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Manuel Simõesa,*, Lúcia C. Simõesb, Maria J. Vieirab

aLEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto,

Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
bIBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho,

Campus de Gualtar, 4710-057 Braga, Portugal
a r t i c l e i n f o

Article history:

Received 30 July 2008

Received in revised form

3 October 2008

Accepted 7 October 2008

Published online 18 October 2008

Keywords:

Antimicrobial resistance

Biofilm control

Dual species biofilm

Hydrodynamic stress

Mechanical stability
* Corresponding author. Tel.: þ351225081982
E-mail address: mvs@fe.up.pt (M. Simões

0043-1354/$ – see front matter ª 2008 Elsevi
doi:10.1016/j.watres.2008.10.010
a b s t r a c t

The study of biofilm ecology and interactions might help to improve our understanding of

their resistance mechanisms to control strategies. Concerns that the diversity of the bio-

film communities can affect disinfection efficacy have led us to examine the effect of two

antimicrobial agents on two important spoilage bacteria. Studies were conducted on single

and dual species biofilms of Bacillus cereus and Pseudomonas fluorescens. Biofilms were

formed on a stainless steel rotating device, in a bioreactor, at a constant Reynolds number

of agitation (ReA). Biofilm phenotypic characterization showed significant differences,

mainly in the metabolic activity and both extracellular proteins and polysaccharides

content. Cetyl trimethyl ammonium bromide (CTAB) and glutaraldehyde (GLUT) solutions

in conjunction with increasing ReA were used to treat biofilms in order to assess their

ability to kill and remove biofilms. B. cereus and P. fluorescens biofilms were stratified in

a layered structure with each layer having differential tolerance to chemical and

mechanical stresses. Dual species biofilms and P. fluorescens single biofilms had both the

highest resistance to removal when pre-treated with CTAB and GLUT, respectively. B.

cereus biofilms were the most affected by hydrodynamic disturbance and the most

susceptible to antimicrobials. Dual biofilms were more resistant to antimicrobials than

each single species biofilm, with a significant proportion of the population remaining in

a viable state after exposure to CTAB or GLUT. Moreover, the species association increased

the proportion of viable cells of both bacteria, comparatively to the single species

scenarios, enhancing each other’s survival to antimicrobials and the biofilm shear stress

stability.

ª 2008 Elsevier Ltd. All rights reserved.
1. Introduction biofilms are harder to be eradicated and may serve as
Bacillus cereus and Pseudomonas fluorescens are two major

spoilage bacteria that produce tremendous process and end

product quality problems in industrial systems (Dogan and

Boor, 2003; Kreske et al., 2006). Their undesired effects are

accentuated when they form biofilms. Once developed, their
; fax: þ351225081449.
).
er Ltd. All rights reserved
a chronic source of microbial contamination (Peng et al.,

2002; Simões et al., 2005a). In fact, bacteria in biofilms have

intrinsic mechanisms that protect them from even the most

aggressive environmental conditions, namely the exposure

to chemical antimicrobials (Gilbert et al., 2002; Cloete, 2003;

Davies, 2003).
.
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Diversity in microbial communities leads to a variety of

complex relationships involving inter and intraspecies inter-

actions (Berry et al., 2006; Hansen et al., 2007; Elenter et al.,

2007). The surface colonization by a bacterium can enhance

the attachment of others to the same surface (Simões et al.,

2007a). This process allows the development of multispecies

communities often possessing greater combined stability and

resilience than that of each individual species (Møller et al.,

1998; Burmølle et al., 2006). There are some evidences that

biofilm community diversity can affect subsequent disinfec-

tion efficacy (Leriche and Carpentier, 1995; Leriche et al., 2003;

Burmølle et al., 2006). Nevertheless, the mechanisms regu-

lating this phenomenon still remain unclear. Understanding

single and multispecies biofilm survival in hostile environ-

ments should help the development of more efficient control

strategies.

