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Summary

The position of high-rate anaerobic technology (HR-
AnWT) in the wastewater treatment and bioenergy
market can be enhanced if the range of suitable sub-
strates is expanded. Analyzing existing technologies,
applications and problems, it is clear that, until now,
wastewaters with high lipids content are not effec-
tively treated by HR-AnWT. Nevertheless, waste lipids
are ideal potential substrates for biogas production,
since theoretically more methane can be produced,
when compared with proteins or carbohydrates. In
this minireview, the classical problems of lipids
methanization in anaerobic processes are discussed
and new concepts to enhance lipids degradation are
presented. Reactors operation, feeding strategies and
prospects of technological developments for waste-
water treatment are discussed. Long-chain fatty acids
(LCFA) degradation is accomplished by syntrophic
communities of anaerobic bacteria and methanogenic
archaea. For optimal performance these syntrophic
communities need to be clustered in compact aggre-
gates, which is often difficult to achieve with waste-
waters that contain fats and lipids. Driving the
methane production from lipids/LCFA at industrial
scale without risk of overloading and inhibition is still
a challenge that has the potential for filling a gap in
the existing processes and technologies for biologi-

cal methane production associated to waste and
wastewater treatment.

Introduction

The range of feedstock for biogas production spans from
animal waste to municipal sludge, industrial wastewater
and organic fractions of municipal solid waste as well as
energy crops whenever available. The wide diversity of
anaerobic technologies can be grouped in two main con-
cepts: (i) facilities aiming at industrial wastewater treat-
ment and (ii) facilities aiming at energy production. In
general, the first group comprises more sophisticated
technologies that operate with low solids content, high
loading rates and sludge retention time much higher
than hydraulic retention time. The second group includes
anaerobic digestion (AD) plants dedicated to bioenergy
production, which are usually completely mixed reactors,
with a simple technological design. Since anaerobic pro-
cesses possess multifunctional characteristics, energy is
recovered from wastewater treatment facilities whenever
it is economically feasible. On the other hand, organic
waste stabilization and nutrient redistribution are,
besides energy production, embedded objectives of any
AD plant.

From the beginning of the eighties, high-rate anaerobic
wastewater treatment technology (HR-AnWT) has
become a standard for a certain range of industrial waste-
waters. Thousands of full-scale installations are in opera-
tion worldwide, treating mainly wastewater containing
readily degradable organic pollutants such as volatile fatty
acids and carbohydrates. Reliable technologies, such as
the up-flow anaerobic sludge blanket (UASB) reactor and
the derived designs – expanded granular sludge bed
(EGSB) and internal circulation (IC) reactors – promoted
the confidence in AD technology. However, HR-AnWT
applications are still centred essentially in biodegradable
effluents from distilleries, pulp and paper, breweries and
beverage industries.

The position of HR-AnWT in the wastewater treatment
and bioenergy market can be further enhanced if the
range of suitable substrates is expanded. Analysing the
existing technologies, applications and problems, it is
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clear that wastewaters with high lipids content are not
effectively treated yet by HR-AnWT. Nevertheless, waste
lipids are ideal substrates for methane production, since
theoretically their degradation produces more biogas with
higher methane content, when compared with proteins or
carbohydrates (Table 1).

The energy value of lipids makes them an ideal
co-substrate to increase the economical feasibility of any
AD plant based on co-digestion concepts. The net
energy production increases significantly if a fraction of
waste lipids is mixed in the feedstock. This has already
been noticed by managers of AD plants, who are even
willing to pay for lipids. However, without a proper
feeding strategy, addition of waste lipids to an AD plant
is risky, if accumulation of long-chain fatty acids (LCFA)
is not prevented. Understanding anaerobic degradation
of lipids has therefore an immediate economical impact
on AD plants.

The existing gap in HR-AnWT for complex was-
tewaters with lipids and the importance of lipids as
co-substrates in AD plants make this issue of global
interest in the environmental technology field. In this
minireview, the classical problems of lipids degradation
in anaerobic processes are discussed and new concepts
to avoid inhibition by lipids and to enhance degradation
are presented. Reactors operation, feeding strategies
and prospects of technological developments for waste-
water treatment are discussed. Finally, some hints on
anaerobic bacteria and microbial communities that
degrade LCFA are presented.

The role and drawbacks of LCFA in the anaerobic
degradation of lipids

Lipids are LCFA bonded to glycerol, alcohols or other
groups by an ester or ether linkage. Fats and oils are a
subgroup of lipids that have the alcohol groups esterified
with fatty acids, predominantly in the form of triglycerides
(glycerol backbone with three LCFA). Fats contain satu-
rated LCFA, and oils are normally composed of unsatur-
ated fatty acids, which confer lower melting point.

