is the dataset size.

In rminer, the NN and SVM hyperparameters (e.g. H, γ) are optimized
using a grid search. To avoid overfitting, the training data is further divided
into training and validation sets (holdout) or an internal k-fold is used. After
selecting the best parameter, the model is retrained with all training data.

The sensitivity analysis is a simple procedure that is applied after the training
procedure and analyzes the model responses when a given input is changed. Let
ya,j denote the output obtained by holding all input variables at their average
values except xa, which varies through its entire range (xa,j , with j ∈ {1, . . . , L}
levels). We use the variance (Va) of ya,j as a measure of input relevance [9]. If
Nc > 2 (multi-class), we set it as the sum of the variances for each output class
probability (p(c)a,j). A high variance (Va) suggests a high xa relevance, thus the
input relative importance (Ra) is given by Ra = Va/

∑I
i=1 Vi × 100 (%). For a

more detailed analysis, we propose the variable effect characteristic (VEC) curve
[6], which plots the xa,j values (x-axis) versus the ya,j predictions (y-axis).

3 Data Mining using R/rminer

3.1 The R/rminer Tool

R works under a console interface (Fig. 3). Commands are typed after the prompt
(>). An extensive help system is included (help.start() calls the full tutorial

in an HTML browser). R instructions can be separated using the ; or newline
character. Everything that appears after the # character in a line is a comment.
R commands can be edited in a file1 and loaded with the source command.

Fig. 3. Example of the R tool in Windows

Data is stored in objects and the = operator can be used to assign an object
to a variable. Atomic objects include the character (e.g. "day") and numeric
(e.g. 0.2) types. There are also several containers, such as: vector, factor,
matrix, data.frame and list. Vectors and matrices are indexed objects of
atoms. A factor is a special vector that contains discrete values. A data.frame
is a special matrix where the columns (vectors or factors) have names. Finally,
a list is a collection of distinct objects (called components). Since R uses an
object oriented language, there are important functions that can be applied to
any of these objects (e.g. summary or plot).

Our rminer library2 project started in 2006. All code is written in R and
only a few packages need to be installed (e.g. kernlab). In this work, the rminer
functions are underlined. The main functions are: fit – create and adjust a given
DM model using a dataset (i.e. data.frame); predict – returns the predictions
for new data; mining – a powerful function that trains and tests a particular
model under several runs; mgraph, metrics and mmetric– which return several
mining graphs (e.g. ROC) or metrics (e.g. ACC). All experiments were tested in
Windows, Linux and Mac OS. The results reported here were conducted within
a Mac OS Intel Core 2 Duo processor.

3.2 Classification Example

The satellite data was generated using Landsat multi-spectral images. The aim
is to classify a tiny scene based on 36 numeric features that correspond to pixels
from four spectral bands. In the original data, a numeric value was given to the

1 In Windows, the Tinn-R editor can be used: http://www.sciviews.org/Tinn-R/
2 Available at: http://www3.dsi.uminho.pt/pcortez/rminer.html

output variable (V37). Also, the training and test sets are already divided into
two files: sat.trn (with 4435 samples) and sat.tst (2000 cases).

We propose that a DM process should be divided into 3 blocks (or files), with
the CRISP-DM steps 3 to 5 (Fig. 1): preparation, modeling and evaluation (we
only address the last two here). By separating the computation and generating
intermediate outcomes, it is possible to later rerun only one of these steps (e.g.
analyze a different metric), thus saving time. Our satellite modeling code is:

library(rminer) # load the library

read the training and test sets:

tr=read.table("sat.trn",sep=" "); ts=read.table("sat.tst",sep=" ")

tr$V37=factor(tr$V37); ts$V37=factor(ts$V37) # convert output to factor

DT=fit(V37~.,tr,model="dt") # fit a Decision Tree with tr

NN=fit(V37~.,tr,model="mlp",search=10) # fit a NN with H=10

SV=fit(V37~.,tr,model="svm",search=2^c(-5,-3)) # fit the SVM

print(DT); print(NN); print(SV) # show and save the trained DM models:

savemodel(DT,"sat.dt"); savemodel(NN,"sat.nn"); savemodel(SV,"sat.sv")

get the predictions:

PDT=predict(DT,ts); PNN=predict(NN,ts); PSV=predict(SV,ts)