Chemical agents, such as biocides and surfactants, and

mechanical forces are the main methods used to inactivate

and remove biofilms (Cloete et al., 1998; Chen and Stewart,

2000; Simões et al., 2005a). Although the use of antimicrobial

agents is widespread in biofilm control, standardized quanti-

tative methods for antimicrobial selection and for the design

of efficient biofilm control protocols do not exist. Conse-

quently, strategies to remove unwanted biofilms must take

into account the system characteristics (Stewart et al., 2000). It

is expected that an effective and wide spectrum biofilm

control strategy will overcome the problems of biotransfer

potential (ability of any microorganisms associated with

a surface that could eventually lead to the contamination of

the processing product), cross-resistance and the existence of

persistent biofilms (Verran, 2002; Gilbert and McBain, 2003;

Simões et al., 2008a).

The objective of this study was to provide a better under-

standing of the effects of sequential antimicrobial and

mechanical treatments on a dual species biofilm containing B.

cereus and P. fluorescens. The characterization of single and

dual species biofilms was performed to assess potential

physiological aspects determining biofilm behavior to chem-

ical and mechanical stresses.
2. Experimental procedures

2.1. Bacteria and culture conditions

P. fluorescens ATCC 13525T and a B. cereus strain, isolated from

a disinfectant solution and identified by 16S rRNA gene

sequencing, were used throughout this study (Simões et al.,

2007b). Bacterial growth conditions were 27 � 2 �C and pH 7,

with glucose as the main carbon source. Bacteria were grown in

independent chemostats, consisting of 0.5 L glass chemostats

(Quickfit, MAF4/41, England), with an air flow rate of 0.425 L/min

and continuously fed with a sterile concentrated standard

growth medium (glucose, 5 g/L, peptone, 2.5 g/L and yeast

extract, 1.25 g/L, prepared in 0.02 M phosphate buffer, pH 7)

(Simões et al., 2005b). The continuous feeding, with the aid of

a peristaltic pump (Ismatec Reglo, Germany), occurred at a rate

of 10 mL/h (P. fluorescens) or 13 mL/h (B. cereus) of sterile medium.

Under the tested experimental conditions both bacteria had

similar growth profiles and rates (Simões et al., 2008b).
2.2. Chemicals tested

The chemical agents used were thealiphatic cationic surfactant

cetyl trimethyl ammonium bromide (CTAB; Merck, Portugal)

and the aliphatic aldehyde-based biocide glutaraldehyde

(GLUT; Reidel-de-Haën, Germany). Both chemicals were tested

at 0.9 mM, obtained by preparation with sterile distilled water.

2.3. Single and dual species biofilm formation

Biofilms were grown on ASI 316 stainless steel cylinders, with

a surface area of 34.6 cm2 (2.2 cm diameter; 5 cm length), in

a 3.5 L perspex (polymethyl methacrylate) bioreactor and

rotating at a constant Reynolds number of agitation (ReA;

nondimensional parameter defined by the ratio of dynamic

pressure and shearing stress) of 2400 (Fig. 1). This device offers

a simple approach to study and characterize biofilms in a well-

controlled, real-time and reproducible manner, and to mimic

industrial flow processes (Azeredo and Oliveira, 2000). Three

stainless steel cylinders were used in every experiment. Two

biofilm containing cylinders were used for independent

treatments with CTAB and GLUT and the other was used for

biofilm phenotypic characterization. For single species biofilm

formation, the 3.5 L bioreactor was continuously fed with

sterile diluted medium (glucose, 50 mg/L, peptone, 25 mg/L,

yeast extract, 12.5 mg/L, in 0.02 M phosphate buffer pH 7), and

bacteria in the exponential phase of growth, supplied from the

above-mentioned 0.5 L chemostats, at a flow rate of 10 mL/h

for P. fluorescens or 13 mL/h for B. cereus, providing similar cell

density inoculums. The flow rate of diluted medium was

maintained at 1.7 L/h, so that it would support a cell density of

6 � 107 cells/mL for each bacterium. The biofilms were

developed at 27� 2 �C, during 7 d in order to obtain biofilms in

the phenotypic steady-state (Pereira et al., 2002).

For dual species biofilm formation, two independent 0.5 L

chemostats were used to independently grow B. cereus and P.

fluorescens. The 3.5 L bioreactor was inoculated simulta-

neously with the two bacteria, and fed with diluted nutrient

medium at twice the flow rate (3.4 L/h) than the one used for

single species biofilm formation, in order to obtain a cell

density and residence time similar to that of the single species

situation. The experiments were repeated at three different

occasions for every scenario tested.