Fats and oils are common contaminants of domestic
sewage and industrial effluents from dairy industries
(Perle et al., 1995), slaughterhouses (Sayed et al., 1988),
livestock farms (Broughton et al., 1998), wool scouring

facilities (Becker et al., 1999) and edible oil-processing
facilities (Beccari et al., 1996; Becker et al., 1999).

In general, hydrolysis of fats and oils to glycerol and
LCFA proceeds rapidly in AD processes, resulting in the
accumulation of LCFA in the wastewater (Hanaki et al.,
1981; Angelidaki and Ahring, 1992). Over 90% of the
chemical oxygen demand (COD) present in lipids is con-
served, after hydrolysis, in the LCFA (Hanaki et al., 1981).
The estimated biomass/substrate yield for the conversion
of fat is 0.038 g VSS (g COD)-1, whereas for proteins and
carbohydrates values of 0.2 and 0.35 g VSS (g COD)-1,
respectively, are reported (Pavlostathis and Giraldo-
Gomez, 1991).

At neutral pH, LCFA are ionized and so it is appropriate
to refer to them according to their carboxilate form: for
instance, oleate and palmitate instead of oleic and palmitic
acids. The concentration of lipids and LCFA in domestic
and industrial wastewater is quite diverse. Wool scouring
and olive mill processes can generate effluents with lipids
concentrations in the range of 5–25 g l-1 (Beccari et al.,
1998; Becker et al., 1999). Lower values were detected in
a sunflower oil mill wastewater, with LCFA concentrations
ranging from 0.2 to 1.3 g l-1 (Saatci et al., 2003). Total lipids
in a dairy wastewater were reported to vary from 0.9 to
2.0 g l-1 (Kim et al., 2004a). In domestic sewage, lipids
represent generally 20–25% of the total organic matter,
with concentrations ranging from 40 to 100 mg l-1 (Quéme-
neur and Marty, 1994). Slaughterhouses can produce efflu-
ents with a total fat matter between 0.35 and 0.52 g l-1

(Sayed et al., 1988).
Table 2 presents the LCFA composition of lipid-

containing raw materials and wastewaters. It is very likely
that the major constituents in raw materials are also
present in the wastewaters generated during their pro-
cessing. It is clear that palmitic acid and oleic acid are
the most abundant saturated and unsaturated LCFA
respectively.

Research on the application of anaerobic technology
to treat wastewaters containing lipids/LCFA has been
emerging in the past 25 years. As discussed below, two
main problems specifically related to the treatment of
these effluents were identified and characterized: (i)
sludge flotation and biomass washout due to the adsorp-
tion of lipids/LCFA onto the biomass, and (ii) inhibition of
acetogenic bacteria and methanogenic archaea by LCFA.

Table 1. Potential biogas production from different classes of substrates.

Component Methanogenic reaction
Biogas
(lg-1)

CH4

(%)

Lipids C50H90O6 + 24.5H2O → 34.75CH4 + 15.25CO2 1.425 69.5
Carbohydrates C6H10O5 + H2O → 3CH4 + 3CO2 0.830 50.0
Proteins C16H24O5N4 + 14.5H2O → 8.25CH4 + 3.75CO2 + 4NH4

+ + 4HCO3
- 0.921 68.8
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LCFA adsorption onto the sludge – sludge flotation
and sludge washout

Sludge flotation and sludge washout due to the adsorption
of fatty matter onto the biomass are widely reported in the
literature. Samson and colleagues (1985) referred the
failure of an industrial scale UASB reactor treating milk
fat, due to sludge flotation. Hawkes and colleagues (1995)
observed poor biomass retention in four different reactors
treating ice-cream wastewater with high fat content.
Rinzema and colleagues (1989; 1993) tested the treat-
ability of LCFA-containing wastewaters in UASB reactors.
When the reactors were overloaded a severe washout
caused by flotation was observed. Sam-Soon and col-
leagues (1991) used a UASB reactor to study oleic acid
degradation and reported that the original inoculated
granules suffered from disintegration and encapsulation
by a gelatinous and whitish mass.

LCFA have an amphiphilic structure; they are com-
posed of a hydrophobic aliphatic tail and a hydrophilic
carboxylic head. From a thermodynamic viewpoint disin-
tegration of granules can be expected because at neutral
pH LCFA act as surfactants, lowering the surface tension.
According to Thaveesri and colleagues (1995) the adhe-
sion of hydrophilic cells appeared to be enhanced at a low
liquid surface tension, while the adhesion of hydrophobic
cells was favoured at a high surface tension. Acetogens
were characterized as mostly hydrophobic and therefore
the low-surface-tension environments imposed by LCFA
may cause a sloughing-off from granular sludge and the
selective washout of these microorganisms (Daffonchio
et al., 1995). Hwu et al. (1997a) concluded that typical
operating parameters of EGSB reactors (up-flow velocity
> 4 m h-1, hydraulic retention time < 10 h) resulted in a
poor treatment of LCFA containing wastewaters. The
recirculation of the washed out biomass was beneficial to
enhance the overall performance (Hwu et al., 1997b).

