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Oith the development of affective disorders but the underlying mechanisms are not

fully understood. Changes in brain centres implicated in both emotional and pain processing are likely to be
critical in the interplay of pain control and affective emotional behaviour. In the present study, we assessed
emotional behaviour and performed a structural analysis of the amygdala (AMY) in neuropathic rats after two
months of hyperalgesia and allodynia, induced by the spared nerve injury model (SNI). When compared with
Sham-

^
controls, SNI animals displayed signs of depressive-

^
like behaviour. In addition, we found an increased

amygdalar volume in SNI rats. No alterations were found in the dendritic arborizations of AMY neurons but,
surprisingly, the amygdalar hypertrophy was associated with an increased cell proliferation [bromodeoxyur-
idine (BrdU)-

^
positive cells] in the central (CeA) and basolateral (BLA) amygdaloid nuclei. The phenotypic

analysis of the newly-
^
acquired cells revealed that they co-

^
label for neuronal markers (BrdU+NeuN and BrdU+

Calbindin), but not for differentiated glial cells (BrdU+glial fibrillary acidic protein).
We demonstrate that neuropathic pain promotes generation of newneurons in the AMY. Given the established
role of the AMY in emotional behaviour, we propose that these neuroplastic changes might contribute for the
development of depressive-

^
like symptoms that are usually present in prolonged pain syndromes in humans.

© 2008 Elsevier Inc. All rights reserved.
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EPain is a multidimensional experience with sensitive

^
–discriminative

and motivational affective dimensions (Anand and Craig, 1996).
Persistent pain, including chronic pain syndromes (Tal and Bennett,
1994), is a commoncondition associated to awide spectrumof disorders
including cancer, inflammation and neuropathic pain. Neuropathic pain
(NP) is caused by a primary lesion or dysfunction of the nervous tissue
(Merskey and Bogduk, 1994) and results in prolonged hyperalgesia,
allodynia and spontaneous pain (Devor, 2006). NP results froma process
of peripheral and central sensitization that generates an enhanced
transmission of nociceptive input to the brain (Gao et al., 2005; Ren and
Dubner, 1996), which may impair the endogenous supraspinal pain
control system (Danziger et al., 2001; Kauppila et al., 1998; Pertovaara,
2000; Rasmussen et al., 2004; Tal and Bennett, 1994).

The amygdala (AMY) is a central component of the limbic system
and plays a crucial role in behavioural responses to emotional stimuli
(Davis andWhalen, 2001;Han andNeugebauer, 2001;Neugebauer and
Li, 1992). Moreover, the AMY is deeply involved in processing the
emotional component of pain, probably through a modulatory role
69
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71

72
meida).
eurc/index.htm (A. Almeida).
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al., Neuropathic pain is assoc
oi:10.1016/j.expneurol.2008.0
upon major supraspinal pain control centres (SPCC) (Manning and
Mayer,1995; Manning,1998; Manning et al., 2001). On the other hand,
it is possible that neuroplasticity in higher centres controlling SPCC
may contribute to alterations in the fine control of pain. In fact, an
imbalance between inhibiting and facilitating descending modulation
of nociceptive transmission may underlie, at least in part, the
development of chronic pain (Almeida et al., 2006; Lima and Almeida,
2002; Pertovaara, 2000; Porreca et al., 2002; Schaible et al., 1991).
Accordingly, arthritic and neuropathic pain enhance synaptic trans-
missionof nociceptive-

^
specific input to theAMY (Han andNeugebauer,

2004; Neugebauer and Li, 1992; Neugebauer et al., 2003), which
reinforces the potential role of AMY in SPCC alterations resulting from
prolonged pain syndromes.

Chronic pain induces mood disorders, including depression and
anxiety (Rasmussen, 2004). In addition, the adverseness of pain is am-
plified or reduced depending on the emotional environment (Merskey,
1965), and conditions of increased anxiety (Rhudy and Meagher, 2000)
and depression (Merskey, 1965; Willoughby et al., 2002; Zelman et al.,
1991) are usually associated with decreased pain tolerance. This vicious
circle may trigger, or even result from, neuronal changes in the limbic
system. Accordingly, imaging studies indicate that gross structural
changes may occur in the AMY in situations of major depression
(Altshuleret al., 2005; Bremneret al., 2000; Frodl et al., 2002; Strakowski
et al., 1999; Tebartz van Elst et al., 2000).
iated with depressive behaviour and induces neuroplasticity in the
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Fig. 1. Mechanical allodynia assessed by von Frey filaments (A) and mechanical
hyperalgesia assessed by the pin

^
-prick test (B) before and after surgery in SNI and

Sham groups (dotted line indicates the day of SNI surgery). (A) Note that the pre-