2.4. Biofilm sampling for phenotypic characterization

The biofilm (chemically untreated) on the stainless steel

cylinders was removed using a stainless steel scraper and,

afterwards resuspended in 10 mL of buffer solution (2 mM

Na3PO4, 2 mM NaH2PO4, 9 mM NaCl and 1 mM KCl, pH 7) and

homogenised by vortexing (Heidolph, model Reax top) for 30 s

with 100% power input, according to the methodology

described by Simões et al. (2005a). The homogenised biofilm

suspensions were then phenotypically characterized in terms

of respiratory activity, total and extracellular polymeric

substances (EPS) content (proteins and polysaccharides), and

biomass amount and cell density. The B. cereus spore numbers

in single and dual species biofilms were assessed by surface

plating (300 mL sample) after biofilm suspension heat treat-

ment (80 �C, 5 min). The plates of solid concentrated standard



Fig. 1 – Schematic representation of the experimental system used to develop biofilms on the bioreactor rotating system.
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growth medium (13 g/L agar) were incubated at 27 � 2 �C for

72 h. The experiments were repeated at three different occa-

sions by performing three independent biofilm formation

experiments.

2.5. Respiratory activity assessment

Biofilm respiratory activity assays were performed in a model

53 Yellow Springs Instruments (Ohio, USA) biological oxygen

monitor (BOM), as previously described (Simões et al., 2005c).

Samples were placed in the temperature-controlled BOM

vessel (27 �C � 2 �C). Each vessel contained a dissolved oxygen

(DO) probe, connected to a DO meter. Once inside the vessel,

the samples were aerated for 30 min to ensure oxygen satu-

ration ([O2] ¼ 9.2 mg/L, 1 atm). Afterwards, the vessel was

closed and the decrease of oxygen concentration monitored

over time. The initial linear decrease observed corresponded

to the endogenous respiration rate. To determine the oxygen

uptake due to substrate oxidation, 50 mL of a glucose solution

(100 mg/L) was injected into each vessel. The slope of the

initial linear decrease in the DO concentration, after glucose

addition, corresponded to the total respiration rate. The

difference between the two respiration rates represented the

oxygen uptake rate due to glucose oxidation and was

expressed as mgO2/gbiofilm min.

2.6. Proteins and polysaccharides quantification

Biofilm EPS (proteins and polysaccharides) were extracted

using Dowex resin (50 � 8, NAþ form, 20–50 mesh, Fluka-

Chemika, Switzerland), according to the methods of Frølund

et al. (1996). Dowex resin was added to the biofilm suspen-

sions. EPS extraction took place at 400 rpm and 4 �C for 4 h.

The extracellular components (present in the supernatant)

were separated from the cells via centrifugation (3777g,

5 min). The total (before EPS extraction) and extracellular

biofilm proteins were determined using the Lowry modified

method (Sigma, Portugal), with bovine serum albumin as

standard. The procedure is essentially the Lowry method

(Lowry et al., 1951) as modified by Peterson (1979). The total

and extracellular polysaccharides were quantified through
the phenol–sulphuric acid method of Dubois et al. (1956), with

glucose as standard.

2.7. Biomass quantification

The dry mass of the biofilms was assessed by the determi-

nation of the total volatile solids (TVS) of the homogenised

biofilm suspensions, according to standard methods (Amer-

ican Public Health Association [APHA], American Water

Works Association [AWWA], Water Pollution Control Federa-

tion [WPCF]) (APHA/AWWA/WPCF, 1989). Following this

methodology, the TVS assessed at 550 � 5 �C in a furnace

(Lenton thermal designs, UK) for 2 h is equivalent to the

amount of biological mass. The biofilm mass accumulated

was expressed in mg of biofilm per cm2 of surface area of the

slide (mgbiofilm/cm2).

2.8. Biofilm chemical treatment

The cylinders with biofilm were removed from the 3.5 L

bioreactor, and then immersed in 170 mL perspex vessels

(diameter ¼ 4.4 cm; length ¼ 12 cm) containing CTAB or GLUT

solutions. The biofilm exposure to chemical treatment was

carried out with the cylinders rotating at a constant ReA of

2400 for 30 min.

