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SUMMARY

This paper describes the behavior of single rigid-block structures under dynamic loading. A comprehensive
experimental investigation has been carried out to study the rocking response of four blue granite stones
with different geometrical characteristics under free vibration, and harmonic and random motions of the
base. In total, 275 tests on a shaking table were carried out in order to address the issues of repeatability of
the results and stability of the rocking motion response. Two different tools for the numerical simulations
of the rocking motion of rigid blocks are considered. The first tool is analytical and overcomes the usual
limitations of the traditional piecewise equations of motion through a Lagrangian formalism. The second
tool is based on the discrete element method (DEM), especially effective for the numerical modeling
of rigid blocks. A new methodology is proposed for finding the parameters of the DEM by using the
parameters of the classical theory. An extensive comparison between numerical and experimental data
has been carried out to validate and define the limitations of the analytical tools under study. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of a rigid body (RB) on a rigid foundation experiencing lateral dynamic loading has
been of interest to researchers for many years [1–9]. A number of analytical and numerical models
have been proposed in order to study this phenomenon.
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The reference analytical frame for the study of RM dynamics remains the formulation introduced
by Housner [4] (which will be referred as classical theory in the present study). This method tackles
the dynamical problem with two piecewise equations of motion for each sign of the rocking angle,
while damping is reproduced by means of a coefficient of restitution. Nevertheless, Housner’s
classical formulation presents the following drawbacks: (a) the theory makes the application of
standard mathematical theorems and techniques from the theory of differential equations very
difficult; and (b) its generalization to a higher number of blocks becomes intractable when the
number of degrees of freedom increases.

An alternative formulation [10], known as the complex coupled rocking rotations (CCRR)
method, in which the rocking angle � is assumed to be a complex quantity, was shown to be a
useful tool in the study of RM. The aim of the CCRR method is to unify both piecewise equations
and impact mechanisms into a model in which the motion is governed by a single differential
equation. This approach allows to study configurations involving a higher number of blocks taking
advantage of the scalar nature of a fully Lagrangian–Hamiltonian formulation. Damping effects
are understood by means of a generalized Dirac-� force [11], which is in agreement with the
experimental results.

On the other hand, several authors [12–17] have used the discrete element method (DEM) to
study the rocking motion of RB. Those works show that DEM is a useful tool in the study of RB
in free rocking motion or subjected to a base motion. However, in the referred contributions, the
parameters that define the characteristics of the model (mainly stiffness and damping) are found by
using fitting numerical results to experimental tests, which is a major limitation of this method for
engineering applications. For this reason, a methodology for finding the parameters of DE model
based on the parameters of the classical formulation is proposed here.

An extensive experimental investigation has been carried out to study the rocking response of
four blue granite stones with different geometrical characteristics under free vibration, harmonic
and random motions of the base. A set of 275 tests were reproduced with CCRR and DE models
in order to show the response and limitations of the analytical tools in the RM problem. Therefore,
the present paper also describes the numerical modeling of the experimental tests carried out on
a shaking table.

2. NUMERICAL MODELS

In this section, a brief review of the formulation of the adopted numerical models is presented. The
classical formulation [4] is also described in order to understand better the differences and similarity
between models, even if this formulation is not used here. The complete CCRR formulation can be
found in [10], while the description of DEM was taken from [18, 19]. A MatLab code, developed
by the authors according to [10], and the commercial UDEC code [18], based on the DEM, have
been used to perform the numerical analyses.

2.1. Classical formulation

It has been observed in experimental tests that there are three main parameters for the planar
rocking motion problem. These quantities depend solely on the geometry of the specimens, as
follows: � is defined as the angle at which the stone overturns due to static forces, it is called
critical angle; p is the frequency associated with the system due to the interaction between the
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ON THE DYNAMICS OF ROCKING MOTION OF SINGLE RIGID-BLOCK STRUCTURES 2385

Figure 1. Test specimens: (a) geometry of the blocks tested. Stones 1, 2, 3 (left)
and 4 (right) and (b) single blocks.

block and its base and � is the so-called coefficient of restitution and it is defined as the angular
velocity reduction ratio between two consecutive impacts.