Hwu and colleagues (1998a) showed that the spe-
cific LCFA organic load necessary to induce complete
sludge flotation [0.203 g COD (g VSS)-1 day-1] corre-
sponded to a LCFA concentration of 263 mg LCFA l-1,
which was far below the minimum inhibitory concen-
tration (401 mg LCFA l-1) of methanogenesis. This sug-
gested that deterioration of the UASB process by LCFA
adsorption and consequent sludge washout are likely to
occur prior to inhibition of the methanogenic archaea by
the LCFA.

Jeganathan and colleagues (2006), using UASB reac-
tors to treat a complex oily wastewater from a food indus-
try, reported that although approximately 75% of COD
was degraded to methane at an organic loading rate
(OLR) of about 2.5 g COD l-1 day-1, the system perfor-
mance declined sharply at higher loading rates. An
increase in loading to 5 g COD l-1 day-1 caused fat, oil and
grease (FOG) accumulation in the sludge and increased
foam production. This reduced the degradation to
40–50%. These authors also reported that accumulation
of FOG in the biomass was the critical parameter govern-
ing the high-rate anaerobic reactor performance and
further suggested the need for periodic reseeding of
anaerobic reactor systems treating oily wastes, since the
loss of sludge in the bed, due to washout, increased the
FOG accumulation onto the biomass and consequent
reactor failure.

Inhibition of anaerobic microbial communities
by LCFA

Although derived essentially from the interpretation of
batch experiments, the effect of LCFA on the methano-
genic and acetogenic microorganisms is documented
(Hanaki et al., 1981; Koster and Cramer, 1987; Angelidaki
and Ahring, 1992; Rinzema et al., 1994; Lalman and

Table 2. LCFA commonly found in raw materials and wastewaters (showed as % of total LCFA) (adapted from Hwu, 1997).

Raw materials/wastewaters

LCFA common name (structurea)

Lauric
(C12:0)

Myristic
(C14:0)

Palmitic
(C16:0)

Palmitoleic
(C16:1)

Stearic
(C18:0)

Oleic
(C18:1)

Linoleic
(C18:2)

Palm oil (1) 1.4 42.9 0.7 4.8 39.0 10.0
Olive oil (1) 14.3 1.4 2.4 71.4 5.5
Soybean oil (1) 1.0 11.0 4.8 21.9 49.0
Cotton seed oil (1) 1.4 25.7 1.0 2.9 15.2 51.9
Cocoa butter (1) 26.7 0.5 32.9 33.8 4.3
Whole milk (2) 7.0 6.0 21.0 2.0 6.0 39.0 13.0
Chicken fat (1) 1.4 21.0 6.7 4.3 42.4 20.0
Beef tallow (1) 1.0 2.6 28.1 3.8 20.0 37.6 2.9
Domestic sewage (3) 2.2 16.4 0.9 8.1 30.5 29.2
Dairy wastewater (4) 27.0 7.0 37.0 13.0

a. Cn:d, where n is the number of carbon atoms and d the number of double bonds.
(1) Taylor (1965); (2) Hanaki and colleagues (1981); (3) Quémeneur and Marty (1994); (4) Kim and colleagues (2004a).

540 M. M. Alves et al.

© 2009 Society for Applied Microbiology and Blackwell Publishing Ltd, Microbial Biotechnology, 2, 538–550



Bagley, 2000; 2001; 2002). Both acetoclastic and hydro-
genotrophic methanogens are affected by LCFA, although
acetoclastic methanogens are apparently more affected
by the presence of these compounds (Hanaki et al., 1981;
Hwu and Lettinga, 1997; Alves et al., 2001; Lalman and
Bagley, 2001). Inhibitory effects of unsaturated LCFA are
reported to be more severe than those of saturated LCFA
(Lalman and Bagley, 2002).