P=data.frame(ts=ts$V37,dt=PDT,nn=PNN,svm=PSV) # create a data.frame

write.table(P,"sat.res",row.names=FALSE) # save output and predictions

The read.table and write.table are functions that load/save a dataset from/to
a text file (e.g. ".csv")3. The tr and ts objects are data.frames. Since the
output target (V37) is encoded with numeric values, we converted it into a factor
(i.e. set of classes). While rminer includes several classifiers, in the example
we tested only a decision tree (DT) (model="dt"), a NN ("mlp") and a SVM
("svm"). The first parameter of the fit function is a R formula, which defines the
output (V37) to be modeled (~) from the inputs (. means all other variables). The
search parameter controls the NN and SVM hyperparameters (H or γ). When
search contains more than one value (e.g. SV fit), then an internal grid search is
performed. By default, search is set to H = I/2 for NN and γ = 2−6 for SVM.
Additional NN/SVM parameters can be set with the optional mpar (see Section
3.3). In this case, the default mpar=c(3,100,"holdout",2/3,"AUC") (for NN,
Nr = 3, Me = 100 and internal holdout with 2/3 train and 1/3 test split, while
"AUC" means use the AUC metric for model selection during the grid search) or
mpar=c(NA,NA,"holdout",2/3,"AUC") (for SVM, use default C/ε heuristics) is
assumed. The result of the fit function is a model object, which contains the
adjusted model (e.g. DT@object) and other information (e.g. hyperparameters
or fitting time). The execution times (in seconds) were 1.1s for DT (stored at
DT@time), 15.9s for NN and 25s for SVM. In case of the SVM, the best γ is 2−3

(SV@mpar). Next, we show the evaluation code:

P=read.table("sat.res",header=TRUE); P$ts=factor(P$ts); # read the results

compute the test errors:

EDT=metrics(P$ts,P[,2:7]); ESV=metrics(P$ts,P[,14:19]);

ENN1=metrics(P$ts,P[,8:13]); ENN2=metrics(P$ts,P[,8:14],D=0.7,TC=4)

show the full test errors:

print(EDT); print(ESV); print(ENN1); print(ENN2)

3 Further loading functions (e.g. for SPSS files) are available in the foreign R package.

mgraph(P$ts,P[,8:13],graph="ROC",PDF="roc4",TC=4) # plot the ROC

NN=loadmodel("sat.nn") # load the best model

The predictions for each model are matrixes, where each column denotes
the pc for a given c ∈ {“1”, “2”, “3”, “4”, “5”, “7”} (there is no “6” class). The
metrics function receives the target and predictions (e.g. P columns 8 to 13 for
NN) and returns a list with several performance measures. Under the multi-class
confusion matrix, the best accuracy result is given by NN, with an ACC = 86%
(ENN$acc), followed by the SVM (81%) and the DT (78%). The global AUC,
which weights the AUC for each class c according to the prevalence of c in the
data [11], also favors the NN, with a value of 98% (ENN1$tauc). For the target
“4” class (TC=4) and NN, we also computed the metrics using a threshold of
(D = 0.7), leading to the TPR = 41% and TNR = 98% values (ENN2$tpr and
ENN2$tnr). This is a point of the ROC curve, whose full graph is created with
the mgraph command (Fig. 4).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

0 5000 10000 15000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Absolute deviation

A
cc

ur
ac

y

SVM
NN
MR

Fig. 4. Examples of the ROC (left) and REC (right) curves.

3.3 Regression Example

The automobile dataset goal is to estimate car prices using 16 continuous
and 10 nominal attributes. The data includes 205 instances, although there are
several missing values. We tested a multiple regression (MR), a NN and a SVM,
during the modeling phase:

library(rminer) # load the library

d=read.table("imports-85.data",sep=",",na.strings="?") # load the data

d=d[,c(6:8,14,17,19,22,26)] # variable selection: 6,7,8,14,17,19,22,26

d=na.omit(d) # erases from d all examples with missing data

v=c("kfold",5) # external 5-fold validation

MR=mining(V26~.,d,model="mr",Runs=10,method=v) # 10 runs of 5-fold

m=c(3,100,"kfold",4,"RAE"); s=seq(1,8,1) # m=Nr,Me,... s=1,2,...,8

NN=mining(V26~.,d,model="mlpe",Runs=10,method=v,mpar=m,search=s,feat="s")

m=c(NA,NA,"kfold",4,"RAE"); s=2^seq(-15,3,2) # NA = C/epsilon heuristics

SV=mining(V26~.,d,model="svm",Runs=10,method=v,mpar=m,search=s,feat="s")

print(MR);print(NN);print(SV) # show mining results and save them:

savemining(MR,"imr"); savemining(NN,"inn"); savemining(SV,"isv")

Here, we selected only 7 variables as inputs (e.g. V8, the curb weight). Then,
we deleted all examples with missing data. Next, the DM models were evaluated
using 10 runs of a 5-fold cross validation scheme. The mining function performs
several fits and returns a list with the obtained predictions and other fields (e.g.
time for each run). The NN and SVM models were optimized (i.e. grid search for
the best H and γ parameters) using an internal 4-fold. In this example and for
NN, we used an ensemble of 3 networks (model="mlpe"). The seq(from,to,by)
R function was used to define the search ranges for H and γ, while the feat="s"
argument triggers the input sensitivity analysis. Next, we show the evaluation:

