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This paper presents an algorithm for solving global optimization problems with bounded
variables. The algorithm is a modification of the electromagnetism-like mechanism proposed
by Birbil and Fang [J. of Global Optimization 25 (2003), pp. 263-282]. The differences are
mainly on the local search procedure and on the force vector used to move each point in the
population. Several widely used benchmark problems were solved in a performance evaluation
of the new algorithm when compared with the original one. A comparison with other stochastic
methods is also included. The algorithm seems appropriate for large dimension problems.
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AMS Subject Classification: 90C30; 90C56

1. Introduction

In this paper, we consider the problem of finding a global solution of a nonlinear
optimization problem with box constraints in the following form:

minimize f(x)
subject to x ∈ Ω,

(1)

where f : Rn → R is a nonlinear function and Ω = {x ∈ Rn : −∞ < lk ≤ xk ≤
uk < ∞, k = 1, . . . , n} is a bounded feasible region. We assume that the objective
function f is not convex and may possess many local minima in the set Ω. This
class of global optimization problems is very important and frequently encountered
in engineering applications.

In the last decades, many algorithms have been proposed to solve problem (1).
Probably the most extensively used in practice for moderate and large-dimensional
problems are stochastic-type algorithms. For low-dimensional problems, the de-
terministic procedures may have the advantage of guaranteed convergence. The
stochastic methods can be classified in two main categories, namely, the point-
to-point search strategies and the population-based search techniques. From the
population-based techniques, we would like to emphasize two particular algorithms,
the electromagnetism-like mechanism [3] and the particle swarm optimization
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(PSO) [12], since they are easy to implement and computationally inexpensive
in terms of memory requirement.

In this paper, we are interested in the electromagnetism-like (EM) algorithm
proposed in [3]. This algorithm simulates the electromagnetism theory of physics by
considering each point in the population as an electrical charge. The method uses an
attraction-repulsion mechanism to move a population of points towards optimality.
The original algorithm also incorporates a simple random local search procedure
that is applied coordinate by coordinate to a selected point in the population [2, 3].
Each point is moved according to a vector that reflects the objective function value
of the corresponding point relative to the other points in the population, therein
denoted by the total force exerted on that particular point. Without imposing
any type of smoothness on f(x), asymptotic convergence is proved for a modified
version of the original EM [4].

In order to improve its search ability and efficiency and to extend to larger dimen-
sion size problems, two modifications are introduced in the original EM algorithm.
First, to gather information about a particular point, the random local search is re-
placed by a pattern search method [13, 17] with guaranteed convergence. Previous
work, related with this issue [15], tested this combination, herein denoted as EM -
PS algorithm, on eighteen selected problems and compared with the original EM
algorithm. The results were promising. Pursuing this research, we now propose a
new and simple idea to define a new vector to move each point in the population.
In particular, a linear combination of the total force exerted on a point, computed
at the current iteration, with that of the previous iteration is used to define the
vector to move the corresponding point in the population.

The proposed algorithm is herein extensively experimented on a well-known
benchmark problems set, with a total of 64 problems. Performance profile plots,
as outline in [6], have been made to assess the average and best behavior of the
new algorithm when compared with both EM - PS and original EM algorithms.
Experiments on problems with various dimension sizes, ranging from 2 to 100, and
a variety of inherent difficulties [18] have been carried out to demonstrate the effi-
ciency of the proposed algorithm in solving large dimension problems. Comparisons
with other stochastic algorithms are also included.

The paper is organized as follows. In Section 2 we describe the three EM algo-
rithms. The original EM is briefly introduced in Subsection 2.1, the main ideas
concerning the local pattern search method are described in Subsection 2.2, and
the proposed modification to the movement force vector is then presented in Sub-
section 2.3. Section 3 contains the results of all the numerical experiments and we
conclude the paper in Section 4.

2. Electromagnetism-like algorithms

In this section, we briefly describe the original EM algorithm and the local pattern
search method, and discuss the modified movement force vector.

2.1. Original EM algorithm

The EM algorithm starts with a population of randomly generated points from the
feasible region. Analogous to electromagnetism, each point is a charged particle that
is released to the space. The charge of each point is related to the objective function
value and determines the magnitude of attraction of the point over the population.
The better the objective function value, the higher the magnitude of attraction.
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The charges are used to find a direction for each point to move in subsequent
iterations. The regions that have higher attraction will signal other points to move
towards them. In addition, a repulsion mechanism is also introduced to explore
new regions for even better solutions.