These three parameters will be referenced in this work as theoretical parameters since they
govern the differential equation of RM of a RB. For a rectangular block, with a base 2b and a
height 2h (Figure 1(a)), subjected to horizontal ground acceleration a(�), the differential equations
are derived by considering the equilibrium of moments about the centers of rotation O–O ′ at the
block base

�′′ ± p2 sin(� ∓ �) = p2 cos(� ∓ �)
a(�)

g
(1)

where (′) means differentiation with respect to time �, g is the acceleration of gravity, the ± sign
refers to the domains of the rocking angle �>0 and �<0, respectively, while � is equal to

� = tan−1
(
b

h

)
(2)

and p is a parameter with dimensions of frequency defined as

p2 = MgR

I
(3)

Here, M is the mass, I = ( 43 )MR2 is the corresponding moment of inertia (defined with respect to

O or O ′) and R is defined as R = √
b2 + h2. For rectangular blocks p2 reduces to 3g/4R.

In order to take into account the impact mechanisms, Housner [4] assumed a coefficient of
restitution � that multiplies the angular velocity �′ when the block passes through the equilibrium
position at � = 0. By considering that angular moment conservation exists before and after an
impact, the coefficient of restitution can be obtained by means of

�= �′a

�′b = 1 − 3

2
sin2(�) (4)

where �′a and �′b are the angular velocities just after and before the impact, respectively.
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2.2. Complex coupled rocking rotations method

In free rocking motion a symmetry in the system is present. The symmetry is equivalent to
an invariance with respect to the sign of rocking angle �, and as a consequence, an associated
conserved magnitude exists. This fact can be exploited by expressing � as complex quantity, with
a module r and a phase �, by means of

� = rei� (5)

Here, the sign of � is only associated with � and r equals the absolute value of �. Therefore,
the Lagrangian function is built as

L0 = I

2
(r ′2 + r2�′2) − MgR cos(� − r) (6)

The impact forces and the base motion acceleration are taken into account in the D’Alembert
equation as generalized forces:

�
��

(
�L
�r ′

)
− �L

�r
= Qd

r + Qs
r (7)

�
��

(
�L
��′

)
− �L

��
= Qd

� + Qs
� (8)

Here, Qd
r and Qs

r represent the generalized damping force and base excitation with respect to
the canonical variable r , respectively. The same holds for Qd

� and Qs
� for �. These variables are

defined as [10]

Qd
r =

(
ln(�)I

�

)
�′r ′

Qs
r = Ma(�)R cos(� − r) cos(�)

Qd
� = 0

Qs
� = 0

(9)

with a(�) being the base acceleration. By normalizing the module � = r/� and considering the
adimensional time t = p�, the next differential equation is obtained [10]:

�̈ = l2

�3
− 1

�
sin(� − ��) + 2 ln(�)

��2
�̇l + a(t/p)

g�
cos(� − ��) cos(�) (10)

where (˙) means derivation with respect to adimensional time t . Equation (10) is numerically
integrated by means of Runge–Kutt–Fehlberg method by using a constant time step �t and giving
the initial conditions, as well as the classical parameters (�, p and �).

2.3. Discrete element method

DEM can be considered as a method for modeling discontinuous media. This analysis technique
allows relative motion between elements, which is especially suitable for problems in which the
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relative motion between blocks is a significant part of the deformation. It is possible to represent
the material as rigid or deformable. The first option is used here because in the rocking motion,
most of the displacements are due to the relative motion between elements and not due to the
deformation of the materials. However, the contact between elements (joint) has not been considered
as completely rigid because the energy dissipation at each impact depends on the material of the
block and its base [20].

The contact between elements is defined as sets of contact points located at the corner of the
elements. The contact point is defined by two linear springs, one axial and one shear and a viscous
damper. The axial spring is linear-elastic in compression, while zero tensile strength is assumed
for tension. The shear spring is defined as linear-elastic-perfectly plastic and a Coulomb-type
behavior is assumed. Therefore, four parameters are needed to define the mechanical behavior of
the contact: axial stiffness K , shear stiffness Ks, friction angle 	 and cohesion c. The viscous
damping C is regarded as a mass M and stiffness K -dependent quantity by means of the Rayleigh
formulation C = aM+bK , where a is the mass proportional damping constant and b is the stiffness
proportional damping constant.