MR=loadmining("imr");NN=loadmining("inn");SV=loadmining("isv")

show paired t-test and RAE mean and confidence intervals for SV:

print(t.test(mmetric(NN,metric="RAE"),mmetric(SV,metric="RAE")))

print(meanint(mmetric(SV,metric="RAE")))

plot the average REC curves:

M=vector("list",3); # vector list of mining

M[[1]]=SV;M[[2]]=NN;M[[3]]=MR

mgraph(M,graph="REC",leg=c("SVM","NN","MR"),xval=15000,PDF="rec")

plot the input relevance bars for SVM: (xval is the L x-axis position)

L=c("n-doors","body-style","drive-wheels","curb-weight","engine-size",

"bore","horsepower") # plot the input relevance (IMP) graph:

mgraph(SV,graph="IMP",leg=L,xval=0.3,PDF="imp")

plot the VEC curve for the most relevant input (xval=4):

mgraph(SV,graph="VEC",leg=L,xval=4,PDF="vec")

In this example, the SVM model (median γ = 2−3, C = 3 and ε = 0.09,
total execution time 148s) obtained the best predictive results. The average
RAE = 32.5% ± 1.4 is better when statistically compared with NN (median
H = 3, RAE = 35.5%±1.4) and MR (41%±1.0). In all graphs, whiskers denote
the 95% t-student confidence intervals. The first mgraph function plots the ver-
tically averaged REC curves (x-axis from 0 to 15000, Fig. 4) and confirms the
SVM performance superiority. The next two graphs are based on the sensitivity
analysis procedure and are useful for knowledge discovery. In this case, the rela-
tive input importances of the SVM model (ordered by importance, Fig. 5) show
the curb weight as the most relevant input. The average VEC curve was plotted
for this input (Fig. 5), showing a positive effect, where an increase of the curb
weight leads to an higher price, particularly within the range [2519,3550].

0.0 0.1 0.2 0.3 0.4 0.5 0.6

body−style

n−doors

drive−wheels

bore

horsepower

engine−size

curb−weight

0.0 0.1 0.2 0.3 0.4 0.5 0.6

●
●

●

●

●

●

curb−weight

1488 2004 2519 3035 3550 4066

70
76

99
96

12
91

6
15

83
6

18
75

6
21

67
6

24
59

6
Fig. 5. The input relevances (left) and curb-weight VEC curve (right)

3.4 Predictive Performance

We selected 6 classification and 6 regression tasks from UCI [1] for a more de-
tailed predictive performance measurement of the R/rminer capabilities. The
aim is show that the R/rminer results are consistent when compared with other
DM tools. For a baseline comparison, we adopted the WEKA environment with
its default parameters [18]. The datasets main characteristics (e.g number of
inputs, examples and classes) are shown in Table 1. For auto-mpg, all examples
with missing data were removed (we used the R na.omit function).

Table 1. Summary of the UCI datasets used

Task Description I Examples Nc

balance balance scale weight and distance 4 625 3
cmc contraceptive method choice 9 1473 3
german German credit data 20 1000 2
heart Statlog heart disease 13 270 2
house-votes congressional voting records 16 435 2
sonar sonar classification (rocks vs mines) 60 208 2

abalone age of abalone 8 4177 <
auto-mpg miles per gallon prediction 7 392 <
concrete concrete compressive strength 8 1030 <
housing housing prices in suburbs of Boston 13 506 <
servo rise time of a servomechanism 4 167 <
white white wine quality 11 4899 <

For each task, we executed 10 runs of a 5-fold validation. The NN and SVM
hyperparameters were ranged withinH ∈ {0, 1, 2, . . . , 9} and γ ∈ {2−15, 2−13, . . . ,
23}, in a total of 10 searches per DM model. For NN, we tested the ensemble
variant with Nr=3. An internal 3-fold was used during the grid search, which
optimized the global AUC (classification) and RRSE (regression) metrics (the
code used is available at the rminer Web page).

Table 2 presents the test set results. In general, the R/rminer outperformed
the baseline tool (the only exceptions are for NN and the house-votes and sonar
tasks). In particular, a higher improvement was achieved for SVM, when com-
pared with the WEKA SVM version, with differences ranging from 3.5 pp (house-
votes) to 39.1 pp (servo). When comparing the two rminer methods, SVM out-
performs NN in 4 classification cases, while NN is better in 4 regression datasets.