In the early 1980s, Hanaki and colleagues (1981) per-
formed several batch experiments where they found that
glucose fermentation was not affected by the presence
of LCFA, the addition of acetate and butyrate intensified
the toxic effect of LCFA, and oleate was less inhibitory
than a LCFA mixture. Angelidaki and Ahring (1992) sug-
gested that the response to the addition of neutral lipids
may depend on the degree of biomass adaptation,
whereas the addition of free LCFA above a certain
concentration may directly result in process failure,
due to a permanent toxic effect of these compounds
towards acetogenic bacteria and methanogenic archaea.
Rinzema and colleagues (1994) validated this concept
and found that LCFA exerted a bactericidal effect on
methanogenic archaea. This conclusion was based on
the observation that acetoclastic methanogens did not
adapt to LCFA neither upon repeated exposure to toxic
concentrations, nor after prolonged exposure to non-
toxic concentrations. The recovery after a lag phase
usually observed in batch assays was ascribed to
growth of a few survivors. For many years it was
believed that high-rate treatment of lipid-rich effluents
was not possible. Hwu (1997) tried to enhance the
anaerobic treatment of wastewater containing oleic acid
and found a higher susceptibility of suspended sludge
than granular sludge to LCFA toxicity. This observation
in batch assays, though interesting, was of little practical
relevance, since granular sludge was not structurally
stable when LCFA were present.

Lalman and Bagley (2002) reported only a small inhi-
bition of hydrogenotrophic methanogens in the presence
of linoleate (C18:2), oleate (C18:1) and stearate (C18:0),
individually or in mixture. The mechanism of inhibition
by LCFA was related to their adsorption onto the cell
surface, affecting the transport and/or protective func-
tions of the cell (Demeyer and Henderickx, 1967; Gal-
brait and Miller, 1973; Rinzema, 1988). This led to the
hypothesis that the inhibitory effect of LCFA is deter-
mined by the LCFA : biomass surface ratio, although in
several other studies the LCFA concentration was found
to determine inhibition by LCFA (Rinzema et al., 1994;
Kim et al., 2004a). However, other authors showed that
inhibition by LCFA is not permanent and that adaptation
of biomass to lipids/LCFA can occur (Broughton et al.,
1998; Alves et al., 2001; Kim et al., 2004a; Pereira et al.,
2004).

New concepts on LCFA inhibition and degradation

As a consequence of LCFA accumulation onto the sludge,
treatment of lipids/LCFA-containing wastewaters in con-
ventional up-flow anaerobic reactors can lead to complete
sludge washout and process failure, which seems to be
more due to particular problems of fluid dynamics than to
microbial activity inhibition. In fact, microbial injure due to
intensive (high concentration) and extended (long time)
contact between anaerobic sludge and LCFA was found
to be less severe than could be expected (Alves et al.,
2001; Pereira et al., 2002a; 2004; 2005). When perform-
ing a routine assessment of the specific methanogenic
activity of sludge collected from a continuous reactor fed
with oleic acid, a surprisingly high methane production
was observed in the blank vials, where no external sub-
strate was added (Alves et al., 2001). The observed
methane production resulted from the degradation of sub-
strate that accumulated onto the sludge during the reac-
tor’s operation, contradicting the accepted theories of
permanent LCFA toxicity and inhibition. This finding led to
the development of new concepts and encouraged the
study of the microbiology of LCFA degradation in anaero-
bic bioreactors. The scheme presented in Fig. 1 illustrates
the sequence of continuous LCFA feeding, LCFA accumu-
lation and consequent sludge flotation and washout. Sub-
sequent batch incubation of the sludge taken from the
reactor, containing biomass-associated LCFA, results in
methane production. The proposed mechanisms of LCFA
accumulation onto the biomass are adsorption, entrap-
ment within the flocks structure and precipitation with
divalent ions (Pereira et al., 2005). Fig. 2 shows a micro-
bial aggregate collected from a UASB reactor fed with
oleic acid. The whitish matter embedding the cells con-
sisted, in that case, of more than 80% palmitic acid
(Pereira et al., 2005).

The difference in properties of granular and suspended
sludge in terms of their capacity to accumulate and to
degrade the accumulated (or biomass associated) LCFA
was studied by Pereira and colleagues (2002a). Two
EGSB reactors were fed with oleic acid-based synthetic
effluents. One EGSB was inoculated with suspended
sludge and the other one with granular sludge. Sludge
samples were collected at different operating times and
incubated in batch vials, where the methane production
from the degradation of the accumulated LCFA was
monitored. Suspended sludge turned out to be more effi-
cient than granular sludge to accumulate and to deg-
rade LCFA. A maximum specific LCFA accumulation of
3271 � 877 mg COD-LCFA (g VSS)-1, and a maximum
methane production rate of 434 � 60 mg COD-CH4

(g VSS)-1 day-1 was exhibited by the suspended sludge,
which was about 1.3 and 3 times, respectively, the
maximum values exhibited by the granular sludge
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(Pereira et al., 2002a). Additionally, for the suspended
sludge, the methane production rate in batch was
enhanced by stirring and was inhibited by the addition of
oleic acid. Extraction and GC analysis revealed that the
main adsorbed substrate was palmitate, and not oleate.
Apparently, the conversion of oleate to palmitate occurred
easily in the reactor, but further degradation of palmitate
did not occur.

