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ABSTRACT 

Recombinant carbohydrate-binding modules for biomedical applications. Biocompatibility of 

polysaccharide-based materials. 

 

 

The development of biomaterials for medical applications envisages the design of three-dimensional structures – the 

scaffolds. These structures, mimicking the biological structures and interacting with the surrounding tissues through 

biomolecular recognition, elicit cellular responses mediated by specific interactions. Among the different scaffolds used in 

biomedicine, the materials based on polysaccharides present promising characteristics, due to their biocompatibility, 

hydrophilicity, degradability and appropriate mechanical properties, allowing for a favorable controlled interaction with 

living systems.  

Recombinant proteins are widely used in the biomedical field, namely in the fuctionalization of biomaterials. It is well 

established that Carbohydrate-Binding Modules (CBMs) present in several glycanases are structural and functionally 

independent of the catalytic module; therefore, their application as fusion partners may be exploited, contributing to 

protein expression, solubilization, purification, and finally for the functionalization of polysaccharide-based materials. This 

is the main subject of this thesis: the evaluation of the potential of CBMs as tools for the improvement of the 

biocompatibility of polysaccharides.  

One of the molecules often used to improve cells adhesion is the peptide Arg-Gly-Asp (RGD). The RGD sequence, 

present in several proteins of the extra-cellular matrix (ECM), is a ligand for integrin-mediated cell adhesion; this 

sequence was recognized as a major functional group responsible for cellular adhesion. Several polysaccharide-based 

materials have been produced recently at the DEB-UM laboratories, namely dextrin based hydrogels and bacterial 

cellulose scaffolds. In this study, recombinant proteins containing a CBM with starch affinity were fused to the bioactive 

molecule RGD, using recombinant DNA technology, in order to functionalize dextrin-based hydrogels.  

The general introduction of this thesis is presented in chapter 1 and includes a bibliographic revision of: 1) the 

applications of polysaccharides as biomedical biomaterials (this revision is restricted to the dextrin and bacterial cellulose 

(BC) based materials, the ones that were used in this work); 2) the strategies available for the production of recombinant 

proteins, using bacterial systems; and 3) a state of the art on the CBMs and their applications. 

 

The chapter 2 describes the development of a methodology for the expression and purification of the recombinant protein 

CBM-RGD, which has a CBM from the human protein laforin fused to a RGD sequence. Different commercial 

heterologous Escherichia coli expression systems (pET 29a, pET 25b and pGEXT41) were used in order to obtain high 

levels of soluble protein. Despite the use of the periplasmatic secretion approach (pET25) or the fusion of CBM with 

enhancing solubility tag (GST), the recombinant proteins were always obtained in the insoluble fraction. The utilization of 

CHAPS and arginine allowed the protein solubilization and purification, but not the production of functional protein with 

starch binding ability. Using the pET29a vector, the recombinant proteins were obtained in inclusion bodies (IB). After 
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solubilization and refolding, the CBM was recovered and showed starch affinity. This is the first report on the expression 

of the functional CBM from the human protein laforin.  

The chapter 3 describes the production of recombinant proteins containing a bacterial CBM, which belongs to an α-

amylase from Bacillus sp. TS-23. This protein, like the laforin CBM, also has starch affinity, being designated a Starch-

Binding Module (SBM). The recombinant SBM and RGD-SBM proteins were cloned, expressed, purified and tested in 

vitro. The evaluation of cell attachment, spreading and proliferation on the dextrin-based hydrogel surface activated with 

recombinant proteins were performed using mouse embryo fibroblasts 3T3. The results showed that the RGD-SBM 

recombinant protein improved, by more than 30%, the adhesion of fibroblasts to dextrin-based hydrogel. In fact, cell 

spreading on the hydrogel surface was observed only in the presence of the RGD-SBM. The fusion protein RGD-SBM 

provides an efficient way to functionalize the dextrin-based hydrogel, improving the interaction with cells.  

 

The characterization of dextrin-vinyl acrylate (dextrin-VA) and dextrin-hydroxyethylmethacrylate (dextrin-HEMA) 

hydrogels was presented in a previous study carried out at the DEB-UM laboratories. In this work (chapter 4) the in vivo 

biocompatibility and degradability of these hydrogels are reported. The histological analysis of subcutaneous implants of 

these hydrogels, featuring inflammatory and resorption events in mice, was carried out over a period of 16 weeks. While 

dextrin-HEMA hydrogel was quickly and completely degraded and reabsorbed, dextrin-VA degradation occurred slowly, 

apparently through an erosion controlled process. A thin fibrous capsule was observed 16 weeks post-implantation, 

surrounding the non-degradable hydrogel. In the case of the degradable material, only a mild inflammatory reaction was 

observed, with few foamy macrophages being detected around the implant. This reaction was followed by complete 

resorption, with no signs of capsule formation or fibrosis associated with the implants. Altogether, these results strongly 

suggest that the dextrin hydrogels are fully biocompatible, since no toxicity on the tissues surrounding the implants was 

found. Moreover, it may be speculated that a controlled degradation rate of the hydrogels may be obtained, using dextrin 

with grafted HEMA and VA in different proportions. 

Chapter 5 presents the evaluation of Bacterial Cellulose – NanoFibers (BC-NFs) nanotoxicology. BC is a promising 

material for biomedical applications, namely due its biocompatibility. Although BC has been shown to be neither cytotoxic 

nor genotoxic, the properties of isolated BC-NFs on cells and tissues has never been analysed. Considering the toxicity 

associated to other fibre-shaped nanoparticles, it seems crucial to evaluate the toxicity associated to the BC-NFs. The 

results from single cell gel electrophoresis (also known as comet assay) and the Salmonella reversion assay showed that 

NFs, produced from BC by a combination of acid and ultrasonic treatment, are not genotoxic under the conditions tested. 

A proliferation assay using fibroblasts and CHO cells reveals a slight reduction in the proliferation rate, although no 

modification in the cell morphology is observed. 

 

Overall, this work reports the successful expression and isolation of the atypical human CBM, from the protein laforin. It 

provides a contribution to the development of a strategy based on the use of CBMs as tools for the modification of the 

surface properties of biomaterials, improving the interaction with cells. Finally, this work characterizes biocompatibility 

aspects of biomaterials currently under development at DEB-UM laboratories. 
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RESUMO 

Utilização de módulos recombinantes de ligação a carbohidratos para aplicações biomédicas. 

Biocompatibilidade de materiais baseados em polissacarídeos. 

 

O desenvolvimento de biomateriais para aplicações biomédicas centra-se  no desenho de estruturas tri-dimensionais – 

scaffolds – capazes de mimetizar as funções biológicas e interagir com os tecidos envolventes, através do 

reconhecimento biomolecular. Entre os diferentes materiais usados para produzir scaffolds, os constituídos por 

polissacarídeos (como é o caso dos hidrogeis de dextrino e os materiais de celulose bacteriana - BC) apresentam 

características promissoras devido à sua biocompatibilidade, hidrofilicidade, degradabilidade e propriedades mecânicas, 

permitindo a sua utilização biomédica.  

As proteínas recombinantes são amplamente usadas em biomedicina, nomeadamente na funcionalização de diversos 

biomateriais. Sabe-se que os módulos de ligação a carbohidratos (CBMs), presentes em várias glicanases, são 

estrutural e funcionalmente independentes do domínio catalítico. Assim, a sua utilização em proteínas de fusão tem sido 

explorada, com o propósito de facilitar ou aumentar a expressão, solubilidade e purificação das proteínas. Uma das 

moléculas frequentemente usada para melhorar a adesão celular é o péptido Arg-Gly-Asp (RGD). Esta sequência, 

presente em diversas proteínas da matriz extra-celular, é um ligando para adesão celular mediada por integrinas, sendo 

reconhecido como o principal grupo funcional na adesão celular. Nos últimos anos, foram produzidos nos laboratórios 

do DEB-UM diversos materiais à base de polissacarídeos, nomeadamente hidrogeis de dextrino. Neste trabalho, usando 

tecnologia de DNA recombinante, foram produzidas proteínas bi-funcionais constituídas por um CBM (com afinidade 

para o amido) fundido com a molécula bio-activa RGD, com o propósito de os funcionalizar. Pretende-se assim melhorar 

a interacção do material com as células, favorecendo a adesão celular pela interacção com a molécula RGD que por 

sua vez está ligado ao material através do CBM. 

 

Na Introdução geral desta tese (capítulo 1) apresenta-se: 1) uma revisão sobre biomateriais baseados em 

polissacarídeos (em particular dos hidrogels de dextrino e das nanofibras (NFs) de celulose bacteriana); 2) as 

estratégias usadas para produzir as proteínas recombinantes em sistemas de expressão bacterianos; 3) e uma revisão 

sobre os CBMs e as suas aplicações. 

 

O segundo capítulo descreve a metodologia desenvolvida para a expressão e purificação da proteína de fusão CBM-

RGD, pertencendo este CBM à proteína humana laforina. Foram utilizados diferentes sistemas comerciais para 

expressão heteróloga em Escherichia coli (pET 29a, pET 25b e pGEXT41), com o intuito de obter elevados níveis de 

proteína solúvel. Os sistemas de expressão que permitem a secreção das proteínas para o espaço periplasmático 

(pET25) ou a fusão com a GST (pGEXT4 1), um tag que potencia a solubilidade das proteínas, conduziram à obtenção 

de proteínas insolúveis. A adição de CHAPS e arginina ao tampão de lise, embora resultando num aumento da 

solubilidade, não permitiu a obtenção de proteína funcional, isto é, com afinidade para o amido. Usando o vector 

pET29a, a proteína foi obtida em corpos de inclusão que, depois de solubilizados e submetidos ao processo de 
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refolding, permitiram obter proteína funcional com afinidade para o amido. Este é o primeiro relato da expressão 

funcional deste CBM humano. 

No capítulo 3 descreve-se a produção de proteínas de fusão contendo um CBM bacteriano, da α-amilase do Bacillus sp. 

TS-23. Este CBM também apresenta afinidade para o amido, sendo por isso designado por SBM (Starch-binding 

module). As proteínas recombinantes SBM e RGD-SBM foram produzidas usando um sistema de expressão de E. coli. 

O seu efeito na adesão, spreading e proliferação celular foi avaliado in vitro, usando fibroblastos de embrião de rato 

3T3. Os resultados mostraram que o tratamento do hidrogel de dextrino com RGD-SBM melhorou a adesão celular em 

mais de 30%. Para além disso, só na presença da proteína foi possível observar as células alongadas na sua superfície. 

Assim, a proteína de fusão revelou-se eficiente para funcionalizar o hidrogéis de dextrino. 

 

A caracterização dos hidrogéis de dextrino-vinil acrilato (dextrino-VA) e dextrino-hidroxietilmetacrilato (dextrino-HEMA) 

foi objecto de estudo em trabalhos anteriores, também desenvolvidos no DEB-UM. Neste trabalho (capítulo 4) 

apresentam-se os resultados da caracterização de biocompatibilidade e degradação destes hidrogéis in vivo. A análise 

histológica de implantes subcutâneos em ratinhos permitiu estudar os eventos de reabsorção e a resposta inflamatória. 

De acordo com os  resultados, a degradação e reabsorção dos géis de dextrino-HEMA ocorre rapidamente; a 

degradação dos géis de dextrino-VA é mais lenta, devendo-se principalmente a processos de erosão. Após 16 

semanas, foi observada uma fina cápsula fibrosa a rodear o implante não degradável. No caso do gel degradável, 

observou-se uma resposta inflamatória de baixa intensidade, sendo detectados alguns macrófagos com material 

fagocitado a envolver o implante. Esta reacção foi seguida pela completa reabsorção do material, não havendo sinais de 

formação de qualquer cápsula fibrosa. Estes resultados sugerem que os hidrogéis de dextrino são biocompatíveis, uma 

vez que não foram detectados sinais de toxicidade nos tecidos que envolviam o material. Os resultados sugerem 

também que é possível obter hidrogéis com velocidades de degradação controlada, usando dextrino substituído com 

HEMA e VA em diferentes proporções.  

O capítulo 5 apresenta o estudo da nanotoxicidade de NFs de celulose bacteriana. A BC apresenta grandes 

potencialidades para aplicações biomédicas, sendo descrita como um material não citotóxico ou genotóxico. No entanto, 

o efeito das NFs, isoladas por tratamento ácido e ultrasons, nas células e nos tecidos não foi descrito. Considerando a 

toxicidade associada a outros nanomateriais com forma de agulha, o estudo da nanotoxicidade destas fibras torna-se 

crucial. Os resultados obtidos no ensaio cometa e de reversão da Salmonella mostraram que as NFs produzidas a partir 

da BC, não são genotóxicas na condições utilizadas. Para além disso, os resultados obtidos nos ensaios de proliferação 

celular usando fibroblastos e células CHO mostraram que, apesar de uma ligeira redução na proliferação, não são 

detectadas diferenças morfológicas. 

 

Em resumo, este trabalho descreve, pela primeira vez, a expressão funcional do CBM atípico da proteína humana 

laforina. Este trabalho também contribui para o desenvolvimento de ferramentas que utilizam os CBMs recombinantes 

para a modificação das propriedades da superfície de materiais. Por último, são caracterizados aspectos da 

biocompatibilidade de materiais que estão a ser desenvolvidos nos laboratórios do DEB-UM. 
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Figure 2. Coomassie stained SDS-PAGE of the protein CBM-RGD detected in cells lysates (left 

panel) of E. coli Tuner in M9 medium, at 30ºC, induced with IPTG 0.3 mM, at 18ºC, 48 h. 

The cell lysates were also treated with arginine, with or woth CHAPS before centrifugation 

(central panel) for soluble fraction recover (S); E- fraction eluted with imidazole during 

protein purification, using affinity chromatography. Identical results were obtained with E. 

coli BL21 (DE3), and Origami strains (data not shown). On the right panel: Western-blot 

analysis of E1 and E2 samples, using anti-His antiboby (Sigma). 

 

Figure 3. Coomassie Blue stained SDS-PAGE obtained from cell lysates of E. coli strains (1 and 2 

BL21; 3 and 4 Tuner) transformed with pGEX (1 and 3) or pGEX-CBM-RGD (2 and 4) 

under different growth and induction conditions. Recombinant GST-CBM-RGD expressed 

in soluble fraction (arrows). S – soluble fraction; I – insoluble fraction; MW – molecular 

weight (Biorad).  

 

Figure 4. Schematic representation of recombinant protein and thrombin cleavages sites. Time 

course analysis by SDS-PAGE silver stained of GST-CBM-RGD protein during thrombin 

cleavage (0-16 hours).  

 

Figure 5. Silver stained SDS-PAGE (of adsorption assay. Initial protein (I); protein non-adsorbed to 

starch (1) or cellulose (2); Elution fraction (E) with buffer containing glycogen after cellulose 

and starch washing.   

 

Figure 6. Native PAGE stained with Coomassie Blue of CBM-RGD obtained by pET29a (1) and 

pET25b expression system; Bovine serum albumin (BSA) with 66 kDa was used as MW 

marker. 

 

Figure 7. Analysis of CBM-RGD adsorption by SDS-PAGE (Coomassie staining). Initial protein (I); 

protein non-adsorbed to starch (1) or cellulose (2); Washing fraction (W); Elution fraction of 

CBM-RGD with buffer containing glycogen. Protein eluted from starch (arrow). 

 

Figure 8. Schematic summary of strategies and results.  

CHAPTER 3 | Development of a strategy to functionalize a dextrin-based hydrogel  

Figure 1. Analysis of protein expression (A) and starch specificity (B) by SDS-PAGE. A-Soluble 

protein extract obtained from lyses of E. coli BL 21(DE3) carried pET29a(+)-SBD (1) and 

pET29a(+)-RGD-SBD (2) vectors. B-Total soluble protein extract (containing SBM) used in 

adsorption assays (3); supernatant obtained after starch (4) and cellulose adsorption (5), 

supernatant obtained after protein elution of starch with β-cyclodextrin (6). (MW – 

molecular weight, KDa).  
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Figure 2. Microscopic observation and MTS analysis of the cells attached to the polystyrene plate 

and polystyrene plate coated with SBM or RGD-SBM peptides, at different times (MTS 

results were performed in triplicate). The MTS assay shows the optical density at 490 nm 

under different conditions.  

 

Figure 3. SDS-PAGE analysis of the recombinant proteins adsorbed to the dextrin-based hydrogel. 

Recombinant proteins SBM and RGD-SBM, purified by affinity chromatography, before (1) 

and after (2) adsorption on the hydrogel. (MW – molecular weight, KDa). 

 

Figure 4. MTS assays from non-adherent cells to the hydrogel and hydrogel coated with recombinant 

proteins after 4 h of adhesion. CPII of hydrogel with different treatments when compared 

with the polystyrene plate at 4, 24 and 48 h of incubation after fibroblasts seeding. 

 

Figure 5. Microscopic analysis and MTS assays of the fibroblasts cultivated on hydrogel without 

recombinant proteins, hydrogel coated with SBM or RGD-SBM; and cultivated on 

polystyrene plate, at different incubation times. The MTS assay compares the optical 

density at 490 nm between hydrogel with the different pre-treatments and the polystyrene 

plate at 4, 24 and 48 h of incubation after fibroblasts seeding. 

 

CHAPTER 4| Dextrin-based hydrogel: in vivo biocompatibility and degradability 

Figure 1. Dextrin MALDI-TOF mass spectra and chemical structure of dextrin substituted with VA or 

HEMA and its structure following polymerization. 
 

Figure 2. Cryo-SEM analysis of polymerized hydrogels: dextrin-VA and dextrin-HEMA (DS 20%; 300 

mg/ml). Analysis performed at 15kV, Amp 5000X and 1000X. 
 

Figure 3. DS 20 dextrin-VA implant, 1 week post-implantation. The implant (*) is intact (PAS, bar = 

50µm). 
 

Figure 4. DS 20 dextrin-VA implant, 16 weeks post-implantation. The implant (*) is generally intact. a) 

Note a ring of macrophages around the implant and a few scattered fragments (arrows) in 

its vicinity. (H&E, bar = 200µm). b) Small DS 20 dextrin-VA fragments surrounded by 

numerous macrophages showing small amounts of intracytoplasmic PAS-positive material. 

(PAS, bar = 50µm). c) The implant (*) is surrounded by a fibrous capsule (arrows), showing 

5 consecutive measurements (Masson’s trichrome stain, bar = 20µm). 

 

Figure 5. 300 mg/ml dextrin-HEMA implant, 1 week post-implantation. The implant is generally intact, 

however, is surrounded by macrophages with PAS-positive material (PAS, bar = 10µm). 
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Figure 6. 150 mg/ml (a and b) or 300 mg/ml (c) dextrin-HEMA implant, 4 weeks post-implantation. a) 

There are no visible extracellular fragments of the implant. Numerous macrophages 

containing abundant intracellular PAS-positive material form a subdermal band located at 

the implantation site (PAS, bar = 200µm). b) Variably abundant, intracytoplasmic, globular, 

PAS-positive material is present in macrophages (PAS, bar = 10µm). c) Large, extracellular 

implant fragments remain in the deep dermis, surrounded by a thick macrophagic ring 

(PAS, bar = 200µm). 

 

CHAPTER 5 | BC-Nanofibres: in vitro study of genotoxicity and cell proliferation  

Figure 1. TEM image of cellulose nanofibres (50kV; Zeiss 902A Orius SC 1000).  

Figure 2. MTT results from proliferation assays using mouse embryonic fibroblast 3T3 and CHO 

(mean ± SD; **P < 0.05; ***P < 0.005). Image obtained by optical microscopy of fibroblasts 

grown in the presence of cellulose NFs during 72 h. Scale bar = 20 µm. 

 

Figure 3. Fluorescent microscopy images of ethidium bromide stained DNA and results from visual 

scoring in the comet assay. PC: positive control (H2O2); NC: negative control (H2O); 0.1–1.0 

NFs concentration in mg/ml. The images were scored and classified into five classes and 

given a value according to tail intensity, from 0 (no tail) to 4 (almost all DNA in the tail). 

Scale bar = 50 µm.  
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SCOPE and COLLABORATORS 

The main subject of this thesis is the evaluation of the Carbohydrate Binding Modules (CBMs) potential as 

tools for the improvement of the biocompatibility of polysaccharides-based materials. In addition, the 

biocompatibility of dextrin hydrogels and bacterial cellulose nanofibres, materials developed at DEB-UM 

laboratories, was also analysed.  

Chapter 1 presents a revision of these subjects, namely 1) polysaccharide-based biomaterials; 2) strategies to 

express recombinant proteins using Escherichia coli systems; and finally, 3) a revision on CBMs. This 

subchapter is an adaptation of a book chapter accepted for publication. 

  

The second chapter describes the strategies used to produce the bi-functional recombinant protein containing 

a human CBM from laforin fused to a RGD sequence. This work was performed in collaboration with the 

Biology Department of Universidade do Minho and the Biomolecular Biotechnology Unit of Biocant. 

 

Chapter 3 describes the strategy to functionalize dextrin-based hydrogel using a recombinant protein 

containing a starch-binding module (SBM). The SBM of α-amylase from Bacillus strain TS-23 was fused to 

the RGD sequence by recombinant DNA technology and tested, in vitro, using mouse embryo fibroblast 3T3 

cells. This work has been published on BMC Biotechnology Journal. 

 

In this work the in vivo biocompatibility of the dextrin hydrogels was also investigated. The in vitro 

characterization of dextrin-based hydrogel was the aim of a previous work. However, the in vivo 

biocompatibility and degradability of those hydrogels were not evaluated; therefore, in the chapter 4 of this 

thesis is presented the study of the in vivo biocompatibility and degradability of dextrin-hydrogels implanted 

subcutaneously, in mice. These results were accepted for publication on Journal of Bioactive and Compatible 

Polymers and this work was performed in collaboration with Immuno-Phisiology and Pharmacology 

Department of Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. 

 

It is well known that nanomaterials with needle-like shape, such asbestos fibres, are citotoxic and present 

genotoxicity for cells. Because BC-nanofibres present similar structure it seems important to study its potential 

genotoxicity. In the chapter 5 the results from in vitro assays to evaluate BC-NFs effect on cells are 

presented. This study, performed in collaboration with the Biochemistry Department of Universidade Federal 

do Rio Grande do Norte (Brazil), was published on Toxicology Letters. 

 

In the last chapter of this thesis (chapter 6) are presented the final remarks of this work and the future 

perspectives. 
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1.1 

Polysaccharide-based biomaterials 

 

 

 

 

 

 

 

The development of tissue engineering strategies is based on the design of three-

dimensional structures made from natural or synthetic materials, termed scaffolds. 

Hydrogels are a class of hydrophilic polymeric scaffolds, with remarkable features from 

the perspective of biological mimicking. Among the materials used in the development of 

hydrogels, polysaccharide-based materials have been referred as promising materials, 

presenting appealing properties for biomedical applications.  

 

In the following chapter an overview of biomaterials and tissue engineering developments, 

in particular the advantages and applications of polysaccharide-based hydrogels and 

bacterial cellulose biomaterials will be presented. 
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Biomaterials and Tissue Engineering 

Biomaterials must be especially suitable for the intimate contact with living tissues, ideally 

mimicking the biological properties. They are used as drug delivery carriers, tissue 

engineering scaffolds, and biomedical devices. Thus, biomaterials are revolutionizing 

many aspects of preventive and therapeutic healthcare. With huge potential quality-of-life 

benefits owing to the many applications in the biomedical area, biomaterials are the focus 

of major research efforts with progresses in this field requiring a multidisciplinary 

approach. Indeed, the research on biomaterials gathers contributes from the materials 

science, chemical engineering, medical engineering, and pharmacology. The 

development of biomaterials for medical applications has focused on the design of 

biomimetic materials that interact with the surrounding tissues through biomolecular 

recognition, eliciting cellular responses mediated by specific interactions (Shin et al., 

2003). Currently, engineering of hard (i.e., bone, teeth, and cartilage) and soft tissues (i.e., 

skin and internal organs) encompasses the use of scaffolds, growth factors, and stem 

cells. Among the various materials assayed as scaffolds - assisting the cell proliferation 

and organ development - hydrogels have gained the preference of many researchers. 

 

Scaffolds are ideally three-dimensional, highly porous structures with interconnected 

porosity. They are conceived as templates to guide the growth of tissue in the body, as 

delivery vehicles for transplanted cells and as drug carriers, activating specific cellular 

functions in a localized region, and ultimately regenerating the tissues (Murphy and 

Mooney, 1999; Thanos and Emerich, 2008; Vacanti et al., 1998). Therefore, scaffolds may 

be implanted into a tissue defect without cells or bioactive compounds in its formulation, 

with the tissue regeneration depending only on the ingrowth of the surrounding tissue. 

Alternatively, the scaffolds may be loaded with cells or compounds, before implantation, 

improving the rate of tissue ingrowth, vascularization, and cell differentiation (Widmer et 

al., 1998) (Figure 1). 
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Figure 1 - Schematic representation of the application of a hydrogel scaffold in tissue engineering. 1) Patient 

cells (e.g., stem cells) collected and 2) grown in vitro. 3) Then, the cells are mixed with the hydrogel network, 4) 

Grown and/or differentiated in a specific culture medium; finally, the scaffold is implanted in the patient. (From 

www.centropede.com/UKSB2006/ePoster/images/background/TE_model_large.jpg). 

 

The selection of a scaffold material is both critical and difficult. The sophisticated smart 

materials used in the biomedical applications must meet strict criteria, namely convenient 

mechanical properties and degradation rate, biocompatibility, porosity and 

interconnectivity, functional properties related to the interaction with cells and the release 

of pharmaceuticals, among others (Peppas et al., 2000). Candidate materials include: 1) 

synthetic polymers, such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactide-co-

glycolide) acid (PLGA), ethylene oxide block copolymers); 2) inorganic materials, such as 

tricalcium phosphate, calcium carbonate, non-sintered hydroxyapatite; and 3) natural 

polymers, such as fibrin, collagen, gelatin, hyaluronan. Indeed, natural polymers have 
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played an important role in these efforts, and recombinant polymers that combine the 

beneficial aspects of natural polymers with many of the desirable features of synthetic 

polymers have been designed and produced.  

 

Besides biocompatibility, the biomaterial biodegradability is generally desirable for tissue 

engineering applications. Ideally, the degradation rate also matches the neo tissue 

formation rate, performing as a template (Ma, 2008). 

Several materials have been exploited as scaffolds for tissue regeneration, each one 

presenting advantages and/or disadvantages, depending on the specific application. For 

instance, certain metals are an excellent choice for medical implants, due to their superior 

mechanical properties (Catledge et al., 2004); of course, they are not a good choice for 

scaffold applications because of the lack of degradability in biological environment (Liu 

and Ma, 2004). In addition, certain inorganic/ceramic materials, such as hydroxyapatite 

(HAP) or calcium phosphates, having good osteoconductivity, have been considered for 

mineralized tissue engineering; however, they are of limited application because of its 

brittleness and poor processability into highly porous structures. In contrast, polymers 

present great design flexibility. Their structure can be tailored to the specific needs, and 

therefore have been extensively studied in various tissue engineering applications, 

including bone tissue engineering (Huang et al., 2007; Liu and Ma, 2004; Meinel et al., 

2005; Rice et al., 2005) 

 

The overall goal of tissue engineering is to create functional tissue grafts that can 

regenerate or replace defective or worn out tissues and organs. Examples of grafts, now 

in pre-clinical studies or clinical use, include engineered skin, cartilage, bone, blood 

vessels, skeletal muscle, bladder, trachea, and myocardium (Grayson et al., 2008). 