Table 2. Classification and regression results (average global AUC and RRSE values,
in %; best values are in bold; underline denotes significant difference under a paired
t-test between R/rminer and WEKA)

WEKA R/rminer
Task NN SVM NN SVM

balance 97.5±0.2 88.1±0.2 99.5±0.1 98.9±0.2

cmc 71.4±0.3 63.8±0.3 73.9±0.0 72.9±0.2

german 73.5±0.7 67.2±0.7 76.3±0.8 77.9±0.5

heart 85.6±1.2 83.7±0.4 88.5±1.4 90.2±0.4

house-votes 98.6±0.2 95.7±0.3 98.0±0.5 99.2±0.1

sonar 89.2±1.3 76.6±1.8 87.4±0.9 95.6±0.8

abalone 72.7±2.1 69.9±0.1 64.0±0.1 66.0±0.1

auto-mpg 44.3±3.4 44.5±0.3 37.4±3.1 34.8±0.4

concrete 46.5±1.4 65.6±0.2 31.8±0.4 35.9±0.5

housing 49.9±3.0 55.2±0.4 38.3±1.6 40.1±1.3

servo 46.1±4.5 84.0±0.4 40.8±6.0 44.9±1.5

white 91.3±3.1 85.5±0.1 79.0±0.3 76.1±0.6

4 Conclusions

The R tool is an open source environment that is widely used for data analysis.
In this work, we present our rminer library, which eases the use of R (e.g. for
non-IT specialists) to solve DM classification and regression tasks. The library is
particularly suited for NNs and SVMs, flexible and nonlinear learning techniques
that are promising due to their predictive performances. Two tutorial examples
(e.g. satellite image classification) were used to show the R/rminer potential un-
der the CRISP-DM methodology. Additional experiments were held in order to
measure the rminer library predictive performances. Overall, competitive results
were obtained, in particular the SVM model for the classification tasks and NN

for the regression ones. In future work, we intend to expand the rminer capabil-
ities (e.g. unsupervised learning) and applications (e.g. telecommunications).

References

1. A. Asuncion and D. Newman. UCI Machine Learning Repository, Univ. of Cali-
fornia Irvine, http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

2. P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and
R. Wirth. CRISP-DM 1.0: Step-by-step data mining guide. CRISP-DM consor-
tium, 2000.

3. V. Cherkassy and Y. Ma. Practical Selection of SVM Parameters and Noise Esti-
mation for SVM Regression. Neural Networks, 17(1):113–126, 2004.

4. P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine prefer-
ences by data mining from physicochemical properties. Decision Support Systems,
47(4):547–553, 2009.

5. P. Cortez, C. Lopes, P. Sousa, M. Rocha, and M. Rio. Symbiotic Data Mining for
Personalized Spam Filtering. In Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence (WI-09), pages 149–156. IEEE, 2009.

6. P. Cortez, J. Teixeira, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Using data
mining for wine quality assessment. In J. Gama et al., editors, Discovery Science,
volume 5808 of Lecture Notes in Computer Science, pages 66–79. Springer, 2009.

7. M. Goebel and L. Gruenwald. A Survey of Data Mining and Knowledge Discovery
Software Tools. SIGKDD Explorations, 1(1):20–33, June 1999.

8. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer-Verlag, NY, USA, 2nd ed., 2008.

9. R. Kewley, M. Embrechts, and C. Breneman. Data Strip Mining for the Virtual
Design of Pharmaceuticals with Neural Networks. IEEE Trans Neural Networks,
11(3):668–679, May 2000.

10. G. Piatetsky-Shapiro. Data Mining Tools Used Poll.
http://www.kdnuggets.com/polls/2009/data-mining-tools-used.htm, 2009.

11. F. Provost and P. Domingos. Tree Induction for Probability-Based Ranking. Ma-
chine Learning, 52(3):199–215, 2003.

12. R Development Core Team. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0,
http://www.R-project.org, 2009.

13. K. Rexer. Second annual data miner survey. Tech. report, Rexer Analytics, 2008.
14. M. Rocha, P. Cortez, and J. Neves. Evolution of Neural Networks for Classification

and Regression. Neurocomputing, 70:2809–2816, 2007.
15. J. Tinoco, A.G. Correia, and P. Cortez. A Data Mining Approach for Jet Grouting

Uniaxial Compressive Strength Prediction. In World Congress on Nature and
Biologically Inspired Computing (NaBIC’09), pages 553–558, Coimbatore, India,
December 2009. IEEE.

16. E. Turban, R. Sharda, J. Aronson, and D. King. Business Intelligence, A Man-
agerial Approach. Prentice-Hall, 2007.

17. G. Williams. Rattle: A Data Mining GUI for R. The R Journal, 1(2):45–55, 2009.
18. I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann, SF, USA, 2005.
19. T.F. Wu, C.J. Lin, and R.C. Weng. Probability estimates for multi-class classifica-

tion by pairwise coupling. The Journal of Machine Learning Research, 5:975–1005,
2004.