The following notation is used: xi ∈ Rn denotes the ith point of a population;
xbest is the point that has the least objective function value; xi

k ∈ R is the kth
(k = 1, . . . , n) coordinate of the point xi of the population; m is the number of
points in the population; nfmax is the maximum number of function evaluations
allowed; nitmax is the maximum number of iterations allowed; lsitmax denotes the
maximum number of local search iterations; and δ is a local search parameter,
δ ∈ [0, 1].

The EM algorithm contains four main procedures: Initialize, CalcF, Move and
Local. The general scheme is as follows.

Algorithm 1 (original EM algorithm)
Input: m, nfmax or nitmax, δ, lsitmax

Initialize()
iteration ← 1
while termination criterion is not satisfied do

F ← CalcF ()
Move(F )
Local - random line search(f , δ, lsitmax)
iteration ← iteration + 1

end while

The Algorithm 1 is terminated after nfmax function evaluations or after nitmax

iterations. Another criterion based on the relative error of the best found solution
falling below some tolerance has also been adopted [3, 9, 15]. Below, details of each
procedure are presented.

Initialize is a procedure that aims to randomly generate m points from the
feasible region. Each coordinate of a point (xi

k) (k = 1, . . . , n) is assumed to be
uniformly distributed between the corresponding upper and lower bounds, i.e.,
xi

k = lk + λ(uk − lk) where λ ∼ U(0, 1). After computing the objective function
value for all the points in the population, the procedure identifies the best point,
xbest, which is the point with the best function value.

The CalcF procedure aims to compute the total force exerted on a point via
other points. According to the electromagnetism theory this force is inversely pro-
portional to the square of the distance between the points and directly proportional
to the product of their charges. The charges of the points are computed according
to their objective function values.

For each point xi, the charge qi determines the power of attraction or repulsion
for that point. In [2, 3] the charge of a point is computed as

qi = exp
(
−n

f(xi)− f(xbest)∑m
k=1(f(xk)− f(xbest))

)
, i = 1, . . . , m. (2)

In this way the points that have better objective function values possess higher
charges. A different approach to evaluate the charges is adopted in [5, 11].

The total force vector F i exerted on each point xi is then calculated by adding
the individual component forces, F i

j , between any pair of points xi and xj . As the
charges (2) are all positive, the direction of a force F i

j depends on the objective
function values at xi and xj . Thus, if f(xj) < f(xi) (xj attracts xi) the direction

of the force should be
−−→
xixj , whereas if f(xj) ≥ f(xi) (xj repels xi) the direction of
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the force is
−−→
xjxi. Thus,

F i
j =

{
(xj − xi) qiqj

‖xj−xi‖2 if f(xj) < f(xi) (attraction)

(xi − xj) qiqj

‖xj−xi‖2 if f(xj) ≥ f(xi) (repulsion)
,

and the total force exerted on point xi of the population is evaluated as

F i =
m∑

j 6=i

F i
j , i = 1, 2, . . . , m. (3)

The Move procedure uses the total force vector, F i, to move the point xi in
the direction of the force by a random step length λ. The best point, xbest, is
not moved and is carried out to the subsequent iteration. To maintain feasibility,
the force exerted on each point is normalized and scaled by the allowed range of
movement towards the lower bound lk, or the upper bound uk, of the set Ω, for
each coordinate k. Thus, for i = 1, 2, . . . , m and i 6= best

xi
k =

{
xi

k + λ
F i

k

‖F i‖(uk − xi
k) if F i

k > 0

xi
k + λ

F i
k

‖F i‖(x
i
k − lk) otherwise

, k = 1, 2, . . . , n. (4)

The random step length λ is assumed to be uniformly distributed between 0 and 1.
Finally, The Local procedure performs a local refinement and can be applied to

one point or to all points in the population. The local search presented in [3] is a
random line search algorithm that is applied coordinate by coordinate to a point
xi in the population.

First, based on the parameter δ, the procedure computes the maximum feasi-
ble step length, smax = δ maxk(uk − lk). This quantity is used to guarantee that
the local search generates feasible points. Second, the point xi is assigned to a
temporary point y to store the initial information. Next, for each coordinate k, a
random number λ between 0 and 1 is selected as a step length and the point yk

is moved along that direction, yk = yk + λ smax. If an improvement is observed,
within lsitmax iterations, the point xi is replaced by y and the search along that
coordinate k ends.