Pursuing the investigation, the specific methanogenic
activity (SMA) of sludge samples, containing biomass-
associated LCFA content between 1000 and 5000 mg
COD-LCFA (g VSS)-1, was determined before and after
the conversion to methane of that embedded LCFA
(Pereira et al., 2004). Acetate and H2/CO2 were used as
individual substrates for SMA experiments. In general, the
loaded sludge had no quantifiable activity except with H2

as substrate (Table 3). After the degradation of the
biomass-associated LCFA, a significant increase on the
SMA was observed for the selected substrates.

This result demonstrated that the inhibition by LCFA is
reversible in the range of LCFA content between 1000 and
5000 mg COD-LCFA (g VSS)-1, contradicting the previ-
ously reported bactericidal or permanent toxic effects of
LCFA (Rinzema, 1988; Angelidaki and Ahring, 1992). This
opened new scenarios for the anaerobic treatment of
wastewater with high lipid content. The low SMA mea-
sured before the depletion of the biomass-associated
LCFA may result from a strong effect of transport (diffu-
sion) limitations imposed by the LCFA layer surrounding
the cells, which could hamper the access of the added
substrates, as well as the subsequent biogas release.
This is reinforced by the fact that with H2, the smallest
molecule used as electron donor, methane production
was directly observed, suggesting a fast transport of this
small compound through the LCFA layer. Transport limi-
tations phenomena may also be responsible for the
observed lag phases that previously have been ascribed
to mechanisms of cell wall damage and bactericidal

Fig. 1. Schematic representation of the phenomena of LCFA accumulation onto the sludge during the continuous operation of a reactor fed
with LCFA, sludge flotation, sludge washout and methane production in batch vials from the degradation of the biomass-associated LCFA
(adapted from Sousa et al., 2009).
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effects. However, although the hypothesis of transport
limitations seems to be reasonable, a reversible metabolic
inhibitory effect would result in similar observations. Prob-
ably both phenomena are involved, their relative impor-
tance being dependent on the specific LCFA content of
the sludge (Pereira et al., 2004).

The evidence of physical inhibition due to transport
limitation effects was further clarified by Pereira and col-
leagues (2005). The important conclusion was reinforced;
the inhibitory effect on the methanogenic activity, after the
contact of the biomass with LCFA, is reversible.

From this ensemble of new results it became clear
that LCFA-rich wastewater treatment can be feasible.

Sequencing phases of continuous feeding and batch
degradation of the accumulated substrate was then pos-
tulated as a possible practical solution for the treatment of
this kind of effluents.

New reactor concept for HR-AnWT of complex
wastewater with high lipid content

Since the success of conventional anaerobic treatment
systems is based on optimization of biomass sedimenta-
tion, flotation leads to washout and subsequent process
disruption. Table 4 gives an overview of studies in which
LCFA-containing wastewater was treated in anaerobic
bioreactor studies. Problems of sludge flotation or unsuc-
cessful granulation were ascribed to treatment failure
of industrial and pilot scale UASB reactors treating
lipids/LCFA-containing wastewater (Samson et al., 1985;
Rinzema, 1988; Sam-Soon et al., 1991; Hawkes et al.,
1995; Hwu, 1997). Reasonable solutions to overcome
flotation problems were searched: sieve drums, biomass
recirculation or partial phase separation were tentatively
applied for that purpose (Rinzema, 1988; Hamdi et al.,
1992; Hwu, 1997; Beccari et al., 1998). To prevent
washout induced by LCFA adsorption, a sequential
process with a feeding and a reaction phase was sug-
gested as the preferred technology for anaerobic LCFA
removal from wastewater (Pereira et al., 2005). It was
further postulated that the specific contact area between
bacteria and LCFA should be maximized to minimize
mass transfer limitations. The sequential process was
applied at lab scale by Cavaleiro and colleagues (2009)
and the results obtained showed that this operating mode
was the best for sludge acclimation. After the third cycle a
specialized anaerobic microbial community was devel-
oped, able to efficiently convert the LCFA to methane.
Continuous treatment was then applied, achieving volu-
metric loading rates up to 21 kg COD m-3 day-1 with 72%
conversion efficiency to methane. From the current prob-
lems encountered at industrial scale with LCFA and the
research results from Pereira and colleagues (2002a,b,c;
2004; 2005) and Cavaleiro and colleagues (2009), two
main principles may be postulated for the design of
a reactor capable of high-rate anaerobic treatment of

Fig. 2. Example of a microbial aggregate collected from a lab-scale
UASB reactor fed with oleic acid.

Table 3. Specific methanogenic activities exhibited by three different sludges, before and after the conversion to methane of the biomass-
associated LCFA (adapted from Pereira et al., 2004).