 

Hydrogels as scaffolds for biomedical applications 

 

Hydrogels are a class of materials that swell under conditions of excess of water (or 

biological fluids), holding a large amount of water in the wetstate. Chemical crosslinks 

(covalent bonds) or physical junctions (e.g. secondary forces, crystallite formation, chain 

entanglements) provide the hydrogels unique swelling behavior and three-dimensional 

structure (Klouda and Mikos, 2008; Peppas, 2004; Peppas et al., 2006). 
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Hydrogels are one of the upcoming classes of polymer-based systems that embrace 

numerous biomedical and pharmaceutical applications, such as tissue engineering, 

molecular imprinting, wound dressing materials, immunoisolation, drug delivery, etc 

(Kashyap et al., 2005; Peppas et al., 2006). In addition, hydrogels provide new 

approaches for culturing mammalian cells ex vivo, which are increasingly needed, to study 

cell and tissue physiology and to grow replacement tissues for regenerative medicine. 

Two-dimensional culture has been the paradigm for typical in vitro cell culture; however, it 

has been demonstrated that cells behave more “in vivo-like” when cultured in three-

dimensional environments such as hydrogels scaffolds (Tibbitt and Anseth, 2009). 

 

Among the various tissue engineering scaffolds comprehensively studied, hydrogels 

remain most appealing candidates due to the controllable and reproducible polymer 

properties and to the large water uptake, promoting excellent biocompatibility due to low 

protein adsorption (Peppas, 2004). In addition, hydrogels present mechanical properties 

and hydrophilicity that resembles those of the extracellular matrix (ECM) of native tissue, 

tunable viscoelasticity, and high permeability for oxygen and essential nutrients (Jia and 

Kiick, 2009; Peppas et al., 2000; Tibbitt and Anseth, 2009).  

Apart from favorable physico-chemical and mechanical properties, the most important 

requirement for a hydrogel to be used in medical applications is its biocompatibility, 

together with the non-cytoxicity of its degradation products. Most of the toxicity associated 

with hydrogels regards the unreacted monomers, oligomers and initiators that leach out 

(Del Guerra et al., 1996; Del Guerra et al., 1995; Kirkpatrick, 1992; Ratner, 1997). 

 

A variety of hydrogel materials have been utilized for tissue engineering applications, 

including reconstituted ECM components or natural proteins and carbohydrates (Long and 

Tranquillo, 2003; Robinson et al., 2008; Zhong et al., 2005), self-assembling peptides 

(Collier et al., 2001; Kisiday et al., 2002), and synthetic materials (Hicks et al. 2003; Lou et 

al., 2001). Thus, the selection of the appropriate hydrogel is governed by the chemical 

and physical properties, the mass transport properties and the biological interaction 

requirements that are best suited for a given application.  

While the chemical properties of hydrogels (such as hydrophilicity) are determined by 1) 

the polymer backbone, 2) the functional side chain in the monomer unit, and 3) the cross-

linking agent; the physical properties (e.g. mechanical strength and swelling ratio) are 

mainly controlled by the cross-link density. For instance, the amount of water absorbed by 

hydrogels is limited by their ability of undergoing elastic network expansion, which can be 
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controlled by controlling the cross-linking degree during the synthesis of chemically cross-

linked hydrogels (Byrne and Salian, 2008). 

Hydrogels can show variable swelling behavior, depending on changes in the external 

environment. Some of the factors that can affect the swelling of responsive hydrogels 

include pH, ionic strength and temperature (Peppas, 2004). Hydrogels can also be made 

responsive to diverse external stimuli, such as light, electric current, ultrasound, and the 

presence of a magnetic field or a particular molecule (Watanabe et al., 2004). This unique 

property of responsiveness has resulted in the development of hydrogel-based sensors 

(Bashir et al., 2002; Hilt et al., 2003), self-regulated and externally actuated intelligent 

drug delivery systems (Miyata et al., 1999; Sershen and West, 2002; Sershen et al., 2000; 

Yoshida et al., 1993) and microfluidic devices (Beebe et al., 2000; Satarkar and Zach Hilt, 

2008; Sershen et al., 2005). Physically or chemically cross-linked hydrogels can also be 

generated in the presence of living cells, allowing in situ encapsulation for tissue 

engineering (Peppas et al., 2006). Furthermore, hydrogels with controlled biodegradation 

kinetics may be easily designed using natural polymers susceptible to enzymatic 

degradation or synthetic polymers with hydrolyzable moieties (Watanabe et al., 2004) 

 

Natural biomaterials: Polysaccharide-based materials 

 

By far, the majority of carbohydrate materials in Nature occur in the form of 

polysaccharides. By definition, polysaccharides include not only those substances 

composed uniquely of glycosidically linked sugar residues, but also molecules that contain 

polymeric saccharide structures linked via covalent bonds to amino acids, peptides, 

proteins, lipids and other structures. Thus, polysaccharides have a large number of 

reactive groups, a wide range of molecular weight (MW), and different chemical 

compositions, which contribute to their diversity in structure and in properties (d’Ayala et 

al., 2008). In nature, polysaccharides from algae (e.g. alginate), plant (e.g. pectin, guar 

gum), microbial (e.g. dextran, xanthan gum), and animal origin (chitosan, chondroitin) can 

be found (Coviello et al., 2007).  

The most common constituent of polysaccharides is D-glucose, but D-fructose, D-

galactose, L-galactose, D-mannose, L-arabinose, and D-xylose are also frequent. Some 

monosaccharide derivatives found in polysaccharides include the amino sugars (D-
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glucosamine and D-galactosamine) as well as their derivatives (N-acetylneuraminic acid 

and N-acetylmuramic acid), and simple sugar acids (glucuronic and iduronic acids). 

Among the numerous macromolecules that can be used for hydrogel formation, 

polysaccharides are advantageous compared to synthetic polymers. Coming from 

renewable sources, polysaccharides also have frequently economical advantages over 

synthetic materials. Polysaccharides are usually non-toxic, biocompatible and show a 

number of convenient physico-chemical properties (such as hydrophilicity, viscosity and 

reactive groups) that make them suitable for different applications in drug delivery 

systems (Coviello et al., 2007). The major disadvantages of natural polymers, when 

compared with synthetic ones, are the difficulty in controlling their physico-chemical 

properties, such as molecular weight, strength, degradation time and mechanical 

properties. However, there are several strategies to overcome these limitations, including 

the combination with other natural or synthetic polymers. The combination with other 

natural polymers (e.g., collagen/glycosaminoglycans) or with synthetic polymers (e.g., 

collagen/PLGA), may improve the biocompatibility of the ensuing scaffolds, by reducing 

inflammatory response in vivo and improving initial cell attachment and differentiation on 

the material (Flanagan et al., 2006; In Jeong et al., 2007; Liu et al., 2008; Zhong et al., 

2005). 

 

Polysaccharides, such as cellulose, starch, chitin/chitosan, alginate, carrageenan, gellan, 

guar gum, hyaluronic acid, pullulan, dextran, among others, have been used in the 

formulation of several hydrogels (nanogel, microspheres) (Coviello et al., 2007). In 

addition, it was also found that water-soluble polysaccharides derivatives – such as 

carboxymethylcellulose (CMC), carboxymethylstarch (CMS), carboxymethylchitin (CMCT), 

and carboxymethylchitosan (CMCTS) – lead to the formation of hydrogels at high 

concentrated aqueous solution (paste-like state) by radiation cross-linking (Yoshii et al., 

2003). Table 1 gives examples of several polysaccharides used in hydrogel formulations 

and their potential biomedical applications. 
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Table 1 - Example of polysaccharides used in hydrogels formulation for biomedical applications. 

Polysaccharide Application References 

Alginate-based 
materials 
(hydrogel, 

microspheres) 

Ocular drug delivery; oral administration of drugs; wound 

dressings; regional radio-chemotherapy; driving of angiogenesis 

by diffusion of VEGF; cells encapsulation; bone tissue engineering 

(repair of osteochondral defects of joints; neurotransplantation) 

(Coviello et al., 2007) 
(Kuo and Ma, 2001) 
(d’Ayala et al., 2008) 
(Eiselt et al., 2000) 

(Novikova et al., 2006) 

Dextran-derivates 
(hydrogels and 

microgels) 

Release of proteins with limited aqueous solubility (such as IL2); 

tissue engineering bone regeneration (such as BMP release); 

nasal drug delivery systems; colon drug delivery 

(Bos et al., 2004) 
(Coviello et al., 2007) 

(Lévesque and 
Shoichet, 2006) 

(Kim and Chu, 2000) 

Chitin and 
Chitosan-derivates 
(hydrogels, films 
and microgels) 

Wound treatment; bioadhesive sustained release formulation; 

tissue engineering (cartilage and bone regeneration); gene 

delivery; colon drug delivery 

(Felt et al., 1999) 
(Alsarra et al., 2009 ) 
(Sinha et al., 2004) 

(d’Ayala et al., 2008) 
(Veerapandian and 

Yun, 2009) 

Gellan-derivates 
(hydrogels, beads, 

microspheres) 

Ophthalmic formulations; nasal spray pumps; encapsulation of 

biological components; oral drug delivery; drug release 

(Veerapandian and 
Yun, 2009) 

(Coviello et al., 2007) 
(Schwall and 

Banerjee, 2009) 

Carrageenan and 
Carrageenan-

derivates (hidrogels, 
beads) 

Promoter of angiogenesis by diffusion of VEGF; wound and burns 

dressing application; bone tissue engineering; drug carrier and 

devilry 

(Santo et al., 2009) 
(Coviello et al., 2007) 

Hyaluronic acid and 
HA-derivates 

(hydrogels, beads) 

Local administration of anti-inflammatory drugs in osteoarthritic 

knee; immobilization of hydrocortisone; cell encapsulation for cell 

delivery tissue regeneration; controlled release of vascular 

endothelial growth factor and basic fibroblast growth factor, 

promoting neovascularization 

 
(Coviello et al., 2007) 

(Schwall and 
Banerjee, 2009) 

Guar-derivates 
(hydrogels) 

Prodrugs formulation (as coating material or as hydrogel 

entrapping dugs inside its network); colon delivery; treatment of 

open-angle glaucoma 

(Coviello et al., 2007) 
(Schwall and 

Banerjee, 2009) 

Pullulan-derivates 
(hydrogels, micro 

and nanogels) 

Capacity to bind hydrophobic substances (such as anticancer 

drugs); imaging of specific sites (such as tumor and ischemic area) 
(Coviello et al., 2007) 

Xanthan- derivates 
(hydrogels) 

Enzyme immobilization; loading bioactive substances; delivery 

proteins in nasal cavity 

(Andreopoulos and 
Tarantili, 2001) 

(Bejenariu et al., 2008) 
(Coviello et al., 2007) 

Xyloglun-derivates 
(sol-gel transition) 

Vehicle for sustained release of percutaneous formulation (non-

steroidal anti-inflammatory drugs); release of indomethacin 

suppositories; orally and intraperitoneal administration of drugs; 

neural tissue engineering of the spinal cord 

(Coviello et al., 2007) 
(Nisbet et al., 2009) 
(Nisbet et al., 2006) 
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Functionalization of polysaccharide-based biomaterials 

Biomaterials are expected to fulfill biological functions, such as promoting cell proliferation 

and differentiation and enhancing the growth of surrounding tissues for defective 

regeneration. A straightforward method to incorporate these functions is to create 

hydrogels made up of natural macromolecules or macromolecular blends. Biologically 

active molecules can also be incorporated into polymer networks (e.g., by physical or 

chemical entrapment) to produce conjugated biomaterials, in order to design biomimetic 

scaffolds that can provide biological cues to elicit specific cellular responses and direct 

new tissue formation.  

 

The surface and bulk modification of materials with peptide sequences can allow for the 

modulation of cellular functions such as adhesion, proliferation and migration through 

modulation of the peptide concentration or its spatial distribution. Hydrogels have been 

synthesized so that they contain functional groups for enhancing cellular adhesion 

(Burdick et al., 2004; Hern and Hubbell, 1998). In this scheme, the addition of such 

modalities can dramatically change the properties of the hydrogels. The most common 

peptides used to modify hydrogels are derived from natural proteins, such as RGD 

(derived from proteins such as fibronectin, laminin, or collagen), IKVAV, and YIGSR from 

laminin (Peppas et al., 2006; Tashiro et al., 1989). Using these approaches, PEG (Burdick 

et al., 2004; Hern and Hubbell, 1998) and other hydrogels, such as alginate (Rowley et 

al., 1999), have been modified with RGD to enhance cellular adhesion. 

 

Despite the recent advances toward the development of biomimetic materials for tissue 

engineering applications, several challenges still remain, including the design of adhesion 

molecules for specific cell types, as required for guided tissue regeneration and the 

synthesis of materials exhibiting the mechanical responsiveness of living tissues. 

 

In particular, carbohydrate-based hydrogel (such as dextrin and cellulose) may be 

functionalized, by using recombinant proteins containing a carbohydrate-binding module 

(CBM) fused to bioactive peptides. CBMs present several specificity and affinities 

(Boraston et al., 2004; Boraston et al., 2007; Shoseyov et al., 2006b); therefore they may 

be used to adsorb peptides to a different polysaccharide materials, including starch and 

cellulose-based materials (Andrade et al., 2009). 
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Starch-based hydrogels 

Among the many applications of starch-based materials, the development of hydrogels for 

biomedical applications has drawn the attention of several research groups. The 

biocompatibility and degradability makes starch a suitable component of hydrogels with 

technological applications in a large number of areas, such as medical, pharmaceutical 

and biological (Marques et al., 2002). 

 

Starch is a natural mixture of amylose, a linear polymer of D-glucose unites linked to 1,4- 

α-D-glucosidic linkages, and amylopectin or pullulan, a branched polymer of α-D-Glucose 

units containing 1,4- α-D-glucosidic linear linkages and 1,6- α-D-glucosidic linkages at the 

branch points (Figure 2). There are a several hydroxyl groups on starch chains, two 

secondary hydroxyl groups at C-2 and C-3 of each glucose residue, as well as one 

primary hydroxyl group at C-6 when it is not linked (Lu et al., 2009). These hydroxyl 

groups on the starch chains can be oxidized and reduced, and may participate in the 

formation of hydrogen bonds, ethers and esters (Tomasik and Schilling, 2004). 

 

 

Figure 2 - Schematic representation of molecular structure of starch, showing D-glucose units and their 

hydroxyl groups, and the α -1,4 glucosidic linear linkages or α -1,6 linkage in the branch points. (Adapted from 

Lu et al., 2009) 

 

Starch itself is poor in processability, as well as in the dimensional stability and 

mechanical properties of its end products. In addition, starch is not capable of gelling 
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naturally; it must be modified by chemical derivatization, in order to introduce functional 

groups in the raw material, which may then gellify using either of the techniques described 

bellow. The chemical modification of starch (and the polysaccharides in general) has 

profound effects on its macroscopic behavior (e.g. solubility, stability and viscosity 

characteristics). Thus, for extended practical utilization of starch-based products, 

reinforcement or modification of starch is often essential (Ulrich Riedel, 1999; Vargha and 

Truter, 2005). 

 

Starch-based hydrogels may be produced by using: 1) free radical polymerization (in one-

step or two-step), 2) cross-linking by chemical reaction of complementary groups, 3) 

radiation-induced polymerization and 4) cross-linking and physical self-assembly. 

 

1. The polymerization using free radicals may be achieved by one-step or two-step 

synthesis. In the first case, the hydrogel is obtained through free radical 

copolymerization of low molecular weight hydrophilic vinyl monomers onto the 

starch substrate, in the presence of polymerizable cross-linking agents (Zhang et 

al., 2005). In a two-step synthesis, the polysaccharide is first functionalized with 

reactive double bonds and then cross-linked by free radical polymerization in 

water. Hydrogels obtained by these processes can combine the advantages of 

natural and synthetic polymeric hydrogels, and usually bear improved mechanical 

properties (Coviello et al., 2007; Zhang et al., 2005). 

 

2. Starch-based hydrogels may also be achieved through the reaction of functional 

groups with complementary reactivity. The cross-linking is possible when specific 

functional groups (mostly -OH, -COOH) are present along the macromolecular 

chains of starch and its derivatives, forming covalent bonds (Van Tomme et al., 

2008; Zhang et al., 2005). 

 

3. The chemical cross-linking of starch-based hydrogels can also be achieved by 

using high-energy radiation (especially gamma and electron beams (Zhang et al., 

2005). During the irradiation of aqueous starch system, radicals are formed on the 

polymer chain by homolytic scission of C—H bonds. In addition, the radiolysis of 

water molecules generates hydroxyl radicals which subtract protons from the 

polymer chains, resulting in the formation of macroradicals (Zhang et al., 2005). 

Under an inert atmosphere, the recombination of the macroradicals on different 
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chains leads to the formation of covalent bonds and finally produces a cross-linked 

network structure. The advantage of this process is that it can be done in water, 

under mild conditions (room temperature and physiological pH). However, when 

these hydrogels are used as matrices for the controlled release of bioactive drug 

molecules, drug loading is possible only after preparation of the hydrogels, 

because the radicals formed during irradiation could potentially damage the 

biologically active substance. 

 

4. For the preparation of physically cross-linked starch-based hydrogels, 

amphiphilic starch derivatives, generally synthesized by hydrophobic modification 

of water-soluble polysaccharide, self-assembles in aqueous solution to form 

physical hydrogels with a micelle-like structure with hydrophobic cores derived 

from the association of hydrophobic segments and a hydrophilic shell made of the 

polar groups on the polymer (Janes et al., 2001; Zhang et al., 2005). The major 

disadvantage of these hydrogels, when compared with chemically cross-linked 

ones, is the instability of their mechanical properties (Zhang et al., 2005).  

 

Dextrin as a biomaterial 

Among starch-based materials, those based on dextrin are widely used in a variety of 

applications, from adhesives used in food and textile industries (Lazarus, 1983), 

peritoneal dialysis solution (Hreczuk-Hirst et al., 2001) to the moisture-maintaining 

component of powders for skin used in the cosmetic industry (Tipson et al., 1989). Recent 

work reported the ability of dextrin conjugates to exhibit anti-endotoxin activity as well as 

to regulate the inflammatory response (Davtyan et al., 2007; Davtyan et al., 2009). In 

another recent work, dextrin-Hydroxyapatite (HAp) complex was used as a bone filling 

material, with good performance (Asai et al., 2009). In addition, nanoparticle based on 

dextrin were also described as potential drug carriers (Goncalves et al., 2007), and 

dextrin-based microspheres were used for encapsulation of the photosensitizer porphyrin, 

which aggregates in aqueous solutions, allowing its administration in the monomeric form, 

in photodynamic therapy (Luz et al., 2008).  

 

Hardwicke et al. described the development of a bioresponsive polymer–drug conjugate 

designed specifically to promote wound healing. Dextrin was selected for conjugation with 

recombinant human epidermal growth factor (rhEGF), as the former is degraded by α-
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amylase in wound fluid. Dextrin was used to protect rhEGF from proteolytic attack (which 

is a major clinical challenge when growth factors are administered topically) and liberate it 

at a controlled rate (Hardwicke et al., 2008). More recently, a similar strategy was used to 

reduce the nonspecific neurotoxicity of phospholipase A2 (PLA2) crotoxin (an antitumor 

protein that appears to act by interaction with epidermal growth factor receptors). 

According to this concept, the bioresponsive dextrin−PLA2 conjugate will be activated in 

the tumor interstitium (which presents high levels of α-amylase), through dextrin 

degradation (Ferguson and Duncan, 2009). 

 

Dextrins are a group of low-molecular-weight carbohydrates produced by partial 

hydrolysis of starch, which can be accomplished by the use of acid, enzymes, or a 

combination of both. Dextrin is a glucose-containing saccharide polymer linked by α-1,4 

D-glucose units, containing few (< 5%) α-1,6 links, having the same general formula as 

starch, but smaller and less complex (Carvalho et al., 2007; Hreczuk-Hirst et al., 2001).  

 

Among the many possibilities of starch modification, the creation of reactive double bonds 

through a transesterification reaction has been exploited recently by several groups to 

functionalize sugars (in particular dextran and dextrin) (Carvalho et al., 2009a; Carvalho et 

al., 2007; Carvalho et al., 2008a; De Groot et al., 2001). The final product of the 

transesterification of vinyl acrylate monomers has side chains (vinylic groups) attached to 

the polysaccharide backbone and polymerizes through well-established free radical 

methods (De Graaf et al., 1998; Vargha and Truter, 2005). Depending on the vinyl ester 

used in the dextrin substitution, and on the degree of substitution, different degradability 

may be achieved. Thus, using vinyl acrylate (VA) or hydroxyethylmethacrylate (HEMA) the 

dextrin-based hydrogel obtained is non-degradable or degradable, in vitro, respectively 

(Carvalho et al., 2009b). In addition, in both cases, the degree of substitution (DS), which 

refers to the average number of substituted polysaccharide hydroxyl groups, is of major 

importance in determining the properties of the resulting hydrogel, such as the 

degradation rate or the release profiles (Carvalho et al., 2009; Carvalho et al., 2009b). 

 

In vitro biocompatibility and degradability of dextrin-based hydrogels, namely dextrin-VA 

and dextrin-HEMA, were already evaluated. It was demonstrated that dextrin-based 

hydrogels do not present toxicity; moreover, cells adhere to the hydrogel surface and 

remain viable (Carvalho et al., 2009b). In addition, the release profile of those dextrin-
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based hydrogels using a model protein shows its suitability for their application as a 

delivery system (Carvalho et al., 2009).  

 

Bacterial Cellulose as a biomaterial 

Bacterial cellulose (BC) is a polysaccharide produced by the Acetobacter xylinum bacteria 

into long non-aggregated nanofibrils (Backdahl et al., 2006; Brown et al., 1976; Klemm et 

al., 2001).  

The cellulose synthesized by A. xylinum is identical to that made by plants in respect to 

molecular structure. However, the secreted polysaccharide is free of lignin, pectin, and 

hemicellulose as well as other biogenic products, which are associated with plant 

cellulose. Additionally, the BC displays many unique properties including high mechanical 

strength, high water content, high crystallinity and an ultra-fine highly pure nanofibril 

network structure (Backdahl et al., 2006; Czaja et al., 2007; Lee et al., 2001).  

 

One of the main requirements of any biomedical material is its biocompatibility, which is 

the ability to remain functional in contact with the living tissue, without causing any toxic or 

allergic side effects. Studies carried out in vitro and in vivo have demonstrated the BC 

biocompatibility. Thus, several applications were described for this material, including 

micro vessel prosthesis (Klemm et al., 2001), temporary skin substitutes (Fontana et al., 

1990), in periodontal treatments and as a replacement for dura mater (the membrane that 

surrounds brain tissue) (Andrade et al., 2009; Czaja et al., 2007). In addition, BC can be 

combined in composite materials in order to further improve its characteristics. For 

instance, Yasuda et al. used microbial cellulose immersed in two types of polymer 

solutions (2-acrylamide-2-methyl-propane sulfonic acid and gelatin), to create a cellulose-

based hydrogel with enhanced mechanical toughness, for the replacement of cartilage 

tissue in damaged joints (Yasuda et al., 2005). 

 

Some researchers have also obtained modified BC by introducing different additives into 

the culture media. The modification of the bacterial cellulose occurs, in this case, during 

biosynthesis, by introducing selected bioactive polysaccharides, such as chitosan and 

derivatives into the culture medium. Such composite materials can be applied in the 

treatment of burns, bedsores, skin ulcers, hard-to-heal wounds and wounds requiring 

frequent changes of dressing (Ciechanska, 2004). In addition, polysaccharides 
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degradable in vivo, exhibiting both chitin- and cellulose-like properties and susceptible to 

lysozyme attack, could be achieved by introducing GlcNac residues into bacterial 

cellulose (Ogawa and Tokura, 1992). 

 

The formation of networks with distinct architecture and the modification of other 

molecular features, such as reduction of crystallinity, was also obtained by adding 

mannan-based polysaccharides to the culture medium (Whitney et al., 1998). Further, it 

was shown that a range of different cellulose-associated networks could be formed, 

depending of the levels of glucomannan and galactomannans added. Cellulose with lower 

cristallinity and a smaller crystallite size was also obtained by adding sodium alginate to 

the culture medium (Zhou et al., 2007).  

 

BC-Nanofibres toxicology 

In the recent years there is an increasing interest in nanomaterials, including metallic 

nanoparticles (NPs), metal oxide nanoparticles, dendrimers, quantum dots, nanoclusters, 

nanocrystals, nanowires, fullerenes, fullerene-based derivatives, single- and multi-wall 

carbon nanotubes, functionalized carbon nanotubes, polymer nanoparticles, carbon black, 

nano-coatings, among others, and its applications. With the rapid development of 

nanotechnology and its applications, a wide variety of nano-structured materials are now 

used in commodities, pharmaceutics, cosmetics, biomedical products, and industries 

(Ashammakhi et al., 2007; Ma et al., 2005). In particular, BC-based materials, has been 

described as a promising scaffold in tissue engineering, since it can better mimic the 

nanostructure of extracellular matrix due to its nanofibrilar structure. Furthermore, BC 

nanofibres can be combined with other materials in order to improve their characteristics 

(Grande et al., 2009; Millon et al., 2008; Yoon et al., 2006). 
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Figure 3 – Schematic representation of possible interaction of oxyradicals release by NPs with the antioxidant 

defense system (Picture from Oberdorster et al., 2005), Abbreviations: GPx, glutathione peroxidase; GSH, 

reduced glutathione; GSSG, oxidized glutathione; ISC, intersystem crossing; R, any organic molecule; SOD, 

superoxide dismutase. In addition to fullerenes, metals such as cadmium, iron, nickel quantum dots, or iron 

from SWNT manufacturing, could also act in Fenton-type reactions. Phase II biotransformation, ascorbic acid, 

vitamin E, beta-carotene, and other interactions are not shown. 

 

While nanoscale materials possess novel and unique physicochemical properties different 

from those of bulk materials, they also have an unpredictable impact on human health. 

The impact of nanomaterials on the human body, their interactions with biological 

systems, and their risk assessment have generated intense scientific curiosity. 