^
surgery threshold to von Frey filaments was similar in both SNI and Sham groups and
in both hind paws; after surgery, the withdrawal threshold of the SNI group decreased
within 24 h and remained low until the end of the 2 month experimental period. In
Sham animals, the withdrawal threshold to von Frey filaments was decreased during
the first postoperative days but returned to baseline values. (B) In the pin-

^
prick test,

SNI animals showed a strong hyperalgesia from the first postoperative day onwards,
whereas Sham animals showed no hyperalgesia. The symbols and error bars represent
mean+S.D.
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As a rationale for the present study, we hypothesized that chronic
pain induces emotional disturbances that are associated with
neuroplasticity of the amygdaloid complex. To assess this hypothesis,
we performed behavioural, stereological and immunocytochemical
analysis during or after the induction of a two month

^
neuropathy

following themodel of Decosterd andWoolf (2000). Part of the present
results have already been published in abstract form (Gonçalves et al.,
2006).

Materials and methods

Animals

All procedures were performed on adult (200–
^
250 g, 55–

^
65 days)

male Wistar
^
–Han rats. Animals were housed under standard labora-

tory conditions (12 h light cycle; 22 °C, 55% humidity; food and water
available ad libitum). Experiments were conducted in accordance with
local regulations, European Union Directive 86/609/EEC, NIH guide-
lines on animal care experimentation and IASP ethical guidelines for
pain experimentation on awaken animals (Zimmermann, 1983). Sixty
animalswere divided in twomain experimental groups of 30 rats each:
spared nerve injury (SNI) and sham operated (Sham). A set of rats
(n=

^
18 each group) received one injection of the cell proliferation

marker bromodeoxyuridine (BrdU; Miller and Nowakowski, 1988),
50mg/kg body weight, i.p. (Sigma, St. Louis, MO) for three consecutive
days before their death (see below), twomonths after SNI induction or
Sham surgery.

Spared nerve
^
injury surgery

The SNImodel of chronic neuropathic pain included an axotomy and
ligation of two of the three peripheral ramifications of the sciatic nerve,
the tibial and common peroneal nerves and leaving the sural nerve
intact, as described elsewhere (Decosterd andWoolf, 2000). The animals
were lightly anesthetized with pentobarbital 0.5% (Eutasil, Ceva Saúde
Animal, Portugal). The common peroneal and tibial nerves were tight-
ligated with 5.0 silk and sectioned distal to the ligation, removing 2–
4 mm of the distal nerve stump. Great care was taken to avoid any
contactwithor stretchingof the intact sural nerve.Muscle and skinwere
closed in two layers. Sham

^
-controls involved exposure of the sciatic

nerve and its branches without performing any manipulation.

Nociceptive tests

Nociceptive testswere performed in all animals a day before and two
days after the surgery procedure, followed by testing every two days
then forward, during the two months of experimental period. Both the
ipsilateral (right hind paw) and the contralateral hind paw were tested
in order to evaluate the presence of “mirror pain”, described elsewhere
as present in neuropathic pain pathologies (Tal and Bennett, 1994).

Mechanical allodynia
Animals were placed on an elevated wire grid and the lateral

plantar surface of the paw stimulated with a series of ascending force
von Frey monofilaments. The nociceptive threshold was taken as the
lowest force that evoked a brisk withdrawal response to one of five
repetitive stimuli (Tal and Bennett, 1994).

Mechanical hyperalgesia
With the animals on the elevated grid, a pin-

^
prick test was

performed using a safety pin. The lateral part of the plantar surface
of the paw was briefly stimulated at intensity sufficient to touch but
not penetrate the skin (Decosterd et al., 1998). The duration of paw
withdrawal was measured, with an arbitrary minimal time of
0.5 seconds (

^
s) (for the brief normal response) and maximal cut-

^
off

of 20 s
^
(Tal and Bennett, 1994).
Please cite this article as: Gonçalves, L., et al., Neuropathic pain is assoc
amygdala of the rat, Exp. Neurol. (2008), doi:10.1016/j.expneurol.2008.0
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1Assessment of emotional behaviour

1All behavioural tests were performed five days preceding animal
1sacrifice during light period (9am to 6pm) in a restricted group of
1animals (n=

^
18 each group).

1Anxiety-
^
like behaviour

^
—
^
elevated plus

^
-maze test (EPM)

1Anxiety-
^
like behaviour was evaluated in the EPM test through

1an apparatus consisting of two open and two closed arms (50.8×
110.2×40.6 cm each arm) (MedAssociates Inc., St. Albans, Vermont,
1USA). Each rat was placed in the centre of the elevated plus-

^
maze

1facing one of the open arms, and the time spent (s
^
) in the open or

1closed arms was recorded during a 5-
^
min test period (Mesquita et al.,

12006; Sousa et al., 2006). The elevated plus-
^
maze was carefully

1cleaned with 10% ethanol before each animal was placed on the
1equipment.