After biofilm chemical exposure, a neutralization step was

performed to quench the chemicals antimicrobial activity,

according to Johnston et al. (2002). CTAB was chemically

neutralized by the following solution (w/v): 0.1% peptone, 0.5%

Tween 80and 0.07% lecithin (Sigma). GLUT wasneutralizedwith

sodium bisulphite (Sigma) at a final concentration of 0.5% (w/v).

2.9. Biofilm removal by hydrodynamic stress

Biofilm cells were removed by submitting the biofilms to

increasing ReA, according to the methodology described by

Simões et al. (2005a). Following the chemical neutralization

step, the cylinders with biofilm were inserted in the 170 mL

vessels, now with 0.02 M phosphate buffer (pH 7) and

consecutively subjected to a series of ReA, i.e. 4000, 8100,

12,100 and 16,100, for a period of 30 s each. After each
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hydrodynamic stress exposure, removed biofilm cells were

collected by centrifugation (3777g, 5 min) and used to assess

the number of total and viable cells, and the vessels were filled

with fresh phosphate buffer. The residual biofilms, covering

the cylinders, were entirely removed with a stainless steel

scraper and resuspended into 5 mL of phosphate buffer, for

cell enumeration and viability characterization. Three inde-

pendent experiments were carried out for each biofilm type

and chemical tested.

The amount of biofilm bacteria removed from the cylinder

surface, after each ReA, was expressed as the percentage of

biofilm removal, and the biofilm bacteria that remained

adhered to the cylinders after the serial hydrodynamic stress

was expressed as the percentage of biofilm remaining

according to the following equations:

Biofilm removali ð%Þ ¼ ðXiÞ=
�
Xbiofilm

�
� 100 (1)

Biofilm remaining ð%Þ ¼
�
Xremaining

�
=
�
Xbiofilm

�
� 100 (2)

Xbiofilm – total biofilm cells; i – ReA, i.e. 4000, 8100, 12,100 and

16,100; Xi – number of biofilm cells removed by a ReA of 4000,

8100, 12,100 or 16,100; Xremaining – number of biofilm cells

remaining adhered to the stainless steel surface.

2.10. Enumeration of total and viable cells

Biofilm bacteria were stained with Live/Dead BacLight

bacterial viability kit (Invitrogen/Molecular Probes, Leiden,

The Netherlands), according to the procedure described by

Simões et al. (2005c). This fast epifluorescence staining

method was applied to estimate both viable and total counts

of bacteria. BacLight is composed of two nucleic acid-binding

stains: SYTO 9� and propidium iodide (PI). SYTO 9� pene-

trates all bacterial membranes and stains the cells green,

while propidium iodide only penetrates cells with damaged

membranes, and the combination of the two stains produces

red fluorescing cells.

Biofilm samples were diluted to an adequate concentration

(in order to have 30–250 cells per microscopic field), being

thereafter microfiltered through a Nucleopore� (Whatman,

Middlesex, UK) black polycarbonate membrane (pore size

0.22 mm), stained with250 mL ofSYTO9� solutionand 250 mL ofPI

solution from the Live/Dead kit, and left in the dark for 15 min. A

microscope (AXIOSKOP; Zeiss, Göttingen, Germany), fitted with

fluorescence illumination and a 100� oil immersion fluores-

cence objective, was used to visualise the stained cells. The

optical filter combination consisted of a 480–500 nm excitation

filter, in combination with a 485 nm emission filter. Bacterial

images were digitally recorded as micrographs using a micro-

scopecamera (AxioCamHRC;Zeiss).ScanPro5 (Sigma) wasused

to quantify the number of cells and to measure the equivalent

cell radius as an estimate of cell size (Walker et al., 2005).