2.2. Local pattern search method

Here, we describe one of the modifications that were incorporated into the original
EM algorithm so that better accuracy solutions and faster convergence are attained.
Instead of a random line search, the Hooke and Jeeves pattern search algorithm
is used to define the Local procedure [8, 13]. This is a derivative-free method that
searches in the neighborhood of a point xi for a better approximation using two
types of moves: the exploratory move and the pattern move.

This algorithm is a variant of the well-known coordinate search method (a search
along the coordinate axes). It incorporates a pattern move to accelerate the progress
of the algorithm, by exploiting information obtained from the search in previous
successful iterations. To reduce the number of function evaluations, this pattern
search algorithm is applied to the current best point only. Thus, at each iteration
the exploratory move carries out a coordinate search about the best point, with
a step length δ. If a new trial point, y, with a better function value than xbest is
encountered, the iteration is successful and δ is maintained. Otherwise, the iteration
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is unsuccessful and δ should be reduced. If the previous iteration was successful,
the vector y − xbest defines a promising direction and a pattern move is then
implemented, which means that the exploratory move is carried out about the
trial point y + (y − xbest), rather than about the current point y. Then, if the
coordinate search is successful, the returned point is accepted as the new point;
otherwise, the pattern move is rejected and the method reduces to a coordinate
search about y. We refer to [8] for details.

To ensure feasibility in this local pattern search procedure an exact penalty
strategy is used. This means that the pattern search is applied to the problem

min g(x) ≡
{

f(x) if x ∈ Ω,
∞ otherwise

rather than to (1). Thus, any trial point that is infeasible would be rejected, since
the objective function value is ∞. The EM algorithm that incorporates this local
pattern search procedure is presented below. In Algorithm 2, εδ is the factor to
reduce the step length δ and δmin is the minimum step length allowed.

Algorithm 2 (EM pattern search algorithm)
Input: m, nfmax or nitmax, δ, δmin, εδ

Initialize()
iteration ← 1
while termination criterion is not satisfied do

F ← CalcF ()
Move(F )
Local - pattern search(g, δ, δmin, εδ)
iteration ← iteration + 1

end while

When compared with Algorithm 1, the main difference is on the Local procedure.
Recent numerical tests with this EM pattern search method on eighteen selected
problems show that the computed solutions are in general better than those of the
original EM algorithm although at function evaluation costs in some cases. The
reader is referred to [15].

2.3. Modified movement force vector

The total force exerted on a point reflects the behavior of the objective function
value of the corresponding point relative to the other points in the population.
Thus, it is appropriate to move the point according to this force. However, past
information on the relation between the function values at points in the population
may be used to adjust the force during movement and accelerate the convergence
of the algorithm.

This section proposes a new modified EM algorithm for solving global optimiza-
tion problems with bounded variables using a linear combination of the total force
exerted on a point, computed at the current iteration, with that of the previous
iteration to define the force vector to move that point in the population.

This scheme aims to incorporate in the movement force vector past information of
the force exerted on a particular point, i.e., the force used to move the point xi, F i,
as presented in (4), is a linear combination of the force exerted on that point at the
current iteration, F i

iteration, with the total force of the previous iteration, F i
iteration−1,

F i = F i
iteration + βF i

iteration−1 (5)
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Table 1. Number of problems (Nprob) by dimension

Dimension n Nprob Dimension n Nprob

2 21 10 15
3 4 15 1
4 9 17 1
5 5 20 3
6 1 25 1
9 2 30 1

where β is a positive number termed the memory constant which adjusts the change
in the movement force vector. The point can memorize the previous force and adjust
the current force to move the point.

This scheme was incorporated into the algorithm of Subsection 2.2. Thus, unlike
the previous algorithms that use the resultant force (3) of m−1 points to move xi,
this modified algorithm uses a combination of forces, as described in (5), in moving
xi from one iteration to another. Below, we present the corresponding algorithm.