1Depressive
^
-like behaviour

^
—
^
forced

^
-swimming test (FST)

1The test was performed as in the original method described
1elsewhere (Porsolt et al., 1977, 1978). On day 1 (conditioning, pre-
1test session), rats were individually placed in a clear Plexiglass
1cylinder (29 cm in diameter and 50 cm in height) containing 30 cm
1of water (25+0.5 °C) and left to swim for 15 min. The rats were then
1removed from water and towel-

^
dried, placed under a heating lamp
iated with depressive behaviour and induces neuroplasticity in the
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for 5 min
^
, and finally returned to their home cage. Twenty-

^
four

hours later, the rats were tested under the same conditions for 5 min
(test session). Rats were judged to be immobile when both hind legs
were not moving, and the rat was slightly bent forward (Mesquita
et al., 2006).

Locomotion and exploratory behaviour
^
— open field test (OF)

Motor activity and exploratory behaviour were evaluated by
placing the rat into an infrared photobeam controlled open field
activity test chamber in a brightly illuminated (white light) room.
Animals were tested for 10 min in an arena (43.2 cm×43.2 cm
transparent acrylic walls and white floor) (MedAssociates Inc., St.
Albans, Vermont) thatwas divided into a central and a peripheral zone.
The time spent by each animal in the central and peripheral (residual)
zone and its vertical activity (rearings) were the parameters evaluated
in this test (Mesquita et al., 2006). Environmental odours were
removed with 10% ethanol solution.

Tissue preparation

Both the SNI and Sham groups were divided as follows: i) in the
first group (n=

^
6 each), designated to stereological analysis, the

animals were anaesthetized with pentobarbital and perfused with
4% paraformaldehyde (PFA), the brains were removed, embedded in 2-
hydroxyethyl glycol methacrylate, serially sectioned in a microtome at
30 μm and stained with Giemsa; ii) in the second group (n=

^
6 each),

designated to 3D-
^
morphologycal analyses of dendritic arborization of

AMY neurons, the animals were anesthetized with pentobarbital,
perfused with saline and the brains were removed and processed for
posterior staining following the Golgi-

^
Cox method (Gibb and Kolb,

1998) and slicing in a vibratome at 100 μm; iii) in the third group
(n=

^
18 each), processed for immunocytochemistry for detection of

BrdU, GFAP (glial fibrillary acidic protein), NeuN (neuronal nuclei) and
Calb (

^
Calbindin), the animals were decapitated, the brains dissected,

frozen in liquid nitrogen and sectioned in a cryostat (
^
−14 °C).
UN
CO

RR
EC

Fig. 2. Performance of SNI and Sham groups during behavioural tests. No differences were obse
closed arms. In the FST (B), the time of activitywas lower in the SNI animal, which indicates the p
any of the parameters evaluated.
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Stereological procedures

The amygdaloid complex was subdivided in its nuclear compo-
nents as in Paxinos and Watson (1998): central (CeA), lateral (La),
basolateral anterior (BLA) and posterior (BLP), basomedial anterior
(BMA) and posterior (BMP) nuclei. The nuclei volume and cell number
estimation in AMY nuclei in every 8th section stained with Giemsa
was obtained through the Cavalieri's principle and optical fractionator
methods using the Stereoinvestigator software (MicroBrightField, Inc.,
Williston, VT, USA).

3D-
^
morphologycal analysis of dendrites

The brain sections stained with the Golgi-
^
Cox method were

observed at the optical microscope and multipolar and bipolar AMY
neurons completely and perfectly stained (Cerqueira et al., 2007) were
considered for further analysis using the Neurolucida software
(MicroBrightField, Inc., Williston, VT, USA). The dendrites and spines
of 6 AMY neurons per animal were drawn.

Immunohistochemical procedures

All quantifications of markers for cell division and neuronal fate
were performed in the AMY. Positive controls for histochemical
reactions were confirmed by analysing the subgranular zone (SGZ) of
the hippocampus, since neuronal proliferation is known to occur in
this area (Gould et al., 1999a). As negative controls of immunocyto-
chemical reactions, the primary antibody was not included in the
protocol of each reaction; no specific immunoreaction was observed
following negative controls.