3. EXPERIMENTAL TESTS

The numerical models proposed here have been verified by comparing their responses with the
results obtained from extensive experimental tests on the rocking response of RB. The tests were
performed at the shaking table of the National Laboratory of Civil Engineering (LNEC) of Portugal
on four single RBs (blue granite stones), subjected to different types of base motion: (a) free rocking
motion, (b) harmonic motion and (c) random motion.

3.1. Characteristics of the specimens

The experimental tests were carried out on four single blue granite stones specifically manufac-
tured for the tests (Figure 1(b)). Each stone had different geometrical dimensions (Table I). The
dimensions of the specimens 1, 2 and 3 were fixed to achieve a height–width ratio (h/b) of 4,
6 and 8, respectively. The height was equal to 1m which was kept constant for the three speci-
mens. In order to minimize the three-dimensional (3D) effects, the blocks were designed with a
thickness–width ratio (t/b) of 3. With the aim of reducing the continuous degradation at the block
corners occurring at every impact, the stones were manufactured with a small cut oriented at 45◦
at their bases. The size of the cut was 5mm.

Table I. Test specimen characteristics.

Width Height Thickness Mass Inertia
Specimen 2b (m) 2h (m) 2t (m) M (kg) I0 (kgm2)

1 0.25 1.000 0.754 503 179
2 0.17 1.000 0.502 228 78
3 0.12 1.000 0.375 120 42
4 0.16 0.457 0.750 245 26
Base 1.00 0.250 0.750 500 —
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Figure 2. Test setup: (a) reference system of the data acquisition system and typical location of LEDs in
the RB and (b) view of the test setup.

In addition, specimen number 4 was specifically designed with a different geometry in order to
compare its performance with the rest of the stones. It had a large 45◦ cut (40mm) at the base
(Figure 1). Moreover, a foundation of the same material was used as the base where the blocks
were free to rock. This foundation was fixed to the shaking table by means of four steel bolts.

3.2. Test set up

The data acquisition system was designed to describe the position of the specimens at each instant
of the test and, simultaneously, to avoid the possibility of the system influencing the response of
the specimens. In this context, the data acquisition was based upon monitoring light emission diode
systems (LEDs) by means of high-resolution cameras. This eliminates noise errors and enables
accurate position measurement. The position resolution obtained was of 1

5000 .
The main data obtained were rotations around the Y - and Z -axes, and linear displacements X

and Y . The system coordinate is depicted in Figure 2(a). Rotations Y and Z were directly measured
by means of a mirror linked to the block’s surface on the West face of the specimens. The LED
was located at the same position of the measuring camera and the light ray emitted is reflected
at the mirror, so that a large measured range is obtained (±100mm). Two accelerometers were
placed at the top of each block. One triaxial accelerometer was located in the north face and one
biaxial accelerometer was located in the south face. The displacements and accelerations of the
shaking table were also measured (Figure 2(b)).

3.3. Types of base motion

In order to study the dynamic behavior of the RB, three different tests were carried out: (a) free
rocking motion, (b) harmonic motion and (c) random motion. The first type of test allows to
identify the parameters used in the classical theory and at the same time to calibrate the analytical
models. On the one hand, the harmonic tests allow to study, in a simple way, the dynamic behavior
of single blocks undergoing RM regime, while on the other hand, the behavior of the RB under
earthquake conditions was studied with the random test.
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Thirty synthetic earthquake compatibles with the design spectrum proposed by the Eurocode 8
[21] were generated. In order to identify them, they were named consecutively with the number of
generation. The constant branch of the spectrum was located between 0.1 and 0.3 s, with a spectral
acceleration of 7m/s2 while the maximum ground acceleration was 2.8m/s2. The main aim of
the study is to address the stability of RM under random motion.

4. SOME CONSIDERATIONS FOR THE ROCKING MOTION ANALYSIS

The analytical models are very sensitive to parameters such as block parameters (stiffness and/or
geometrical parameters), damping (impact), etc. [10, 14, 17]. Thus, preliminary analyses were
carried out in order to fully understand the limitations and sensitivity of the analytical models with
respect to variations in the values of these parameters.

4.1. Free rocking motion

The theoretical parameters give useful information about the characteristics of the RM. They can
be obtained by Equations (2)–(4) or by means of free rocking motion tests. It is well known that
the experimental values are not equal to the theoretical values, because the hypotheses assumed
by the classical theory are not complete fulfilled.