Researchers have demonstrated that NPs may exhibit unique biological behavior, even 

when physical and chemical properties remain unaltered from those observed in large 

particle. Perhaps the most striking example lies on the fact that the smaller particles size 

enables nanoscale particles to cross or circumvent barriers that are impenetrable to larger 

particles (Bernstein et al., 2005; Pan et al., 2007). The greater surface area per mass, 

compared with larger-sized particles of the same chemistry, renders NPs more active 

biologically. This activity includes a potential for inflammatory and pro-oxidant, but also 

antioxidant activity, which can explain early findings showing mixed results in terms of 

toxicity of NPs to environmentally relevant species. For instance, Zhao et al. have used 
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computer models to predict that C60 molecules can damage DNA if intracellular exposure 

occurs (Zhao et al., 2005b) (Figure 3) and Lynch et al. have hypothesized that protein 

adsorbed onto nanoparticles may alter their shape, such that normally hidden amino acids 

residues are exposed as cryptic epitopes-triggering an immune response (Lynch et al., 

2006). 

 

The interaction of nanomaterials with biological systems is affected by several factors, 

such as size, surface area, shape, chemical composition, lattice structure, surface 

chemistry and charge (Borm et al., 2006; Pan et al., 2007). 

Nanomaterials can exhibit various shapes and structures; among them, needle-like 

nanofibres have been described as a potential toxic. For instance, the long, thin geometry 

and water insolubility of carbon nanotubes may have the potential to cause effects similar 

to those arising from inhalation of asbestos fibres (a well-known harmful material for man 

health), even if the chemical composition is completely different (Donaldson et al., 2006).  

 

As refereed above, there is an increasing interest in nanomaterials-based on BC, and 

since, BC-NFs also present needle-like shape, it seems important to evaluate their 

toxicity. Therefore, in this work, several assays were carried out to access BC-NFs 

toxicology. 
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1.2 

E. coli expression systems towards the production of 

recombinant proteins  

 

 

 

 

 

 

The technology of recombinant DNA allows the production of pure, soluble and functional 

recombinant proteins for several applications, including immunization, biochemical 

studies, three-dimensional structural protein analysis, and biotechnological and 

therapeutic use. Although the advances in a number of different expression systems, 

including bacteria, yeast, mammalian cells, and even cell-free systems, the bacterial ones 

still is the first approach used. However, despite the advantages, well recognized, the 

bacterial expression systems present also several limitations, specially for the production 

of protein from eukaryotic origin (Demain and Vaishnav, 2009; Sahdev et al., 2008; 

Schumann and Ferreira, 2004).  

 

Among the distinct strategies described for the production of functional recombinant 

proteins, the fusion with carbohydrate-binding modules (CBMs) is an attractive strategy 

towards the functionalization of biomedical materials based on polysaccharides. In the 

following subchapters the bacterial expression systems for recombinant proteins 

production, as well as the CBMs functions and applications, will be reviewed. 
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Recombinant expression systems for the production of 

heterolougues proteins  

Production of recombinant proteins involves the cloning of the appropriate gene into an 

expression vector, under the control of a well-known regulable promoter. Bacterial 

systems remain the most attractive due to low cost, high productivity, well-known genetics 

and large number of compatible molecular tools available (Sorensen and Mortensen, 

2005a; Terpe, 2006). Thus, many successful Escherichia coli expression systems have 

been described and are available, from a variety of academic and commercial sources. 

But the efficient production of recombinant proteins depends on a variety of factors, such 

as optimal expression signals (both at the level of transcription and translation), correct 

protein folding and cell growth conditions. Although high yield may be achieved in the first 

expression attempt, proteins vary in structural stability, solubility, and toxicity, resulting in 

different rates of protein degradation, formation of insoluble inclusion bodies (IB), and cell 

death; thus, optimization of the process is usually required (Doyle, 2005; Schumann and 

Ferreira, 2004). 

 

Despite the great diversity of expression systems - including expression vectors, host 

strains, and growth medium, among others - for heterologous protein production (Niiranen 

et al., 2007) the major drawbacks of E. coli as an expression system include: 1) the 

inability to perform many of the posttranslational modifications found in eukaryotic 

proteins; 2) the lack of a secretion mechanism for the efficient release of protein into the 

culture medium; and 3) the limited ability to facilitate extensive disulfide bond formation 

(Esposito and Chatterjee, 2006; Jana and Deb, 2005; Sahdev et al., 2008).  

 

Under normal cellular conditions, a subset of cytoplasmic proteins are able to fold 

spontaneously (Anfinsen, 1973). However, many over-produced recombinant proteins in 

artificial E. coli factories accumulate as IB. These aggregated proteins are misfolded or 

partially-folded intermediates, clustered through inter- or intra-molecular interactions of 

solvent-exposed, hydrophobic polypeptide stretches (Stampolidis et al., 2009). Their 

formation is attributed to the inability of the bacterial cell factories to maintain protein 

quality control during over-expression or thermo-induction of heterologous proteins. Thus, 

expression conditions must be found which balance heterologous protein production and 

host physiology, to optimize the overall yield of the active product.  
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Although no universal approach has been established for the efficient folding of 

recombinant proteins (Sorensen and Mortensen, 2005 a,b), several factors contributing to 

protein aggregation must be accounted: 1) lack of sufficient amount of the appropriate 

catalytic and molecular chaperoning machinery, e.g. trigger factor (Maier et al., 2005), 

DnaK-DnaJ-GrpE (Martinez-Alonso et al., 2006; MartÌnez-Alonso et al., 2007; Xu and 

Sigler, 1998) and GroEL-ES or other heat-shock proteins (Gonzalez-Montalban et al., 

2008); 2) failure of the cognate co- or post-translational modifying enzymes (Sklar et al., 

2007) to operate in an orderly manner or to repair the misfolded structures (Gonzalez-

Montalban et al., 2006); 3) failure to maintain precursors in an unfolded state, for their 

localisation/translocation to extra-cytoplasmic compartments, which may also contribute to 

the formation of protein clusters (Stampolidis et al., 2009). 

 

Several approaches have been developed with the purpose of avoiding the expression of 

insoluble protein, including: fusion tags; optimization of expression conditions (e.g., 

medium, inductor concentration, temperature); expression host; co-expression of 

chaperons, among others (Figure 4). 

 

 

Figure 4 - Summary of strategies to express soluble recombinant proteins (Adapted from Sørensen et al. 2005). 
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Enhancing solubility of recombinant proteins  

As shown in figure 4, the insolubility of recombinant proteins may be reduced by 

optimizing the expression conditions, such as temperature, growth media, induction 

parameters, promoters and E. coli strain (Baneyx, 1999; Demain and Vaishnav, 2009; 

Hoffmann et al., 2004; Schumann and Ferreira, 2004).  

 

A well-known approach to limit the in vivo aggregation of recombinant proteins consists on 

the cultivation of the bacteria at reduced temperature (Baneyx and Mujacic, 2004; Garg 

and Quinones, 1997). Lowering the concentration of the inducer, when using expression 

systems with an inducible promoter, also contributes to enhancing the solubility of 

recombinant protein produced in E. coli (Schein, 1989). Using a lower incubation cell 

growth temperature and inductor concentration in culture media slows down the rate of 

protein synthesis, minimizing the saturation of the cellular folding machinery and 

aggregation (Ellis and Minton, 2006; Rabhi-Essafi et al., 2007). The aggregation reaction 

is favored at high temperature, because of the strong temperature dependence of 

hydrophobic interactions (Kiefhaber et al., 1991). It has been reported that the direct 

consequence of decreasing temperature is the partial elimination of heat-shock proteases, 

induced during foreign protein over-expression (Chesshyre and Hipkiss, 1989). Moreover, 

expression and activity of a number of E. coli chaperones are increased at lower 

temperatures (around 30°C), contributing for proper folding of expression proteins (Hartl 

and Hayer-Hartl, 2009; Mogk et al., 2002; Rabhi-Essafi et al., 2007). 

The utilization of different E. coli strains (with supplemental tRNA genes) is a strategy 

often used to overcome the codon-usage problems or the disulfide-bond formation 

necessary for proper folding (Sorensen and Mortensen, 2005a, b). In addition, expression 

systems that allow the secretion of recombinant protein for the periplasmatic space, or 

into the medium, are also available (Zhang and Huang, 2002). However, higher yields are 

normally obtained in the cytoplasm rather than in the periplasmic space. Cytoplasmic 

proteins can be exported, to simplify purification and facilitate correct folding. Thus, this 

must be done whenever proteins need disulfide bonds to fold properly, since the 

cytoplasm is a reducing environment. To achieve the secretion of these proteins into the 

periplasm, a fusion is made with a leader peptide at the N-terminus. To get the proteins 

out of the periplasm and released into the medium, osmotic shock or cell wall 

permeabilization is used (Demain and Vaishnav, 2009). 
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Co-expression of chaperons 

The co-production of selected chaperones along with the recombinant protein has been 

largely explored, as a strategy to minimize aggregation of the product, with rather 

unpredictable and not always consistent results (Martinez-Alonso et al., 2006).  

 

Molecular chaperones are ubiquitous and highly conserved proteins that help other 

polypeptides reaching a proper conformation, without becoming part of the final structure. 

They are not true folding catalysts, since they do not accelerate folding rates. Rather, they 

prevent “off-pathway” aggregation reactions by transiently binding hydrophobic domains in 

partially folded polypeptides, thereby shielding them from each other and from the solvent. 

Molecular chaperones also facilitate protein translocation, participate in proteolytic 

degradation, and help proteins - that have been damaged by heat shock or other types of 

stress - regaining an active conformation (Baneyx and Palumbo, 2003).  

 

Fusion proteins and Protein tags  

A vast number of tags - proteins, domains or peptides - are available that may be fused to 

the target recombinant proteins, for different proposes (table 2). The advantages of using 

fusion proteins to facilitate purification and detection of recombinant proteins are well 

recognized. Nevertheless, it is difficult to choose the right purification system for a specific 

protein of interest. 
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Table 2- Examples of tags used to fuse to proteins and their applications. 

Goal 

Tag 
Purification 

Solubility 
enhancer 

Detection 
References 

His-tag 
X  X 

(Goel et al., 2000; Lomas-Lopez et al., 2008; 

Loughran et al., 2006; Terpe, 2003) 

Strep II-tag  
X   

(Korndörfer and Skerra, 2002; Skerra and 

Schmidt, 2000) 

T7-tag 
X   

(Arnau et al., 2006; Chatterjee and Esposito, 

2006) 

FLAG-tag 
X X  

(Arnau et al., 2006; Einhauer and Jungbauer, 

2001) 

S-tag X  X (Arnau et al., 2006; Backer et al., 2002) 

Hemagglutinin 

HA-tag 
X  X 

(Hage, 1999) 

cMyc-tag X  X (Arnau et al., 2006; Terpe, 2003) 

Chitin-binding domain X   (Humphries et al., 2002) 

Calmodulin-binding domain X  X (Durst et al., 2008) 

Cellulose-binding domain X   (Terpe, 2003) 

Glutathione S-Transferase  

GST 
X X X 

(Arnau et al., 2006; Braun et al., 2002; Kim 

and Lee, 2008; Shih et al., 2002) 

Maltose-binding protein 

MBP 
X X  

(Nallamsetty and Waugh, 2006; Rachel B. 

Kapust, 1999; Sachdev and Chirgwin, 1998) 

N-utilizing substance A 

NusA 
 X  

(De Marco et al., 2004; Kim and Lee, 2008; 

Nallamsetty and Waugh, 2006) 

Thioredoxin 

Trx 
X X X 

(Kim and Lee, 2008; Sachdev and Chirgwin, 

1998) 

Small ubiquitin-like modifier 

SUMO 
 X  

(Panavas et al., 2009; Saitoh et al., 2009) 

Ubiquitin 

Ub 
 X  

(Marblestone et al., 2006) 

Mistic X   (Roosild et al., 2005) 

Green fluorescent protein 

GFP 
X  X 

(Waldo et al., 1999) 

Elastin-like polypeptides  

ELP 
X X  

(Araujo et al., 2009; Chow et al., 2006; Ge et 

al., 2005; Trabbic-Carlson et al., 2004) 
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Purification Tags 

The use of affinity tags to improve protein purification becomes indispensable tools for 

structural and functional proteomic initiatives (table 2). Much of the protein-purification 

technology is based on the use of affinity chromatography, in which an expressed 

recombinant protein is fused to a peptide having high affinity for a particular ligand.  

The most popular tag for protein purification, based on the use of immobilized metal 

affinity chromatography (IMAC), is the polyhistidine-tag, a motif of at least six histidine 

residues (6xHis), held either at the N- or C-terminus of the protein. In addition, this tag 

may be used for protein detection, since antibodies recognizing 6xHis are commercial 

available (Goel et al., 2000; Lomas-Lopez et al., 2008; Loughran et al., 2006). Another 

common tag is the glutathione S-transferase (GST) tag, for purification on glutathione-

based resins. Similarly, Strep-tag II, which consists of a streptavidin-recognizing 

octapeptide (WSHPQFEK), can be purified by affinity using a matrix with a modified 

streptavidin, being eluted with a biotin analog.  

 

Another approach is based on antibodies-antigen interactions; for instance, affinity tags 

like FLAG octapeptide, cMyc, and hemagglutinin (HA) can be purified using the respective 

antibodies, immobilized on a chromatographic matrix (Arnau et al., 2006; Sorensen and 

Mortensen, 2005b). Several other affinity tags exist and have been extensively reviewed 

(Terpe, 2003).  

 

More recently, a new purification tag has been described, based on the transition 

properties of an Elastin-like polymers (ELP) and their ability to retain this inverse 

temperature-phase transition when conjugated to other molecules (Chow et al., 2006; 

Trabbic-Carlson et al., 2004).  

 

Solubility-Enhancing Tags 

The enhancement of the recombinant protein solubility may be achieved by fusing a 

soluble protein or peptide at its N-terminal. The fusion of a soluble partner - at the protein 

N- terminal - may act as chaperon (Kim et al., 2007). No single fusion tag may be 

expected to increase the expression and solubility of all target proteins; however, some 

fusion tags have been more successful than others in increasing the proteins solubility. 
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Solubility-enhancing tags are generally large peptides, or proteins, that increase the 

expression and solubility of the partner fusion proteins (Hammarström et al., 2006). 

Recently, several comparative studies examined the effect of various fusion partners on 

the total and soluble protein expression yields (Table 3). Considering the data from these 

comparative studies, it is clear that the establishment of the best fusion partner for 

difficult-to-express proteins in E. coli remains empirical (Marblestone et al., 2006; 

Sorensen and Mortensen, 2005a, b). 

Table 3- Examples of comparative studies that examine the effects of various fusion partners on heterolougues 

protein solublility expression yield. 

Reference Proteins Results 

(Braun et al., 2002) 32 GST∼MBP>CBP>His6 

(De Marco et al., 2004) 3 NusA>GST 

(Dyson et al., 2004) 20 Trx∼MBP>His10>GST>GFP 

(Hammarstrom et al., 2002) 27 Trx∼MBP∼Gb1>ZZ>NusA>GST> His6 

(Marblestone et al., 2006) 3 

3 

Trx>SUMO∼NusA>Ub∼MBP∼GST 

SUMO∼NusA>Ub∼GST∼MBP∼TRX 

(Kim and Lee, 2008) 2 Trx> GST>NusA>His 

(Shih et al., 2002) 40 NusA∼MBP>GST>Trx∼His6>Intein∼CBP∼CAP 

 

 

The development of new tags for enhanced protein solubility is still ongoing. For instance, 

Araújo et al. suggested that ELP-tags, besides performing as a purification-tag, acts by 

enhancing the solubility of subtilisinE in E. coli (Araujo et al., 2009). Recently, also it has 

been described that the fusion of chaperones DnaK or GroEL with two target proteins, 

which are expressed in insoluble form in E. coli, resulted in their soluble expression 

(Kyratsous et al., 2009). 

 

Tags-cleavage 

Despite the advantages, the addition of a tag to a fusion protein has also been reported to 

negatively affect the target protein resulting in e.g., 1) a change in protein conformation 

(Chant et al., 2005), 2) lower protein yields (Goel et al., 2000), 3) inhibition of enzyme 

activity (Cadel et al., 2004; Kim et al., 2001), 4) alteration in biological activity (Du et al., 
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2005; Kenig et al., 2006), 5) undesired flexibility in structural studies (Smyth et al., 2003) 

and 6) toxicity (Fonda et al., 2002). Due to the somehow unpredictable changes that 

adding a tag may introduce in a protein and its behavior, it is usually desirable to remove 

the tag. Tag removal is often achieved utilizing specific endoproteases, to cleave a 

peptide sequence engineered between the tag and the target protein. The commercially 

available expression plasmids, with sequences encoding 6xhistidine or other tags, usually 

also code for a sequence that enables enzymatic removal of the tag. Among the 

proteases available for this purpose, the most commonly utilized are present in table 4. 

 

Table 4- Examples of enzyme used to cleave tags in fusion protein (adapted from Arnau et al., 2006) 

Enzyme Recognition site Comments 

Enterokinase DDDDK↓ Secondary sites at other basic amino acid 

Thrombin LVPR↓GS Secondary sites. Biotin labeled for removal of the 

protease 

Factor Xa IDGR↓ Secondary sites at GR 

3C Protease ETLFQ↓GP  GST tag for removal of the protease 

TEV protease EQLYFQ↓G  His-tag for removal of the protease 

DAPase (TAGZyme)  Exo(di)peptidase  Cleaves N-terminal. His-tag (C-terminal) for purification 

and removal 

Aeromonas 

aminopeptidase  

Exopeptidase  Cleaves N-terminal, effective on M, L. Requires Zn 

Aminopeptidase M  Exopeptidase Cleaves N-terminal, does not cleave X-P 

Carboxypeptidase A  Exopeptidase Cleaves C-terminal. No cleavage at X-R, P 

PreScission  LEVLFQ↓GP GST tag for removal of the protease 

SUMO  Conformation  No affinity purification per se (requires His-tag) 

Sortase A  LPET↓G Ca2+-induction of cleavage, requires an additional 

affinity tag (e.g., his-tag) for on column tag removal 

Granzyme B D↓X, N↓X, M↓N, S↓X Serine protease. Risk for unspecific cleavage 

↓- Cleavage site. 
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Inclusion bodies 

Despite protein expression in the form of inclusion bodies (IB) being often considered 

undesirable, several examples demonstrate the production of functional proteins through 

IB solubilization and refolding. Thus, this approach presents some advantages in several 

cases and it has been most widely used for the commercial production of proteins 

(Demain and Vaishnav, 2009; Singh and Panda, 2005; Walsh, 2003). 

 

The major advantages associated with the formation of IB are, namely: 1) expression of a 

very high level of protein, more than 30% of the cellular protein in some cases; 2) easy 

isolation of the IB from cells due to size and density differences, as compared with cellular 

contaminants; 3) lower degradation of the expressed protein; 4) resistance to proteolytic 

attack by cellular proteases; and 5) homogeneity of the protein of interest in IB (fewer 

contaminants) which helps in reducing the number of purification steps to recover pure 

protein. Thus, particularly when the expressed proteins have no easily detectable 

bioactivity (e.g. enzymatic), IB facilitates straightforward purification of the protein of 

interest (Demain and Vaishnav, 2009; Singh and Panda, 2005; Walsh, 2003). 

 

The production of the pure, active protein, from IB requires the following steps: IB must be 

removed from the cell lysate, the proteins solubilized by denaturants- unfolding the 

proteins - and disulfide bonds must be eliminated using reducing agents. Refolding is 

accomplished by the removal of the denaturant and the reducing agent, followed by 

renaturation of the protein in a proper environment (Demain and Vaishnav, 2009).  
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1.3 

Carbohydrate-binding modules: fuctions and applications 

 

Adapted from: Moreira, S., Gama, F.M., Carbohydrate Binding Modules: functions and applications. In 

Carbohydrate Polymers: Development, Properties and Applications, Nova Science Publishers 2009. 

(Accepted) 

 

 

 

The CBM Story 

The first CBM was described in 1986 by Tilbeurgh and coworkers (Gilkes et al., 1992; 

Gilkes et al., 1988; Srisodsuk et al., 1997; van Tilbeurgh et al., 1986 ). These authors 

obtained two peptides by treating a cellulase from Trichoderma reesei with a protease; the 

higher molecular weight peptide retained the cellulolytic activity, while the smaller one 

exhibited cellulose affinity, therefore being designated a cellulose-binding domain. Later 

on, other CBM with different specificities were described. “Cellulose-binding domain” are 

thus a kind of a more general class of proteins, the “carbohydrate binding modules” 

(Boraston et al., 2004; Shoseyov et al., 2006a). CBMs are present in a large variety of 

enzymes, with different functions and substrate affinities, crossing a wide range of 

species, from archea, bacteria and virus to eukaryotic organisms, including fungi, plant 

and mammalian. The CBM specificities include crystalline cellulose, non-crystalline 

cellulose, chitin, β-1,3-glucans and β-1,3-1,4-mixed linkage glucans, xylan, mannan, 

galactan and starch (Boraston et al., 2007). Furthermore, some CBMs display ‘lectin-like’ 

specificity, binding to a variety of cell-surface glycans (Boraston et al., 2000). The number 

of CBM families is still growing and since the last review on the subject (Boraston et al., 

2007) another 10 families were described. Recent findings establish a connection 

between CBMs and host-pathogen interactions (Ficko-Blean and Boraston, 2006), N-

gycosylation in eukaryotic organisms (Schallus et al., 2008), cell energy balance (McBride 
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et al., 2009), among other functions. The knowledge of the CBM structures, elucidating 

their function and role in nature, may give rise to new biotechnological applications.  

 

CBM classification 

CBM Families 

More than 300 proteins are currently classified in the CAZy database, including glycoside 

hydrolases (GHs), glicosyltransferases (GTs), polysaccharide lyases (PLs) and 

carbohydrate esterases (CEs). Usually, CAZymes present a modular structure, nearly 7% 

of the enzymes having at least one carbohydrate-binding module (Cantarel et al., 2009). 

CBMs are also classified in families based on sequences similarities. Presently, 54 CBM 

families are described in the CAZy database (http://www.cazy.org/). There is considerable 

heterogeneity in binding specificity, towards crystalline, amorphous and soluble 

polysaccharides, both between and within the families (Boraston et al., 2004; Boraston et 

al., 2001; Boraston et al., 2007; Hachem et al., 2000). A CBM is defined as a contiguous 

amino acid sequence within a carbohydrate-active enzyme, with a discreet fold having 

carbohydrate-binding activity (Shoseyov et al., 2006a). CBMs contain from 30 to about 

200 amino acids and exist as a single, double, or triple protein domains. The location 

within the parental protein can be either C- or N-terminal; occasionally, the CBM is 

centrally positioned within the polypeptide chain (Wang et al., 2002; Zverlov et al., 2001). 

A few exceptions include 1) CBMs that integrate the cellulosomal scaffoldin proteins and 

2) those not associated with catalytic domains (rare instances of independent putative 

CBMs have been described) (Boraston et al., 2007; Gilbert, 2003; Gilbert et al., 2008). 

Besides having modular architecture with independent structure and function, in the more 

general case integrating a protein with catalytic activity, CBMs are distinguishable from 

other non-catalytic sugar binding proteins (such as lectins and sugar transport proteins) by 

the scarcity of hydrogen bonds between CBMs and their target ligands; instead, binding is 

dominated by hydrophobic interactions (Boraston et al., 2007).  

The three-dimensional (3D) structures indicate that CBMs from different families share 

structural similarity. The carbohydrate binding capacity can be attributed, at least in part, to 

several aromatic amino acids defining an hydrophobic surface (Bayer et al., 1998; 

Shoseyov et al., 2006a; Vandermarliere et al., 2009). Other features are also important for 

CBMs or CAZymes activity, namely the electrostatic environment (pH, ion strength) and 
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the presence of a linker (Nielsen et al., 2001; Receveur et al., 2002). For instance, the 

enzymatic activity of many different cellulolytic enzymes is affected by the deletion, 

shortening or lengthening of the linker region bridging the CBM and catalytic modules 

(Howard et al., 2004; Receveur et al., 2002; Rixon et al., 1996; Shen et al., 1991; von 

Ossowski et al., 2005). Such findings suggest that the two domains act in concert on the 

cellulose surface during catalysis, and that a flexible linker is needed for full cellulolytic 

activity. 

 

Cellulosomes 

Cellulosomes are extracellular multiprotein complexes, first identified in early 1980s on the 

thermophilic anaerobic bacteria Clostridium thermocellum. Since then, several other 

cellulolytic bacteria and fungi have been reported to produce cellulosomes (Ding et al., 

2008b). In 1999, a cellulosome holding a GH in the scaffoldin subunity was described; 

later on Xu and colleagues (2004) reported another scaffoldin protein, from a Bacteroides 

cellulosolvens cellulosome that includes a cellulase (Ding et al., 1999; Ding et al., 2008b; 

Doi and Kosugi, 2004; Rincon et al., 2005; Xu et al., 2004a; Xu et al., 2004b). 

 

In general, two major types of subunit compose cellulosomes: the noncatalytic 

scaffoldin(s) and the catalytically active components (Figure 5). Each of these structures 

may be quite complex. The assembly of the cellulosome is facilitated by the high-affinity 

recognition between the scaffoldin cohesin and the enzymes dockerin modules. The 

scaffoldin often contains multiple cohesin modules, thereby enabling numerous different 

enzymes to be assembled into the cellulosome complex. In addition, in some species, 

such as Acetivibrio cellulolyticus, the cellulosomes present multiple scaffoldins with 

different cohesins (Xu et al., 2004a). The interaction cohesin-dockerins is type and specie-

specific.  

 

Another important cellulosomal component is the cellulose-specific binding module, the 

major determinant of substrate recognition. Only a few enzymes in cellulosomes contain a 

CBM; this is normally present in the scaffoldin protein (Bayer et al., 1998; Ding et al., 

2008b; Doi and Kosugi, 2004; Mingardon et al., 2007). As shown for the first time by 

Goldstein and colleagues, the cellulose-binding protein A (CbpA) from C. cellulovorans, is 

a functionally independent domain of the scaffoldin protein (Goldstein et al., 1993). Later 

on, Fierobe and coworkers, using a recombinant engineered cellulosome, showed that the 
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proximity of the cellulosomal enzymes and the presence of the CBM3 in the scaffoldin is 

responsible for the synergy among the components, resulting in the efficient degradation 

of the native substrate (Fierobe et al., 2002). 

 

 

Figure 5 - Schematic representation of a cellulosome attached to the cell membrane. CD- catalytic domain; D- 

dockerin; C- cohesin, A- anchoring protein. 

 

CBM types  

The CBMs may also be classified according to the topology of the binding sites, reflecting 

the macromolecular structure of the target ligand (Boraston et al., 2004; Boraston et al., 

2007). Despite the large variability of carbohydrate structures, three types of binding 

topologies have been identified. This classification is based on both structural and 

functional similarities. Although the 3D structure of a number of CBMs has been solved, 

most have not been functionally characterized as yet. Furthermore, the binding pattern of 

CBMs determined so far vary widely, even within each family. However, it was shown that 

the modules are composed almost exclusively of β-strands arranged in a “jelly roll” motif, 

whose topography reflects the macroscopic nature of the target substrate. CBMs with this 

fold recognize several polysaccharides: crystalline and non-crystalline cellulose, chitin, β-
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1-3-glucans and β-(1-3)-(1-4)-mixed glucans, xylan, mannan, galactan, and starch. Some 

CBMs display ‘lectin-like’ specificity, binding to a variety of cell-surface glycans (Boraston 

et al., 2004; Boraston et al., 2007; Ding et al., 2006). Other families of β-sandwich CBMs 

are beginning to emerge with more complex glycan-binding specificities (Abbott et al., 

2008; Gregg et al., 2008; Hashimoto, 2006; McDonough et al., 2004).  