BrdU immunohistochemistry and quantification of BrdU-
^
labelled cells

Bromodeoxyuridine (BrdU; an analogue of thymidine, incorpo-
rated into the newly synthesized DNA of replicating cells) incorpora-
tion was detected by immunocytochemistry on every 8th serial brain
T

rved between the two groups in the EPM test (A), neither in the time spent in the open or
resence of depressive-

^
like behaviour. No differenceswere observed for theOF test (C, C′) in

iated with depressive behaviour and induces neuroplasticity in the
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Fig. 3.Morphological analysis of AMY nuclei. (A) Volumes of different AMY nuclei were
higher in neuropathic animals when compared to Sham, with differences being
statistically significant for the CeA and BLA nuclei. (B) Cell number is also higher in all
amygdalar nuclei of SNI animals, with differences being significant again in the CeA and
BLA nuclei. (C) Structural analysis through Golgi-

^
Cox method showed no differences in

cell body volume and dendrite length of AMY neurons between SNI and Sham groups.
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section containing the amygdaloid complex. Briefly, sections were
fixed in 4% PFA for 30 minutes (min), permeabilized for 10 min in a
solution containing 0.2% Triton X-

^
100 in Tris buffer saline (TBS) after a

3×3 min wash in TBS, heated during 20 min in citrate buffer 0.1 M
following a 3×3 min wash and acidified in HCl 2 M for 30 min after
rinsing in d

^
istillated water. Endogenous peroxidase activity was

blocked with 3% H2O2 in TBS for 10 min
^
after a 3×3 min wash in

TBS, followed by immersion in 4% bovine serum albumin (BSA) in TBS
for 30 min (to block non-

^
specific staining) after a 3×3 minwash. After

another 3×3 min wash in TBS, the tissue was incubated overnight
with a primary monoclonal anti-

^
BrdU antibody raised in mouse (1:50,

Dako, Glostrup, DK) and stained cells were detected using a
^
universal

detection system (BioGenex, San Ramon, CA, USA) and diaminobenzi-
dine (DAB 0.025% and H2O2 0.5% in Tris

^
–HCl 0.05M pH 7.2), after a

3×2 min wash in TBS and a 1×3 min wash in Tris
^
–HCl, followed by

counterstaining with haematoxylin. BrdU-
^
positive cells were counted

throughout the entire AMY area.

Immunofluorescence and quantification of double-
^
labelled cells

Double-
^
staining immunofluorescent reactions were performed in

order to reveal three different groups: (i) BrdU andGFAP (glialfibrillary
acidic protein; a marker of astrocyte glial cells; Reeves et al., 1989), (ii)
BrdU and NeuN (protein expressed exclusively in mature neurons;
Mullen et al., 1992) and (iii) BrdU and Calb (

^
Calbindin; a calcium-

binding protein present in functional mature neurons Meguro et al.,
2004). The following primary antibody dilutions were used: rat anti-
BrdU (1:500, Accurrate,Westbury,MA),mouse anti-

^
GFAP (1:500, Dako

Glostrup, Denmark), mouse anti-
^
NeuN (1:500, Chemicon Interna-

tional, Temecula, CA, USA) and rabbit anti-
^
Calb (1:200, Chemicon

International, Temecula, CA, USA). The initial protocol procedure (until
the primary antibody incubation) was the same in the first three
groups and similar to that described above for revealing BrdU. The
following specific procedures for each double-

^
staining method are

explained briefly and separately for each group.
Brain sections were mounted in slides with Vectashield (Vector

Laboratories, Burlingame, CA, USA) to delay fluorescence decay, and
observed two days later in a fluorescence microscope. Data were con-
firmed posteriorly using confocal microscopy (Olympus FluoViewTM
FV1000, OLYMPUS).

i) BrdU and GFAP
After overnight incubation with the primary antibody anti-

^
BrdU

raised in rat, sectionswerewashed 3×2min in TBS and then incubated
with a fluorescent Alexa 568 secondary antibody (goat anti-

^
rat, 1:200;

Molecular Probes, Eugene, OR) for
^
1 h

^
. Following a 3×3 min wash in

TBS, sections were incubated during
^
3 h

^
with the primary antibody

mouse anti-
^
GFAP, followed by the fluorescent Alexa 488 secondary

antibody (goat anti-
^
mouse, 1:100, Molecular Probes, Eugene, OR) for

^
1 h

^
. The sections were finally washed 2×2 min in TBS and 2 min in

distillate water before being mounted in slides.

ii) BrdU and NeuN
Sections were incubated overnight with the primary antibody anti-

BrdU raised in rat followed by the fluorescent Alexa 568 secondary
antibody (goat anti-

^
rat, 1:200; Molecular Probes, Eugene, OR) for 1 h

^
,

after a 3×3 min wash in TBS. Then, sections were immersed for
^
3 h

^with the primary antibody anti-
^
NeuN raised in mouse (1:500) and

washed 3×3 min. Subsequently, they were incubated with biotiny-
lated secondary antibody anti-

^
mouse (1:200) for

^
1 h

^
and, after a

3×
^
3 min wash, incubated with Alexa Streptavidine 488 (1:100,

Molecular Probes, Eugene, OR) for one final hour. The sections were
washed in TBS and distillate water as above and mounted in slides.

iii) BrdU and Calb
Sections were incubated overnight with the rat anti-

^
BrdU and

mouse anti-
^
Calb primary antibodies. In the next day, after a 3×

^
3 min
Please cite this article as: Gonçalves, L., et al., Neuropathic pain is assoc
amygdala of the rat, Exp. Neurol. (2008), doi:10.1016/j.expneurol.2008.0
2wash in TBS sectionswere firstly incubated with fluorescent Alexa 568
2(goat anti-

^
mouse, 1:200) secondary antibody for

^
1 h

^
and then with

2fluorescent Alexa 488 (goat-
^
anti-

^
rat, 1:200; Molecular Probes, Eugene,

2OR) secondary antibody, after a 3×3 min wash. The sections were
2washed in TBS and distillate water and mounted in slides.