The experimental parameters were adjusted by means of a minimized error surface [8]. Since
for free RM, the energy is conserved between two consecutive impacts, it is possible to derive an
analytical expression for the time (�) of the maximum amplitudes of rocking angle (�), before and
after impact n, given by

�n = 1

p
√
2

∫ 0

rn−1

dx√
cos(x − �) − cos(�)

(11)

On the other hand, taking into account that the relation between energy after the nth impact En
and the initial energy E0 is given by En = E0�2n , a useful formula for the coefficient of restitution
� can be derived as

�n =
(
cos(� − rn) − cos(�)

cos(� − r0) − cos(�)

)1/2n

(12)

where rn is the rocking angle amplitude after the nth impact. Equation (11) allows us to find the
experimental values for �∗

n and r∗
n . The parameters have been fitted following the next procedure.

• Parameters � and p are obtained by minimizing the error surface:

�(�, p) = �n(�n − �∗
n)

2 (13)

• Parameter �n is derived using Equation (12), using the fitted value of � and the experimental
amplitudes r∗.

• The final value of � is obtained by averaging the recorded values of �n in the different
impacts.

Table II shows the theoretical and experimental values of these parameters. Experimental
parameters for specimens 1 and 2 are similar to the theoretical values, with differences smaller
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Table II. Theoretical and experimental classic parameters.

� (rad) � p (s−1)

Specimen T E % T E % T E %

1 0.242 0.235 −2.9 0.914 0.936 2.4 3.78 3.84 1.6
2 0.168 0.163 −3.0 0.958 0.973 1.6 3.81 4.05 6.3
3 0.119 0.154 29.4 0.978 0.978 0.0 3.82 3.61 −5.5
4 0.310 0.268 −13.5 0.860 0.927 7.8 5.16 5.02 −2.7

Note: T , theoretical; E , experimental; %, error (in percentage).

than 3%. On the other hand, specimens 3 and 4 present significant differences in their parameters,
especially for �, with errors around 30 and 13%, respectively.

The small changes for specimens 1 and 2 are related to the small cuts at 45◦ at the base of the
specimens. In fact, if we keep the height constant and vary the base in order to obtain the same
�, the bases for specimens 1 and 2 must be reduced to 10mm.

For specimen 4, the complexity of the adopted shape can probably justify the difference observed.
Since � is the angle formed by the distance from the base to the gravity center and the distance
from the middle point of the base to the ‘rotation point’. On the one hand, when the block is
completely rigid, the rotation point is located at the corner of the base. On the other hand, when
the block is not completely rigid, the rotation point is not located at the corner of the base. In fact,
in this case there does not exist a rotation point. The block will tend to rotate not on a single point
but on a finite surface. The size of this surface will depend on the material stiffness, it will tend
to zero (single point) when the stiffness of the material tends to infinity.

Finally, the increment of 30mm in the base of specimen 3 obtained can be explained by the
3D effects recorded in this block (Figure 3(a)). Specimen 3 shows a vibration around vertical
axis (torsion). This vibration around the Y -axis means that stone 3 behaves like a stone with a
larger base as shown schematically in Figure 3(b). This effect related to the high slenderness of
the specimen (h/b equal to 8) causes the theoretical parameters to be those of a block with an
equivalent larger base.

The coefficient of restitution, �, is related to damping of the system. The experimental values
are slightly higher than the theoretical values because there is no conservation of angular moment,
since the bodies are not fully rigid. On the other hand, p can be defined as the frequency of the
system due to the interaction between the block and its base, and it presents a random variation with
respect to the theoretical parameters. These differences are due to the microscopical roughnesses
of the contact surfaces.

The experimental tests have shown that the experimental values do not match with the theoretical
due to (a) detailed measurements in the real dimensions of the blocks; (b) rotation surface; and (c)
3D effects. Therefore, the minimization process proposed in this paper overcomes the difficulties
for extracting the value of the theoretical parameters.