B. cereus and P. fluorescens were distinguished according to

the significant cell size differences (Simões et al., 2007b,

2008b). B. cereus biofilm cells had sizes of 1.58 � 0.09 mm, while

P. fluorescens had cell sizes of 0.583 � 0.07 mm. The mean

number of cells was determined from counts of a minimum of

20 microscopic fields. The proportion of viable cells in the

removed/remaining biofilm layers was assessed as the ratio of

viable and total cells for each bacterium in a specific layer.
2.11. Statistical analysis

The data were analysed using the Statistical Package for the

Social Sciences, version 15.0 (SPSS, Inc, Chicago, IL). The mean

and standard deviation within samples were calculated for all

cases. The data were analyzed by the nonparametric Kruskal–

Wallis test based on a confidence level �95%.
3. Results

3.1. Biofilms phenotypic characterization

B. cereus and P. fluorescens single and dual species biofilms were

metabolically active oxidizing glucose as the main carbon

source in the growth medium (Table 1). P. fluorescens biofilms

were found to be five times more metabolically active resulting

in higher biomass, cell density, and extracellular proteins and

polysaccharides than B. cereus biofilms (P < 0.05). P. fluorescens

biofilmmatrix washighlycomposed ofproteins (29% of thetotal

proteins) and polysaccharides (61% of the total poly-

saccharides), while B. cereus biofilmshad 8% of the total proteins

and 10% of the polysaccharides as matrix constituents.

Dual species biofilms were about five times more meta-

bolically active than P. fluorescens biofilms and had similar

densities. The mass content was similar to those formed by B.

cereus (Table 1). The dual species biofilm matrix had a signifi-

cant proportion of both extracellular proteins (57% of the total

proteins) and polysaccharides (53% of the total). Moreover,

dual species biofilms were composed of log values of 13.9

(�0.1) and 13.6 (�0.09) cells/cm2 of B. cereus and P. fluorescens,

respectively. Spores were detected at numbers always smaller

than 1 � 10�5% of the vegetative B. cereus population in both

single and dual species biofilms (P < 0.05).

3.2. Biofilm removal

The physical organization of the tested biofilms was found to

occur in layers, showing different resistance to detachment by

hydrodynamic stress (Fig. 2). Removal of B. cereus and P. fluo-

rescens single species biofilms pre-treated with CTAB was

higher for ReA � 12,100, and dependent on the hydrodynamic

stress increase (P < 0.05). Significant biofilm bacteria removal

was achieved with the exposure to ReA of 16,100 and 12,100,

for B. cereus and P. fluorescens biofilms, respectively (Fig. 2a).

Dual species biofilm removal, pre-treated with CTAB, was

similar for the several ReA.

Analysis of removal of GLUT pre-treated biofilms shows

a higher removalof both single and dual species biofilms for the

lower ReA (Fig. 2b). Variability in the number of cells of each

removed layer was found only for B. cereus biofilms (P < 0.05).

Biofilm removal results evidenced that their behavior face

to shear stress changes, i.e. the biofilm mechanical stability,

was higher for dual biofilms treated with CTAB (Table 2),

with more than 66% of the total biofilm bacteria remaining

adhered, and for P. fluorescens biofilms after GLUT exposure

(more than 60% of the population remaining adhered).

P. fluorescens and B. cereus single species biofilms held the

lowest mechanical stability, after exposure to CTAB and

GLUT, respectively.



Table 1 – Phenotypic characteristics of B. cereus and P. fluorescens single and dual species biofilms. The means ± SDs for at
least three replicates are illustrated.

B. cereus P. fluorescens Dual

Biofilm activity (mgO2/gbiofilm min) 0.0332 � 0.0098 0.150 � 0.022 0.813 � 0.22

Log cellular density (cells/cm2) 13.0 � 0.21 14.0 � 0.11 14.1 � 0.091a

Biofilm mass (mg/cm2) 0.413 � 0.11 0.907 � 0.093 0.506 � 0.20

Proteins (mg/gbiofilm) Total 205 � 27 210 � 19 321 � 24

Extracellular 15.8 � 5.3 59.9 � 15 184 � 11.3

Polysaccharides (mg/gbiofilm) Total 307 � 33 200 � 4.6 187 � 17

Extracellular 30.3 � 4.2 121 � 56 99.1 � 16

a 13.9 of B. cereus; 13.6 of P. fluorescens.
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3.3. Biofilm viability

B. cereus formed the most susceptibly biofilms to CTAB and

GLUT, while dual species biofilms were the most resistant

(Fig. 3). This phenomenon was observed invariably for the

several biofilm layers (removed and remaining). The propor-

tion of viable cells was significantly different when comparing

the several layers (P < 0.05). A gradual increase in the

proportion of viable cells was noticeable for the most inner

layers. Furthermore, the proportion of viable cells was

significantly different when biofilms were pre-treated with

CTAB (Fig. 3a) or GLUT (Fig. 3b). In general, CTAB had a higher

antimicrobial activity than GLUT (P < 0.05).