2Statistic analysis

2For the analysis of baseline thresholds of SNI/Sham and ipsi/
2contralateral hind paws in the von

^
Frey and pin-

^
prick tests, one-

^
way

2analysis of variance (ANOVA) was performed. Considering that in the
iated with depressive behaviour and induces neuroplasticity in the
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rest of this study only comparisons between two groups were
performed, the sStudent's t--test was used to analyse the results
of all tests and procedures. The results were considered to be sta-
tistically different when pb

^̂
0.05. Data are presented as mean±

standard deviation.

Results

The spared nerve injury model induces hypersensitivity for at least
2 months

Assessment of mechanical allodynia and hyperalgesia using,
respectively, von Frey filament and pin-

^
prick tests, were performed

twice before the SNI surgery (baseline measurements) and every two
days afterwards (during a two month period). Both neuropathic (SNI
group) and sham

^
-control (Sham group) animals presented a similar

baseline withdrawal threshold measured by von Frey filaments (SNI:
ipsilateral 38±6.1 s

^
, contralateral 25±8.2 s

^
; Sham: ipsilateral 36±7.3 s

^
,

contralateral 35±5.1; Fig. 1A). A bilateral decrease in nociceptive
threshold was observed in neuropathic animals within 24 h after
surgery. This threshold decrease reached the level of 0–

^
5 g five days

after the surgery, a value that remained constant until the end of the
twomonth

^
experimental period. These data showed that the SNI group

developed and maintained a strongmechanical allodynia in both hind
UN
CO

RR
EC

Fig. 4. Cell fate resulting from amygdalar neuroplasticity. (A) The number of cells that were BrdU
number of BrdU+GFAP double-

^
labelled cells between SNI and Sham groups. (A′) Representati

double-
^
labelledcellswerepresentonly inAMYnuclei, being absent inShamanimals. (B′) Represe

stained cells were also present only in neuropathic animals. (C′) Representative images of BrdU, C

Please cite this article as: Gonçalves, L., et al., Neuropathic pain is assoc
amygdala of the rat, Exp. Neurol. (2008), doi:10.1016/j.expneurol.2008.0
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F

paws, as a consequence of the surgery. On the contrary, nociceptive
threshold in Sham animals decreased slightly with the sham surgery,
returning to baseline values within a week, never reaching thresholds
as lowas those presented by SNI animals (Fig.1A). Inwhat concerns the
pin-

^
prick test, the baseline duration of hyperalgesic behaviourwas less

than 1 s
^̂
in all animals, and there were no differences between groups

(SNI: ipsilateral 0.17±0.17 s
^
, contralateral 0.11±0.8 s

^
; Sham: ipsilateral

0.13±1.11 s
^
, contralateral 0.2±0.2; Fig. 1B). Within 24 h from the

surgery, SNI animals reached the maximal duration of hyperalgesic
behaviour in both hind paws (20 s

^
) whereas no changeswere observed

in Sham animals (Fig. 1B). These data showed that the SNI group
developed and maintained a clear hyperalgesic state during virtually
the entire experimental period. In summary, data on pain-

^
related

behaviour demonstrated that SNI animals developed a clear neuro-
pathy that extended throughout the complete experimental period.

Neuropathic animals develop a depressive-
^
like behaviour but do not

display signs of increased anxiety

Emotional behaviour was assessed seven weeks after the surgery.
EPM was performed to evaluate anxious behaviour, FST to assess
depressive-

^
like behaviour and the OF test to determine locomotion

and exploratory behaviour (Mesquita et al., 2006). In the EPM, no
differences were found in the behavioural responses between SNI and

TE
D
PR

-
^
positivewas significantly superior in SNI animals, but no differenceswere observed in the

ve images of GFAP, BrdU and GFAP+BrdU (double
^
-stained)-

^
positive cells. (B) BrdU+NeuN

ntative imagesof BrdU,NeuNandNeuN+BrdUdouble-
^
stained cells. (C)Calb+BrdUdouble

^
-

alb and Calb+BrdU double-
^
stained cells. Magnification bar: 60 μm (A′), 20 μm (B′, C′).
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Sham groups (Fig. 2A), thereby showing that the anxiety levels were
unaltered by induction of SNI. On the other hand, the FST revealed
significant differences between experimental groups (Fig. 2B): while
Sham animals were active for 230±27 s