4.2. Derivation of DE model parameters

The parameters required in the CCRR model are the same as the classical formulation. It means
that the �, p and � parameters are sufficient for defining the properties of the model. On the other
hand, the following additional parameters are required in the DE model definition: axial K and
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(a) (b)

Figure 3. Specimen 3: (a) rocking and total torsion angle (constant sine 5Hz and 2mm) and (b) schematic
vibration around Y -axis (plan view).

shear Ks stiffness, cohesion c and friction angle 	, as well as the damping parameters 
min and
fmin.
The parameter p can be defined as the frequency associated with the system due to the interaction

of the block with its base. In this context, it is possible to define the axial stiffness K as an average
value:

K = Mp2 = K1 (14)

By taking into account the theoretical value of p (Equation (3)), K takes the following value:

K = M
WR

I
= K2 (15)

It is clear that K1 will be equal to K2 if theoretical parameters are used; however, if the fitting
parameters are used then K1 will be different from K2. For this reason, K is defined as an average
value

K = K1 + K2

2
= M

2

(
p2 + WR

I

)
(16)

and for a rectangular block, Equation (16) becomes:

K = M

2

(
p2 + 3g

4R

)
(17)

Shear stiffness Ks is considered equal to axial stiffness K [14, 16, 17], while the cohesion c
is considered null, as typical of dry joints. The � parameter can be defined as the relationship
between the rotation points of the base (O–O ′) and the position of the gravity center (cg) of the
block. In theory, these rotation points are located at the corners of the block; however, this is true
only if the block and its base are completely rigid. In practice, the rotation points are not located at
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the corners of the block, because the material is not perfectly rigid. In the DE model, the rotation
points are located at the corners of the blocks. Thus, it is necessary to consider an equivalent base
(beq), in order to take into account the real value of the � parameter, defined as

beq = h tan(�) (18)

4.3. Calibration of numerical models—theoretical and fitting parameters

The free rocking motion tests were used for calibrating the CCRR and the DE models. The first step
in the calibration is to calculate the response of both models using the values of the theoretical
parameters (Equations (2)–(4); Table II). Table III shows the values used for defining the DE
model. The friction angle, 	, is considered to be equal to 30◦ [22] for the four specimens. It is
worth noting that the stiffness was calculated using Equation (17), while the damping 
min was
fitted in order to obtain the best correlation with the experimental test data. The frequency fmin
was considered equal to p (see next subsection).

Figure 4(a) shows the comparison on a typical free rocking test with the response obtained from
both models. It can be seen that the response obtained from the numerical models do not fully agree
with the experimental test data. In particular, the differences between models and experiments lie
inside the period and amplitude range of each cycle.

Table III. Parameters used in the definition of the DE models.

K (N/m) 
 (×10−3) fmin (Hz) 2beq (m)

Specimen T F T F T F T F

1 7233 6560 2.92 4.33 3.78 3.84 0.25 0.24
2 3302 3449 1.75 2.34 3.81 4.05 0.17 0.16
3 1174 2168 5.00 0.73 3.82 3.61 0.12 0.15
4 6454 6471 1.50 3.09 5.16 5.02 0.16 0.14

Note: T , theoretical; F , fitting.

(a) (b)

Figure 4. Typical free rocking motion response of DE and CCRR models: (a) theoretical
parameters and (b) fitting parameters.
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The numerical models are very sensitive to variations in classical parameters particularly
parameter �. The fitting parameters obtained according to the minimization procedure (Table
II) have variations smaller than 5%. However, these small variations induce large differences
in the response of the numerical models. Good agreement has been achieved between numeri-
cal and experimental results (Figure 4(b)) when fitted parameters are used (Tables II and III),
even in the last cycles of RM. It should be highlighted that the damping of the DE model
was fitted (Table III) in order to calibrate the model. With these values, an empirical formula
was proposed for the calculation of the equivalent damping which is explained in the next
subsection.

4.4. Impact and equivalent viscous damping in the DE model

The damping force appears in the system only during the impact as a Dirac-� force. As the damping
in the DE model is considered viscous and the Rayleigh formulation is used, some considerations
must be made in order to take into account the damping in the real system due to the impact.
The damping in the DE model is related to each contact point. Thus, when the contact point is
detached from the base, the damping must be zero. Therefore, both terms damping proportional
to the mass and stiffness must be zero. On the one hand, the damping proportional to the mass
will be zero only if a = 0. On the other hand, the proportional stiffness damping factor b will
be responsible for introducing the impulsive damping force. This is possible because the stiffness
is zero for tensile strength, whereas the stiffness will reach a finite value when contact takes
place.