Algorithm 3 (modified movement force EM pattern search algorithm)
Input: m, nfmax or nitmax, δ, δmin, εδ, β
Initialize()
iteration ← 1
Fiteration−1 ← 0
while termination criterion is not satisfied do

Fiteration ← CalcF ()
Move(Fiteration + βFiteration−1)
Local - pattern search(g, δ, δmin, εδ)
iteration ← iteration + 1

end while

3. Numerical experiments

In this section, we report the numerical results obtained by running the modi-
fied movement force EM pattern search algorithm on a set of global optimization
problems with bounded variables. The computational tests were performed on a
PC with a 3GHz Pentium IV microprocessor and 1Gb of memory. We compare
the herein proposed algorithm, as outline in Algorithm 3, with the original EM
algorithm, described in Subsection 2.1, and the EM pattern search, described in
Subsection 2.2.

We used a collection of 50 benchmark global optimization test problems, pro-
duced in full detail in the Appendix B of [1]. Ten of them were tested for two values
of the dimension (n) and one (denoted by NF3 in [1]) was tested for five values of
n giving a total of 64 problems. Table 1 lists the number of problems distributed
by dimension.

We also include a comparison with three benchmark stochastic-type methods.
Two of them are based on a population of points and the other is a well-known
point-to-point search algorithm. Further tests including a comparison with two
variants of the particle swarm optimization algorithm are shown later on in this
section. To simplify the reader’s task the following notations are used to describe
the algorithms under comparison:

• original EM : original electromagnetism-like algorithm (Algorithm 1)
• EM - PS : electromagnetism-like algorithm with the local pattern search proce-

dure (Algorithm 2)
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• modEM - PS : modified movement force electromagnetism-like algorithm with
the local pattern search procedure (Algorithm 3)

• CMA - ES : a evolution strategy with a covariance matrix adaptation [7]
• PSwarm: particle swarm in a pattern search algorithm [19]
• ASA: adaptive simulated annealing method [10]
• PSO(Shi+Eberhart): particle swarm optimization algorithm based on dynamic

inertia weights [16]
• momentumPSO : momentum-type particle swarm optimization algorithm [14].

3.1. Setting parameters

The values for the constants are: lsitmax = 10, δ = 0.001 (as it is used in [3]),
δmin = 1 × 10−8 and εδ = 0.1. The values chosen for the two latter constants are
typical in pattern search algorithms. Since problem dimensions in the test set vary
from 2 to 30, we decided to use the number of points in the population dependent
on n. Thus, we set m = min{200, 10n}.

When stochastic methods are used to solve problems, the impact of the random
number seeds has to be taken into consideration and each algorithm should be
run on each problem a certain number of times. Denote this parameter by nruns.
For the remaining part of this paper, we denote the known optimal solution by
fopt, the average best function values, i.e., the average value of the best function
values obtained over the nruns by favg, and the best function value by fbest =
min(f i

best), i = 1, . . . , nruns.
To analyze the sensitivity of the parameter β to the final results, we used the

mean absolute error (MAE)

MAE =
|fopt − favg|

n
, (6)

a scaled distance between the average performance and the optimal value [14],
that aims to measure the accuracy of the solutions found by the algorithm, and
tested three values of β: 0.1, 0.5 and 0.9. Figure 1 is a 100% stacked column chart
for the values of MAE obtained by the selected β values. For each problem, we
can compare the percentage that each β value contributes to the total. Hence, the
smaller the percentage the better. Overall, the area of the bars corresponding to
β = 0.1 is smaller than the others - 29.7% in contrast with 32% (for β = 0.5) and
38.3% (for β = 0.9). This indicates that 0.1 is a better choice for β.

3.2. Performance profiles

To evaluate and compare the performance of the three electromagnetism-like al-
gorithms, we use a performance profile initially proposed in [6]. The performance
profiles give, for every τ ≥ 1, the proportion ρ(τ) of test problems on which each
algorithm under comparison has a performance within a factor τ of the best. The
performance profile plot represents the cumulative distribution function of a per-
formance ratio based on an appropriate metric. Dolan and Moré in [6] proposed
the use of the computing time required to solve a problem, but other metrics could
be used. A brief discussion of our implementation of this performance assessment
follows.