 

Based on the macroscopic nature of the target ligand, a classification of CBMs in three 

types, A, B or C, has been proposed. Table 5 presents the CBM families and 

corresponding type, A B or C. It should be noted that CBMs with type A and B-topology 

are found in the same family, while other still remains to be classified.   

 

Table 5- CBM types and families.  

CBMs Types A B C Unknown 

Families 
1, 2, 3, 5, 10 

49 

4, 6, 11, 15, 17, 

22, 27, 28, 29, 30, 

35, 36, 44 

(?) 2, 20, 25, 26, 

34 

9, 13, 14, 18, 32, 

40, 42 

8, 12, 16, 19, 21, 

23, 24, 31, 33, 37, 

38, 39, 41, 43 

 

 

Type A CBMs 

Type A CBMs, with affinity for crystalline cellulose and chitin, display aromatic amino acid 

residues forming a planar hydrophobic surface that interacts with the glucosyl-pyranose 

ring of the substrate. These CBMs recognize multiple cellulose chains and strongly prefer 

insoluble microfibrils, such as cellulose or chitin, to soluble polysaccharide molecules 

(Bolam et al., 1998; Boraston et al., 2004; Boraston et al., 2007; Shoseyov et al., 2006a). 

 

Type B CBMs 

Type B, the commonest class of CBMs, bind less-ordered plant structural polysaccharides 

such as amorphous cellulose, mannan, or xylan (Boraston et al., 2007). Conversely to 
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type A, type B CBMs have a cleft that accommodates a single chain of the 

poly/oligosaccharide ligand (Notenboom et al., 2001), comprising several sub-sites able to 

interact with the individual sugar units of the polymeric ligand. Although ligands are 

recognized by aromatic side chains, similarly to type A CBMs, the side chains of 

tryptophan and tyrosine – and less commonly phenylalanine - form planar, twisted or 

sandwich platforms for ligand binding (Hashimoto, 2006).  

 

Type C CBMs 

Type C CBMs have a solvent-exposed binding pocket or blind canyon, small binding sites 

which interact with mono or disaccharides. Thus, these CBMs are lectin-like, lacking the 

extended binding site grooves present in type B CBMs (Boraston et al., 2007). Indeed, 

type C proteins (i.e. CBM13, 14 and 18 families) were initially identified as lectins. Indeed, 

both kinds of protein are thought to share similar evolutionary origins. They are involved in 

toxin delivery, oligosaccharide synthesis, and in host-microbe interaction processes 

(Boraston et al., 2007; Gunnarsson et al., 2007).  

 

CBM at work 

In general, CBMs are linked to GHs that degrade insoluble polysaccharides. Although 

many of these modules target components of the plant cell wall or insoluble storage 

polysaccharides (cellulose, starch, glycogen), CBMs also bind soluble oligosaccharides 

such as malto-oligosaccharide (Boraston et al., 2007). Indeed, the non-catalytic CBMs are 

recognized as an essential component of several CAZymes and are thought to have three 

primary functions: proximity effects, substrate targeting and microcrystallite disruption 

(Bolam et al., 1998; Boraston et al., 2004; Eriksson et al., 2005; Henshaw et al., 2006). 

More recently, multivalency was also described for tandem CBMs (Boraston et al., 2002; 

Vaaje-Kolstad et al., 2005). These functions are important in several biological 

mechanisms, such as substrate binding, mediation of protein-protein interactions or cell 

surface anchoring. Recently, putative cellulose-binding modules that do not bind cellulose 

were described. Three homologous CBM3b modules from A. cellulolyticus and C. 

thermocellum were over-expressed, and surprisingly none bound to cellulosic substrates 

(Jindou et al., 2006). These results raise fundamental questions concerning the possible 

role(s) of the newly described CBMs. Phylogenetic analysis and preliminary site-directed 
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mutagenesis studies suggest that the status of the family-3 CBMs and of the family-9 GHs 

is much more intricate and diverse than hitherto considered (Jindou et al., 2006). 

 

The proximity effect  

CBMs promote the association of the enzyme with the substrate (Figure 6), insuring a 

prolonged contact, and thereby increasing their effective concentration (proximity effect) 

(Bolam et al., 1998; Reinikainen et al., 1992). In fact, several studies show that enzymes 

fail to effectively perform when the CBM is removed by proteolysis or by recombinant DNA 

technology (Boraston et al., 2007; Gilkes et al., 1991; Levy et al., 2002a; Linder et al., 

1998; Shoseyov et al., 2006a; Tomme et al., 1995). This effect is observed mostly in 

enzymes that act on insoluble substrates and in cellulosomes. 

 

 

Figure 6 – Schematic representation of the CBM mediated proximity effect. CAZymes with CBMs are able to bind 

to the insoluble substrates (such as crystalline cellulose) increasing the effective concentration of enzyme on 

substrate.  
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The targeting effect 

CBMs have been shown to have selective substrate affinity (Figure 7), distinguishing 

different crystalline, amorphous, soluble and non-soluble polysaccharides (targeting 

function) (Ganesh et al., 2004; Lamed et al., 1994; Linder and Teeri, 1997; Tomme et al., 

1995; Wang et al., 2002). In 2004, Boraston et al. reviewed the mechanisms of 

polysaccharide recognition (Boraston et al., 2004). Since then, other CBMs with novel 

specificities were described (Gregg et al., 2008; Henshaw et al., 2006). The data suggest 

that CBMs have fine specificity for polysaccharide substructures. Thus, CBMs may be 

highly specific, subtle structural differences leading to diverse ligand specificity. This 

makes them an attractive system for biotechnological applications, namely as tools for the 

elucidation of protein-carbohydrate interaction mechanisms and as probes to identify 

different polysaccharides in plant cell-walls (McCartney et al., 2004). 

  

 

 

Figure 7– Schematic representation of the targeting effect of CBMs, showing the specificity of the CBM type A 

for insoluble subtract (such as crystalline cellulose) and CBM type B for soluble derivates of cellulose (such as 

cellooligosaccharides) 
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The disruptive effect 

The concept of the CBM disrupting function (Figure 8), rendering the substrate more 

susceptible to enzymatic hydrolysis, emerged several years ago (Boraston et al., 2004; 

Din et al., 1994). It was first demonstrated in 1991, by Din et al. The non-catalytic 

cellulose-binding domain, isolated by these authors from endoglucanase A (Cellulomonas 

fimi), was able to disrupt the cellulose fibers, releasing small particles. Further, it was 

showed that the isolated catalytic domain did not disrupt the fibril structure, rather 

polishing the fibers surface (Din et al., 1991). Other cellulase-associated CBMs with 

similar effect on cellulose fibers have been described (Gao et al., 2001). Recently, it was 

showed that the CBM from CBHI (cellobiohydrolase I from T. pseudokoningii S-38) not 

only addresses the enzyme to the cellulose fibrils, but it also is involved in the structural 

disruption of the cellulose fiber surface (LuShan et al., 2008).  

The disruption effect was also reported for starch-binding modules (Giardina et al., 2001) 

and for expansins, which have significant sequence identity with microbial cellulases 

(Cosgrove, 2000; Levy et al., 2002b). 

Recently, Vaaje-Kolstad and colleagues demonstrated that also chitin-binding modules 

have similar disruption ability. They showed that crystalline chitin is disrupted by a non-

catalytic protein, leading to an increase in substrate access for a range of chitinases 

(Vaaje-Kolstad et al., 2005). The modification of cellulose fibers with CBMs may lead to 

improved properties of textile and paper pulps (Pinto et al., 2004). 

 

 

Figure 8 – Schematic representation of the disruptive effect of the CBMs on polysaccharide fibers. 
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The avidity effect  

CBMs can be present in single, tandem or multiples copies within the enzymes 

architecture (Flament et al., 2007; Shoseyov et al., 2006a). It has been shown that they 

can bind their specific glycan targets when isolated from the parent molecule, behaving in 

a cooperative manner when organized in tandem (Boraston et al., 2002; Crennell et al., 

1994).  

Boraston and coworkers identified a family 6 CBM present as a triplet in C. stercorarium. 

The multiple modules act cooperatively in the binding process. It has been suggested that 

the duplication or triplication of CBMs may, evolutionary, balance the loss of binding 

affinity of thermophilic GHs at higher temperatures (Boraston et al., 2002). 

The analysis of CAZymes showed that the same enzyme may be linked to several CBMs 

(CBM multimodularity), with similar or dissimilar binding specificity. The authors speculate 

that the homogenous multimodularity increases the avidity of the CAZyme for the 

substrate, while heterogeneous multimodularity allows the enzyme to bind heterogeneous 

substrates (Abbott et al., 2008; Gregg et al., 2008). 

Recently, a recombinant protein containing tandem repeats of the CBM40 from a V. 

cholerae sialidase was constructed. Identical copies of CBM40 can be fused and 

manipulated in order to enhance its affinity through avidity (Connaris et al., 2009). This 

approach may be used for the creation of high affinity, multivalent CBMs, that may have 

broad application in glycobiology. 

 

CBMs and physiologic function 

Protein-carbohydrate recognition plays a pivotal role in key biological processes. These 

macromolecular interactions are central in host-pathogen recognition events, cell–cell 

communication, cellular defense mechanisms, protein trafficking, and on carbon recycling 

through the degradation of the plant cell wall.  

 

Although CBMs are described to play a role in several biological processes, such as: 1) 

protein turn over (Glenn et al., 2008; Schallus et al., 2008); 2) energy balance and 

diseases (Burnaugh et al., 2008; Hurtado-Guerrero et al., 2009; Langley et al., 2008; 

McBride et al., 2009; Minassian et al., 2000; Sheldon et al., 2006; Treviño et al., 2008; 

Wang et al., 2002); 3) plant growth, defense and degradation (Boraston et al., 2004; 
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Brotman et al., 2008; Catala and Bennett, 1998; Obembe et al., 2007; Safra-Dassa et al., 

2006; Turner et al., 2007; Urbanowicz et al., 2007; Valdez et al., 2008; Zhang et al., 

2008); only the CBM applications will be reviewed. 

 

CBM applications 

The production of CBMs by enzymatic hydrolysis of the enzyme-containing CBMs was 

described by several authors (Lemos et al., 2000; Pinto et al., 2006; Tilbeurgh et al., 

1986). However, the recombinant DNA technology allows for several structural and 

functional studies, and also for different applications using recombinant proteins fused 

with CBMs. The utilization of recombinants CBMs for different applications have been 

described: the improvement of fibers in textile and paper industry; as tags in recombinant 

proteins for solubilization, purification and immobilization; as probes for protein-

carbohydrate interaction and microarrays; CBMs may also find applications in the 

modification of physical and chemical properties of composite materials, allowing the 

creation of new materials with improved properties. The CBMs expression in vivo may be 

also a valuable tool to modify plant characteristics, as discussed above (Levy et al., 

2002b). Several studies have shown the potential of CBMs for modifying the 

characteristics of several enzymes. The basic approach in CBM engineering consist in the 

addition or substitution of a CBM in order to improve the enzyme stability or hydrolytic 

activity (Ding et al., 2008a). 

 

CBMs in the paper industry  

Since CBMs, which do not have catalytic activity, can modify the polymer structure of 

cellulose and starch materials, they have been also tested in the papermaking process. 

Several strategies were developed using CBMs or CBMs-conjugates (Kenealy and 

Jeffries, 2003; Kitaoka and Tanaka, 2001; Yokota et al., 2009). 

Recently, Machado et al. (2009) demonstrated that a recombinant CBM from C. 

thermocellum conjugated with polyethilenoglycol (PEG) effectively improves the pulps 

drainability, without significant effects on the strength parameters. Furthermore, the 

authors showed that the CBM alone does not modify the pulp properties, suggesting that 

the improved pulp drainability, reported by several researchers, is indeed a strictly 
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interfacial effect, surface hydration playing a key role. Taken together, the results suggest 

that CBM technology may have valuable applications in paper recycling.  

Recombinant CBMs were also used to improve paper properties. The dry strength of a 3D 

cellulose fiber network depends on the strength of the individual fibers, of the inter fiber 

bonds, and on the number and distribution of interfiber bonds. Inter-fiber bonding, which 

improves the stress transfer between the fibers under tensile deformation, is one of the 

most important factors affecting the overall stress development in the fiber web. Dry 

strength additives improve the bonding between the fibers, thus resulting in a marked 

increase in the dry strength (Levy et al., 2004). Levy et al. constructed a bifunctional 

protein, containing two-fused cellulose-binding modules (CBM3 from C. cellulovorans), 

able to mimic the chemistry of cellulose cross-linking (Levy et al., 2002a), thus increasing 

the dry strength of paper. Interestingly, applying a single CBM to the paper also improved 

its mechanical properties, although to a lower extent. In addition, paper sheets treated 

with the fusion protein became more hydrophobic and demonstrated water-repellent 

properties (Levy et al., 2002a). Later on, the same authors constructed another 

bifunctional protein containing a cellulose and a starch-binding module. The treatment of 

paper fibers with the recombinant protein, together with corn-starch, improved the paper 

dry strength (Levy et al., 2004). The significant improvement in the mechanical and 

surface properties of paper by CBMs-containing molecules demonstrates great potential 

for the bioengineering of novel paper-modification reagents (Levy et al., 2002a).  

 

CBMs in the textile industry  

The textile industry requires large amounts of water, energy, and auxiliary chemicals 

(Feitkenhauer and Meyer, 2001). The search for environmental-friendly methods has lead 

to the utilization of enzymes. Several enzymes have been used in textile processes in 

order to achieve improved and fashionable fabric properties. Among other enzymes for 

textile processing, amylases (used for desizing), cellulases (denim finishing), laccase  

(decolourization of textile effluents and textile bleaching) are commercially available 

(Araújo et al., 2008; Saravanan et al., 2009).  

 

Textile fabric may also be treated with isolated CBMs or CBMs fused with other molecules 

or enzymes. Banka et al. demonstrated that a fibril-forming protein from T. reesei causes 

non-hydrolytic disruption of cotton fibers (Banka et al., 1998). Lee et al. obtained images, 
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by atomic force microscopy, of holes left in cotton fibers treated with inactivated CBH I. 

The holes are attributed to the penetration of fibers by the binding domain (Lee et al., 

2000). It has been shown that the surface of ramie cotton is roughened by treatments with 

CBM2 from C. fimi. Gilkes et al. proposed that the treatment of cellulosic fibers with CBMs 

could be used in order to alter the dyeing characteristics of cellulose fibers (Gilkes et al., 

1998). Indeed, it was showed that CBM treatment increased the dye affinity of cotton 

fibers, especially in the case of acid dyes (Cavaco-Paulo et al., 1999).  

 

Fukuda et al. used a new approach for the enzymatic desizing of starched cotton cloth. 

Sizing is required to prevent abrasion, fluffiness, and cutting of the warp during the 

weaving process. Among the several desizing methods, the use of enzymes 

(e.g.amylase) is well known as an environmental-friendly technology (Murai et al., 1997). 

Instead of using an enzyme for desizing, Fukuda et al. constructed a yeast strain that 

codisplayed glucoamylase and CBMs on the cell surface. The yeast cell acquired specific 

binding ability to cotton-cloth with glucoamylase activity. Furthermore, the codisplaying 

strain showed greater activity than a strain displaying only glucoamylase activity (Fukuda 

et al., 2008). 

 

The development of biotechnological tools for the modification of cellulose fibers may be 

achieved by combining CBMs, specially cellulose binding modules, with catalytic domains 

of enzymes that do not normally act on insoluble substrates (e.g. laccase, pectinase or 

lipase), or with other functional proteins/polypeptides (e.g. hydrophobic or chemically 

reactive) suitable for the modification of the textile surfaces. Since several CBMs belong 

to enzymes that act in extreme conditions, the CBM fusion proteins may also improve 

enzyme stability (Charnock et al., 2000; Ding et al., 2008a; Kim et al., 1998; Zhao et al., 

2005a). Further, CBMs can be fused with bioactive molecules in order to functionalize the 

fabric tissue.  

 

CBMs in the food industry 

Enzymes have been used for more than 20 years in poultry feed, mainly to improve the 

digestibility of cereals with high soluble non-starch-polysaccharide (NSP) levels, such as 

wheat, barley, oats and rye (Wanga et al., 2009; Yua et al., 2007). It is well established 

that the inclusion of cell wall hydrolases in wheat, barley and rye-based diets of single-
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stomach animals, improves the efficiency of feed utilization, enhances growth and 

contributes to a better use of low-cost feed ingredients (Chesson, 1993; Ribeiro et al., 

2008). Several studies on the potential application of CBMs for animals feeding are 

available (Fontes et al., 2004; Guerreiro et al., 2008a). 

Recently, Ribeiro et al. studied the effect of supplementing a barley-based diet with a 

family 11 β-glucan-binding domain, fused to a recombinant cellulase from C. 

thermocellum. The results showed that birds fed on diets supplemented with the 

recombinant proteins, containing the CBM11 or the commercial enzyme mixture, have 

improved performance when compared to birds fed with diets without the enzyme 

supplement (Ribeiro et al., 2008).  

 

Recombinant enzymes containing CBM may also find applicability on the food industry, for 

instance for the production of soy sauce using soybeans and optionally other vegetable 

ingredients, such as wheat and rice. During the production process, starch and other 

carbohydrates are degraded into sugars, used for aroma development by fermentation. It 

has been found that amylolytic enzymes comprising a CBM leads to an increased rate of 

starch hydrolysis, as compared to amylolytic enzymes without CBM, under conditions 

relevant for soy sauce production (Nielsen and Viksoe-Nielsen, 2007). 

 

CBMs as a microarray and probing tool 

Several strategies are described to immobilize the probe on the support, including 

adsorption, physical entrapment or covalent binding. The CBM based microarray 

technology described by some authors offer fundamental advantages over current non-

DNA microarray technology, such as retention of protein functionality after immobilization, 

ease of fabrication, extended stability of the printed microarray, integrated test for quality 

control (QC) and the capacity to print test proteins without a purification step (Filonova et 

al., 2007a; Filonova et al., 2007b; Ofir et al., 2005). These features, together with the 

intrinsic specificity of CBMs for individual carbohydrates and the facile modification with 

peptides and fluorescent molecules, allow for efficient production of protein and peptide 

microarrays. These can be used in a variety of potential applications technically 

impractical via conventional microarray technologies (Filonova et al., 2007a). 
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Ofir and colleagues developed a microarray system using an affinity-based probe 

immobilization strategy. They fused the exceptionally stable family-3a CBM, from the 

cellulosome of C. thermocellum, with antibodies or peptides. The recombinant proteins 

were immobilized on cellulose surfaces by specific adsorption and used for serodiagnosis 

of human immunodeficiency virus patients (Cretich et al., 2006; Ofir et al., 2005). 

 

The plant cell wall biology studies require more sensitive and specific probes to target 

individual wall components. Traditionally, antibodies have been the primary workhorses 

for the spatial localization of cell wall polysaccharides. Currently, nearly 30 monoclonal 

antibodies directed toward specific arabinan, galactan, xylan, galacturonan, fucosylated 

xyloglucan, and cell wall glycoprotein epitopes are available, from academic and 

commercial sources (Gunnarsson et al., 2006). Nevertheless, CBMs may be used for this 

purpose, since they present intrinsic specificity for individual carbohydrates. 

 

A quantitative fluorimetric method for the analysis of crystalline cellulose on fiber surfaces 

was developed. This method quantitatively shows differences in crystalline cellulose 

binding sites of differently processed pulp fibers. The results indicated that CBMs provide 

useful, novel tools for monitoring changes in carbohydrate content of non uniform 

substrate surfaces, for example, during wood or pulping processes and possibly also 

during fiber biosynthesis (Filonova et al., 2007b). 

 

The CBM4-2 from xylanase of Rhodothermus marinus was synthesized and utilized in 

vivo as a xylan-specific protein, for the analysis of hemicelluloses in wood and fibrous 

materials. It is well known that the CBMs specificity may be altered by genetic 

engineering; in particular, the CBM4-2 was modified through direct mutagenesis. Variants 

with specificity for two other polysaccharides were identified using phage display 

technology (Cicortas Gunnarsson et al., 2004).  

 

 CBMs as a protein solubilization, purification and immobilization tool 

Several works describe the use of CBMs as a tag for recombinant protein purification 

(Boraston et al., 2001; Ito et al., 2004; Kavoosi et al., 2007a; Kavoosi et al., 2004; Kavoosi 

et al., 2007b; Rodriguez et al., 2004; Shpigel et al., 2000) and enzyme immobilization 

(Ong et al., 1989; Richins et al., 2000; Xu and Foong, 2008). Depending on the binding 

reversibility, different applications may be envisioned; CBMs with ‘irreversible’ binding has 
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limited usefulness as an affinity tag for protein purification, because desorption may 

require strongly denaturing conditions. In turn, such a CBM may be a very useful tag for 

enzyme immobilization (Kwan et al., 2005). 

 

An obvious extension of the CBM-fusion technology is to enable a single-step purification 

and immobilization of fusion proteins by generating active CBM–Protein. Moreover, the 

utilization of the carbohydrate affinity system, such as cellulose, is attractive because it 

does not require a derivatized matrix, and cellulose is available in a variety of inexpensive 

forms, such as preformed microporous beads, highly adsorbent sponges or cloth and 

microcrystalline powders (Richins et al., 2000).  

 

In fact, several CBMs were already commercialized as protein expression systems (Xu 

and Foong, 2008). A cellulose-binding module from C. cellulovorans scaffoldin CbpA 

protein has been well characterized and commercialized as a fusion domain for protein 

purification, using a cellulose matrix (Novagen). In such applications, the use of CBMs 

offers many industrially attractive advantages. Since CBMs adsorb spontaneously to 

cellulose, very little or no pretreatment of the samples is required prior to immobilization 

(Linder et al., 1998; Morassutti et al., 2002). In addition, some CBMs seem to enhance the 

solubility of recombinant protein (Murashima et al., 2003; Yeh et al., 2005). 

 

Craig and colleagues described the design and application of a recombinant fusion 

protein containing a cellulose-binding domain (from C. cellulovorans) and an antibody-

binding domain (protein LG), for direct immobilization of antibodies and cells onto 

regenerated cellulose hollow fiber membranes. Hollow fiber affinity cell separation is a 

monoclonal antibody based cell separation process. Cells are bound directly or indirectly 

via surface epitopes by monoclonal antibody or secondary ligand immobilized on the 

lumen side of hollow fibers. Deposited cells are fractionated, on the basis of adhesion 

strength, using the uniform shear field generated by the culture medium flowing through 

the hollow fiber modules with well-defined header geometry (Craig et al., 2007). With this 

strategy, several problems associated to covalent binding are avoided: low coupling yield, 

random orientation of antibody, possible alteration of the structural properties of the hollow 

fiber membrane resulting from chemical cross-linking or protein degradation.  
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CBM as bioremediation tool 

Another field for CBM application is bioremediation. Richins et al. produced a bifunctional 

fusion protein, consisting of an organophosphate hydrolase (OPH) linked to a Clostridium-

derived cellulose-binding module. The recombinant hydrolase is highly effective in 

degrading organophosphate compounds. Furthermore, the CBM enable the purification 

and immobilization onto different cellulosic materials, in a single step (Richins et al., 

2000). In this manner, OPH-activated cellulose materials are generated for a variety of 

relatively low cost applications, such as reactors with immobilized enzyme for the 

detoxification of hazardous organophosphates (Richins et al., 2000).  

In another study, Xu et al. presented a strategy to remove heavy metals from 

contaminated waters. They reported the cloning and expression of a bifunctional fusion 

protein, consisting of a synthetic phytochelatin linked to a Clostridium-derived cellulose-

binding domain. Once again, the CBM enabled purification and immobilization of the 

fusions onto different cellulose materials, in a single step. The immobilized sorbents were 

shown to be highly effective in removing cadmium present in parts per million levels (Xu et 

al., 2002).  

 

CBM as biomedical tool 

Cellulose is a chemically inert matrix that has stable physical properties, as well as low 

affinity for non-specific protein binding. It is pharmaceutically safe and relatively 

inexpensive. The binding of biomolecules to cellulose through a cellulose-binding domain 

further enhances its potential as a scaffold or carrier material. 

 

Maurice et al. fused an antigen protein (from Aeromonas salmonicida) with a CBM (from 

C. cellulovorans), in order to develop a vaccine suitable for fish immunization. Vaccines 

vary in their efficacy depending on the antigen composition and accompanying adjuvant. 

Studies have shown that soluble immunogens rarely induce high titers of antibodies, 

unless strong adjuvants are used (Maurice et al., 2003). Surprisingly, binding Orbicell 

cellulose beads to a recombinant protein, Maurice and colleagues obtained a significant 

adjuvant effect. In addition, Orbicell cellulose beads were well tolerated by the fish and no 

deleterious response reactions were detected (Maurice et al., 2003). 
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Guerreiro et al. recently described the expression of antimicrobial peptides (AMPs) fused 

with a CBM3 from C. thermocellum in a bacterial host. AMPs are cationic molecules with a 

wide range of antimicrobial activities. The authors suggested CBM3 as a good candidate 

to overcome difficulties related to the expression of these molecules, namely associated 

to the small size and potential toxicity for host (Guerreiro et al., 2008b). Furthermore the 

authors suggested the possible use of the fusion CBM-AMP to confer antimicrobial 

properties to cellulosic materials. 

 

CBMs were also described as a tool to adsorb bioactive peptides to carbohydrate-based 

materials (Andrade et al., 2008; Carvalho et al., 2008b). Bacterial cellulose is being 

studied as a biocompatible scaffold for the engineering of cartilage and blood vessels, 

wound dressing, guided tissue regeneration, among other applications (Svensson et al., 

2005). Andrade et al. cloned and expressed a recombinant protein containing a cellulose-

binding module (CBM3 from C. thermocellum cellulosome) fused with a tripeptide of Arg-

Gly-Asp (RGD sequence is a ligand for integrin-mediated cell adhesion), showing that the 

bifunctional protein improved the fibroblast adhesion and spreading on bacterial cellulose 

(Andrade et al., 2008).  

 

The utilization of a recombinant CBM (a domain from the Celk gene from C. 

thermocellum) to stabilize single-walled carbon nanotubes (SWNTs) in water was recently 

described (Xu et al., 2009). After production of SWNTs, the strong non-covalent 

interactions give rise to aggregated material. Functional molecules including surfactants, 

polymers, carbohydrates, nucleic acids and peptides or proteins have been reported to 

debundle and suspend SWNTs via a non-covalent adsorption. A family 4 CBM, cloned 

and over-expressed in E. coli, was successfully used to stabilize SWNTs. However, the 

mechanism of SWNTs - protein interaction has not been explained. Moreover, another 

recombinant CBM belonging to family 3 (type A) was also tested, but it did not show 

binding affinity for SWNTs. The authors suggested that, beside aromatic residues, higher-

order protein structure could also play a key role (Xu et al., 2009).  