With the damping factors obtained using the calibration of the DE model with inverse fitting
(Table III), it is possible to obtain an empirical formula for the equivalent viscous damping. This
formula is a function of the coefficient of restitution, �, and the generalized damping factor,
�, that relates the generalized damping force Qd with the viscous damping C . As C depends
only on the stiffness K and Qd depends on the geometry of the block (Equation (9)), � can be
defined as

� = K R = M

2

(
Rp2 + 3

4
g

)
(19)

In Figure 5, the values of factor b versus the ratio �/�2 for the four specimens are plotted. The
best curve fitting is logarithmic and can be calculated as

√
b= 0.0057 ln

(
�

�2

)
− 0.0336 (20)

As p can be considered as the associated frequency of the system due to the interaction of the
block and its base, the frequency fmin associated with the damping 
min can be calculated as

fmin = p (21)

Finally, the damping 
min is obtained by means of


min = 2�b fmin (22)
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Figure 5. Curve fitting for empirical formulation of equivalent damping.

5. NUMERICAL SIMULATIONS

The numerical simulations were carried out with the CCRR and DE models. These codes use
the parameter values obtained from free rocking tests defined in Section 4. Their values remain
unchanged for all harmonic and random simulations. The 275 tests were reproduced with both
the models in order to test the performance of the analytical tools in the rocking motion problem.
In order to take into account some possible influence of the shaking table in the response of the
blocks, numerical analyses were performed using the recorded motion of the table as the base
excitation for the blocks.

5.1. Harmonic motion

The response of a RB under harmonic motion depends on the frequency and the amplitude of
the harmonic motion. To illustrate this fact, Table IV shows typical frequencies and amplitudes
at which a specimen shows rocking. A clear relationship between the harmonic motion and the
rocking motion exists. It is clear that if the amplitude increases while the frequency remains
constant, the amplitude of the rocking increases too. On the other hand, if the frequency of the
motion increases, while the amplitude of the load remains constant, the rocking angle decreases.
Thus, there are couples of frequencies and amplitudes of harmonic motion leading the RB to
experience rocking. The set of these couples is called rocking motion space.

Some tests were repeated in order to study the repeatability of the response of the RB under
forced excitation. The tests selected for repetition were: (a) specimen 1 with the Hanning sine with
frequency of 3.3Hz and amplitude of 7mm; (b) specimen 2 with constant sine with frequency of
3.3Hz and amplitude of 6mm; (c) specimens 3 and 4 with all the constant sine tests. All these
tests show that the repeatability in the harmonic motion exists.

The six tests performed with specimen 1 subjected to Hanning sine of 3.3Hz and amplitude of
7mm are depicted in Figure 6(a). The response of all six tests is similar. Taking the first test as
reference, the differences (in percentage) in the values of the maximum rocking angle are found
to be below 3%, except for test number 5 that shows an error of 10%. Figure 6(b) shows the
Fourier spectra of the rocking angle. It can be seen that all six spectra are practically the same
and they show little differences in frequencies up to 10Hz. The Fourier spectra show two peaks.
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Table IV. Typical rocking motion space and maximum rocking angle (deg.)
for harmonic motion (specimen 2).

Amplitude (mm)

Constant sine (Hz) 03 04 05 06 08 10 12

0.5 N-R N-R
1.0 N-R
1.5 6.08
2.0 N-R N-R N-R 3.04 3.93
2.5 N-R N-R 2.27 2.33 2.63
3.0 1.36 1.49 1.85 1.87 2.15
3.3 1.35 1.49 1.57 1.42 2.03
5.0 0.95 1.14 1.23

Note: N-R, no rocking.

(a) (b)

Figure 6. Typical repeatability test carried out with Hanning sine with frequency of 3.3Hz and amplitude
of 7mm (specimen 1): (a) rocking angle and (b) Fourier spectra.

One is related to the load frequency (3.3Hz), while the other (1.9Hz) is associated with the
transient response.

The CCRR and DE models are able to fully reproduce the harmonic motion tests. Figure 7
shows the typical response of RB under constant sine base motion. For clarity of the figure, a gap
is made in the time axis between 4 and 19 s that corresponds to the first part of the stationary
state. The responses of both models are almost the same as in the experimental tests even during
the last cycles.

5.2. Random motion

Specimen 1 was damaged after the set of tests described above. Therefore, only specimens 2–4
were subjected to random motion in order to study the dynamic behavior under earthquake motions.
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Figure 7. Typical response under harmonic motion (specimen 2, constant sine with
frequency of 5Hz and 5mm of amplitude).

