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bstract

This article reports on the theoretical modelling, the finite element modelling (FEM) simulation, the fabrication process and preliminary results of
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provided by Universidade do Minho: Repos
he first on-chip thermoelectric microcooler array (64 pixels arranged in an 8 × 8 array), with each pixel independently controlled. This microcooler
rray uses co-evaporated V–VI compounds of Bi2Te3 and Sb2Te3 as thermoelectric layers, and can be fabricated using planar thin-film technology,
ithography and wet etching, on top of a silicon wafer where the CMOS electronic circuits were previously made.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Integration of efficient solid-state thermoelectric microde-
ices with microelectronics is desirable for local cooling
nd thermoelectric microgeneration, since they can be used
o stabilize the temperature of devices, decrease noise lev-
ls and increase operation speed. An array of such devices
an also be used for lab-on-chip applications or energy
arvesting microsystems. Despite the range of exciting appli-
ations, only few approaches to manufacture thermoelectric
evices with small dimensions were reported up to now
1–4].

Due to silicon fabrication compatibility, polycrystalline SiGe
lloys and polycrystalline Si are commonly used in thermopile
pplications. Their use in microcoolers has been attempted
5] but the performance is very low compared with that
f tellurium compounds, which have been used for many
ears in conventional large area Peltier devices. Tellurium
ompounds (Bi2Te3 and Sb2Te3) are well-established room
emperature thermoelectric materials and are widely employed
n conventional thermoelectric generators and coolers. Differ-

nt deposition techniques were tried to obtain thin-films of
hese materials. Thermal co-evaporation, co-sputtering, electro-
hemical deposition, metal-organic chemical vapour deposition
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nd flash evaporation are some examples. Thin-films of n-
ype Bi2Te3 and p-type Sb2Te3 were obtained by the authors
y thermal co-evaporation [6,7], with thermoelectric figure of
erit (ZT) 0.84 for n-type and 0.5 for p-type. Best n-type
lms have Seebeck coefficient of 220–250 �V K−1, resis-

ivity of 10–15 �� m, thermal conductivity ≈1.3 Wm−1 K−1

8], carrier concentration ≈6 × 1019 cm−3, Hall mobility
rom 80 to 120 cm−2 V−1 s−1 and EDX analysis revealed

stoichiometric composition. p-Type films have Seebeck
oefficient of 160–200 �V K−1, resistivity of 10–15 �� m, ther-
al conductivity ≈1.7 W m−1 K−1 [8], carrier concentration
4 × 1019 cm−3, Hall mobility from 120 to 170 cm−2 V−1 s−1

nd are slightly Te-rich (67–73%, measured by EDX) [6,7].
hese values are similar to the best found in literature for the
ulk materials [9]. Figure of merit can be calculated according
o the following equation:

T = α2

ρλ
T (1)

here α is the Seebeck coefficient, ρ the electrical resistiv-
ty, λ the thermal conductivity and T the temperature [9]. It
s demonstrated that 15 ◦C cooling is possible to achieve at
oom temperature using such thin-film materials in an array of

icrocoolers. Böttner et al. [1,4] uses dry etching to pattern

hermoelectric devices in a two wafers process. Power factors of
× 10−3 W K−2 m−1 and 4 × 10−3 W K−2 m−1 were obtained,

espectively, in n-type and p-type telluride compounds. Verti-
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Fig. 3. Single pixel microcooler simulation shows the possibility to obtain 15 ◦C
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bounded to a fixed temperature of 25 C (heatsink). A maximum
temperature of 27.4 ◦C was obtained on the backside of silicon
wafer.
Fig. 1. Artwork showing part of the microcooler array.

al columns of thermoelectric materials using lift-off on SU-8
hotoresist, was achieved before by Silva et al. [2]. But ther-
oelectric properties of Bi2Te3 and Sb2Te3 films incorporated

n the devices are worst than those obtained in bulk materials.
MEMS-like electrochemical process was also found in liter-

ture [3], but figure of merit obtained in materials deposited
y this process is still very low. In the present work, high-
gure-of-merit films are deposited by co-evaporation, and low
ost wet etching techniques are used to pattern thermoelectric
evices.

. Design and simulation

The array of microcooler was designed to accommodate 64
ixels organized in 8 × 8 structure (Fig. 1). Each pixel can be
ndependently controlled to heat or cool. Fig. 2 represents a
ingle pixel cross-section. When a current flows from the n-
ype thermoelectric element (TE) to the metal cold pad and
rom this to the p-type TE, by Peltier effect, heat is absorbed
n the metal–TE element junctions. The reverse applies to con-
act pads on electronics, where heating is generated by Peltier
ffect.