 

Future perspectives 

Although the functions of CBMs were firstly related with cellulase and other enzymes 

activity, the current research and development in the CBMs field heads in different 
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directions.  In recent years, besides the utilization in textile or paper industry, the CBMs 

are seen as tools for biomedical application. CBMs are involved in anabolic processes 

(such as oligosaccharide synthesis), host-microbe interaction, toxin delivery, recognition 

of complex glycan present on eukaryotic cell surface and extracellular matrix. CBMs may 

thus be used as tools to elucidate several carbohydrate-protein interactions and targets 

for the modulation of those processes. 

 

 

The determination of the 3D structures and mechanism of action of protein modules, such 

as CBM from family 6 or 2a (Michel et al., 2009) is still ongoing. The finding of new 3D 

structures may help elucidating the evolution of CBMs.  

The combined effect of CBMs from GHs in the recognition of host glycans by bacteria for 

pathogenesis, colonization, as a nutritional source, and evading the host immune system, 

defines a new avenue of CBM research, apart from plant cell wall recognition. Future 

studies might also reveal new avenues for biotechnology applications, such as design of 

antibacterial or anti-carcinogenic drugs, functionalization of biomaterials or cloth.  
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Functional expression of the human CBM from Laforin  

 

 

 

ABSTRACT  

The goal of this work was the development of a methodology for the expression and purification of a 

recombinant Carbohydrate-Binding Module (CBM) from the human protein Laforin. When fused with the 

bioactive peptides, CBMs may dramatically improve the biocompatibility and interaction with cells of 

biomaterials, and therefore, in the long run, our aim is to improve the functional properties of biomaterials 

based on polysaccharides. Laforin is a human protein associated with glycogen metabolism, composed of two 

structural and functionally independent domains: a phosphatase and a substrate-binding module with 

glycogen and starch affinity. The Laforin’s CBM sequence was originally cloned by PCR from a human 

muscle cDNA library. CBM was fused to the tri-peptide Arg-Gly-Asp (RGD), which plays a role on cell 

adhesion. Commercially heterologous expression systems of Escherichia coli (pET 29a, pET 25b and 

pGEXT4-1) were used in order to obtain high levels of soluble protein, that could be purified by affinity 

chromatography using 6xHis-tag or GST-tag. 

With pGEXT4-1 expression system, CBM was fused with the GST protein at the N-terminal, which in theory 

increases solubility, but the amount of recombinant protein obtained was very low and the CBM did not 

present starch adsorption. Using pET25b, in the presence of arginine and CHAPS in the lyses buffer, the 

amount of soluble protein purified was higher. However, it formed aggregates and again the CBM did not 

present starch affinity. When expressed using the vector pET29a, the CBM was obtained in inclusion bodies 

and, after solubilization and refolding the soluble and functional protein was recovered. This is the first report 

on the expression of the functional CBM from the human protein Laforin. 
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INTRODUCTION 

Laforin is a human dual specific phosphatase (DSP) involved in the glycogen 

metabolism and related with the human disorder Lafora disease (Fernandez-Sanchez et 

al., 2003; Ganesh et al., 2004a; Girard et al., 2005). Laforin presents the modular 

structure frequently found in the CAZymes (enzymes that act on carbohydrates) 

(Cantarel et al., 2009a), containing a carbohydrate-binding module (CBM) at the N 

terminal connected by a linker to a catalytic module, at the C terminal (Wang et al., 

2002a). Since each module performs and folds independently, several applications have 

been described using CBM as tags in fusion proteins, namely for protein purification and 

solubilization (Shoseyov et al., 2006a). CBM are classified in families according to the 

sequence homology. The laforin’s CBM belongs to family 20 (http://www.cazy.org/). It 

has been shown that this CBM binds complex carbohydrates in vivo and in vitro (Wang 

et al., 2002a), and the DSP motif can hydrolyze phosphotyrosine and 

phosphoserine/threonine substrates in vitro (Ganesh et al., 2000; Girard et al., 2006). 

The main function of CBMs is to target the enzyme to the substrate, increasing its 

activity, particularly in the case of insoluble carbohydrates (Shoseyov et al., 2006a). 

Accordingly, the CBM of laforin targets the enzyme to Lafora bodies (LB), which are 

composed of dense aggregates of polyglucosan fibrils, more similar to starch rather than 

glycogen (Chan et al., 2004). Therefore, it may be expected that it would bind starch-

based biomaterials. In this context, bioactive peptides may be adsorbed to those 

biomaterials, through the fusion with CBM, in order to achieve their functionalization for 

biomedical applications. 

 

Several CBMs were already used for protein targeting (Andrade et al., 2009; Guerreiro et 

al., 2008a), including CBM from family 20 (α-amylase) with starch affinity, which was 

used to functionalize starch-based materials, by fusing it with a bioactive tripeptide Arg-

Gly-Asp (RGD) (Moreira et al., 2008b). The RGD sequence, present in several proteins 

from the extra-cellular matrix (ECM), is a ligand for integrin-mediated cell adhesion; this 

sequence was recognized as a major functional group responsible for cellular adhesion 

(Mann and West, 2002; Ruoslahti, 2003).  

 

Laforin has been expressed using in in vivo and in vitro systems, namely mammalian 

cells fused with various epitopes for cellular localization. It was expressed as a fusion 
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protein (with GST, 6x-His) in Echerichiea coli and showed phosphatase activity on model 

substrate and affinity for glycogen and starch (Fernandez-Sanchez et al., 2003; Ganesh 

et al., 2000; Girard et al., 2006; Minassian et al., 2001; Wang et al., 2002a; Wang and 

Roach, 2004). It is known that, in vivo, laforin dimerization is essential for its 

phosphatase activity and the CBM is involved in the dimerization process (Liu et al., 

2006). Although laforin has been cloned and purified, the application of laforin-CBM as a 

target partner has never been described; indeed, so far there are no reports on the 

successful expression of the functional expression of this unique human-CBM. 

Therefore, in this study, several strategies were employed to express, purify and 

functionally characterize a recombinant protein containing the human-laforin CBM fused 

to RGD tripeptide in E. coli.  

 

Heterologous bacterial expression systems remain the most attractive ones due to the 

low cost, the high productivity, the well-known genetics and the large number of 

compatible molecular tools available (Sorensen and Mortensen, 2005b; Terpe, 2006). In 

general, overexpressed recombinant proteins accumulate either in the cytoplasm and/or 

in the periplasmic space. However, overexpression of recombinant proteins in bacterial 

hosts frequently results in a missfold structure with no biological activity that associates 

into amorphous protein granules termed inclusion bodies (IB) (Sorensen and Mortensen, 

2005a, b; Thomas and Baneyx, 1996; Villaverde and Carrio, 2003). The IB formation 

frequently occurs when overexpressing mammalian proteins, since the posttranslation 

modification processes are often required for their correct folding and functionality 

(Dyson et al., 2004; Esposito and Chatterjee, 2006; Jana and Deb, 2005). Refolding 

from IB is, in many cases, considered undesirable due to the poor recovery yields, the 

requirement for optimization of refolding conditions for each target protein and the 

possibility that the resolubilization procedures could affect the integrity of refolded 

proteins (Dyson et al., 2004; Sorensen and Mortensen, 2005b). Therefore, several 

approaches were developed in order to overcome IB formation such as: the fusion of the 

target protein to a soluble peptide, the use of host strains with specific characteristics, 

and the optimization of fermentation conditions, among others (Dyson et al., 2004; Shih 

et al., 2002; Wagner et al., 2008). In this study, several strategies were tested in order to 

produce functional recombinant human-laforin CBM, which was achieved only by 

solubilization and refolding from IB. 
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MATERIALS and METHODS 

Reagents and strains 

All reagents used were laboratory grade reagents from Sigma-Aldrich (St. Louis, USA), 

unless stated otherwise. E. coli strain XL1 Blue, from Stratagene (Carlsbad, CA, USA) 

was used has bacterial host for DNA cloning. For protein expression E. coli BL21 (DE3), 

Origami, and Tuner strains and the T7 plasmids (pET25b (+), pET 29a and pGEX) were 

purchased from Novagen (Madison, USA) and GE Healthcare (Piscataway, USA). The 

oligonucleotides (0.01 and 0.05 µmol scale) presented in table 1 were purchased from 

MWG Biotech (Germany). The restriction enzymes and T4 DNA ligase were purchased 

from Roche Diagnostics GmbH (Penzberg, Germany).  The Pfu DNA polymerase used 

was from Stratagene, and the MasterAmp 10X PCR Enhancer from EPICENTRE 

Biotechnologies. The Thrombin protease and IPTG (Isopropyl β-D-1-

thiogalactopyranoside) were from GE Healthcare. The theoretical molecular masses of 

recombinant proteins were calculated using the Compute pI/Mw application from Expasy 

(http://www.expasy.ch/tools). 

 

Gene cloning  

The DNA coding sequence of the glycogen-binding module from Laforin was amplified 

using a human muscle cDNA library (CLONTECH). This sequence was used as 

template to clone SBM and RGD-SBM codifying sequences by PCR. The PCR reactions 

were performed using the Pfu DNA polymerase (2.5U), 0.5 mM of each primer (forward 

and reverse according to table 1), 1.2 mM MgSO4, 0.24 mM dNTP, 1.2x enzyme buffer, 

and 1.2x of PCR enhancer solution. The PCR conditions were: denaturation at 95ºC, 

annealing at 56ºC and extension at 72ºC, all steps for 45 seconds (this cycle was 

repeated 30 times).  

 

The DNA coding sequences were cloned in different expression system, which allowed 

the fusion of recombinant proteins with a hexa-histidine tag (6xHis) on the C terminal 

(pET expression systems) or GST on the N terminal (pGEX expression system), for 
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purification. The nucleotide sequences of the cloned genes were verified by sequencing. 

The E. coli XL1 Blue was used as cloning strain and expression was carried out in E. coli 

BL21 (DE3), Origami or Tuner. In all cases, negative control (cells carrying the plasmids 

without CBM coding sequence) was used.  

 

Table 1- Primers utilized to amplify the coding sequence in the different expression systems. The sequences 

recognized by the restriction enzymes are in bold. The RGD coding sequence is underlined. 

Plasmid Primer (5’→3’) 
Restriction 

enzyme 

pET25b 

and 

pET29a 

For CATGCCATGGGGATGCGCTTCCGCTTTGGGG 

Rev GGAATTCATGGCTTGGTGGCCTGC 

Rev CCGCTCGAGATCACCTCTCATGGTTGGTGGCCTGC 

NcoI 

EcoRI 

XhoI 

pGEX 4T1 

For GGATCCATGCGCTTCCGCTTTGGGG 

Rev GGAATTCATGGCTTGGTGGCCTGC 

Rev CCGCTCGAGATCACCTCTCATGGTTGGTGGCCTGC 

BamHI 

EcoRI 

XhoI 

 

The integrity of cloned PCR products was verified by DNA sequencing (Sanger et al. 

1977) using ABI PRISM310 Genetic Analyser. 

 

Fermentation conditions 

Several fermentation conditions were used in order to achieve soluble recombinant 

protein in cytoplasmatic (pET29a, pGEX4T1) or periplasmatic space (pET25b). The 

optimization of fermentative conditions was performed changing fermentation medium 

(Luria broth, M9 medium, Overnight ExpressTM Autoinduction System from Novagen), 

supplemented with the respective antibiotic (100 µg/ml ampicillin or 50 µg/ml 

kanamycin), induction time (from 3 h until 48 h), IPTG concentration (from 0.1 to 1 mM), 

and temperature (20, 30 or 37ºC). 
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Table 2– E. coli strains, expression vectors, growth and induction condition used for recombinant protein 

expression.  

E. coli Strains and 
vectors 

Growth 
temp/ºC 

Induction 
temp/ºC 

IPTG 
concentration/ 

mM 

Induction 
time/h 

BL21(DE3)/pET29 37 37 0.5 3 

4 
20 37 
37 

0.0 – 1.0  20 

20 

BL21 (DE3) 
Origami 
Tuner 

pET25b or pGEX 30 30 0.3 
48 

 

 

Expression of 6xHis-tagged recombinant protein in periplasmic space  

The pET25-unmodified, pET25-CBM or pET25-CBM-RGD were used to transform E. coli 

expression host (BL21(DE3), Origami, Tuner) and cells were cultivated according to the 

condition presented in table 2. At the end of fermentation, cells were harvested and the 

periplasmatic proteins recovered using the protocol previous described (Sroga and 

Dordick, 2002). Briefly, the cells were resuspended in osmotic solution (OS) I (20 mM 

Tris-HCl, 2.5 mM EDTA, 2 mM CaCl2, 20% (w/v) sucrose, pH 8) at A600 of 0.5. The 

suspension was incubated in OS I for 10 min on ice, and then centrifuged (4 000g, 15 

min, 4ºC). The pellet was resuspended in OS II (same as OS I without sucrose) and then 

the cells were incubated on ice, for 20 min, and centrifuged again. The supernatant 

containing periplasmatic protein and the cellular pellet were analysed by SDS-PAGE.  

 

Expression and purification of citoplasmatic 6xHis-tagged recombinant 

proteins  

The pET25b-CBM, pET25-CBM-RGD and the respective unmodified plasmids were 

introduced into E. coli host and the expression of recombinant proteins was performed 

according to conditions on table 2. After fermentation, the cells were harvested, 

resuspended in buffer A (50 mM Tris-HCl, pH 7.4, 300 mM NaCl, 0.1% β-

mercaptoethanol, 1 mM PMSF) and lysed by sonication.  
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After sonication, 0.6 M arginine and 1% CHAPS (3-[(3-Cholamidopropyl) 

dimethylammonio]-1-propanesulfonate) were added to the lysate. The mixture was 

incubated at 4ºC, with gentle agitation for 16 h and centrifuged (30 min, 15 000 rpm, 

4ºC). The recombinant protein in the supernatant was purified by immobilized metal ion 

affinity chromatography (IMAC), using 5 mL Niquel Hi-Trap Columns (GE Health). 

Briefly, imidazole was added to the cell lysate (40 mM final concentration), the pH 

adjusted to 7.4 before its application on the column, that was previously charged with 0.1 

M NiSO4 and equilibrated with washing buffer (20 mM Na3PO4, 500 mM NaCl, 40 mM 

Imidazole, pH 7.4). The elution was carried out using different imidazole concentration 

(200, 300 and 500 mM). Purified protein was stored in buffer A containing 10% glycerol 

(v/v), at -20ºC. 

 

Expression and purification of GST-tagged recombinant protein  

E. coli host strains (BL21 (DE3), Origami, Tuner) transformed with pGEX-CBM, pGEX-

CBM-RGD or pGEX vectors were cultivated as indicated in table 1 and the proteins 

purified according to the conditions on table 2. Cells grown at 37 °C in LB medium (A600 

0.7), were induced by decreasing temperature to 20ºC for 1 h followed by IPTG addition 

(0.1 mM final concentration). After 20 h, cells were harvested, resuspended in lysis 

buffer B (10 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, pH 8.0) and incubated with 

deoxyribonuclease I (100 µg/ml) and MgCl2 (100 mM). After DNA digestion, 100 µl of 

Triton X-100 was added and the supernatant incubated with Glutathione-sepharose CL 

4B (GE Healthcare). Protein elution was performed using Tris buffer (50 mM Tris-HCl, 

pH 8.0) containing 10 mM reduced glutathione. Recombinant protein was treated with 

thrombin protease according to the manufacturer’s instructions (GE Healthcare). During 

the purification and thrombin treatment, samples were collected for SDS-PAGE analysis. 

 

Recombinant protein expression in inclusion bodies, refolding, and 

purification 

Expression of CBM-RGD was achieved in E. coli BL21 (DE3) transformed with pET29a-

CBM-RGD after 3 h induction with IPTG (0.5 mM final concentration) when cell culture at 

A600 reached 0.6 at 37 °C in LB medium. The cells were harvested, resuspended in 
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buffer C (50 mM Tris-HCl, 50 mM NaCl, pH 7.4), and lysed by adding lysozyme (100 

µg/ml). After freezing and thawing, deoxyribonuclease I (100 µg/ml) and MgCl2 (100 mM) 

were added and incubated at 4°C for 1 h. The IB were then washed for 3 h with buffer C, 

centrifuged (at 10 000 g for 20 min at 4 °C), and then washed again for another 3 h with 

buffer C containing 0.1% Triton X-100 (v/v). Upon centrifugation (10 000 g for 20 min at 

4 °C), the purified IB were dissolved in 8 M urea containing 100 mM β-mercaptoethanol. 

The protein was refolded by rapid dilution (20-fold) into 20 mM Tris-base, and the pH 

was slowly adjusted to pH 8.0. The recombinant protein was then concentrated in a 

tangential flow ultrafiltration system (Pellicon 2; Millipore, Billerica, MA), ultracentrifuged 

(50 000 g for 20 min at 4 °C), and the supernatant was applied onto a Superdex 200 gel 

filtration chromatographic column (GE Healthcare) equilibrated in 20 mM Tris-HCl, 0.4 M 

urea, pH 8.0 buffer. The fractions corresponding to the second protein peak, which 

corresponds to the non-aggregated forms of recombinant protein, were then combined 

and further purified by ion exchange chromatography on a Mono Q column (GE 

Healthcare) using the same buffer as for the Superdex 200 chromatographic experiment 

with a gradient of NaCl (0 – 0.5 M). 

 

Recombinant protein analysis 

Recombinant proteins were analysed by 12% SDS-PAGE (sodium dodecyl sulfate – 

polyacrylamide gel electrophoresis) and the aggregation was evaluated by 10% native 

PAGE and visualized using standard protocols of Coomassie blue or silver staining. 

Protein samples were mixed with SDS–PAGE loading buffer and heated at 95 °C for 5 

min. For Western-blot analysis, the protein samples separated by SDS–PAGEwere 

electro-transferred (wet transfer) to a nitrocellulose membrane at 100 V for 60 min. The 

membrane was blocked with 2% (w/v) BSA in PBS-T buffer (PBS, 0.05% Tween 20) and 

incubated with peroxidase conjugated anti-His anti-body (Sigma) diluted 1:2000. Image 

detection and analysis was performed by ChemiDoc XRS and Quantity One software 

(BioRad). 

 

Adsorption assay 

To evaluate the human-laforin CBM substrate affinity and specificity, adsorption assays 

using starch (positive control) and cellulose (negative control) were carried out. The 
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purified protein samples (0.25 mg/ml) were mixed with 50 mg of starch or cellulose 

(previously washed with buffer A for 1 h, at 4ºC. Then, the mixture was centrifuged (13 

000 rpm, 10 min, 4ºC) and supernatants were analysed by SDS-PAGE. The 

recombinant CBM was eluted from starch with 5 mg/ml glycogen solution (0.3 ml, at 4ºC 

for 1 h). 

 

RESULTS 

Expression and purification of recombinant proteins using pET25b (+) 

expression system 

The DNA coding sequences were successfully cloned in pET25b expression vector, and 

cells carrying the vectors pET25-CBM, pET25-CBM-RGD or pET25 (unmodified vector) 

were grown in LB or M9 medium, supplemented with ampicilin (leucine was added to M9 

medium for Origami fermentation). The molecular weight expected for recombinant 

proteins was 20.5 KDa for CBM-RGD and 21.2 KDa for CBM, assuming that the pelB 

leader sequence is correctly processed; otherwise, proteins will have 22.5 and 23.2 KDa, 

respectively. 

 

The transformed E. coli strains were grown in LB or M9 medium at 37ºC and induced 

with 1 mM IPTG (37ºC, 3 h). Under these conditions, the recombinant proteins were 

expressed in the insoluble fraction (pellet). It was assumed that combining a low 

temperature with low concentration of inducer would prevent overloading the E. coli 

periplasmic transport system and the recombinant proteins would be able to fold 

properly. Therefore, the cells were grown under low temperature (at 30 and 20°C) and 

the induction phase was performed with low concentrations of IPTG (0, 0.1, 0.3 and 0.5 

mM) at low incubation temperatures (30, 20 and 4 °C). Figure 1 shows representative 

results of all conditions tested using two different E. coli strains transformed with pET25b 

or pET25b-CBM-RGD, grown in M9 medium at 30ºC, and induced with IPTG (0.3 mM) at 

20ºC for 20 h. Among all the conditions tested recombinant proteins CBM and CBM-

RGD were expressed, except for IPTG concentrations lower than 0.3 mM. However, 

none of the recombinant proteins were detected in the periplasmic space, irrespectively 

to the strain and fermentative conditions utilized, which indicates that the pET25b (+) 

pelB leader sequence is not a suitable signal sequence to export these particular 
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proteins, in the set of conditions tested. Moreover, recombinant proteins were not 

detected by SDS-PAGE analysis in soluble fraction under all the conditions utilized. 

 

Figure 1 presents the SDS-PAGE analysis of the soluble fraction obtained by Tuner lysis 

using buffer A before and after purification by affinity chromatography. IPTG (0.3 mM 

final concentration) was added to the cells grown at 30°C in M9 medium, when culture 

reached A600 of 0.4. Although no protein was detected in soluble fraction by SDS-PAGE 

analysis, it was still possible to purifyit using IMAC system. Nevertheless, the production 

by this method was very inefficient not only due to the low amount of soluble protein 

present (figure 1), but also due to the protein precipitation after buffer exchange (PD10 

column). 

 

 

Figure 1 – SDS-PAGE (Coomassie staining) of protein expressed using different E. coli strains grown at 30 ºC, 

induced with IPTG 0.3 mM at 20ºC (left pannel). 1- pET25b; 2- pET25b-CBMRGD; S-soluble fraction; I-insoluble 

fraction; MW- molecular weight (Biorad). SDS-PAGE analysis of protein from E. coli Tuner cells treated with 

osmotic solution I and II (right pannel). 

 

The addition of 0.6 M of arginine to the Tuner cell lysates increased the recombinant 

protein in soluble fraction; however, it was not possible to obtain pure recombinant 

protein after His-Trap affinity chromatography (Figure 2). The purification was achieved 

by incubation of cell lysate with arginine and CHAPS. The soluble fraction obtained was 

then passed through nickel column and the pure recombinant protein His-tagged CBM-

RGD was eluted with imidazole (300 mM) as confirmed by the Western-blot analysis. 

Eluted protein was stable in buffer A, however it did not show starch affinity (data not 
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shown). Furthermore, the analysis of purified protein by native electrophoresis revealed 

the production of CBM-RGD aggregates (Figure 7). All these data point to the non-

functionality of the protein due to its incorrect folding. 

 

Figure 2 – Coomassie stained SDS-PAGE of the protein CBM-RGD detected in cells lysates (left panel) of E. 

coli Tuner in M9 medium, at 30ºC, induced with IPTG 0.3 mM, at 18ºC, 48 h. The cell lysates were also treated 

with arginine, with or woth CHAPS before centrifugation (central panel) for soluble fraction recover (S); E- 

fraction eluted with imidazole during protein purification, using affinity chromatography. Identical results were 

obtained with E. coli BL21 (DE3), and Origami strains (data not shown). On the right panel: Western-blot 

analysis of E1 and E2 samples, using anti-His antiboby (Sigma). 

 

Expression and purification of recombinant proteins using pGEX expression 

system 

The E. coli (BL21 (DE3), Origami, Tuner) cells transformed with the different expression 

vectors (pGEX-CBM, pGEX-CBM-RGD or pGEX), were grown and induced under 

several conditions. The recombinant GST and GST-CBM-RGD with 26 KDa and 46 KDa, 

respectively, were found in soluble fraction of cell lysates that were grown at low 

temperature culture conditions and 0.1 mM IPTG (Figure 3). The same results were 

obtained in cells grown in autoinductive medium at 20ºC or 30ºC for 20 h, however when 

fermentation was carried out at 37ºC, the recombinant proteins were expressed in the 

insoluble fraction (data not shown). 



CHAPTER 2Functional expression of the human CBM  

MOREIRA, S.2009 85 

 

 

Figure 3– Coomassie Blue stained SDS-PAGE obtained from cell lysates of E. coli strains (1 and 2 BL21; 3 and 

4 Tuner) transformed with pGEX (1 and 3) or pGEX-CBM-RGD (2 and 4) under different growth and induction 

conditions. Recombinant GST-CBM-RGD expressed in soluble fraction (arrows). S – soluble fraction; I – 

insoluble fraction; MW – molecular weight (Biorad).  

 

For GST-CBM-RGD purification the soluble fraction of E. coli BL21 (DE3) grown in LB 

medium, induced with 0.1 mM IPTG, 20ºC for 20 h was passed through Glutathione 

sepharose column, dialyzed and treated with thrombin to cleave the GST tag. Figure 4 

shows the results of the time course analysis of thrombin cleavage. Thrombin cleaves on 

LVPRGS sequence releasing two peptides: GST with 26 KDa and CBM-RGD with 20 

KDa. However, this recombinant protein presents a second sequence potentially 

recognized by thrombin (WEPRGA). A peptide with 15 KDa is also observed in the gel 

on Figure 4, revealing that the second site is also cleaved, for longer digestion times. By 

limiting the hydrolysis at 20 min it was possible to obtain the CBM-RGD with the correct 

sequence (20 KDa). 
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Figure 4 – Schematic representation of recombinant protein and thrombin cleavages sites. Time course 

analysis by SDS-PAGE silver stained of GST-CBM-RGD protein during thrombin cleavage (0-16 hours).  

 

The adsorption assay carried out with unpurified protein showed that recombinant 

protein adsorbed both to starch and to cellulose, suggesting that CBM was not 

functional. Furthermore, protein did not desorbed from starch when incubated with 

glycogen, confirming that the unspecific adsorption reaction (Figure 5).  

 

 

Figure 5 – Silver stained SDS-PAGE (of adsorption assay. Initial protein (I); protein non-adsorbed to starch (1) 

or cellulose (2); Elution fraction (E) with buffer containing glycogen after cellulose and starch washing.   



CHAPTER 2Functional expression of the human CBM  

MOREIRA, S.2009 87 

Expression and purification of recombinant proteins using pET29a expression 

system 

E. coli BL21 (DE3) transformed with pET29a or pET29a-CBM-RGD expression vectors 

was grown in LB medium, at 37ºC and induced with 0.5 mM IPTG for 3 h. Protein was 

expressed, with the expected molecular weigh (22 KDa), in insoluble fraction as 

inclusion bodies. After solubilization and refolding, the recombinant protein was passed 

through Superdex 200 gel filtration chromatographic column. The fractions 

corresponding to the second protein peak, which corresponds to the non-aggregated 

forms of CBM-RGD, were then combined and further purified by ion exchange 

chromatography on a Mono Q column. Native PAGE analysis showed that the refolded 

protein was dimeric (44 KDa); on the contrary, protein obtained with pET25b expression 

system, although soluble, was highly aggregated (Figure 6).  