Sludge-specific LCFA
content [mg COD-LCFA
(g VSS)-1]

Specific methanogenic activity [mg COD-CH4 (g VSS)-1 day-1]

Acetate H2/CO2

Before After Before After

1221 � 144 143 � 29 326 � 13 1462 � 94 1670 � 81
2838 � 63 0 579 � 4 1218 � 1 2817 � 146
4571 � 257 0 533 � 95 401 � 21 2709 � 38
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LCFA-containing wastewater. These constitute the base
of a new reactor concept, designated as Inverted Anaero-
bic Sludge Bed (IASB) reactor (Alves et al., 2007): (i)
maximize the contact area between biomass and LCFA to
optimize LCFA adsorption, and (ii) use flotation as the
primary biomass retention technique. These two prin-
ciples imply that conventional primary biomass retention
techniques such as granulation or biomass fixation cannot
be applied. However, a settling step is still needed,
because sludge settles well again after effective LCFA
conversion. This settled sludge can subsequently be inti-
mately contacted with LCFA-containing wastewater to
maximize adsorption. Thus, a sludge recycle loop should
be present over the reactor. This loop could further
provide the mild shear stress needed to maximize the
sludge surface area. Additionally, it provides the means to
control mixing intensity inside the reactor and limit pos-
sible mass transfer limitations even further. A pilot scale
proof of concept is running presently in a slaughterhouse
located in the Nord of Portugal.

Kinetics of LCFA degradation

Existing information about the kinetics of LCFA degrada-
tion under anaerobic conditions is not vast (Table 5). The
complex nature of LCFA–cells interaction, and the poten-
tial of biomass acclimation, make it difficult to obtain
objective data about kinetics of LCFA degradation and
inhibition by LCFA. In the Anaerobic Digestion Model
(ADM) No. 1 inhibition under transient high LCFA concen-
trations is not described (Batstone et al., 2002).

The specific methane production rate from LCFA has
been reported by several authors. Hwu and colleagues
(1997b) reported a value of 600 mg COD (g VSS)-1 day-1 in
the washed-out biomass from an EGSB reactor fed with
oleic acid. Pereira and colleagues (2004) reported kinetic
values of degradation of biomass-associated LCFA;
a maximum of 434 mg COD-CH4 (g VSS)-1 day-1 was
obtained for a sludge containing a specific LCFA content of

743 mg COD-LCFA (g VSS)-1, while a value of 241 mg
COD-CH4 (g VSS)-1 day-1 was obtained for a sludge con-
taining a specific LCFA content of 3272 mg COD-LCFA (g
VSS)-1. A simple Haldane substrate inhibition model was
not adequate to describe the kinetics of methane produc-
tion from biomass-associated LCFA. Cavaleiro and col-
leagues (2009) reported a maximum value of 1170 mg
COD-CH4 (g VSS)-1 day-1 in a continuous reactor fed with
high loads of skim milk and oleate.

Microbiology of anaerobic LCFA degradation

LCFA degradation in anaerobic bioreactors is accom-
plished by syntrophic communities of acetogenic bacteria
and methanogenic archaea. LCFA are converted to
acetate and hydrogen by obligate hydrogen-producing
acetogens – OHPA (Schink, 1997). To date, only 14 aceto-
genic microorganisms have been described that degrade
butyrate or higher fatty acids in syntrophy with hydrogen-
consuming microorganisms (McInerney et al., 2008).
They all belong to the families Syntrophomonadaceae
(McInerney, 1992; Zhao et al., 1993; Wu et al., 2006;
Sousa et al., 2007a) and Syntrophaceae (Jackson et al.,
1999), and live together with hydrogen-consuming metha-
nogenic archaea or sulfate-reducing bacteria. However,
only seven species are described that can use straight-
chain LCFA with more than 12 carbon atoms: Syntroph-
omonas sapovorans (Roy et al., 1986), Syntrophomonas
saponavida (Lorowitz et al., 1989), Syntrophomonas
curvata (Zhang et al., 2004), Syntrophomonas zehnderi
(Sousa et al., 2007a), Syntrophomonas palmitatica (Hata-
moto et al., 2007a), Thermosyntropha lipolytica (Svetlitsh-
nyi et al., 1996) and Syntrophus aciditrophicus (Jackson
et al., 1999).

Among these microorganisms only four species have
the capability of utilizing mono- and/or polyunsaturated
LCFA (with more than 12 carbon atoms): S. sapovorans
(Roy et al., 1986), S. curvata (Zhang et al., 2004), T.

Table 5. Summary of kinetics data on anaerobic LCFA degradation.