FEM simulation was used to calculate the expected tem-
erature drop on each pixel. A temperature drop of 15 ◦C,
ellow room temperature was obtained (Fig. 3). To obtain
his cooling capacity, a membrane (200-nm thick) of sili-
on nitride supports four pairs of thermoelectric elements
40 �m × 100 �m × 10 �m), powered with 14 mA current. Con-
act resistivity (between thermoelectric elements and metal

−10 2
ads) of 10 � m was assumed on simulations [10,11].
adiation and convection was considered on the cooled sur-

ace (10 W m−2 K−1). Thermoelectric properties of n-type and
-type elements were considered as achieved on previous exper-

Fig. 2. Drawing of a pixel of the microcooler array (not on scale).

F
t
o

f cooling at the centre of the pixel.

mental results [6,7]. Results obtained from FEM simulation on
single pixel microcooler agree with theoretical calculations

12].
All the cold junctions of the Peltier device are on the Si3N4

embrane. All the hot junctions of the Peltier device and the
lectronics are positioned on top of the silicon wafer (Fig. 2).
he silicon wafer is used as thermal path to distribute all the
eat generated by thermoelectric elements and electronics to
n heatsink glued around the chip. Fig. 4 shows the overall
xpected heating of the backside of the chip due to the control
lectronics, Peltier effect and Joule heating. A power dissipation
f 1 mW was considered for the electronics in each pixel and a
urrent of 14 mA is supplied to each microcooler. A 500-�m
hick silicon wafer was used, and the borders of the array were

◦

ig. 4. Backside view of the simulated structure that supports the pixels showing
hat maximal heating is 2.3 ◦C above room temperature, with all pixels turned
n to cool at full power.
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Fig. 5. Electronic circuit showing par
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Fig. 6. Power circuit driving each pixel.

A CMOS microchip was designed, with the electronics to
ddress and control each pixel of the array, memorizing the state
f microcooler. Figs. 5 and 6 show the circuit repeated for 9 (of
he 64) pixels. If the duty-cycle of the input signal is greater
han 50%, the voltage across the capacitor becomes positive. By
he other hand, if the duty-cycle is lesser than 50%, the voltage

cross the capacitor becomes negative. When the voltage across
apacitor is positive, the voltage between the gate and the source
f Q1 increases and the same of Q2 decreases. This causes an
ncrease in Q1 current and a decrease in Q2 current. By the

1
i
t
p

able 1
hermoelectric properties of selected films at room temperature

ilm Te (%) Bi or Sb (%) Seebeck (�V/◦C) Resistiv

i2Te3 62 38 −248 17.0
b2Te3 70 30 188 12.6
t of the 64 pixels of the device.

ther hand, when the voltage across the capacitor is negative, the
oltage between the gate and the source of Q1 decreases and the
ame of Q2 increases. This causes a decrease in Q1 current and
n increase in Q2 current. Q5 and Q4 work as constant voltage
ources biasing Q1 and Q2, once their currents are imposed by
3. This solution allows controlling the power applied to each
ixel. To minimize heating of Q1 or Q2, their dimensions and the
ower supply (Vdd and Vss) should be chosen in order to supply
he maximum current to the microcoolers (14 mA), while keep
1 or Q2 in the triode region. Working on saturation region will
roduce more heating on these transistors, rising the substrate
emperature, if many pixels are turned on.

. Fabrication steps

Fig. 7 presents the fabrication steps of the micrcooler array.
he backside of the wafer is covered with patterned Si3N4

ayer which will act as a mask during etch on last step. The Si
afer (with electronics already fabricated) is also covered with
Si3N4 top layer where two vias are opened to access the con-

act metallic pads on top that will provide connection between
lectronics and thermoelectric elements. This Si3N4 layer will
e used to fabricate the membrane where cool areas will be
ocated. Metal pads to provide interconnection between TE ele-

ents are deposited and patterned. The p-type thermoelectric
aterial is deposited by co-evaporation and patterned by pho-

olithography on top of the wafer. An etchant with composition

0:6:26 HNO3:HCl:H2O (fuming 99.5% HNO3 and 37% HCl)
s used to etch Sb2Te3 p-type film without etching the metal con-
act pads [13] (etch rate below 0.1 nm/s was measured on contact
ads). Bi2Te3 n-type film is deposited by co-evaporation and

ity (�� m) Thermal conductivity (W m−1 K−1) Figure of merit

1.3 0.84
1.7 0.50
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Fig. 7. Fabrication steps of the microcooler array.

Fig. 8. SEM photo of Bi2Te3 (left) and Sb2Te3 (right) thin-films.
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Fig. 10. Photo of a microcooler pixel, on top of a polyimide substrate.