Viability of the remaining adhered biofilm layer (Table 2)

reinforces the differential resistance/susceptibility between
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Fig. 2 – Biofilm removal after submitting the CTAB (a) and

GLUT (b) treated biofilms to increasing ReA. B. cereus (,)

and P. fluorescens ( ) single and dual (-) species. The

means ± SDs for at least three replicates are illustrated.
single species, and single and dual species biofilms. The

remaining adhered layers of dual species biofilms treated with

CTAB or GLUT had more than 95% of the total population in

a viable state. This proportion of viable bacteria was signifi-

cantly higher than those of single species biofilms (P < 0.05).

3.4. B. cereus and P. fluorescens viability in dual
species biofilms

P. fluorescens cells in dual species biofilms outer layers were

more tolerant to the tested antimicrobials than B. cereus

(Fig. 4). A similar B. cereus and P. fluorescens tolerance to CTAB

(Fig. 4a) was found in the inner layers removed by a ReA of

12,100 and 16,100. The same effect was verified for GLUT

exposed biofilms (Fig. 4b), and for the layers removed by ReA of

8100, 12,100 and 16,100. Moreover, biofilm remaining were

composed by a similar proportion of B. cereus and P. fluorescens

viable cells (Table 2).

B. cereus and P. fluorescens in single (Fig. 3) and dual biofilms

(Fig. 4), had distinct susceptibility to the tested chemicals.

Both bacteria, in the several biofilm layers, were more resis-

tant to the antimicrobials when in co-culture (P < 0.05).

Comparisons between the proportion of viable bacteria in

single and dual species biofilms evidence a protective effect of

species association on bacteria viability after antimicrobial

treatment.
4. Discussion

Control of microbial growth is required in many microbio-

logically sensitive environments, where wet or moist surfaces

provide favourable conditions for microbial proliferation and

biofilm formation (Verran, 2002; McBain et al., 2002). Biofilm

control methods must take into account the knowledge of the

constitutive microflora and their responsive behavior to

control (Simões et al., 2005b, 2007a). In this work, the effect of

shear forces’ variation (through the increase in the ReA)

combined with the action of chemicals was investigated with

B. cereus and P. fluorescens in single and dual species biofilms.

The aim of the synergistic use of chemical treatment and

mechanical action was to obtain bacteria-free surfaces.

The phenotypes displayed by single and dual species bio-

films were significantly distinct. Dual species biofilms were

primarily colonized by B. cereus and predominantly composed

by EPS. The high biofilm cell counts reported are apparently



Table 2 – Percentage of remaining adhered (biofilm remaining) cells and respective viability of B. cereus and P. fluorescens
from single and dual species biofilms exposed to the sequential CTAB/GLUT and mechanical treatments. Numbers which
are in italics indicate the highest cell density and viability values.

CTAB GLUT

B. cereus P. fluorescens Dual B. cereus P. fluorescens Dual

Cell density (%) 37.1 � 3.3 4.21 � 0.35 66.3 � 6.9 24.1 � 4.9 61.5 � 1.8 47.2 � 2.3

Viability (%) 70.5 � 11 75.3 � 6.5 95.1 � 4.3a 77.7 � 8.1 83.2 � 7.8 97.8 � 1.3b

a 94.1 � 1.1% of B. cereus and 96.0 � 3.3 of P. fluorescens biofilm cells in viable state.

b 97.3 � 0.09% of B. cereus and 98.3 � 1.3 of P. fluorescens biofilm cells in viable state.
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related with the characteristics of the experimental system

used. In fact, this bioreactor system and operating conditions

were optimized to improve the potential of bacteria to form

biofilms (Azeredo and Oliveira, 2000; Simões et al., 2005a,

2008b). While cell density differences of dual B. cereus and P.

fluorescens biofilms are statistically significant, it seems

unlikely that they are biologically and ecologically relevant.