Substrate
KS
kg COD m-3

Y
COD/CODa

mmax

day-1 Reference

Oleate/manure/oil 0.058 0.05 0.55 Angelidaki et al. (1999)
Stearate 0.295 0.055 0.1 Novak and Carlson (1970)
Palmitate 0.41 0.054 0.11 Novak and Carlson (1970)
Myristate 1.23 0.053 0.08 Novak and Carlson (1970)
Oleate 9.21 0.054 0.44 Novak and Carlson (1970)
Linoleate 5.19 0.055 0.55 Novak and Carlson (1970)
Slaughterhouse (stearate) 0.1 0.021 7.7 Salminen et al. (2000)
Slaughterhouse (palmitate) 0.1 0.004 0.89 Salminen et al. (2000)
Slaughterhouse 0.102 – – Masse et al. (2002)
Oleate + skim milk – 0.11–0.20 0.15–0.25 Alves (1998)
LCFA oxidation 0.105–3.18 0.06–0.16 0.085–0.55 Pavlostathis and Giraldo-Gomez (1991)

KS, half-saturation constant; Y, biomass/substrate yield; mmax, maximum specific growth rate.
a. produced biomass COD/consumed substrate COD.
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lipolytica (Svetlitshnyi et al., 1996) and the recently
isolated S. zehnderi (Sousa et al., 2007a) (Table 6). The
latter bacterium was obtained from an anaerobic bioreac-
tor treating an oleate-based effluent.

To date there are few studies on the microbial diversity
of anaerobic communities that degrade LCFA. Microbial
diversity of granular and suspended sludge was assessed
during a long-term operation of two anaerobic up-flow
bioreactors fed with increasing concentrations of oleate.
Due to partial flotation caused by LCFA accumulation, a
physical segregation of the sludge in two fractions was
observed: a whitish floating fraction, at the top, and a
settled fraction at the bottom (Pereira et al., 2002c).

Differences in the community structure between these
two fractions were assessed by comparison of denaturat-
ing gradient gel electrophoresis (DGGE) profiles. Similar-

ity indices between bottom and top sludge fractions
attained values as low as 56.7% and 29.4% for the granu-
lar and suspended sludge respectively. Additionally, a shift
in the community structure was observed in both sludges
during the operation. Similarity indices between the origi-
nal granular and suspended sludges and the respective
top sludge fractions at the end of the operation were
17.3% and 15.2%.

Shigematsu and colleagues (2006) used a 16S rRNA
gene approach to study the microbial communities present
in a chemostat fed with a mixture of oleic and palmitic
acids. Members belonging to Syntrophomonadaceae were
detected in the chemostat, although the most predominant
microorganisms belonged to the Bacteroidetes and Spiro-
chaetes phyla. Based on this fact, the authors suggested
that members of those phyla could play a role in LCFA

Table 6. Characteristics of some syntrophic LCFA-degrading bacteria (adapted from Sousa, 2007).

LCFA-degrading bacteria Morphological characteristics LCFA utilization range

Syntrophomonas sapovoransa Short curved rods (0.5 ¥ 2.5 mm)
Slightly motile
Gram-negative
Two to four flagella
Non-spore forming

Degrades linear saturated fatty acids with
4–18 carbon atoms in co-culture with
Methanospirillum hungatei. Mono- and
di-unsaturated LCFA, such as oleate
(C18:1) and linoleate (C18:2), are also
oxidized by the co-culture

Syntrophomonas curvatab Slightly curved rods (0.5–0.7 ¥ 2.3–4.0 mm)
Motile
Gram-negative
One or three flagella inserted in both poles
Non-spore forming

Degrades linear saturated fatty acids with
4–18 carbon atoms in co-culture with M.
hungatei. Oleate (C18:1) is also oxidized by
the co-culture

Syntrophus aciditrophicusc Rod-shaped cells (0.5–0.7 ¥ 1.0–1.6 mm)
Non-motile
Gram-negative
Non-spore forming

Degrades linear saturated fatty acids with
more than four carbon atoms (C4:0 to C8:0,
C16:0, C18:0) in co-culture with H2-utilizing
Desulfovibrio sp. or Methanospirillum
hungatei

Syntrophomonas zehnderid Curved rods (approximately 0.4–0.7 ¥
2.0–4.0 mm)