Let P be the set of all problems and S the set of solvers used in the comparative
study. Let m(p,s) be the performance metric found by solver s ∈ S on problem
p ∈ P after a fixed number of function evaluations. Here, a metric that measures
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Figure 1. MAE comparison for three values of β.

the relative improvement of the function values, a scaled distance to the optimal
function value fopt, defined in [1] by

m(p,s) =
favg (p,s) − fopt

fworst − fopt
(7)

is used, where fworst denotes the worst function value found among all solvers on
the problem p and favg (p,s) is the average of the best function values found by
solver s on problem p, after nfmax function evaluations over a certain number of
runs. In this context we set nruns = 30. Metric (7) is to be used when the average
assessment of the solvers is required.

If one is interested in the best assessment of the solvers then fbest (p,s), the best
function value found by solver s on problem p over 30 runs should be used in (7)
instead of favg (p,s).

As the min{m(p,s) : s ∈ S} can be zero for a particular problem, the performance
ratios used in our comparative study are defined by

r(p,s) =
{

1 + m(p,s) −min{m(p,s) : s ∈ S}, if min{m(p,s) : s ∈ S} < ε
m(p,s)

min{m(p,s):s∈S} , otherwise ,

for p ∈ P, s ∈ S and ε = 0.00001 (see [19] for a more complete discussion). Then,
the overall assessment of the performance of a particular solver s is given by

ρs(τ) =
1

nP
size{p ∈ P : r(p,s) ≤ τ}

where nP is the number of problems in the set P. The ”size” is the number of
problems in the set such that the performance ratio r(p,s) is less than or equal to τ
for solver s. ρs(τ) is the probability (for solver s ∈ S) that the performance ratio
r(p,s) is within a factor τ ∈ R of the best possible ratio. The function ρs is the
cumulative distribution function for the performance ratio.

Using the performance profile plot one can compare how well a solver can esti-
mate the optimum relative to the others.

The value of ρs(1) gives the probability that the solver s will win over the others
in the set. However, for large values of τ , the ρs(τ) measures the solver robustness.
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The solver with largest ρs(τ) is the one that solves more problems in the set P.
Two experiments were made with different maximum number of allowed function

evaluations: nfmax = 100n and nfmax = 100n2. The focus here is to compare
computational requirement and solution accuracy. The factors n and n2 aim to show
the effect of dimensionality on the algorithm performance, as higher dimension
problems are in general more difficult to solve than lower dimension ones.

The performance profile plots for the average solutions found when nfmax = 100n
and nfmax = 100n2 are presented in Figure 2 and Figure 3 respectively. From
Figure 2 one may conclude that, as far as the average assessment is concerned,
original EM dominates the other two over most of the τ values, although it loses
in performance for values of τ greater than 7. The EM - PS algorithm wins against
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Figure 4. Objective function values for problems EM (n = 5) and GW (n = 10)

the others with respect to robustness. However, when a maximum of 100n2 function
evaluations is allowed, and for τ greater than approximately 2.7, the modEM - PS
algorithm wins against the others and dominates with respect to robustness (see
Figure 3). At the beginning of the plot, original EM is best.

To further analyze the effect of nfmax on the algorithm performance, we plot
the objective function values versus the number of function evaluations of four
particular problems of the test set: EM , GW , NF3 and OSP (see [1]). Figures 4
and 5 show that as the number of function evaluations increases the best algorithm
for the problem may change. For example, the top plot of Figure 4 (for problem
EM with n = 5) shows that modEM - PS outperforms the other two for any
number of function evaluations, whereas for problem GW (n = 10) - in the bottom
plot - the modEM - PS is the best at the very beginning, then original EM and EM
- PS algorithms perform slightly better than modEM - PS from the 300th until the
1200th function evaluation. At the 3800th function evaluation, modEM - PS starts
to be the best algorithm at least until the 5500th function evaluation. The top plot
of Figure 5 corresponds to the problem NF3 with n = 10 and illustrates the best
performance of modEM - PS except between the 400th and the 1500th function
evaluation. From the bottom plot (for problem OSP with n = 10) we can conclude
that modEM - PS is the best algorithm from the 4200th function evaluation on.
Until this point, EM - PS seems to be slightly better than the other two.

Finally, we also include the performance profile plots concerning the best solu-
tions found. See Figure 6 when nfmax = 100n and Figure 7 when nfmax = 100n2.
In the best assessment one may conclude that original EM should be implemented
if only 100n function evaluations were allowed. However, if one is willing to al-
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Figure 5. Objective function values for problems NF3 (n = 10) and OSP (n = 10).

low 100n2 function evaluations then modEM - PS should be preferred, although
original EM is the best for τ ≤ 1.5.