A repeatability test was carried out with the generated random motion, under increasing load factors
that multiply the original accelerogram. Each test was repeated at least twice. Typical responses
are shown in Figure 8 in terms of rocking angle curves for specimen 2 loaded with earthquake 20
and load factors of 1.1 and 1.3. With a load factor of 1.1, the specimen has a maximum rocking
angle of 6.8◦ for one test while with the other test the specimen overturns. It is worth noting that
during the first 6 s, the behavior of the RB is similar for the two tests. Two tests were carried
out with the load factor of 1.3. In this case, the RB did not overturn for any test and both the
behaviors are similar during the first few seconds. However, at the end of the load the behaviors
became rather different, especially during the free rocking motion. This is mainly due to the small
changes in the initial position that always exist in the rocking motion and that cause a change in
boundary conditions.

In the same figure, the response of specimen 2 is compared with both models. In the first test
(Figure 8(a)), the response of both the models is in good agreement with one experiment but not
with the other due to the lack of repeatability. In the test with load factor of 1.3 (Figure 8(b)), the
numerical models collapse while the two experimental tests remain stable. However, the response
of the models matches well with the experimental tests during the first cycles. This fact suggests
that the initial conditions for the models and the experimental test are, in fact, equal. However,
during the RM regime these conditions change, allowing the real blocks to survive the collapse.

Figure 9 shows a typical result of random motion with specimen 3. The numerical models are
again in good agreement with the experimental test, and they are also successful in predicting the
collapse of the specimen.

From the experimental results, it can be seen that the dynamic critical angle is greater than
the static critical angle (parameter �). Here, the dynamic critical angle is defined as the angle at
which the stone overturns due to dynamic forces. Table V shows the average critical angle obtained
from the random tests. This should be expected due to the beneficial effect of the inertial forces.
Therefore, the static critical angle is a conservative value for the design process.
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(a) (b)

Figure 8. Typical results of random motion (specimen 2): (a) earthquake record 20 and load factor of 1.1
and (b) earthquake record 20 and load factor of 1.3.

Figure 9. Typical result of random motion (specimen 3, earthquake record 18 and load factor of 0.5).

Table V. Critical angle.

Critical angle (deg.)

Specimen Static Dynamic Difference (%)

2 9.6 11.2 16
3 6.8 6.9 2
4 18.0 20.8 15
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6. CONCLUSIONS

This paper presents a comprehensive experimental program carried out on four blue granite stones
under dynamic loading. Two different analytical tools were successfully calibrated and validated
with the experimental results. The CCRR and the DEM are useful tools in the study of the rocking
motion.

Free rocking motion tests allowed us to obtain the parameters that define rocking �, � and p. The
experimental values of � are lower than the theoretical, while the restitution coefficient � is larger.
Parameter p does not give a defined pattern. Specimens with low and moderate slenderness (down
to 6) present less variation in their parameters, since these stones are nearest to the hypotheses
assumed by the classical theory. It is worth noting that the sliding motion was not recorded in
any test.

Repeatability of the tests with harmonic ground motion exists. However, it does not exist
with random motion, where very large variations are found in the response. This is due to the
combination of high frequencies and the small changes in the boundary conditions. The amplitude
of rocking depends on the frequency and amplitude of load. The rocking motion is greater for low
frequencies.

Both models are extremely sensitive to the classical parameters and small variations in their
values produce large differences in the response. This is particularly evident for the parameter �,
which is related to the geometry of the rocking block. Therefore, fitting parameters were used in
order to obtain a good agreement between numerical models and experimental results.

A new methodology has been proposed for finding the parameters of the DE model by using the
parameters of the classical theory. This methodology allows us to obtain the parameters used by
the DE model in a simple manner. The numerical simulations show that the proposed parameters
allow to reproduce the experimental test with good accuracy. An empirical formula to obtain the
equivalent viscous damping necessary for defining the DE model has also been proposed. This
damping is proportional to the geometry of the block, the stiffness of the joint and the coefficient
of restitution �.

Despite the limitations and difficulties of reproducing the initial and boundary conditions, a
good agreement has been found between numerical and experimental responses for both free and
forced regimens. For random vibrations, a step forward to stochastic analysis seems to be required,
as indicated by the lack of repeatability of the experimental results.
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