 

 

Figure 6 – Native PAGE stained with Coomassie Blue of CBM-RGD obtained by pET29a (1) and pET25b 

expression system; Bovine serum albumin (BSA) with 66 kDa was used as MW marker. 

  

The functionality of the recombinant protein was evaluated by an adsorption assay on 

starch and cellulose. It was observed that only a 10% of initial CBM-RGD adsorbed to 

starch, and surprisingly almost 100% adsorbed to the cellulose. The starch and cellulose 

particles with protein adsorbed were washed out before protein elution using buffer 

containing glycogen. Protein was eluted only from starch, indicating that protein was 

functional (Figure 7).  
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Figure 7– Analysis of CBM-RGD adsorption by SDS-PAGE (Coomassie staining). Initial protein (I); protein non-

adsorbed to starch (1) or cellulose (2); Washing fraction (W); Elution fraction of CBM-RGD with buffer 

containing glycogen. Protein eluted from starch (arrow). 

 

DISCUSSION  

Expression of soluble and functional proteins in heterologous system may be a difficult 

task, especially for mammalian proteins (Dyson et al., 2004). There are several tags 

described for protein expression and purification, among them, GST has been described 

as a useful tag to enhance the solubility of recombinant proteins (Braun et al., 2002; 

Hammarstrom et al., 2002; Shih et al., 2002). In addition, it was referred that Laforin 

presents different solubility depending on the tag fused (Girard et al., 2006), namely, 

6xHIS-tagged Laforin showed to be less soluble then GST-Laforin.  

 

In order to express soluble recombinant human-laforin CBM and CBM-RGD, several 

conditions were tested, including vector systems, bacterial hosts, fermentative medium, 

cell culture temperature, and induction and lysis conditions (Figure 8). Since the results 

obtained for CBM and CBM-RGD expression were similar, only the results from CBM-

RGD were presented. 
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Figure 8- Schematic summary of strategies and results. 

 

The DNA coding sequence of CBM and CBM-RGD were successfully cloned in the 

different expression systems (pET25b, pET29a and pGEXT1-4). However, the stability 

and functionality of recombinant proteins were different depending on the expression 

system used, as previously described for recombinant Laforin expressed in E. coli. In 

addition, the proteins expressed showed higher molecular weigh than theoretically 

expected in SDS-PAGE analysis, again, as described for recombinant Laforin (Wang 

and Roach, 2004). 

 

In this work, the CBM was fused to 6xHis-tag at the C-terminal and a pleB leader 

sequence at the N-ternimal. The pelB leader signal peptide directs the recombinant 

protein to the periplasmic space, where it was expected to be mostly soluble and 

correctly processed. However, independently of the host strain and fermentation 

conditions used, the recombinant proteins were never detected in the periplasmic space. 

It is well established that lowering the expression may enhance the solubility, folding and 
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activity of difficult target proteins (Dyson et al., 2004; Winograd et al., 1993). Therefore, 

the temperature used for cell growth and heterologous protein induction was a 

parameter analysed. In addition, expression was carried out using Tuner cells, which 

enable adjustable levels of protein expression throughout the culture by adjusting the 

concentration of IPTG. When recombinant proteins were expressed with pET25b system 

using Tuner strain, cultivated under low temperature, M9 minimal medium, and low IPTG 

concentration, it was not possible to obtain a clear separation of the soluble and 

insoluble fractions. Instead, the cell lysate originated two phases hard to separate by 

centrifugation (30 m, 15 000 rpm). When supernatant was applied to nickel column, a 

few amount of purified recombinant protein was obtained. However, a high concentration 

of imidazole (500 mM) was required for protein elution. Moreover, the purified protein 

was not stable after desalting. To overcome the insolubility of expressed protein arginine 

was added to the lysis buffer. Arginine has been described as effective in suppressing 

aggregation of proteins and several works show its beneficial effect when included 

during purification processes (Arakawa et al., 2007a; Arakawa et al., 2007b; Tsumoto et 

al., 2004). The addition of arginine to the cell lysate increased the soluble protein 

fraction, but purification through affinity chromatography was again not efficient. It has 

been reported that laforin is a plasma membrane and ER - associated protein (Ianzano 

et al., 2003; Minassian et al., 2001), therefore it was speculated that the presence of a 

detergent may increase its solubility. In addition, in a previous work, CHAPS (a 

zwitterionic detergent) was required to solubilize His-tagged laforin (Girard et al., 2006). 

When CHAPS was added to cell lysate, the recombinant protein was solubilized and 

purified by affinity chromatography using 300 mM of imidazole. After purification, 

recombinant proteins remained stable in solution. Despite solubility and stability of 

purified proteins, the CBM did not adsorb to starch, indicating that it was not functional. 

Furthermore, the native PAGE analysis revealed protein aggregation.  

 

In a second approach, CBM was expressed fused with GST at the N-terminal and after 

optimization of fermentation conditions, soluble GST-fused proteins were expressed 

under low temperature (20ºC) and inducer concentration (0.1 mM). With this expression 

system, similar results were obtained using E. coli BL21(DE3), Origami or Tuner strains. 

Recombinant proteins were purified and GST was cleaved by thrombin hydrolysis. 

Thrombin cleaved GST-CBM in two sites; however, by limiting the proteolysis to 20 min, 

the integral CBM could be recovered. Girard et al. reported that GST-laforin was 

resistant to thrombin cleavage; therefore, those authors inserted a 5-glycine linker 
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between GST and laforin. In addition, same authors showed that laforin purification 

requires an extra-purification by hydroxyapatite chromatography to remove the GroEL 

(E. coli chaperon with 63 KDa) that was not removed by Glutathione-Sepharose (Girard 

et al., 2006). In the case of recombinant GST-CBM, it was not necessary to introduce a 

glycine linker to enable proteolytic cleavage and GroEL was not observed after 

purification with Glutathione-Sepharose. Since CBM did not show starch affinity, the 

purification protocol of GST-CBM protein was not further optimized. 

 

Commonly, the strategies to express and purify recombinant proteins avoid the protein 

expression in IB. In our work, the recombinant CBM was obtained functional only 

through IB solubilization and refolding. Moreover, the protein obtained by this method 

was highly pure, even without any affinity chromatography, dimeric and stable at 4ºC, in 

buffer containing 0.4 mM urea, for up to 2 months. Unexpectedly, CBM adsorbed to 

cellulose, most likely through unspecific adsorption; indeed, the CBM was only desorbed 

using glycogen from starch, indicating that CBM was removed from cellulose during the 

washing steps. Furthermore, this result indicating that starch may be used, as a final 

purification step, to select functional CBM-containing proteins. Laforin was described as 

aggregating easily, and that the same applies to the CBM (Girard et al., 2006; Girard et 

al., 2005). Moreover, results using chaperon co-expression and Pichia pastoris 

expression systems (unpublished results) also lead to aggregate and no functional 

recombinant CBM. Laforin and its CBM are therefore proteins very difficult to express in 

soluble fraction in prokaryotic and fungal expression systems. The production of laforin 

in inclusion bodies was never described, and CBM obtained by this approach showed 

high purity without affinity chromatography, stable and functional. 

 

Since CBM of laforin binds to starch it may be used as tag molecule for adsorb small 

bioactive peptides to starch-based biomedical materials. The future work includes 

assays using CBM-RGD on dextrin hydrogel, as described in a previous work for 

bacterial CBM (Moreira et al., 2008b).  
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Chapter 3 

 

Development of a strategy to functionalize a dextrin-

based hydrogel for animal cell cultures using a starch-

binding module fused to RGD sequence  

 
Results published on BMC biotechnology 

Moreira, S., Andrade, F., Domingues, L., Gama, M., 2008. Development of a strategy to functionalize a 
dextrin-based hydrogel for animal cell cultures using a starch-binding module fused to RGD sequence. BMC 
Biotechnology 8, 78. 
 

ABSTRACT  

Several approaches can be used to functionalize biomaterials, such as hydrogels, for biomedical applications. 

One of the molecules often used to improve cells adhesion is the peptide Arg-Gly-Asp (RGD). The RGD 

sequence, present in several proteins from the extra-cellular matrix (ECM), is a ligand for integrin-mediated 

cell adhesion; this sequence was recognized as a major functional group responsible for cellular adhesion. In 

this work a bi-functional recombinant protein, containing a starch binding module (SBM) and RGD sequence 

was used to functionalize a dextrin-based hydrogel. The SBM, which belongs to an α-amylase from Bacillus 

sp. TS-23, has starch (and dextrin, depolymerized starch) affinity, acting as a binding molecule to adsorb the 

RGD sequence to the hydrogel surface. 

The recombinant proteins SBM and RGD-SBM were cloned, expressed, purified and tested in in vitro assays. 

The evaluation of cell attachment, spreading and proliferation on the dextrin-based hydrogel surface activated 

with recombinant proteins were performed using mouse embryo fibroblasts 3T3. A polystyrene cell culture 

plate was used as control. The results showed that the RGD-SBM recombinant protein improved, by more 

than 30%, the adhesion of fibroblasts to dextrin-based hydrogel. In fact, cell spreading on the hydrogel 

surface was observed only in the presence of the RGD-SBM. 

The fusion protein RGD-SBM provides an efficient way to functionalize the dextrin-based hydrogel. Many 

proteins in nature that hold a RGD sequence are not cell adhesive, probably due to the 

conformation/accessibility of the peptide. We therefore emphasise the successful expression of a bi-functional 

protein with potential for different applications. 
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INTRODUCTION 

Hydrogels are a class of water-swollen polymeric materials, capable of maintaining a 

distinct three-dimensional structure (Kopecek, 2007; Wang et al., 2006), which can be 

used as scaffolds in tissue engineering, as wound dressing, and drug delivery systems, 

among other applications (Carvalho et al., 2007). Several approaches have been 

developed to produce hydrogels from different synthetic and natural polymers (Peppas et 

al., 2000). Among them, the starch-based hydrogels have appealing characteristics in the 

perspective of biomedical application. They are biocompatible, have convenient 

degradation kinetics and release profiles and also present appropriate mechanical 

properties (Marques et al., 2002; Wong and Mooney, 1997; Zhang et al., 2005b). Despite 

its wide and successful application, the resistance of the hydrogel surfaces to cell 

adhesion and differentiation might represent a considerable limitation. In this context, the 

hydrogel functionalization, through the incorporation of adhesive molecules, emerges as a 

promising approach to overcome these limitations. 

 

Several molecules, namely proteins of the ECM (extra-cellular matrix), poly-L-lysine (PLL) 

and a natural adhesive protein extracted from mussel (MAP) (Hwang et al., 2007) have 

been successfully applied in promoting cell adhesion and proliferation (Dai and Saltzman, 

1996; Hwang et al., 2007; Mann and West, 2002; Schraa et al., 2002; Tan et al., 2005). In 

addition, the Arg-Gly-Asp (RGD) motif – found in ECM proteins and in the blood, such as 

fibronectin, vitronectin, osteopontin, collagens, thrombospondin, fibrinogen, and von 

Willebrand factor – was described as the major functional group responsible for cellular 

adhesion (Hwang et al., 2007; Ruoslahti, 2003; Ruoslahti and Pierschbacher, 1987). 

Various strategies of surface functionalization, which include the coupling or grafting of the 

RGD peptide, have been already reported. Most of these involve complex chemical 

reactions, to activate the chemical groups in the polymer or in the RGD containing 

sequence, to allow for the covalent binding (Hersel et al., 2003; Li et al., 2008; Massia and 

Stark, 2001). In this study, a new approach of RGD-activation of dextrin-hydrogel (a 

depolymerized starch) is proposed. It has been reported that RGD bioactivity can be 

conserved in fusion proteins (Wang et al., 2006; Wierzba et al., 1995). Likewise, a 

recombinant protein containing a starch-binding module (SBM) and a RGD sequence was 

used in this work. Several enzymes that metabolize carbohydrates have a modular 

structure with two independent domains, a catalytic domain and a substrate-binding 
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domain, generically designated as carbohydrate-binding module (CBM). A CBM is defined 

as a contiguous amino acid sequence within a carbohydrate-active enzyme with a discrete 

fold having carbohydrate-binding activity. The CBM used in this work, is a starch-binding 

module (SBM), belonging to a α-amylase from Bacillus sp. strain TS-23 (Lin et al., 1994), 

which specifically binds to starch (Lin et al., 1997). 

 

The present work shows the successful functionalization of a dextrin-based hydrogel, 

using a fusion protein containing a C-terminal SBM and a N-terminal RGD sequence. 

Viability and microscopic evaluation of the protein-activated hydrogels, revealed an 

effective improvement of cellular adhesion and spreading. 

 

 

MATERIALS and METHODS 

Reagents and strains 

All reagents used were laboratory grade reagents from Sigma-Aldrich, St. Louis, USA, 

unless stated otherwise. 

The bacterial hosts used for cloning and expression of the fusion proteins were 

Escherichia coli strain XL1 Blue [recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F 

proAB lacIqZΔM15 Tn10 (Tetr)] (Stratagene) and strain BL21 (DE3) [F- ompT hsdSB (r-B 

mB-) gal dem Δ(srl-recA) 306::Tn10(DE3)](Novagen), respectively. The pET 29a(+) 

(Novagen) was used as expression vector. The restriction enzymes and T4 DNA ligase 

were purchased from Roche Diagnostics GmbH (Penzberg, Germany). The Vent DNA 

polymerase used was from New England Biolabs. 

In vitro assays were performed using mouse embryo fibroblasts 3T3 (ATCC CCL-164), 

grown in Dulbecco's modified Eagle's media (DMEM) supplemented with 10% newborn 

calf serum (Invitrogen) and penicillin/streptomycin (1 µg/mL) (Sigma-Aldrich, St. Louis, 

USA), at 37°C, in a fully modified air containing 5% CO2. 
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Gene cloning  

The DNA coding sequence of the starch-binding module from Bacillus sp. strain TS-23 

was synthesized (Epoch Biolabs, Missouri City, USA). This sequence was used as 

template to clone SBM and RGD-SBM codifying sequences by PCR. In the case of RGD-

SBM peptide, 10 amino acids were cloned in the N-terminal between SBM and RGD, to 

act as a linker and allow some mobility of the RGD. Briefly, SBM and RGD-SBM 

sequences were cloned using the forward primers 5'-

GGGAATTCCATATGACGTCAAACGTCACATTTAC-3' and 5'-

GGGAATTCCATATGAGAGGTGATGGAGGCTCCGTTTCGATTTGG-3', respectively, 

and the reverse primer 5'-CCGCTCGAGTGGCACATTCCAGCTCGC-3', the underline 

sequences are the restriction sites for the Nde I and Xho I, and the bold sequence codify 

the RGD. The PCR reactions were performed using the Vent DNA polymerase and the 

PCR conditions were: denaturation at 95°C, annealing at 53°C and extension at 72°C, all 

steps for 45 seconds (this cycle was repeated 30 times). 

Both DNA coding sequences were cloned in pET29a (+) expression system, which allows 

the fusion of recombinant proteins with a hexa-histidine tag on the C-terminal, for 

purification. The nucleotide sequences of cloned genes were verified by sequencing. The 

E. coli XL1 Blue was used as cloning strain and expression was carried out in E. coli BL21 

(DE3). 

 

Production and purification of recombinant proteins 

For the production of the recombinant proteins, the E. coli BL21 (DE3) cells transformed 

with the expression vectors, pET29a(+)-SBM and pET29a-RGD-SBD were grown at 37°C, 

in LB medium supplemented with Kanamycin (50 µg/ml). Cultures were induced with 

IsoPropyl β-D-1-ThioGalactopyranoside (IPTG, Invitrogen) at 1 mM. Five hours after 

induction, the cells were separated from the culture medium by centrifugation (13 000 g, 

10 min) and resuspended in buffer A (20 mM Tris, 20 mM NaCl, 5 mM CaCl2, pH 7.4 and 

PMSF 0.1 mM) and then lysed by sonication. The soluble and insoluble fractions were 

separated by centrifugation (15 000 g, 4°C, 30 min). The purification was made by affinity 

chromatography, using a HisTrapTM HP (GE health care). For that, imidazole was added 

to the cell lysated (40 mM final concentration) and the pH was adjusted to 7.4 before its 
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application on the nickel column. After purification, proteins were dialyzed against the 

buffer A, sterilized by filtration (0.22 µm) and stored at -20°C, prior to use. 

 

SBM adsorptions assays 

To evaluate the SBM starch affinity and specificity, an adsorption assay using starch 

(positive control) and cellulose (negative control). The protein of the soluble fraction (0.5 

mL) obtained from the cells lyses (0.5 mg/mL) was mixed with 50 mg of starch or 

cellulose, for 1 h, at 4°C. Then, the mixture was centrifuged (13 000 rpm, 10 min, 4°C) 

and the total protein in supernatant was quantified by the Bradford assay (BioRad), using 

BSA as standards, and analysed by SDS-PAGE. The recombinant SBM was eluted from 

starch with 2% β-cyclodextrin solution (0.5 mL, 4°C, 1 h). 

 

Effect of the recombinant proteins on the adhesion and spreading of fibroblasts 

on the tissue culture polystyrene plate (TCPP) 

The cell viability was determined by the (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS, Promega) assay, a 

colorimetric assay that gives a measure of the mitochondrial metabolic activity. The fusion 

proteins were added to the 96-well TCPP (0.05 µg of protein per well) to allow adsorption 

(4°C, overnight). The unbound protein was washed out with phosphate buffer saline 

(PBS); then 200 µL of fibroblast suspension was plated in each well, yielding a final 

density of 5 × 103 cells. After 1 h the wells were washed with PBS and the culture medium 

refreshed. The MTS assay and microscope observations of the attachment and spreading 

of fibroblasts were carried out at 1, 5, 24 and 48 h after the addition of the cells. 

 

Effect of the recombinant proteins on the adhesion and spreading of fibroblasts 

on the dextrin-based hydrogel 

In a second test, the recombinant proteins were added to the hydrogel. For this propose 

hydrogels were prepared in a 96-well polypropylene plate (autoclavable), as described by 

Carvalho et al. (2007). Briefly, 30 µL of the dextrin-based solution (300 mg/mL in PBS) 
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was placed on the bottom of each well and the initiators were added to allow the 

polymerization. After sterilization (20 min, at 121°C and 1 atm) the hydrogel was washed 

with PBS and then the recombinant proteins were added (0.25 µg of protein per well). 

Afterwards, plates were incubated overnight at 4°C. Unbound protein was removed and 

analysed by SDS – PAGE and the hydrogel was washed out with PBS before cells 

seeding. A fibroblasts suspension was plated into each well, to yield a final density of 2 × 

104 cells. The plates were incubated and after 4 h, the wells were washed with PBS and 

the medium refreshed. The MTS assays were carried out on the non-adherent cells. 

Microscope observations of the attachment and spreading of 3T3 fibroblasts was carried 

out at 4, 24 and 48 h after the addition of the cells and then trypsinized from the hydrogel 

before MTS analysis. The results expressed as cell proliferation inhibition index (CPII) 

were calculated as CPII = 100 - (OD490 nm of test culture/OD490 nm of control culture) × 100. 

 

 

RESULTS and DISCUSSION 

Expression and purification of recombinant proteins 

As shown in figure 1, the SBM and RGD-SBM recombinant proteins were successfully 

expressed using the pET29a(+) expression system and E. coli BL21(DE3) cells. The 

proteins were presented in the soluble fraction, exhibiting the expected MW, 12.0 and 

13.3 KDa respectively. Previous works used another expression system (pQE, Quiagen) 

and host (E. coli M15) to produce recombinant proteins fused to this SBM (Hua et al., 

2005; Hua et al., 2004; Lin et al., 2003). However, in the present work the amount of the 

recombinant protein obtained in the soluble fraction was much higher (40%), indicating 

that this expression system is preferable. 

 

The SBM functionality was analysed through a starch adsorption assay, confirming that 

the binding module is functional. The SBM specificity was evaluated using starch (positive 

control) and cellulose (negative control). The SBM adsorbed only to starch and it could be 

eluted using soluble β-cyclodextrin (Figure 1). 
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Figure 1- Analysis of protein expression (A) and starch specificity (B) by SDS-PAGE. A-Soluble protein extract 

obtained from lyses of E. coli BL 21(DE3) carried pET29a(+)-SBD (1) and pET29a(+)-RGD-SBD (2) vectors. B-

Total soluble protein extract (containing SBM) used in adsorption assays (3); supernatant obtained after starch 

(4) and cellulose adsorption (5), supernatant obtained after protein elution of starch with β-cyclodextrin (6). (MW 

– molecular weight, KDa).  

 

Attachment of fibroblasts to the recombinant protein-coated TCPP 

The TCPP was used as a first approach to observe the effect of the presence of protein 

coating the material on the adhesion of cells. Thus, both polystyrene and fibroblasts are 

here considered as a model system. The actual applications envisaged involve the use of 

dextrin made materials (as described ahead) and other cell lines (not in the scope of this 

work). The microscopic analysis and MTS results showed that, when the polystyrene plate 

was coated with RGD-SBM, fibroblast adhesion was improved, as compared to the 

uncoated wells or the ones treated with SBM (controls). In fact, after 1 h adhesion, the 

MTS results showed that fewer cells adsorb to the plate coated with SBM, as compared to 

the ones coated with RGD-SBM (figure 2). Furthermore, the wells with or without SBM 

adsorbed exhibited the same amount of adherent cells. It seems, thus, reasonable to 

conclude that SBM did not affect cell adhesion, being the RGD sequence the responsible 

for the improvement of the CPII. Indeed, a decrease in CPII of about 30 to 35% was 

achieved in the presence of the RGD-SBM, the same trend being also observed in the 

assays carried out for longer periods of times (5, 24, 48 h). Regarding morphology, the 

cells cultivated in different conditions were similar. 
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Figure 2 - Microscopic observation and MTS analysis of the cells attached to the polystyrene plate and 

polystyrene plate coated with SBM or RGD-SBM peptides, at different times (MTS results were performed in 

triplicate). The MTS assay shows the optical density at 490 nm under different conditions.  

 

Attachment of fibroblasts on dextrin-based hydrogel surface  

The recombinant proteins were added to the hydrogel and left adsorbing overnight. Before 

the addition of cells, the hydrogel was washed out with PBS, in order to remove the 

unbound proteins. The supernatant containing the unbound proteins was analysed by 

SDS-PAGE (figure 3), confirming that the SBM successfully adsorbs to the hydrogel and 

the amount of recombinant proteins used was enough as to saturate the hydrogel. A 

TCPP was used as a control, for comparison of cell adhesion and morphology. The 

specificity and stability of the adhesive proteins present in the surface of the biomaterial 

have been referred as a critical factor for the cells attachment and behaviour (Neff et al., 

1999). The SBM used in this study belongs to the α-amylase secreted by the Bacillus sp. 

TS-23, a thermophilic and alcaliphilic bacteria (Lin et al., 1997). This enzyme is functional 
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under extreme conditions, and it was described as rather stable in a large range of 

temperatures and pH. Furthermore, it should be remarked that CBM's have been used in 

the development of commercial systems for recombinant protein purification (Shoseyov et 

al., 2006a). Therefore, the adsorption of the SBM on the hydrogel surface may be 

expected to be stable and specific, allowing its successful application to functionalize the 

hydrogel surface. 

  

Figure 3 - SDS-PAGE analysis of the recombinant proteins adsorbed to the dextrin-based hydrogel. 

Recombinant proteins SBM and RGD-SBM, purified by affinity chromatography, before (1) and after (2) 

adsorption on the hydrogel. (MW – molecular weight, KDa). 

 

The fibroblasts were added to the hydrogel treated with SBM or RGD-SBM and incubated 

for 4 h (polystyrene and non treated hydrogel were used as controls). Then, the non-

adherent cells were washed out and fresh medium was added. To evaluate the cellular 

adhesion to the hydrogel, MTS assays were performed, both with the non-adherent cells 

and the ones trypsinized from the hydrogel. The results obtained using the two cell 

samples (adherent; non adherent) are in good agreement. The MTS results showed that, 

in the case of the polystyrene, 100% of the cells adhered after 4 h of incubation. In the 

case of the hydrogel coated with RGD-SBM, about 80% of the total cells were present in 

the adherent fraction and only 50% of the cells adhered to the hydrogel controls 

(untreated hydrogel or containing SBM peptide) (figure 4). These results demonstrated 

that the RGD sequence was able to significantly increase the adhesion of fibroblasts to 

the hydrogel surface, as compared to the controls. Previous work reported that the CPII of 

the starch-based hydrogels were in the range 50% – 60% when compared to polystyrene 
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(Carvalho et al., 2008a). Herein, the same range of values was obtained for hydrogel 

controls. Nevertheless, when the hydrogel was treated with RGD-SBM, it was possible to 

reduce the CPII to 17%, which represents an improvement on cell adhesion of more than 

30% (the values reported are the average of 2 different assays, each one performed in 

triplicate). 

 

 

Figure 4 - MTS assays from non-adherent cells to the hydrogel and hydrogel coated with recombinant proteins 

after 4 h of adhesion. CPII of hydrogel with different treatments compared to the polystyrene plate at 4, 24 and 

48 h of incubation after fibroblasts seeding.  

 

The ability of the biomaterials to promote cell attachment is an important factor for tissue 

engineering applications. However, other important factors for the survival of the cells 

must be considered, namely cell spreading, migration, proliferation and matrix proteins 

production (Galbraith et al., 2002; Mann and West, 2002). The cellular spreading on the 

hydrogel was evaluated by microscopic observation. Previous studies on starch-based 

hydrogels have shown differences in the morphology of the cells growing on the hydrogel 

surface (Ferreira et al., 2004; Massia and Stark, 2001). Although viable, cells appear 

rounded and clustered when grown in the hydrogels. In contrast, in the presence of RGD 

sequence the cells are uniformly distributed on the hydrogel, exhibiting the characteristic 

fibroblast morphology (figure 5). The cellular spreading was only achieved under these 

conditions and the confluence was reached after 48 h of incubation. 



CHAPTER 3Development of a strategy to functionalize a dextrin-based hydrogel 

MOREIRA, S.2009 106 

 

Figure 5 - Microscopic analysis and MTS assays of the fibroblasts cultivated on hydrogel without recombinant 

proteins, hydrogel coated with SBM or RGD-SBM; and cultivated on polystyrene plate, at different incubation 

times. The MTS assay compares the optical density at 490 nm between hydrogel with the different pre-

treatments and the polystyrene plate at 4, 24 and 48 h of incubation after fibroblasts seeding. 

 

The effect of the RGD-SBM peptide on proliferation was also evaluated. The MTS results 

suggested that the cell proliferation was only moderate irrespective of the hydrogel 

activation, as can be seen by the evolution of the non-normalized absorbance values 

(figure 5). These results are in good agreement with previous reports (Carvalho et al., 

2009b; Ferreira et al., 2004) of a moderate cell growth on similar non-activated hydrogels. 