^
, SNI animals only tried to

escape/swim for 180±38 s
^̂
(p=

^̂
0.012), which indicates the presence

of a learned helplessness (depressive-
^
like) behaviour in neuropathic

animals. Since FST test includes movement of the paws and
neuropathic animals are hyperalgesic and allodynic in both ipsilateral
and contralateral hind paws, the OF test was performed in order to
validate the FST test. This test revealed that the SNI group had no
differences in the locomotion ability when compared with Sham
group and it also revealed that the number of rearings (an indicator of
exploratory behaviour) did not differ between experimental groups
(Figs. 2C,C′). The absence of differences in the time spent in central vs.
peripheral part of the OF arena also indicates the absence of altered
anxiety behaviour in neuropathic animals. In summary, these
behavioural studies demonstrate that a 2 month

^
neuropathy induced

a depressive-
^
like, but not anxious-

^
like, behaviour.

Volume and cell number are increased in amygdaloid nuclei

After animal perfusion, 6 brains of each experimental group were
prepared for stereological analysis and other 6 SNI and Sham brains
were processed for tri-

^
dimensional morphological analysis. For

stereological analysis the AMY was divided in 6 nuclei (Paxinos and
Watson, 1998): central (CeA), lateral (La), basolateral anterior (BLA)
and posterior (BLP), basomedial anterior (BMA) and posterior (BMP).
UN
CO

RR
EC

Fig. 5. (A–
^
D) Microphotograph showing examples of BrdU+NeuN double-

^
labelled cells in t

nucleus is outlined by a continuous line. CPu
^
— caudate putamen (striatum); MePD

^
— me

Magnification bar: 100 μm (A), 20 μm (B
^
–F).

Please cite this article as: Gonçalves, L., et al., Neuropathic pain is assoc
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3We found a general increase in the volume of all these nuclei in SNI
3neuropathic animals, with a significant increase being observed in CeA
3(p=

^̂
0.02) and BLA (p=

^̂
0.019) nuclei (Fig. 3A). In order to determine the

3causes for these structural changes of AMY, we analy
^
sed potential

3alterations in cell numbers and cellular volumes. SNI neuropathic
3animals showed a general increase in the number of cells in all AMY
3nuclei, with a significant difference being present again in CeA
3(p=

^̂
0.015) and BLA (p=

^̂
0.016) nuclei (Fig. 3B). On the contrary, 3D-

3morphological analysis revealed no significant differences in dendritic
3lengths (Fig. 3C) or perikarya areas (Fig. 3D) between neuropathic and
3Sham animals, both in bipolar and multipolar AMY neurons. Taken
3together, these results indicate that the significant increase observed
3in CeA and BLA nuclear volumes of SNI animals was due, at least in
3part, to an increase in cell numbers.

3Newborn neurons contribute to increased cell numbers in AMY

3Rats received one injection of the cell proliferation marker
3bromodeoxyuridine (BrdU) in the three consecutive days before
3their sacrifice. The aim of this procedure was to determine if cell
3proliferationwas responsible for the higher number of cells observed
3in the CeA and BLA nuclei in SNI animals. Immunohistochemistry
3revealed the presence of BrdU-

^
positive cells in the AMY of both

3SNI and Sham groups, but with significantly higher numbers in
3neuropathic animals (p=

^̂
0.001; Fig. 4A). In order to identify the

3phenotype of these newly-
^
acquired cells, two different double-

3staining immunohistochemistry reactions were performed: BrdU+
TE
D
P

he CeA. The rectangle in micrograph A is magnified in figures B
^
–D; the border of CeA

dial amygdaloid nucleus, posterodorsal part; ic
^
— internal capsule; opt

^
— optic tract.
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Fig. 6. Examples of BrdU+NeuN (A) and BrdU+GFAP (B) double-
^
labelled cells (arrows)

obtained in positive-
^
control sections from the subgranular zone of the dentate gyrus of

the hippocampus. Magnification bar: 20 μm (A), 10 μm (B).
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glial fibrillary acidic protein marker (GFAP) and BrdU+post-
^
mitotic

neuronal marker (NeuN). The number of BrdU+GFAP-
^
positive cells

was similar between the SNI and Sham groups. On the other hand,
BrdU+NeuN double-

^
labelled cells were observed only in the SNI

group; interestingly, they were mainly located in the CeA and BLA
nuclei (Figs. 4B, B′, 5). These findings indicate the presence of newly
proliferating neurons in the AMY after prolonged SNI, as further
demonstrated by the presence of BrdU+Calbindin

^
-positive cells in

the
^
AMYof neuropathic animals (Fig. 4C,C′). Positive control sections

obtained from the subgranular zone of the hippocampal dentate
gyrus showed the presence of both BrdU+NeuN and BrdU+GFAP
double-

^
labelled cells (Fig. 6).