Dual species biofilms had a higher metabolic activity than

single species biofilms, a phenomenon probably related with

the distinct cell densities. Moreover, other phenotypic char-

acteristics such as: increased biofilm porosity, growth kinetics

and mass transfer efficiency could favour nutrient consump-

tion and increase their metabolic activity (Melo and Vieira,
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single and dual (-) species biofilms. The means ± SDs for

at least three replicates are illustrated.
1999). The high EPS productivity of dual species biofilms,

comparatively to the single species scenario, seems to be

associated with the high metabolic activity. A previous study

demonstrated the correlation between bacteria metabolic

activity and EPS formation (Simões et al., 2007c). In fact, the

metabolic activity is directly correlated with electron trans-

port system activity (Babcock and Wikstrom, 1992). Other

authors (Teo et al., 2000) demonstrated that proton trans-

location would induce the dehydration of cell surface, which

could facilitate and strengthen the cell–cell interaction, and

further lead to the creation of stronger and dense commu-

nities. However, other mechanisms could influence the

differential EPS productivity in single and dual species bio-

films. In fact, various specific pathways of biosynthesis and

discrete export mechanisms involving the translocation of
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EPS across bacterial membranes to the cell surface or into the

surrounding medium have been described for bacterial

proteins and polysaccharides (Beveridge et al., 1997;

Osterreicher-Ravid et al., 2000; Nakhamchik et al., 2008).

Some of the phenotypic characteristics studied, namely bio-

film cell density, metabolic activity and EPS content, are

relevant in biofilm control by conventional chemicals and by

mechanical stress (Simões et al., 2005a,b). Moreover, spore

formation was detected at low amounts in B. cereus single

biofilms and in dual species biofilms. Ryu and Beuchat (2005)

found similarly that in B. cereus biofilms, spores were at

residual number comparatively to the vegetative cells.

The mechanical stability of biofilms was assessed by

exposing them to different shear stresses in an attempt to

weaken the biofilm structure and promote detachment. The

biofilms layered structure had different susceptibilities to the

sequential chemical and mechanical stresses. The resistance

to removal was higher for dual species biofilms pre-treated

with CTAB and P. fluorescens biofilms after GLUT exposure. P.

fluorescens and B. cereus single species biofilms held the lowest

mechanical stability, after exposure to CTAB and GLUT,

respectively. According to some authors (Körstgens et al.,

2001; Derlon et al., 2008), the removal of well-established

biofilms requires overcoming the forces that maintain their

integrity. Detachment of biofilms formed on the bioreactor

rotating system is processed in layers, where the increase in

the shear stress forces may progressively thin the biofilm

(Azeredo and Oliveira, 2000; Simões et al., 2008b). This

phenomenon is probably related with cylindrical geometry of

the surfaces used for biofilm formation and with the massive

detachment promoted by the shear stress forces. This

detachment mechanism differs from that described for flow-

ing systems, such as flow cells, where detachment of single

cells and clusters are the main events (Stoodley et al., 2001). In

the bioreactor rotating system, detachment of single cells and

clusters were only significantly detected approximately 6 d

after biofilm formation (time required to achieve the steady-

state in terms of metabolic activity and cell density) and over

time. However, those cells, removed by superficial erosion and

by sloughing events, represented about 0.078 � 0.013% of the

total population. In fact, the amount of biofilm in a given

system after a certain period of time depends on biofilm

accumulation, which has been defined as the balance between

bacterial attachment from the planktonic phase, bacterial

growth within the biofilm and biofilm detachment from the

surface (Stoodley et al., 1999). When that balance is null, the

biofilm is said to have reached a steady-state (van der Kooij,

1999; Flemming, 2002).

In terms of viability, P. fluorescens was more resistant to

antimicrobials than B. cereus in single species biofilms. More-

over, bacteria were more susceptible to antimicrobials in

single biofilms than in the dual species biofilm system.

Comparing surfactant and biocide antimicrobial action, CTAB

was invariably more efficient than GLUT in biofilm bacteria

inactivation. This is probably related with their distinct

chemical classes and different antimicrobial mechanisms of

action. GLUT has been a reference product for disinfection for

many years, acting by cross-linking with functional proteins

(Walsh et al., 1999; Fraud et al., 2001). CTAB is known to form

electrostatic bonds and rupture cell membranes. The primary
site of action of CTAB has been suggested to be the lipid

components of the membrane causing cell lysis as

a secondary effect (Gilbert et al., 2002; Simões et al., 2006). Both

chemicals are known to interact strongly with proteins

(Simões et al., 2006).