Variable response to Gram staining
Slight twitching
Motility
Spore formation during growth on oleate in

co-culture with a methanogen that utilizes
hydrogen and formate

Degrades oleate, a mono-unsaturated fatty
acid, and straight-chain fatty acids
C4:0–C18:0 in syntrophic association with
Methanobacterium formicicum

a. Roy and colleagues (1986).
b. Zhang and colleagues (2004).
c. Jackson and colleagues (1999).
d. Sousa and colleagues (2007a).
Bars equal 1 mm, except for picture d where the bar represents 10 mm.
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degradation. The diversity and dynamics of biomass in
reactors that treat saturated (palmitate) and unsaturated
(oleate) LCFA were studied by 16S ribosomal RNA gene-
targeted molecular techniques (Sousa et al., 2007b,c).
These studies revealed that the bacterial community of the
sludges is quite complex. Besides bacteria known to be
able to degrade LCFA, bacteria were detected that are
likely involved in the degradation of short-chain fatty acids,
suggesting that during LCFA degradation short-chain fatty
acids are formed from LCFA. Bacterial communities were
dominated by members of the Clostridiaceae and Syntro-
phomonadaceae families (Sousa et al., 2007b). However,
a significant part of the retrieved bacterial 16S rRNA gene
sequences (53%) were most similar to those of yet uncul-
tured microorganisms, with the majority assigned to the
phylum Firmicutes. Members of Proteobacteria and
Bacteroidetes were also found.

A further interesting observation was the difference in
the dominant population obtained with oleate and palmi-
tate. The oleate-degrading community is able to rapidly
degrade palmitate, which is obvious as palmitate is a key
intermediate in oleate degradation. However, the consor-
tium enriched with palmitate degraded oleate only poorly.
This seems to reflect the above-mentioned characteristics
of LCFA-degrading bacteria. All bacteria that degrade
unsaturated fatty acids also degrade saturated fatty acids,
but the opposite is not the case. The likely biochemical
mechanism to degrade unsaturated fatty acids seems to
be a coupled hydrogenation and b-oxidation. Besides
OHPA that degrade unsaturated LCFA, bacteria exist that
have the ability to hydrogenate unsaturated LCFA to satu-
rated LCFA (Maia et al., 2007; Paillard et al., 2007).

Hatamoto and colleagues (2007b,c) used stable
isotope probing with 13C palmitate as a substrate to iden-
tify the microorganisms directly involved in palmitate
degradation. Members of the phyla Bacteroidetes and
Spirochaetes, the family Syntrophaceae within the
Deltaproteobacteria, and members of the family Syntro-
phomonadaceae and genus Clostridium within the Firmi-
cutes were found in clone libraries from heavy rRNA
fractions. These results confirm that phylogenetically
diverse bacterial groups were active in situ in the degra-
dation of LCFA under methanogenic conditions.

The effect of sulfate addition to methanogenic LCFA-
degrading sludges was studied (Sousa et al., 2009). When
sludges were exposed to sulfate, sulfide was produced and
methane formation decreased. Nevertheless, although
many sulfate-reducing bacteria are known that can
degrade LCFA, OHPA remained dominantly present in the
reactors even after a long exposure to high sulfate concen-
trations (Sousa et al., 2009). The results suggest that
hydrogen consumption by methanogens is taken over by
hydrogen-consuming sulfate reducers, which are known to
have a higher affinity for hydrogen than methanogens.

Conclusions and future perspectives

Lipids are suitable substrates for high-rate anaerobic
wastewater treatment and are also ideal co-substrates for
AD plants. Provided the appropriate technology is utilized
and the right feeding strategy is followed, lipids can be
effectively converted to methane by syntrophic consortia
of acetogenic bacteria and methanogenic archaea.
Driving the methane production from lipids/LCFA at indus-
trial scale, without risk of inhibition, is still a challenge that
has the potential for filling a gap in the existing processes
and technologies for biomethane production associated to
waste and wastewater treatment. A new reactor concept
is proposed that provide primary biomass retention
through flotation and secondary biomass retention
through settling. The potential of this reactor to treat efflu-
ents with high concentrations of lipids/LCFA is being
explored at pilot scale.

The types of bacteria involved in the methanogenic
conversion of LCFA are known and the biochemical
mechanism of LCFA degradation by b-oxidation is rather
well understood. However, the initial steps in the anaero-
bic conversion of unsaturated LCFA remain unclear.
Besides OHPA that degrade unsaturated LCFA, bacteria
exist that have the ability to hydrogenate unsaturated
LCFA to saturated LCFA. The position of the latter bacte-
ria in LCFA degradation in bioreactors requires further
study. In principle this conversion can be coupled to
growth and these bacteria may compete with hydro-
genotrophic methanogens for hydrogen.

LCFA require the syntrophic cooperation of OHPA and
methanogens. These syntrophic communities perform
optimally when they are organized in micro-colonies; at
short intermicrobial distances the rate of interspecies
hydrogen transfer is enhanced. Presently, it is unclear
how the fatty structure of the substrate interferes with
these communities. It is not clear how the micro-colonies
develop in a fatty matrix and what is the effect on hydro-
gen transfer. As hydrogen is poorly soluble in water, it
cannot be excluded that interspecies hydrogen transfer
is enhanced when the matrix is LCFA rather than water.
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