In summary, data demonstrate not only that recently-
^
divided

newborn neurons are formed in the AMY of chronic pain animals, but
also that these neurons reach a physiologicallymature (i.e., functional)
state.

Discussion

After two months of neuropathic pain, SNI animals exhibited
signs of sustained persistent pain associated with a significant
depressive-

^
like behaviour. At the CNS level, a structural reorganiza-

tion of the amygdaloid complex was observed that was associated
with a significant increase in the volume of the basolateral (BLA) and
central (CeA) AMY nuclei. The volume increase was due to an in-
creased number of AMY cells, and not to hypertrophy of dendrites or
perikar

^
ya of amygdalar neurons. The present study is the first dem-

onstrating cell proliferation in a limbic area, as a result of chronic
neuropathic pain. Earlier, only electrophysiological studies have
shown chronic pain-

^
related neuroplasticity of AMY neurons in per-

sistent arthritis, visceral pain (Han and Neugebauer, 2004) or neuro-
pathy (Ikeda et al., 2007). Moreover, this is the first study
demonstrating that chronic pain results in depressive-

^
like behaviour

associated with neuroplasticity in a major brain centre implicated in
the control of both emotions and pain.
Please cite this article as: Gonçalves, L., et al., Neuropathic pain is assoc
amygdala of the rat, Exp. Neurol. (2008), doi:10.1016/j.expneurol.2008.0
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Changes in emotional behaviour and neuroplasticity in the AMY

Morphological plasticity in the AMY was previously suggested in
cases of prolonged emotional disturbance, as shown by increased AMY
volumes measured by structural magnetic resonance in patients with
depression and anxiety (Frodl et al., 2002; Tebartz van Elst et al., 2000).
Clinical data also reveal that prolonged pain conditions are associated
with a high incidence of emotional disorders, including anxiety and
depression (Rasmussen et al., 2004). Herein, we show that in the rat, a
two month neuropathy resulted also in a depressive-

^
like behaviour

measured by the forced-
^
swimming test (FST), but no alterations in

anxiety levels were detected in the elevated plus
^
-maze and open field

tests. We also show that increased immobility time in the FST should
not be ascribed to motor impairments as there were no changes in
locomotor activity and exploratory behavior. As in humans, SNI
neuropathy associated with emotional alterations may result from,
or contribute to, the structural changes observed in the AMY. It has
been proposed that the increase in AMY volume observed in de-
pressive patients was a consequence of the continuous prolonged
activation of this area (Frodl et al., 2002). Following the same rationale,
the present increase in AMY volume may result from the continuous
flow of nociceptive information into AMY regions receiving sensory
information (including the BLA) and the consequent prolonged activity
of AMY neurons triggering the appropriate response action (CeA is the
main effector of AMY). Especially relevant is the increase in the CeA
volume, as its latero-

^
capsular part is defined as the ‘nociceptive

amygdala’ due to its high content in neurons implicated in nociceptive
processing (Bernard et al., 1996; Neugebauer and Li, 1992; Neugebauer
et al., 2004).

The volume increase in the AMY after two months of neuropathic
pain may have resulted from one or various different processes: cell
size (soma and dendritic size) increase, cell number (neurons or glial
cells) increase, or increased extracellular volume. However, subse-
quent analysis revealed that the increased volume of the AMY in SNI
animals could not be ascribed to cell size variations, but rather to an
increase in cell number. Interestingly, such increase in cell numbers
was confirmed by the observation of newly proliferating cells in AMY
nuclei of SNI animals. Although the presence of newborn neurons in
the adult brain of mammals is considered to be restricted to two areas,
the subgranular zone (SGZ) of the hippocampus and the subventricular
zone (SVZ) (Doetsch et al., 1997; Gould et al., 1999b; Kempermann and
Gage, 2000), the possibility of neurogenesis in the AMY has already
been raised in a study showing evidence for the presence of newly
generated neurons in the AMY of adult primates, at basal conditions
(Bernier et al., 2002). The results of double-

^
immunoreactions (BrdU+

NeuN) performed in the present study demonstrate that a significant
number of these newly-

^
born cells undergo a neuronal phenotype.

Thus, the genesis of newborn neurons is responsible, at least in part,
for the increase in cell number underlying the increase of volume
observed in the AMY of SNI animals. In contrast, the number of cells
stained simultaneously formarkers of cell proliferation (BrdU) and glia
(GFAP) revealed no additional glial cell proliferation in the AMY
following SNI induction; this indicates that SNI results only in ad-
ditional neuronal proliferation, with a similar basal rate of astrocyte
cell division being common to both Sham and SNI animals.