F
w

b
t
o
t
s
t
n
c
d

5

ig. 9. Etch rate of Bi2Te3 and Sb2Te3 films in HNO3:HCl solution (diluted
0% volume in water) as function of HNO3/HCl content. Polyimide substrate
as used.

atterned by photolithography. Table 1 presents thermoelectric
roperties and Fig. 8 shows a cross-section SEM photo of Bi2Te3
nd Sb2Te3 films. HNO3 (30% diluted in water) etches Bi2Te3 at
tch rate of 250 nm/s and Sb2Te3 at etch rate of 5 nm/s, allowing
electivity of 50 times [13]. Fig. 9 plots the etch rate as func-
ion of etchant composition (pure HCl content divided by pure
NO3 content), presenting the composition where best results

re obtained. The etch rate observed on aluminium or chromium
ads is also less than 0.1 nm/s. Etch rate measurements were all
erformed on Kapton polyimide substrate. Similar results are
xpected on top of Si3N4 substrate layer. Photoresist is removed
nd a passivation layer of Si3N4 is used to avoid degradation
f the thermoelectric films in contact with atmospheric oxygen.
he last step of fabrication is the etching of the back side of the
i wafer using KOH, to fabricate a membrane of Si3N4 on each
ixel that supports the microcooler elements. This membrane
chieves significant reduction of thermal conduction between
he cold and the hot sides of the Peltier device. Electronic
ircuits in the wafer are confined to the regions between the
icrocoolers to prevent damage during the last KOH fabrication

tep.

. Experimental results

An enlarged microcooler individual pixel was fabricated
nd tested on top of a polyimide substrate that emulates the
i3N4 membrane (Fig. 10). The fabrication of these enlarged
icrocooler pixel allowed a rapid demonstration prototype. The
orking principle of the microcooler and the quality of mate-

ials were demonstrated and evaluated. The performance of the
icrocooler was analyzed by use of a thermal image map gener-

ted with an infrared microscope. An image was obtained with
4 mA current through the device and cold and hot sides are

learly identified (Fig. 11).
A temperature difference of 5 ◦C was measured between

he hot and the cold sides, under vacuum. The distance from

xpected results is due to high contact resistances between
etal pads and thermoelectric elements. A contact resistance

f 10−6 � m2 was measured, with a method [7] based on TLM
transmission line model) method. This value is expected to

c
u
t
p

ig. 11. Thermal image of n-type and p-type thermoelectric elements, powered
ith 4 mA current, under vacuum.

e reduced to less than 10−9 � m2 using an interface layer in
he fabrication process [2,11]. The high temperature achieved
n the hot side of the device results from the low dissipa-
ion capability due to the low thermal conductivity of the
ubstrate used in the prototype (polyimide) compared with
he substrate used in simulation (silicon covered with silicon
itride). The low thermal conductivity in contact pads also
ontributes for this higher temperature on the hot side of the
evice.

. Conclusions

An array of microcoolers, with 64 pixels, with each pixel

ontrolled independently to cool or heat was designed and sim-
lated, and the respective fabrication process was described. A
emperature difference of ±15 ◦C could be achieved in each
ixel. Thermoelectric thin-films with high figure of merit were
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btained by co-evaporation, suitable for fabrication of such
icrocoolers, and lithographic pattern techniques were applied

n these films. Bi2Te3 and Sb2Te3 films were patterned with 3:7
NO3:H2O and 10:6:26 HNO3:HCl:H2O (99.5% HNO3 and
7% HCl), respectively, and selectivity of 50× was measured
etween these two processes.

A large area pixel of the microcooler was fabricated and its
erformance analyzed under microscopic infrared imaging. A
emperature difference of 5 ◦C was obtained. Differences from
xpected performance are due to high electrical resistance and
ow thermal conductance obtained in the pad–thermoelectric

aterial interface. Efforts are being made to reduce contact
esistance and fabricate thermoelectric elements with lower
imensions.
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José Higino Correia graduated in Physical Engineer-
ing from University of Coimbra, Portugal, in 1990. He
obtained in 1999 a PhD degree at the Laboratory for
Electronic Instrumentation, Delft University of Tech-
nology, working in the field of microsystems for optical
spectral analysis. Presently, he is an associate profes-

sor in Department of Industrial Electronics, University
of Minho, Portugal. His professional interests are in
micromachining and microfabrication technology for
mixed-mode systems; solid-state integrated sensors,
microactuators and microsystems.


	On-chip array of thermoelectric Peltier microcoolers
	Introduction
	Design and simulation
	Fabrication steps
	Experimental results
	Conclusions
	Acknowledgements
	References