3.3. Comparison with other stochastic methods

Three benchmark stochastic-type methods were selected to compare and assess the
average and the best effectiveness of the new modEM - PS algorithm: (i) CMA
- ES, a population-based evolution strategy with a covariance matrix adaptation
[7]; (ii) PSwarm, a population-based particle swarm in a pattern search algorithm
[19]; and (iii) ASA, a point-to-point search based on adaptive simulated annealing
[10]. The tests were done considering 30 independent runs, and a population of
min{200, 10n} points is used with CMA - ES, PSwarm and modEM - PS. Our
comparison is based on the performance profiles, as described in Subsection 3.2.
First we plot the performance profiles on the average assessment of the solvers. See
Figure 8. Then, the performance assessment is based on the best objective function
value, as illustrated in Figure 9. In both cases, the solvers were allowed to run for
10n iterations.

From Figure 8, we can conclude that CMA - ES wins over the other methods for
all values of τ , and is closely followed by our modEM - PS algorithm. The solver
ASA seems to have the worst performance. However, when the assessment is based
on the best function value, the plots in Figure 9 illustrate that the herein proposed
modEM - PS algorithm wins over the others.
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Figure 7. Performance profile on fbest with 100n2 function evaluations.

3.4. Experiments with varied dimension problems

To analyze the performance of the new proposed modEM - PS algorithm, when
compared with original EM and EM - PS algorithms, as the problem dimensions
size increases, two multi-modal functions with varied dimensions are used. The first
function is not in the previously referred test set and is used in [14] with similar
purposes,

maximize f(x) ≡ −∑n
i=1

(
sin(xi) + sin

(
2xi

3

))
subject to xi ∈ [3, 13], i = 1, . . . , n.
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We consider five values of n (10, 25, 50, 75, 100). The analytical solution is
given by 1.216n. We include Figures 10 and 11 to show the results for n = 50 and
n = 100 of the three electromagnetism-like algorithms under comparison. Here, we
analyze the average of the best objective function values, favg, over 20 runs, with
a population of 50 points. The termination criterion is based on the number of
allowed iterations nitmax, that is set to 5000.

The proposed modEM - PS presents the best convergence rate and numerical ac-
curacy. The best solutions found by modEM - PS were 60.799109 and 121.598218
for n = 50 and n = 100 respectively, whereas the other two algorithms did not
reach solutions as good as these, in less that 5000 iterations (see also Table 2).
Good results were also obtained by the momentum-type particle swarm optimiza-
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Figure 11. Convergence of original EM, EM - PS and modEM - PS algorithms on a problem with n = 100.

tion algorithm (herein denoted by momentumPSO) proposed in [14]. The results
obtained by momentumPSO on this problem are shown in Table 2. This table
also lists the results obtained by another variant of the particle swarm algorithm,
proposed in [16], which incorporates a dynamically adjustable inertia weight pa-
rameter in the particle velocity equation (referred as PSO(Shi+Eberhart) in the
table).

Besides reporting fbest and favg, Table 2 contains other interesting quantities that
behave differently as problem dimension increases. They measure the accuracy of
the solutions found by the algorithms. One is MAE (see (6)) and the other is the
standard deviation (SD) of the solutions found after all the executed runs:

SD =

√∑nruns
i=1 (f i

best − favg)2

nruns
.

The proposed algorithm achieves in general the lowest numerical errors (MAE)
and lowest standard deviations. Using MAE as a measurement of error, Figure 12
shows how the modEM - PS error grows from n = 10 to n = 50 and decreases
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Table 2. Performance of original EM, EM - PS, modEM - PS and two PSO algorithms

n algorithm fopt fbest favg MAE SD

10 original EM 12.16 12.160 12.160 0.00002 0.0000
EM - PS 12.160 12.160 0.00002 0.0000

modEM - PS 12.160 12.160 0.00002 0.0000
PSO(Shi+Eberhart) 12.160 12.160 0.00002 0.0000

momentumPSO 12.160 12.160 0.00002 0.0000

25 original EM 30.40 30.400 28.762 0.06553 2.5790
EM - PS 30.400 28.613 0.07149 2.4315

modEM - PS 30.400 30.400 0.00002 0.0000
PSO(Shi+Eberhart) 30.400 29.702 0.02790 1.0649