Neurogenesis and the AMY

Our observation of NeuN and BrdU co-
^
localization in AMY cells

indicate that newly
^
generated cells reached neuronal maturation in the

amygdaloid complex. This is in accordance with the time points for
expression of neuronal differentiation markers described by Kemper-
mann

^
et al. (2004) and Steiner et al. (2004): in the hippocampus of adult

mice NeuN expression becomes higher than immature-
^
neuron

markers 3 days after cell division. Additionally, the presence of BrdU+
Calb double-

^
labelled neurons in the AMY confirms the maturation and
iated with depressive behaviour and induces neuroplasticity in the
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phenotypical differentiation of newborn neurons in definitive AMY of
SNI animals.

Whether these newly-
^
born cells observed in the AMY of SNI rats

result
^
from local progenitor cells or migrate from adjacent neurogenic

regions is still not known. However, several studies have shown that
besides the normal migration of proliferative cells from the SVZ to the
olfactory bulb (through the rostral migratory stream, RMS) or from the
SGZ to other areas of the DG, they can migrate from the SVZ to injured
areas of the brain (Iwai et al., 2003; Parent et al., 2002; Van Kampen
et al., 2004). Therefore, it is possible that the new neurons here
observed have their origin in SVZ progenitor cells that, through
migration, reached the amygdaloid complex following the prolonged
pain syndrome induced by the SNI model. Supporting this hypothesis,
post-

^
natal neurogenesis in the SVZ and SGZ can be regulated positively

through the enhancement of the survival of newly generated cells and
negatively through the down regulation of cell proliferation (Gould
and Gross, 2002) following different stimuli (Jin et al., 2001). On the
other hand, a growing amount of evidence supports the notion that the
CNS itself is not as static as once believed: BrdU-

^
positive cells were

shown to be present in several regions of the adult CNS currently
thought to be mitotically quiescent (Rietze et al., 2000); studies report
that neurogenesis is prone to occur in other areas of adult mammals,
like the neocortex (Gould et al., 1999a; Takemura, 2005), the striatum
(Van Kampen et al., 2004; Bedard et al., 2006), the substantia nigra
(Yoshimi et al., 2005) and the amygdala itself (Bernier et al., 2002).
Taking into account these data, it should not be excluded the possibility
that neural stem cells could be present in the AMY and proliferate
following the prolonged neuropathy resulting from the SNI model.
Further experimental procedures must be performed to elucidate this
issue.

Roles of AMY in pain and emotional processing

Several data implicate the AMY in pain modulation, as shown by
changes in pain tolerance induced by AMY manipulation (Manning,
1998). Moreover, the AMY has a role in both pain inhibition and pain
facilitation (Manning and Mayer, 1995; Manning et al., 2001;
Tershner and Helmstetter, 2000). This dual effect may result from
direct AMY projections to brainstem areas implicated in both de-
scending antinociception and pronociception (Almeida et al., 1999;
Bouhassira et al., 1992; Porreca et al., 2002). As a balance between
descending inhibiting (antinociceptive) and facilitating (pronocicep-
tive) actions upon spinal nociceptive transmission can contribute to
the normal control of pain perception (Lima and Almeida, 2002;
Pertovaara, 2000; Porreca et al., 2002; Ren and Dubner, 1996;
Schaible et al., 1991), the AMY may have a crucial role as a higher
centre modulating the brainstem pain centres responsible for the
fine regulation of the spinal nociceptive transmission. Thus, it is
possible that the here observed amygdalar neuroplasticity may con-
tribute not only to emotional changes but also to alterations in
nociception. In support of this hypothesis, volume changes of AMYwere
already shown in imaging studies of patients with a major depression
(Drevets, 2000) and changes in synaptic function of nociceptive AMY
neurons have been described in sustained pain conditions (Han and
Neugebauer, 2004; Ikeda et al., 2007). Additionally, the neuronal
proliferation observed in AMY areas involved in afferent (BLA) and
efferent (CeA) nociceptive processing may disrupt fine neuronal
networks between high brain centres, which provide

^
a structural basis

for deregulation of emotional behaviour.

Conclusion

In conclusion, this study shows that besidesmechanical hyperalgesia
and allodynia, animals subjected to the SNI model of neuropathic pain
during a two month

^
period developed a depressive-

^
like behaviour

associatedwith an increased volumeof AMYnuclei that results fromcell
Please cite this article as: Gonçalves, L., et al., Neuropathic pain is assoc
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5proliferation. Importantly, this is the first study providing evidence for
5the presence of newly-

^
born cells in the amygdaloid complex as a

5consequence of a sustained chronic (neuropathic) pain condition. We
5hypothesize that these neuroplastic changes of the AMY could be
5associated with the development of depressive-

^
like behaviour in

5neuropathic animals. Nonetheless, future studies on the origin of
5newborn neurons and their integration in the pre-

^
existing synaptic

5network shouldbeperformed in order todetermine the relevanceof this
5phenomenon.
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