It could be expected that the presence of RGD-SBM peptide would increase the 

proliferation rate. However, despite the relevant effect on cell morphology, the presence of 

the RGD-SBM does not lead to a significant increase in the rate of proliferation. It is well 
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known that the fibroblast migration and proliferation on a biomaterial surface, coated with 

adhesive peptides, is dependent on the peptides density (Mann and West, 2002; Neff et 

al., 1999; Tan et al., 2005). Neff et al. (1999) found that fibroblast migration and 

proliferation decreased with the increasing of the adhesion peptide concentration. These 

authors found that for a maximum fibroblast proliferation, the adhesive peptide density 

should be intermediate. A similar effect was observed for other cells lines, namely, murine 

melanoma cells (Burgess et al., 2000) and smooth muscle cells (DiMilla et al., 1993). In 

this work, the effect of the RGD-SBM concentration on both cells migration and 

proliferation was not evaluated. Likewise, it is possible that the peptide concentration 

should be under or over the optimum, which would explain the proliferation rate observed. 

Thus, future work should address the optimization of the peptide concentration in order to 

maximize cell proliferation on the dextrin-based hydrogel (Mann and West, 2002). 

 

 

CONCLUSIONS  

In this work, a new approach was applied to functionalize a dextrin-based hydrogel: a 

recombinant protein, with a C-terminal starch-binding module and a N-terminal RGD 

sequence was cloned, expressed and successfully used to improve fibroblast adhesion 

and spreading on the hydrogel surface. The recombinant DNA techniques allow the fusion 

of different peptides in order to obtain chimeric proteins with specific functionality. 

However, the fusion of two peptides individually functional does not necessarily lead to a 

bi-functional fusion protein, according to our own experience. The loss of peptide 

functionally in the recombinant fusion protein may be a result of conformational changes 

that interfere with substrate accessibility or cell interaction. This is not the case with the 

protein produced in this work. The RGD-SBM recombinant protein improved by more than 

30% the adhesion and spreading of fibroblast on the starch-based hydrogel. 

 

The major advantages of the approach developed in this work may be summarized as 

follows: 1) the RGD sequence is expressed in E. coli fused to the SBM, not chemically 

synthesized; normally, the RGD sequence obtained chemically is attached to a linker 

and/or a reactive amino acids, and thus are expensive products. 2) The fusion protein 

strongly and specifically binds dextrin or starch-based materials, without the need for 

complex chemistry, toxic chemicals, etc. The specific affinity of the SBM may be used also 
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for the purification of the protein. 3) This approach, here demonstrated with the RGD case 

study, may be adopted to a wide range of peptides, particularly to short peptides like 

SBM, which may easily be produced using this expression system. 4) Several applications 

may be envisaged for this system: the production of biomimetic materials for the 

development of cell culture medium, the functionalization of materials for cell 

immobilization or even biomedical applications (addressing multifunctional nanoparticles 

made of starch to neoplastic tissue by RGD active targeting, for instance). Preliminary 

results show that the foreign body reaction to hydrogel implants is not affected by the 

presence of RGD-SBM. 
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Chapter 4 

 

Dextrin – based hydrogels: in vivo biocompatibility and 

biodegradability  
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vivo biocompatibility and biodegradability.  

 

 

ABSTRACT  

In vivo biocompatibility studies of dextrin hydrogels, obtained by radical polymerization of dextrin-

hydroxyethylmethacrylate (dextrin-HEMA) and dextrin-vinyl acrylate (dextrin-VA), are reported in this work. 

The histological analysis of subcutaneous implants of these hydrogels, featuring inflammatory and 

reabsorption events, was carried out over a period of 16 weeks, in mice. While dextrin-HEMA hydrogel was 

quickly and completely degraded and reabsorbed, dextrin-VA degradation occurred slowly, apparently 

through an erosion controlled process. Indeed, although amylase is present in human plasma, the 

degradation of dextrin-VA hydrogel was very limited. A thin fibrous capsule was observed 16 weeks post-

implantation, surrounding the non-degradable hydrogel. In the case of the degradable material, only a mild 

inflammatory reaction was observed, a few foamy macrophages being detected around the implant. This 

reaction was followed by complete resorption, with no signs of capsule formation or fibrosis associated with 

the implants. Altogether, these results strongly suggest that the dextrin hydrogels are fully biocompatible, 

since no toxicity on the tissues surrounding the implants was found. Moreover, it may be speculated that a 

controlled degradation rate of the hydrogels may be obtained, using dextrin with grafted HEMA and VA in 

different proportions. 
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INTRODUCTION 

Hydrogels are water-swollen polymeric materials, with three-dimensional stable structure 

(Kopecek, 2007) providing good scaffolds for tissue engineering and replacement, wound 

dressings, drug delivery systems, among other applications. Hydrogels have great 

potential for drug delivery purposes. They can be used to encapsulate cells that produce 

therapeutic agents, such as growth factors, to be released in the surrounding tissues 

(Carvalho et al., 2007; Hardwicke et al., 2008; Hoffman, 2002; Langer and Peppas, 2003). 

Hydrogels must meet several strict requirements to make it eligible for biomedical 

applications. Among them, biocompatibility is an essential issue, together with the non-

toxicity of the leachable and degradation products. Therefore, the comprehensive 

characterization of the degradation processes and the biological effects of the by-products 

are crucial for the long-term success of the hydrogel applications (Del Guerra et al., 1996; 

Del Guerra et al., 1995; Kirkpatrick, 1992; Ratner, 1997) 

 

Natural polymeric materials, modified using different strategies, are an important source of 

hydrogels (Cadée et al., 2000; Draye et al., 1998; Hasırcı et al., 2001; Vieira et al., 2008). 

Our group recently developed hydrogels made of dextrin, a polysaccharide obtained by 

partial hydrolysis of starch, composed of α(1→4) linked D-glucose residues. In a previous 

study, it was shown that the dextrin-based hydrogels have distinct degradation profiles, in 

vitro, depending on the acrylate ester used to functionalize the polysaccharide: dextrin-

vinyl acrylate (VA) originates a non-degradable hydrogel, while polymerized dextrin-

hydroxyethylmethacrylate (HEMA) is a degradable one (Carvalho et al., 2009a). 

Moreover, the degree substitution (DS) of the polymer was shown to influence the 

degradation profile. 

Although similar to previously developed dextran-VA and dextran-HEMA materials (Cadée 

et al., 2000), the use of dextrin made hydrogels represents, in our view, a better choice for 

biomedical applications. Dextrin, although already used in clinical treatments, namely in 

end-stage renal failure patients, as peritoneal dialysis solution, and as a carrier for the 

anticancer agent 5-fluorouracil (Frampton and Plosker, 2003; Hardwicke et al., 2008; 

Hosie et al., 2003; Hreczuk-Hirst et al., 2001), is relatively unexploited in the biomedical 

field. However, it presents excellent properties: biocompatibility, non-immunogenicity and 

in vivo degradability by α-amylases, yielding maltose and isomaltose. Dextrin has 
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appropriate molecular weight to ensure renal elimination, excluding the threat of 

progressive accumulation, after repeated administration (Carvalho et al., 2009b; Carvalho 

et al., 2007; Garcia et al., 2008; Hreczuk-Hirst et al., 2001). Indeed, it has a very low 

molecular weight, and is likely to be degraded to glucose by the amylases present in the 

human fluids. Thus, it is expected to be completely metabolized or removed by renal 

filtration. According to in vitro studies, the dextrin made hydrogels are not cytotoxic 

(Carvalho et al., 2009a). 

Biodegradability and resorption are highly desirable for tissue engineering and also for 

other biomedical applications where a temporary use of a medical device is envisaged, 

avoiding a second surgery for its extraction. Therefore, the extent of hydrogel 

degradation, under a set of conditions, must be characterized in order to determine the 

suitability of the material for a given application. This work describes the in vivo 

biocompatibility and degradability of two hydrogels, composed of dextrin-HEMA and 

dextrin-VA, respectively in vitro degradable and non-degradable. 

 

 

MATERIAL AND METHODS 

Reagents and Animals 

Dextrin - Koldex 60 starch was a generous gift from Tate & Lyle (Decatur, IL, USA). All 

chemicals used in the preparation of the hydrogels, including Vinyl acrylate (VA), 2-

hydroxyethylmethacrylate (HEMA), N,N,N’,N’-tetramethylenethylenediamine (TEMED), 

ammonium persulphate (APS) were laboratory grade from Sigma-Aldrich, St. Louis, USA. 

The in vivo biocompatibility studies were performed using male BALB/c mice (8 weeks 

old) purchased from Charles River (Barcelona, Spain). Animals were kept at the animal 

facilities of the Institute Abel Salazar during the experiments. Procedures involving mice 

were performed according to the European Convention for the Protection of Vertebrate 

Animals used for Experimental and Other Scientific Purposes (ETS 123) and 86/609/EEC 

Directive and Portuguese rules (DL 129/92).  
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Preparation of Dextrin-based Hydrogels 

The functionalization of the dextrin with vinyl acrylate (VA) or hydroxyethylmethacrylate 

(HEMA) was achieved as described by Carvalho et al. (Carvalho et al., 2007; Carvalho et 

al., 2009a).  

Dextrin-VA and dextrin-HEMA monomers were synthesized from dextrin in DMSO in the 

presence of different amounts of the VA or HEMA monomers and the degree of 

substitution (DS) was determined by proton nuclear resonance spectroscopy (1H-NMR) in 

D2O as previously described (Carvalho et al., 2007; Carvalho et al., 2009a). The hydrogel 

slabs with different DS were prepared by radical polymerization of aqueous solution of 

either dextrin-VA or dextrin-HEMA. The hydrogel discs for implantation were prepared 

dissolving 300 mg of dextrin-VA (degree of substitution, DS 20 or 70) in 1 ml PBS 

(phosphate buffered saline), and a volume of 30 µl of this solution was transferred into the 

circular casts (5 mm diameter and 5 mm height). Following the radicalar polymerization, 

started by adding 3 µl TEMED (13.3 %, v/v) and 3 µl APS (80%, w/v) to the dextrin 

solution, the discs were transferred into an eppendorf with PBS buffer and sterilized 

(121ºC, 1 atm, 20 min). The dextrin-HEMA hydrogel with DS 20 was prepared using two 

concentrations, 300 mg/ml and 150 mg/ml. 

 

 

MALDI-TOF Analysis 

The molecular weight of dextrin used in the hydrogels preparation was evaluated by 

matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), 

using a 4700 MALDI-TOF Proteomics Analyser (Applied Biosystems) and a matrix of 2, 5-

dihydroxybenzoic acid. 

 

Cryo-SEM Analysis 

The cryo-scanning electron microscopy (cryo-SEM) analysis of polymerized hydrogels 

was performed using a JEOL JSM 6301F/ Oxford INCA Energy 350 / Gatan Alto 2500, 

15kV, WD 15 mm.  
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Subcutaneous Implantation 

The hydrogels were implanted subcutaneously, by surgery, on the back of mice, each one 

receiving two implants. Mice were anaesthetised by intramuscular injection of a mixture of 

ketamine (Imalgene 1000, Material) and Bompun 2% (Bayer Healthcare), at a 50 mg/Kg 

and 10 mg/Kg dose, respectively. Then, hair was shaved and two small incisions were 

made in the skin, to prepare bilateral subcutaneous pockets along the backbone where 

the hydrogel discs were implanted. Wounds were closed by stitches. The animals used as 

control received no implant. Two animals, each one holding two implants, were used for 

each post-implantation period analysed.  

 

Histological Analysis  

The aspect of the wound and the presence of oedema were observed before extraction of 

the implants. Two animals, each one containing two implants, were sacrificed sequentially 

at 1, 2, 4, 8 and 16 weeks after implantation. The implantations sites were completely 

excised for histological analysis. Samples were fixed in 10% neutral buffered formalin for 

24 h and paraffin-embedded. Sections 4 µm-thick were obtained and used for 

haematoxylin-eosin (H&E), Schiff’s periodic acid (PAS) and Masson’s trichrome stains. 

Slides were examined under a light microscope (Nikon E600) and photographs were 

obtained using a digital camera (Nikon DS-5M). 

 

 

RESULTS 

Dextrin hydrogels developed in our lab were previously described; details on the structure, 

rheology and in vitro biocompatibility has been published elsewhere (Carvalho et al., 

2007; Carvalho et al., 2009a; Garcia et al., 2008). Further characterization is provided in 

this work. The dextrin MALDI-TOF mass spectrum and the chemical structures of dextrin-

VA, dextrin-HEMA and of the corresponding hydrogels are presented in Figure 1.  

 

The dextrin mass spectrum confirms previous results, obtained by Gas Chromatography 

methylation analysis: the polymer has very low molecular weight and high polydispersity. 
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The MALDI-TOF analysis is not quantitative, the lower molecular weight oligomers 

ionizing more easily and consequently giving rise to peaks with higher intensity. However, 

peaks corresponding to a degree of polymerization of 15 are detected, and the average 

degree of polymerization, as evaluated previously, is probably of about 13. This is a 

relevant finding, since the dextrin low molecular weight will probably contribute to the 

efficient clearance of the hydrogel degradation products. 

 

 

 
 

Figure 1- Dextrin MALDI-TOF mass spectra and chemical structure of dextrin substituted with VA or HEMA and 

its structure following polymerization.  
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In both cases, the polymer was functionalized by transesterification with acrylate esters, 

yielding the water-soluble functionalized dextrin-VA or dextrin-HEMA. Gelation is achieved 

through free radical polymerization of the reactive double bonds cross-links, in the 

presence of TEMED and APS. In figure 1 is the schematic representation of the dextrin 

substituted with VA or HEMA as well as their structures after polymerization, based on the 

dextran-HEMA and dextran-VA structures described in previous works (van Dijk-Wolthuis 

et al., 1997; Van Tomme et al., 2006). The ester bonds obtained using VA or HEMA are 

different: the VA cross-links are highly resistant to hydrolysis, while HEMA are 

hydrolysable in an enzyme free system (shown elsewhere Carvalho et al., 2009a).  

 

 

Figure 2- Cryo-SEM analysis of polymerized hydrogels: dextrin-VA and dextrin-HEMA (DS 20%; 300 mg/ml). 

Analysis performed at 15kV, Amp 5000X and 1000X. 

 

Figure 2 reveals the structural pattern of the hydrogels, as obtained by cryo-SEM analysis. 

The dextrin-VA and dextrin-HEMA hydrogels exhibit rather distinct porosities, the former 

being much more compact and less porous, for the same DS (20%) and concentration 
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(300 mg/ml). This is an unexpected finding, since the hydrogels are obtained from dextrin 

with similar DS. However, it must also be remarked that the hydrogels present rather 

distinct mechanical properties (Carvalho et al., 2009a), differences that are also 

noticeable by visual evaluation. 

 

In order to evaluate the biocompatibility of dextrin-based hydrogels and its degradation 

behaviour in vivo, BALB/c mice were implanted subcutaneously with dextrin-VA or dextrin-

HEMA hydrogels. The implanted tissue was removed at different times and histological 

analyses were carried out.  

 

Dextrin–VA is a Non-degradable Hydrogel in vivo 

After 1 week post-implantation, a sub-acute, mild to moderate, focal inflammatory 

response was present on surgical sites, on both controls and implanted animals. Both 

groups showed marked vascular congestion and interstitial oedema, with moderate, mixed 

infiltration of neutrophils, a few macrophages and lymphocytes, together with proliferation 

of fibroblastic and endothelial cells (Figure 3). This was interpreted as a reaction to 

surgical trauma rather than to the implants, since treated and control animals reacted 

identically.  

 

 

 

Figure 3- DS 20 dextrin-VA implant, 1 week post-implantation. The implant (*) is intact (PAS, bar = 50µm). 

 

From 2 to 4 weeks post-implantation, the vascular phenomena decreased in magnitude. 

Macrophages progressively became predominant within the cellular infiltrate and 
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concentrated around the implanted material. Smaller hydrogel particles were often 

observed while surrounded by foamy macrophages, which showed moderate amounts of 

intracytoplasmic PAS-positive hydrogel material. This was more noticeable with DS 20 

hydrogels, possibly because these were softer and more easily fragmented during 

surgery. 

 

 

 

Figure 4- DS 20 dextrin-VA implant, 16 weeks post-implantation. The implant (*) is generally intact. a) Note a ring 

of macrophages around the implant and a few scattered fragments (arrows) in its vicinity. (H&E, bar = 200µm). 

b) Small DS 20 dextrin-VA fragments surrounded by numerous macrophages showing small amounts of 

intracytoplasmic PAS-positive material. (PAS, bar = 50µm). c) The implant (*) is surrounded by a fibrous capsule 

(arrows), showing 5 consecutive measurements (Masson’s trichrome stain, bar = 20µm). 

 

By week 16 post-implantation, the inflammatory reaction had subsided, with only a thin 

macrophagic ring surrounding the implants. While small hydrogel fragments seemed to be 

amenable to phagocytosis, the main bulk of the implants showed no signs of resorption 

(Figures 4a and b). Using Masson’s trichrome stain, a thin fibrous capsule could be 

demonstrated, at 16 weeks post-implantation, around both DS 20 (30.78±1.79µm) and DS 

70 (34.78±2.64µm) implants (Figure 4c).  

 

Dextrin-HEMA is a Degradable Hydrogel in vivo 

After 1 week post-implantation, while control animals showed identical changes to those 

described for dextrin-VA, implanted animals presented a sub-acute, moderate to intense, 

inflammatory response, focused around the implanted material. There was moderate 

vascular congestion and mild interstitial oedema, with moderate to intense, mixed 
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infiltration of neutrophils and less macrophages. Both 150 mg/ml and 300 mg/ml implants 

showed mild signs of resorption, with a few foamy macrophages exhibiting 

intracytoplasmic PAS-positive material (Figure 5). 

 

 

 

Figure 5- 300 mg/ml dextrin-HEMA implant, 1 week post-implantation. The implant is generally intact, however, is 

surrounded by macrophages with PAS-positive material (PAS, bar = 10µm). 

 

From weeks 2 to 4 the number of neutrophils progressively decreased and foamy 

macrophages became largely predominant. At week 4, there were no signs of 

extracellular 150 mg/ml material left, but variably sized accumulations of foamy 

macrophages laden with PAS-positive material were present, forming a subdermal band 

(Figures 6a and b). Fragments of the 300 mg/ml implants were still partially visible (Figure 

6c). By week 8 post-implantation, both groups already showed complete implant 

resorption and neither group presented any signs of capsule formation or, indeed, of 

fibrosis associated with the implants (data not shown). 
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Figure 6- 150 mg/ml (a and b) or 300 mg/ml (c) dextrin-HEMA implant, 4 weeks post-implantation. a) There are no 

visible extracellular fragments of the implant. Numerous macrophages containing abundant intracellular PAS-

positive material form a subdermal band located at the implantation site (PAS, bar = 200µm). b) Variably 

abundant, intracytoplasmic, globular, PAS-positive material is present in macrophages (PAS, bar = 10µm). c) 

Large, extracellular implant fragments remain in the deep dermis, surrounded by a thick macrophagic ring (PAS, 

bar = 200µm). 

 

DISCUSSION 

Hydrogels may be used implanted or otherwise in touch with body fluids and tissues, to 

assist or substitute the function of organs and tissues. Therefore, the characterization of 

the interaction with the living organism is of paramount importance. In spite of dextrin 

being a biodegradable polymer, the degradation profile of a polymeric material could be 

affected by its chemical modification and also by the degree of substitution (Hreczuk-Hirst 

et al., 2001; Vercauteren et al., 1990). Therefore, the evaluation of its toxicity and 

degradation behavior in vivo was analysed in this work. The results from cryo-SEM 

showed that, although both hydrogel are made of dextrin, the structures of the 

polymerized hydrogels depended deeply of the molecule used to functionalize it. As 

showed in Figure 2 the dextrin-VA have smaller porous than dextrin-HEMA for the same 

DS (20%) and concentration (300 mg/ml).  

 

The results obtained with dextrin-VA hydrogels indicate its apparent non-degradability in 

vivo, irrespective of the DS of the polymer used. Previous results showed that in vitro the 

degradation of the dextrin–VA hydrogels in phosphate saline buffer is very slow. Still, the 

hydrogel could be rendered degradable, through the incorporation of amylase; indeed, 

this approach proved to be an effective route to modulated the gel degradation and 
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release of entrapped molecules (Carvalho et al., 2009b). It could thus be expected that α-

amylase present in vivo could promote the hydrogel hydrolysis. However, a significant 

degradation was not observed for the dextrin-VA hydrogels used in the time frame 

analysed. This indicates that the hydrogels do not undergo enzymatic degradation in vivo, 

as described for dextran-MA (methacrylated) hydrogels (Cadée et al., 2000). In the vicinity 

of the implanted DS 20 hydrogel, macrophages positively stained with PAS were 

observed. However, the bulk material remained intact. This suggests that, while the 

smaller hydrogel fragments (probably resulting from mechanical fragmentation during 

implantation) could be reabsorbed, the hydrogel is basically non-degradable. As a matter 

of fact, similar findings were described for dextran-base hydrogels (Cadée et al., 2000; De 

Groot et al., 2001). 

 

Regarding the dextrin-VA DS 70 hydrogel, although several paraffin section were 

observed, the implanted material was always lost during the preparation, due to its high 

stiffness. The use of a harder inclusion medium would be necessary to allow a proper 

sectioning of the highly substituted, very hard material. Nevertheless, as a fibrous capsule 

could be observed, this allowed the identification of the implant site (data not shown). 

Indeed, the formation of fibrous capsules was observed to occur using either of the 

dextrin-VA hydrogels. However, following the sub-acute focal response due to the surgical 

procedure, the inflammatory response decreased all along the time course of the 

experiment. By 16 weeks after placing the implant only a thin macrophagic ring 

surrounding the implants was observed, together with the fibrous capsule. Since the 

material did not induced detectable necrosis, immunotoxicity, and damage to muscle 

tissue, it can be assumed that dextrin-VA hydrogels presented biocompatible behaviour in 

vivo (Rihova, 1996). 

 

The other hydrogel used, dextrin-HEMA, was previously shown to be degradable in vitro, 

in PBS, its degradability rate depending on the polymer’s DS (Carvalho et al., 2009a). The 

dextrin-HEMA degradation observed in vivo was therefore expected. The histological 

analysis showed that at 1 week post-implantation, besides the inflammatory response 

resulting from implantation, it was also possible to observe macrophages positively 

stained with PAS, indicating that resorption occurred. The resorption process increased 

during the time course of the experiment, until the complete degradation of the hydrogels 

was accomplished by 4 weeks pos-implantation, for the 150 mg/ml hydrogels. The 

hydrogel with higher concentration (300 mg/ml) required more time for complete 
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resorption. Similarly to dextrin-VA, the dextrin-HEMA hydrogels presented biocompatible 

behaviour. Moreover these findings also showed that its degradation rate could be 

controlled through selection of the polymer concentration. 

 

 

CONCLUSION 

Work currently ongoing in our lab explores the potential of the dextrin hydrogels as 

delivery systems and tissue engineering scaffolds. Carvalho et al. showed that, in vitro, 

dextrin-hydrogels effectively operate as a protein depot, the release being controlled 

through the use of amylase, selection of the polymer concentration and DS (Carvalho et 

al., 2009a). Furthermore, it was also shown that these hydrogels may be easily 

functionalized, using recombinant proteins containing a starch binding module fused with 

bioactive molecules, in order to improve cell adhesion and spreading (Moreira et al., 

2008). In this work two dextrin-hydrogels were subcutaneously implanted in mice; both 

presented biocompatible behaviour in vivo, since none induced necrosis, immunotoxicity, 

or damage to muscle tissue. 

 

The degradation rate of the biomaterial is an important issue depending on its application. 

While in some applications, such as a pacemaker or breast implants, maintenance of the 

physical integrity and mechanical properties are required, in other, such as surgical 

suture, rapid biodegradability is required. The control of the rate and extent of 

degradability of a biomaterial is therefore critical for its assigned function. Here we 

presented two biocompatible hydrogels that can be used in different applications once 

their degradation profile can be controlled by selecting the acrylate ester used in the 

dextrin functionalization, the polymer DS and its concentration. Based on the results 

obtained, may be speculated that dextrin hydrogel with mixed reticulation chemistry, either 

HEMA or VA, in different proportions, may be used to fine-tune the degradation rate. 
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 Chapter 5 

 

BC nanofibres: in vitro study of genotoxicity and cell 

proliferation 

 

Results published on Toxicology Letters 

Moreira, S., Silva, N., Almeida-Lima, J., Rocha, H., Medeiros, S., Alves, C., Gama, M., 2009. BC nanofibres: 

in vitro study of genotoxicity and cell proliferation. Toxicology Letters 189, 235–241 

 

 

ABSTRACT  

Nanomaterials have unusual properties not found in the bulk materials, which can be exploited in numerous 

applications such as biosensing, electronics, scaffolds for tissue engineering, diagnostics and drug delivery. 

However, research in the past few years has turned up a range of potential health hazards, which has given 

birth to the new discipline of nanotoxicology. Bacterial cellulose (BC) is a promising material for biomedical 

applications, namely due to its biocompatibility. Although BC has been shown not to be cytotoxic or genotoxic, 

the properties of isolated BC nanofibres (NFs) on cells and tissues has never been analysed. Considering the 

toxicity associated to other fibre-shaped nanoparticles, it seems crucial to evaluate the toxicity associated to 

the BC-NFs.  

In this work, nanofibres were produced from bacterial cellulose by a combination of acid and ultrasonic 

treatment. The genotoxicity of nanofibres from bacterial cellulose was analysed in vitro, using techniques 

previously demonstrated to detect the genotoxicity of fibrous nanoparticles. The results from single cell gel 

electrophoresis (also known as comet assay) and the Salmonella reversion assays showed that NFs are not 

genotoxic under the conditions tested. A proliferation assay using fibroblasts and CHO cells reveals a slight 

reduction in the proliferation rate, although no modification in the cell morphology is observed. 
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INTRODUCTION 

The development of artificial materials with biomimetic behavior is essential for tissue 

engineering purposes. Scaffolds based on nanofibres mimic the natural extracellular 

matrix and its nanoscale fibrous structure. Several approaches have been described in 

order to achieve materials based on nanofibres from synthetic or natural polymers 

(Ashammakhi et al., 2007; Ma et al., 2005). 

 

Bacterial cellulose (BC), secreted by Gluconacetobacter xylinus, has been presented as a 

biocompatible scaffold for the engineering of cartilage and blood vessels, wound dressing, 

guided tissue regeneration, among other applications (Andrade et al., 2008; Astley et al., 

2003; Backdahl et al., 2008; Czaja et al., 2007; Entcheva et al., 2004; Maneerung et al., 

2008; Rambo et al., 2008; Svensson et al., 2005; Tabuchi and Baba, 2005; Teeri et al., 

2007). BC has unique characteristics including high purity, high crystallinity and 

remarkable mechanical properties, due to the uniform ultrafine-fiber network structure, the 

high planar orientation of the ribbon-like fibres when compressed into sheets, the good 

chemical stability, and the high water holding capacity (Svensson et al., 2005). Several 

materials based on bacterial cellulose, recognized as non genotoxic and non cytotoxic, 

have been commercialized (Jonas and Farah, 1998; Schmitt et al., 1991).  