momentumPSO 30.400 30.201 0.00796 0.3971

50 original EM 60.80 54.843 51.220 0.19160 4.3890
EM - PS 57.821 49.930 0.21741 8.5362

modEM - PS 60.799 54.545 0.12509 6.9343
PSO(Shi+Eberhart) 58.475 51.465 0.18669 3.3673

momentumPSO 60.799 60.749 0.00101 0.2163

75 original EM 91.20 81.272 72.587 0.24818 9.4144
EM - PS 80.280 73.331 0.23825 8.0091

modEM - PS 91.199 87.724 0.04634 4.1407
PSO(Shi+Eberhart) 77.543 69.985 0.28287 5.1261

momentumPSO 91.199 91.082 0.00157 0.5064

100 original EM 121.60 120.606 114.699 0.06901 8.1524
EM - PS 120.606 111.523 0.10077 12.6402

modEM - PS 121.598 118.416 0.03184 4.0513
PSO(Shi+Eberhart) 105.446 91.353 0.30247 6.0855

momentumPSO 121.598 121.249 0.00351 0.8296

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 25 50 75 100 

Dimension (n)

M
A

E

original EM

EM - PS

modEM - PS

Figure 12. Error behavior for original EM, EM - PS and modEM - PS algorithms.

from n = 50 to n = 100. The errors of original EM and EM - PS grow faster
with n although also decrease for n = 100. Figure 13 allows error comparisons as
the problem dimension increases between the EM-like algorithms and the two PSO
algorithms.

A second example is used to show the algorithms behavior as n increases. We
selected the Neumaier 3 problem, denoted by NF3 in [1]. The analytical solu-
tion depends on n and is given by n(n+4)(n−1)

6 . Our analysis uses five values of n:
10, 15, 20, 25, 30. Table 3 lists values of fbest, favg, MAE and SD obtained with the
three EM algorithms, after 100n2 function evaluations, over 30 runs, with a popu-
lation of min{200, 10n} points. For all tested values of n, the fbest values found by
EM - PS and modEM - PS are very close to the analytical results. The errors do
not grow very much with n. The numerical experiments carried out and described
in this subsection allow us to conclude that the proposed modEM - PS is the most
appropriate for solving large global optimization problems with bounded variables.
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Table 3. Performance of original EM, EM - PS and modEM - PS to solve problem

NF3

n algorithm fopt fbest favg MAE SD

10 original EM -210 -209.4891 -199.9787 1.0021 10.6693
EM - PS -210.0000 -210.0000 0.0000 0.0000

modEM - PS -210.0000 -209.9999 0.0000 0.0002

15 original EM -665 -636.1431 -621.7852 2.8810 17.8468
EM - PS -664.9996 -664.9903 0.0006 0.0138

modEM - PS -664.9999 -664.9935 0.0004 0.0120

20 original EM -1520 -1400.1130 -1363.3129 7.8344 43.0081
EM - PS -1519.9895 -1519.7756 0.0112 0.3087

modEM - PS -1519.9812 -1519.6476 0.0176 0.5144

25 original EM -2900 -2662.9455 -2609.6381 11.6145 60.7286
EM - PS -2899.8501 -2897.6537 0.0939 2.6563

modEM - PS -2899.7614 -2897.4835 0.1007 3.0164

30 original EM -4930 -4501.3718 -4403.9782 17.5341 112.0166
EM - PS -4927.5608 -4918.9484 0.3684 10.4312

modEM - PS -4927.2926 -4922.6403 0.2453 5.6080

4. Conclusions

We have presented modifications to the electromagnetism-like algorithm given in
[3] for solving global optimization problems like (1). The crucial modifications are
concerned with the local search procedure and the force vector that is used to
define the direction of movement of each point in the population.

The local search procedure based on a pattern search algorithm is able to improve
accuracy of the found solutions and to perform slightly better than the original
EM algorithm especially if a large number of function evaluations is permitted.
The effect of the modified force vector to move the points of the population in the
EM mechanism has been positive since the corresponding algorithm is proven to
be robust, with a fast convergence, and high level of accuracy. From the sensitivity
analysis, the value β = 0.1 for the memory constant seems a good choice.

Further research will consider other approaches to evaluate the charges of the
points in the population. A more detailed study concerning the optimal choice
for the β parameter, so that the algorithm convergence is improved, is our future
challenge.
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