Bacterial tolerance to CTAB or GLUT was dependent on the

cells location within the biofilm community. Biofilm inner

layers were composed by a higher proportion of viable cells

comparatively to the outer layers. In fact, bacteria in different

zones of the biofilm pellicle experience different microenvi-

ronments and thus display different physiological behaviors

(Stewart and Franklin, 2008). This physiological heterogeneity

can be involved in the reduced antimicrobial susceptibility of

bacteria in biofilms being the most reasonable explanation for

the varying viability observed in the several biofilm layers.

Nevertheless, the results also demonstrated that bacteria in

dual species biofilms are even more resistant to killing and

removal (only CTAB pre-treated biofilms) than single species

biofilms. This increased resistance can be attributed to the

protective barrier provided by the more abundant biofilm EPS

matrix comparatively to single species biofilms. Also, the

differential susceptibility of single and dual species biofilms to

antimicrobials may be due to the EPS attributes, allowing

a distinct interaction with the chemicals (Pan et al., 2006). In

addition to the physical hindrance of antimicrobials diffusion

caused by the EPS matrix, this barrier might also encompass

others phenomena, such as absorption or catalytic destruc-

tion of the aggressor agent on the biofilm surface (Stewart

et al., 2000). Moreover, the EPS plays a crucial role in main-

taining the structural integrity of biofilms by both cellular

adhesion and cohesion, allowing the formation of mechan-

ically stable aggregates (Simões et al., 2005a). However, taking

into account the biofilm phenotypic differences and the

increased antimicrobial and mechanical resistance of dual

species biofilms, comparatively to each single biofilm, it is

possible that species association promotes other resistance

mechanisms in addition to those promoted by the distinct

described phenotypes. In fact, the complex biofilm architec-

ture provides an opportunity for metabolic cooperation, and

niches where antimicrobial-resistant phenotypes are formed

within the spatially well-organized system (Davies, 2003;

Klapper et al., 2007).

B. cereus and P. fluorescens in dual species biofilm inner layers

had similar tolerance to both antimicrobials. This proposes that

the predictability in CTAB and GLUT antimicrobial efficacy in

multispecies aggregates is not only related with the bacterial

cell composition and structure (B. cereus is Gram-positive while

P. fluorescens is Gram-negative) and with the antimicrobial

activity of the chemical agent, but with other events probably

resulting from the species association. These interactions may

lead to the formation of low susceptibility phenotypes. In fact,

the results demonstrate that biofilm species association/

diversity promotes community stability and functional resil-

ience even after chemical and mechanical treatment. Similarly,

Leriche and Carpentier (1995) demonstrated that P. fluorescens

and Salmonella typhimurium in biofilm enhanced each other’s

survival following chlorine treatment. Staphylococcus sciuri was

also found to protect Kocuria sp. microcolonies against a chlo-

rinated alkaline solution (Leriche et al., 2003). Other apparent

protective effects caused by bacteria association have been
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mentioned (Lindsay et al., 2002; Whiteley et al., 2002). The

synergistic species association found in this study, in addition

to other well-described biofilm specific antimicrobial resistance

mechanisms (Mah and O’Toole, 2001; Cloete, 2003; Davies, 2003;

Klapper et al., 2007), could at least partly explain the survival of

complex multispecies biofilms in adverse environments.
5. Conclusions

Single and dual B. cereus and P. fluorescens biofilms had

significant phenotypic differences, mainly in the metabolic

activity and both extracellular proteins and polysaccharides

content. The physical organization of those biofilms was

found to occur in layers showing different resistance to

killing by CTAB and GLUT and detachment by hydrodynamic

stress. B. cereus formed the most susceptibly biofilms to CTAB

and GLUT, while dual species biofilms were the most resis-

tant to antimicrobial action. In fact, dual species biofilms

were more resistant to killing and physical removal (except

GLUT pre-treated P. fluorescens single species biofilms) by

shear forces than their respective single species biofilms.

Moreover, the species association increased the proportion of

viable cells of both bacteria, comparatively to the single

species scenarios, enhancing each other’s survival to the

antimicrobials.
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