 

Since nanomaterials have unusual properties, not found in the bulk material, such as high 

surface reactivity and ability to cross cell membranes, concerns about their safety and 

toxicology have emerged. The impact of nanostructural features in the interaction of a 

material with cells and tissues is dependent on the size, chemical composition, surface 

structure, solubility, shape, and on the supramolecular structural organization (Barnes et 

al., 2008). A major concern with fibres is their carcinogenic potential. There is sufficient 

evidence that all forms of asbestos (generic term for a group of six naturally occurring 

fibrous silicate minerals) are carcinogenic and co-carcinogen to man (Dopp et al., 2005; 

Speit, 2002). Moreover, recent studies described the toxicity of materials associated to 

size or shape; namely, the toxicity of carbon nanotubes (Donaldson et al., 2006; Poland et 

al., 2008) and the size-dependence toxicity of gold or ferric oxide nanoparticles was 

reported (Backdahl et al., 2008; Pan et al., 2007; Wang et al., 2009).  

 

The toxicity associated with inhaled fibres such as asbestos has been described. Inhaled 

fibres may be toxic, particularly when they are "long, thin and durable" (Donaldson et al., 
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2006). Asbestos fibres are dangerous because the fibres split lengthwise, producing thin 

fibres that can enter the lungs, being "moderately durable" once there (Speit, 2002). 

Although cellulose fibres, from wood pulp and textile fabric, are used without "significant 

concern", cellulose fibres share similar features with asbestos, including the needle-like 

shape and biopersistence. Moreover, the inflammatory responses of respirable cellulose 

fibres (wood pulp) using animal models were already reported (Cullen et al., 2000). In light 

of these results, it seems crucial to evaluate the toxicity of the BC nanofibres. It must be 

remarked that, although BC cannot be enzymatically degraded in the human body, the 

inflammatory processes may actually degrade cellulose to some extent. Given the current 

focus of BC as a promising biomaterial with a variety of applications, it is relevant to 

evaluate not only the toxicity of BC membranes or scaffolds, but also of its degradation 

products, including BC nanofibres. 

 

Indeed, although in vivo studies demonstrate the BC biocompatibility (Helenius et al., 

2006), and lack of mutagenicity (Schmitt et al., 1991), no reports are available on the BC 

nanofibres toxicity. Although BC is not expected to be degraded in vivo, safety concerns 

makes this study mandatory. It is well accepted that in vitro studies using cell systems are 

valuable tools to clarify the cellular mechanisms involved in genototoxic effects, including 

DNA damage (Dusinská et al., 2004 ; Speit, 2002). Therefore, the aim of this study is to 

evaluate the genotoxicity of cellulose nanofibres at cellular level using the single cell gel 

electrophoresis and the Salmonella reversion assays. The cell proliferation in the 

presence of nanofibres was also evaluated. These tests are useful as a screening tool for 

setting priorities because they are an inexpensive and a quick way to help single out 

substances that should be targeted for further testing. Furthermore, these assays were 

already used to demonstrate the genotoxic effect of asbestos fibres in mammalian cells in 

vitro (Dusinská et al., 2004 ; Speit, 2002). 
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MATERIALS and METHODS 

Bacterial strain, cells and culture medium 

The cellulose was produced by Gluconacetobacter xylinus (ATCC 53582), purchased 

from the American Type Culture Collection, grown statically in Hestrin-Schramm medium 

(Hestrin and Schramm, 1954), pH 5 at 30ºC, during 5 days.  

In the Salmonella reversion assay, four strains of Salmonella tryphimurium (Dr. B. N. 

Ames, Biochemistry Department, University of California, Berkeley, USA) were used, 

namely, TA97a [his D6610, rfa, Δ uvrB, bio-, pKM101 (ApR)], TA98 [his D3052, rfa, Δ uvrB, 

bio-, pKM101 (ApR)], TA100 [his G46, rfa, Δ uvrB, bio-, pKM101 (ApR)], and TA102 [his 

D428, rfa, pKM101 (ApR), pQA1 (TtR)] (Levin et al., 1982; Maron and Ames, 1983).  

 

The proliferation assays were performed using mouse embryo fibroblasts 3T3 (ATCC 

CCL-164), grown in Dulbecco’s modified Eagle’s media (DMEM) supplemented with 10% 

newborn calf serum (Invitrogen), and Chinese Hamster Ovary (CHO), grown in DMEM 

media supplemented with 10% fetal bovine serum (Invitrogen), both culture medium were 

supplemented with penicillin/streptomycin (1 µg/ml) (Sigma-Aldrich, St. Louis, USA) and 

the incubation was at 37ºC, in a fully modified air containing 5% CO2. The same 

conditions were used to grow CHO cells for comet assay. The cell viability was assessed 

using the MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide) assay, 

obtained from Invitrogen. 

 

Production of BC nanofibres  

The production of bacterial cellulose (BC) was performed by growing G. xylinus in Hestrin-

Schramm medium, pH 5. After inoculation, the culture (100 ml) was incubated, first with 

agitation during 8 h, and then statically at 30ºC, for 5-7 days. BC pellicles were purified in 

a 4% NaOH solution at 70ºC, for 90 min. BC was then neutralised by thoroughly washing 

with water. Finally, BC pellicles were lyophilised prior to use.  

 

The nanofibres production, by acidic and/or ultrasonic treatment, was based on previous 

works (Roman and Winter, 2004; Zhao et al., 2007). The acid hydrolysis was performed 

as follows: 20 mg of dry BC was sliced in small pieces and 2 ml of 50% H2SO4 (v/v) was 
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added. The mixture was kept at 40ºC, for 2 h with vigorous stirring. To stop the hydrolysis, 

10 ml of cold water was added and the cellulose was recovered by filtration, using a 

membrane with a 0.45 µm pore size. Then, the cellulose was washed out with 20 ml of 

water and the recovered pellet was resuspended in 10 ml of water. This suspension was 

treated by sonication at 40 W (Branson Ultrasonic Disruptor, Sonifier II/W450) for 10 min 

(samples were maintained on ice during sonication). Then, the NFs suspension was 

centrifuged (1 h, 15000 rpm), and the pellet resuspended in water and sonicated again, in 

the same condition, for another 10 min. The yield of the process was evaluated by 

quantifying the total sugar in the samples, using the phenol-sulphuric method (Dubois et 

al., 1956). 

 

TEM analysis 

The NFs obtained were stained with uranyl acetate and analysed by transmission 

electronic microscopy (TEM, Zeiss 902A Orius SC 1000; 50kV). 

 

Evaluation of cellulose nanofibres mutagenicity by Salmonella reversion assay 

Four Salmonella tryphimurium strains were used to study the potential mutagenicity effect 

of the cellulosic NFs. The procedure was to some extent modified from the original 

description by Kado et al. (1986). This assay was performed in miscrosuspension with or 

without S9 mixture (MoltoxTM, North Carolina, USA), using 0.1, 0.5 or 1.0 mg/ml of NFs 

suspension. The negative control was distilled water, and the positive controls employed 

were: 0.1 µg/plate 4NQO (4-Nitroquinoline 1-oxide) for the TA97a and TA98 strains; 5.0 

µg/plate sodium azide for the TA100 strain; and 0.5 µg/plate mytomicyn C for the TA102 

strain. Briefly, 105 µl of a mixture containing the NFs suspension and cell suspension (109 

cells/ml) were incubated at 37ºC for 90 min. Then, 2.5 ml of molten Top agar (0.6% bacto-

agar and 0.5% NaCl) was added, before plating in a Petri dish containing minimal agar 

(1.5% agar, Vogel-Bonner E medium). The His+ revertant colonies were counted after 72 

h of incubation at 37ºC. All experiments were repeated at least three times with three 

replicas. The mutagenicity of cellulose NFs was evaluated according to the following 

parameters: the maximum number of revertants in the presence of the NFs should be 2-

fold or more relative to the negative control; a dose-dependent increase in the number of 

revertants should be observed (Mortelmans and Zeiger, 2000). 
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Proliferation assays 

The proliferation assays were performed in vitro as follows: 1 ml of the CHO or mouse 

embryo fibroblast 3T3 cell suspension (104 cells/ml) was seeded in a 24-well polystyrene 

plate (TPP, Switzerland). The cells were allowed to adhere for 4 h. Before the addition of 

cellulose NFs, the medium with non-adherent cells was removed and the NFs containing 

medium (to a final concentration of: 1, 0.5 or 0.1 mg/ml) was added. A control without NFs 

was carried out. The cellular growth at 0, 24, 48 and 72 h of incubation was evaluated by 

MTT assay, a colorimetric test that gives a measure of the mitochondrial activity. The 

effect of NFs on the cell morphology was evaluated by microscopic observation (Nikon 

Eclipse TE300 Inverted Microscope). 

 

Evaluation of cellulose nanofibres genotoxicity by single cell gel assay (comet 

assay) 

The DNA integrity was evaluated by alkaline single cell gel assay (also kwon as comet 

assay) using CHO cells grown in the presence of different NFs concentration. 

In this assay, 2 ml of CHO cell suspension (105 cells/ml) were seeded on a 6-well 

polystyrene plate (TPP, Switzerland). After 16 h, the medium was refreshed with medium 

containing the NFs (0.1, 0.5 or 1 mg/ml). Cells were incubated with NFs suspension 

during 48 h. Hydrogen peroxide (100 mM) and water were used as positive and negative 

controls, respectively. The alkaline comet assay was performed as described by Singh 

(Singh et al., 1988). Briefly, cells were trypsinized from 6-well polystyrene plate, and 

resuspended in 50 µl of medium. The cell viability was determined in a Neubauer counting 

chamber using the trypan blue exclusion test. A volume of 10 µl of the cellular suspension 

were embedded in 0.5% low-melting-point agarose and plated on agarose-coated 

microscope slide. Then, the slides with cells were treated with lysis solution (2.5 M NaOH, 

0.1 M EDTA, 0.010 M Tris, 1% Triton X-100, 10% DMSO, adjusted to pH 10) for 12 hours 

at 4ºC, rinsed with distilled water, and placed in the electrophoresis buffer (0.3 M NaHO, 

pH 13 and 0.001 M EDTA), for 20 min to allow DNA unwinding. Following electrophoresis 

(30 min, at 25 V and 300 mA), the slides were neutralized with 0.4 M Tris buffer (pH 7.5) 

and stained with ethidium bromide (20 mg/ml). The slides were analysed through 

fluorescence microscopy (Nikon Eclipse TE300 microscope equipped with a Nikon E600 

camera, 0.488 microns/pixel). At least 300 cells per condition tested were analysed.  
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The DNA damages were evaluated by image analysis using the ‘‘Comet Assay IV version 

4.2” image analysis system. Data collected from each cell included tail length (TL), tail 

migration (TMi), percent tail DNA (TI), and tail moment (TM), which correspond to the 

product of the comet length and the amount of DNA in the tail (Olive and Durand, 1992). 

 

Statistic analysis  

The One-way Analysis of Variance (ANOVA) was applied to statistics evaluation of the 

comet scores and to the proliferation assays results. The post-test Tukey-Kramer Multiple 

Comparisons test was used to compare the scores of the samples and positive control 

(PC). The analyses were performed using GraphPad Prism 3.05. 

 

RESULTS and DISCUSSION 

Production of BC nanofibres 

G. xylinum synthesizes cellulose nanofibres with 40–50 nm width (the bacterial cellulose 

ribbons), which assemble in a static culture as a white gelatinous material (pellicle) on the 

surface of the culture liquid. The native cellulose consists of sets of parallel chains of β-

1,4-D-glucopyranose units interlinked by intermolecular hydrogen bonds (Czaja et al., 

2007). Several works describe the production of nanofibres from different cellulosic 

sources, using acid hydrolysis (Araki et al., 1999; Roman and Winter, 2004) or mechanic 

treatment (Zhao et al., 2007). These two approaches were used in order to extract NFs 

from BC. The acid hydrolysis was tested using a range of acid concentrations, 

temperatures and treatment time. Concentrations of H2SO4 superior to 50% resulted in 

extensive hydrolysis, yielding less than 20% of the material used (data not shown). The 

acid concentration is in fact the critical parameter in the acid hydrolysis approach. The use 

50 % H2SO4, for 2 h at 40ºC, yielded 50% of nanofibres. According to Zhao et al. (2007), 

sonication can also be successfully used to extract NFs from natural materials, including 

cellulose from wood, cotton, bamboo. This approach was also applied to BC. Using acid 

hydrolysis (50% H2SO4, 2 h, 40ºC) and sonication (20 min, 40 W), needle shaped 

cellulose NFs with 50-1500 nm length and 3-5 nm width, were obtained (figure 1).  
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Figure 1 - TEM image of cellulose nanofibres (50kV; Zeiss 902A Orius SC 1000). 

 

Evaluation of cellulose nanofibres mutagenicity by Salmonella reversion assay 

The purpose of the bacterial reverse mutation assay is to evaluate the mutagenicity of the 

cellulose NFs, by measuring its ability to induce reverse mutations at selected loci, in 

several bacterial strains. Having into account that mutations are essential for cancer 

formation, the reliable characterization of mutagenicity is mandatory, while characterizing 

the safety of a biomaterial.  The Kado test (Kado et al., 1983) is a modification with 

improved sensitivity of the Ames test (Ames et al., 1972). This is a simple, quick and 

inexpensive mutagenicity test, required for safety testing of a variety of compounds, 

including drugs, medical devices, food additives, industrial chemicals and pesticides 

(McCann et al., 1975). Furthermore, the potential mutagenicity of BC and of some its 
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derivates were already accessed using the Ames assay (Schmitt et al., 1991), therefore it 

was selected as a first approach in this work to investigate the possible mutagenicity of 

the cellulose NFs. The strains used were specially constructed to allow detection of 

mutagens acting via different mechanisms, namely frameshift mutations (TA97a and TA98 

strains), base-pair substitution mutations (TA100 and TA102), detection of oxidative and 

alkylating mutagens and active forms of oxygen (TA102) (Hakura et al., 2005). Table 1 

presents the results obtained with the different strains.  

 

Table 1 - Results obtained in Salmonella reversion assay. 

 Revertant colonies/plate ±  SD (without S9) Revertant colonies/plate ±  SD (with S9) 

Strain TA97a TA98 TA100 TA102 TA97a TA98 TA100 TA102 

PC 540±54 389±17 1531±183 1026±36 191±21 195±76 485±14 2356±196 

NC 143±17 36±6 228±18 350±27 93±8 16±4 82±44 958±20 

0.1 124±6 31±6 235±9 327±12 93±4 20±1 133±7 691±61 

0.5 132±14 43±2 220±2 327±13 91±10 20±1 112±14 656±35 

1.0 147±12 42±4 225±7 333±18 108±7 26±4 112±33 859±109 

PC: positive control: 0.1 µg/plate of 4NQO to TA97a and TA98, 5.0 µg/plate sodium azide to TA100 and 0.5 

µg/plate mytomicyn C to TA102; NC: negative control: H2O; SD: standard deviation. 

 

The reversion of the histidine phenotype in Salmonella strains is often adopted as a 

criteria for the classification of molecules as mutagenic. The results obtained in the 

presence of the cellulose NFs, without S9 mixture, correspond to the spontaneous 

reversion for each strain and are similar to those obtained to negative control (table 1). In 

the presence of S9 mixture, an increase of revertant colonies per plate, for the TA98 and 

TA100 strains, is detected as compared with control; however, the increases was in each 

case < 2-fold and does not appear to be dose-related. The results suggest that, under the 

conditions tested, the cellulose NFs do not present mutagenic behaviour, as described 

previously for BC and some fibrous BC-based materials (Schmitt et al., 1991).  
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In vitro proliferation assay 

The cellular morphology and proliferation may be affected by the presence of 

nanostructural patterns. Several studies analysed the proliferation of different cell lines on 

BC membranes, confirming its non-toxicity and applicability as scaffold for cell 

proliferation. However, depending on the cells used, the effect of the biomaterial on the 

proliferation rate and the cell morphology may be quite different (Sanchavanakit et al., 

2006). Several studies showed that the cytotoxicity of a nanomaterial is many times cell-

specific (Cullen et al., 2002). Recently, De Nicola et al. (2007) reported that, although 

carbon nanotubes do not present cytotoxic effect on human leukemic U937 cells, the 

proliferation rate is deeply altered. Moreover, Bottini et al. (2006) showed that the same 

nanotubes refereed above induce apoptosis in T lymphocytic cells, suggesting that 

cytotoxicity may be cell-specific. In addition, it has been reported that asbestos fibres 

inhibits the growth of CHO cells (Speit, 2002), and yet the same fibres stimulate the 

proliferation of different kinds of cells, in vitro, including fibroblasts (Bernstein et al., 2005). 

Taking in consideration the evidence of contradictory, cell-specific effects arising from the 

interaction cell-biomaterial, the evaluation of the NFs effect on proliferative rate was 

performed both with CHO cells and fibroblasts. In both cases, the proliferation was about 

15-20% lower in the presence of NFs, after 72 h of cell culture, irrespective of the 

concentration used (Figure 2). The lower proliferation rate may stem from the insolubility 

of NFs and their slow deposition on the polystyrene plate. It is known that cell proliferation 

is dependent on characteristics of material surface, such as its roughness. In addition, it 

was also described that cell proliferation on BC membrane is slower than on the cell 

culture plate (Backdahl et al., 2006). However, the microscopic observations did not 

reveal differences in the cellular morphology. 
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Figure 2 – MTT results from proliferation assays using mouse embryonic fibroblast 3T3 and CHO (mean ± SD; 

**P < 0.05; ***P < 0.005). Image obtained by optical microscopy of fibroblasts grown in the presence of cellulose 

NFs during 72 h. Scale bar = 20 µm. 

 

Evaluation of cellulose nanofibres genotoxicity by comet assay 

The genotoxicity of a material may be measured by analysing the damages caused on 

DNA. The comet assay is based on the ability of negatively charged loops/fragments of 

DNA to be drawn through an agarose gel, in response to an electric field. The extent of 

DNA migration depends directly on the DNA damage present in the cells (Collins et al., 

2008). The advantages of the comet assay, relative to other genotoxicity tests, include its 

high sensitivity for detecting low levels of both single and double stranded breaks in 

damaged DNA, the requirement for small numbers of cells per sample, flexibility, low cost, 

and ease of application (Collins et al., 1997; Collins et al., 2008). Moreover, the comet 

assay is arguably one of the most widely available tests used for genotoxicity, being 

already described as a reproducible assay to evaluate nanoparticles genotoxicity (Collins 
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et al., 1997), and suggested as a diagnostic tool for clinical management of cancer 

(Collins et al., 2008). The nanomaterial’s genotoxicity may result from a direct interaction 

with DNA, or from an indirect response caused by several factors, including surface stress 

through direct particle influences on DNA, the release of toxic ions from soluble 

nanoparticles, or generation of oxidative stress (Donaldson et al., 2006). It has been 

proposed that (oxidative) DNA damage plus structural and numerical chromosome 

aberrations are the most sensitive genetic endpoints for detection of asbestos-induced 

genotoxicity detectable by in vitro assay.  The comet assay has indeed proven to be a 

sensitive test to detect genotoxic effects of asbestos fibres in mammalian cell in vitro 

(Dusinská et al., 2004; Speit, 2002). Therefore, cells grown in NFs – containing medium 

were analysed by the comet assay, in order to evaluate their genotoxicity. Cells grown on 

bacterial cellulose membrane were also tested as a control. 

 

The DNA damages were evaluated by visual scoring and image analysis. Figure 3 shows 

a representative image obtained for each NFs concentration tested (0.1, 0.5, 1.0 mg/ml), 

negative and positive control (NC, PC) and the results obtained from the visual score. The 

results show that the DNA damages in the presence of NFs are similar to the negative 

control for each NFs concentration used. Around 95 % of cells present comet class 0 and 

1, corresponding to no or insignificant DNA damage. The cell percentage showing comet 

class 2, 3 and 4 under different conditions are in the graphics of figure 3, and represent 

around 5 % of cell. Similar results were obtained with the cells grown on BC membranes 

(comet class 2: 4.7±3.72; comet class 3: 1.3±2.31, and comet class 4: 1.3±1.53). 
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Figure 3 – Fluorescent microscopy images of ethidium bromide stained DNA and results from visual scoring in 

the comet assay. NC: negative control (H2O); PC: positive control (H2O2); 0.1–1.0 NFs concentration in mg/ml. 

The images were scored and classified into five classes and given a value according to tail intensity, from 0 (no 

tail) to 4 (almost all DNA in the tail). Scale bar = 50 µm.  

 

Regarding the comet parameters obtained from image analyses (table 2), tail length (TL), 

tail % DNA (TI), tail moment (TM) and tail migration (TMi), the NFs did not induce DNA 

damages under the concentrations tested, since the negative control and samples with 

NFs presented similar results, significantly (TL, TM, TI, TMi, P< 0.001) lower than the 

positive control. The same results were obtained for the cells grown on surface of BC 
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membrane (data not shown); in fact, our results confirmed the previous reports describing 

the non genotoxicity of BC (Schmitt et al., 1991). 

Table 2 – Results from images analysis using the Comet Assay IV software (mean ± SD).  

 

PC: positive control (H2O2); NC: negative control (H2O); 0.1–1.0 NFs concentration in mg/ml *** P < 0.001. 

 

Taking together the results from visual scoring and image analysis, it may be concluded 

that the cellulose NFs do not present genotoxicity, under the tested conditions. Since 

alkaline comet assay allows for detection of DNA strand breaks, cross-links and alkali-labil 

sites induced by a series of physical and chemical agents it may be concluded that NFs 

do not induce those damages in DNA. 

 

CONCLUSION 

This work presents the first evaluation of the potential genotoxicity of nanofibres extracted 

from bacterial cellulose. Regarding the results of Salmonella reversion and comet assays, 

cellulose NFs did not present genotoxicity under the conditions tested, as already 

described for bacterial cellulose membrane. The cell culture systems have been shown to 

be valuable tools in fibre genotoxicity testing. Unlike in vivo studies, secondary 

inflammatory effects do not affect in vitro findings. Induction of DNA damages has been 

demonstrated for various types of asbestos fibres in several cell systems including CHO 

cell lines, which was not observed for BC nanofibres. Nevertheless, further studies must 

be performed in order to comprehensively characterize the toxicology of cellulose-based 

materials, since small modification in the material could result in drastic changes in cell-

Sample Tail Length (µm) Tail DNA (%) Tail Moment Tail Migration 

0.1 17.78 ± 1.73 6.26 ± 1.20 0.66 ± 0.17 2.11 ± 0.82 

0.5 21.25 ± 4.99 6.99 ± 3.48 1.03 ± 0.94 4.82 ± 4.25 

1.0 15.88 ± 1.44 6.16 ± 1.78 0.71 ± 0.23 1.59 ± 0.55 

NC 19.69 ± 3.31 6.88 ± 1.84 1.09 ± 0.67 3.94 ± 2.53 

PC 101.36 ± 35.11*** 49.06 ± 14.51*** 25.42 ± 14.38*** 83.11 ± 35.13*** 
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material interactions. Work in progress includes the interaction of BC nanofibres with 

macrophages and in vivo assays. 
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Chapter 6 

 

Final remarks and Perspectives 

 

A CBM from the human protein laforin was cloned and expressed in different E. coli 

expression systems (pET25b, pET29a and pGEXT4-1). The attempts to produce the 

soluble and functional protein were unsuccessful. The solubilization and refolding of 

inclusion bodies proved to be an efficient approach to produce the functional protein, with 

starch and glycogen affinity. This is the first report of cloning this human CBM, through IB 

solubilization and refolding. Nevertheless, further purification using starch affinity may be 

necessary to provide the separation of the functional protein. This purification step may be 

important to solve the 3D structure, by crystallography. In addition, future work includes in 

vitro tests to evaluate the effect of the recombinant human CBM-RGD on the interaction of 

cells with activated biomaterials. Regarding the results obtained with recombinant protein 

containing a bacterial SBM fused to a RGD, it may be concluded that CBM may be 

effectively used to functionalize dextrin hydrogels. Furthermore, recombinant proteins can 

be purified using starch, a non-expensive material. Although the enhancement of cell 

adhesion and spreading was observed, cell proliferation was not improved under the 

conditions tested. Therefore, in future work, different conditions (such RGD 

concentrations) may be optimized. In addition, several other small peptides could be fused 

to the SBM in order to obtain materials with different bioactivities. 

 

Dextrin is a very promising biomaterial and, surprisingly, it is rather unexploited. The DEB-

UM group is one of the few in the world currently developing dextrin-based biomaterials. 

The work presented under the scope of this thesis contributes to the characterization of 

dextrin hydrogels, namely the study of the in vivo biocompatibility and degradability of 

subcutaneous implants in mice. Dextrin-hydrogels presented different degradability 

behavior, depending on the molecule used in the cross-linking and on the DS of the 

polymer. Dextrin-VA is non-degradable hydrogel in vivo, irrespective of the DS, as 

described in vitro study. On the other hand, dextrin-HEMA hydrogel is a degradable 
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material and the degradability rate depends on its concentration. Despite the degradability 

differences, results strongly suggest that both dextrin hydrogels are fully biocompatible. 

The results also suggest that a hydrogel with controlled degradation rate may be obtained 

using different mixtures of dextrin-VA and dextrin-HEMA. This approach will be studied in 

a future work. These hydrogels can also be exploited as drug delivery systems through 

the incorporation of dextrin nanogels (already developed at DEB-UM), obtained by self-

assembling. The nanogels allow the solubilization of poorly water soluble pharmaceuticals 

and therapeutic proteins, thus provide a smart and simple controlled delivery system.  

 

Bacterial cellulose, like dextrin, is another very promising biomaterial. Although usually 

recognized as biocompatible, no information is available regarding BC nanofibres. The 

results from comet assay and Salmonella reversion assay show that BC-NFs do not 

present genotoxicity under the conditions tested. Moreover, the results from cell 

proliferation assay also confirmed their non-toxicity. In vivo assays, to be carried out in the 

future, will provide further information about their interaction with tissues, in particular 

whether NFs trigger acute and chronic inflammatory responses.  

 

The following main results from this work are thus highlighted: 

- The use of CBMs as a tool to coat biomaterials made of polysaccharides with 

bioactive peptides was demonstrated to be an effective and simple approach to 

functionalize the biomaterials 

- The CBM from the human protein laforin was expressed and isolated in functional 

form for the first time, making possible structural studies for the elucidation of 

mechanistic aspects of this uncommon CBM 

- Dextrins hydrogels, confirming previous work from our lab, exhibit excellent 

biocompatibility, as demonstrated by in vivo results.  

- Biocompatibility aspects of the BC nanofibres are studied for the first time in this 

project. The possible toxic effects related to its needle shape (shared with 

asbestos nanofibres) are not confirmed, thus reinforcing the general view of BC as 

a highly biocompatible biomaterial.  
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