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The aim of this work is to evaluate the applicability of a biofilm to the removal of chromium in solution,
at a pilot scale. The effect of the initial concentration of metal on the biosorption behavior of an Arthro-
bacter viscosus biofilm supported on granular activated carbon, in batch and column essays was also ana-
lyzed. Six isotherm equations have been tested in the present study. The best fit was obtained with the
Freundlich model. It was observed that as the initial chromium concentration increases, the uptake
increases too, but the removal percentage decreases, with values between 95.20% (C0 = 5 mg/l) and
38.28% (C0 = 1000 mg/l). The batch adsorption studies were used to develop a pilot bioreactor able to
remove chromium from aqueous solutions. Data obtained in a pilot-scale reactor showed an average
removal percentage of 99.9%, during the first 30 days, for the initial concentration of 10 mg/l and an aver-
age removal percentage of 72%, for the same period and for the initial concentration of 100 mg/l. Uptake
values of 11.35 mg/g and 14.55 mg/g were obtained, respectively, for the initial concentration of 10 and
100 mg/l. The results obtained are very promising and encourage the utilization of this biofilm in envi-
ronmental applications.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The pollution caused by heavy metals in wastewater has always
been a very serious problem because these elements are not biode-
gradable and can accumulate in living tissues (Deng et al., 2006).
Chromium is widely used in various important industrial applica-
tions including steel production, electro-plating, leather tanning,
nuclear power production, textile industries, wood preservation,
anodising of aluminium, water-cooling and chromate preparation
(Garg et al., 2007). The hexavalent form of chromium, usually pres-
ent in the form of chromate ðCrO2�

4 Þ and dichromate ðCr2O2�
7 Þ, pos-

sesses significant higher levels of toxicity than other valence states
(Horsfall et al., 2006).

The conventional methods for heavy metal removal from indus-
trial effluents are precipitation, coagulation, ion exchange, cemen-
tation, electro-dialysis, electro-winning, electro-coagulation and
reverse osmosis (Ahluwalia and Goyal, 2007). These technologies
are often inefficient and/or expensive, mainly when applied to di-
lute solutions, usually generating huge volumes of sludge contain-
ing high levels of heavy metals, which have to be disposed. Due to
these limitations, new technologies are necessary (Cossich et al.,
2004). Biosorption of heavy metals by microbial cells has been rec-
ognized as a potential alternative to the traditional treatment tech-
nologies for waste streams and natural waters (Özer et al., 2004).
ll rights reserved.

: +351 253678986.
ntelas).
Many microorganisms are known to be able to concentrate metal
species from dilute aqueous solutions and to accumulate them
within their cell structure. These microorganisms include yeasts
(Han et al., 2006; Goyal et al., 2003; Solóniz et al., 2002; Muter et
al., 2002), fungi (Bayramoglu et al., 2006; Akar and Tunali, 2006;
Tunali et al., 2005; Arica et al., 2004), algae (Aksu and Donmez,
2006; Kiran et al., 2007; Arica et al., 2005; Hashim and Chu, 2004)
and bacteria (Tunali et al., 2006; Kazy et al., 2006; Quintelas et al.,
2006, 2008a, b; Lameiras et al., 2008).

The applicability of bacteria as biosorbents has some advanta-
ges due to their small size, their ubiquity, their ability to grow un-
der controlled conditions and their resilience to a wide range of
environmental situations (Urrutia, 1997). On the other hand, acti-
vated carbons are potential adsorbents for the removal of heavy
metals from industrial wastewater, due to their high surface area,
microporous character and chemical nature of their surface, their
high adsorption capacity and fast adsorption kinetics (Kobya et
al., 2005; Song et al., 2006). Previous studies developed by Satapa-
thy et al. (2005) show that the maximum removal obtained for
chromium using GAC was 60–65% (batch essays). The use of a bio-
sorption system consisting of a biofilm supported on granular acti-
vated carbon allows to combine and even to enhance the ability of
both, bacteria and activated carbon, to remove chromium and con-
sequently increase the maximum removal.

Arthrobacter species is of particular interest because of its high
potential for bioremediation. Bacteria can detoxify chromium
wastewater, by either reduction or accumulation inside the cells
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and/or adsorption of the ion on their surface (Asatiani et al., 2004).
These authors also affirm that once inside a cell, Cr(VI) can be re-
duced to Cr(V/IV/III) by different nonspecific reductants such as
glutathione, glutathione reductase, cysteine, carbohydrates, NADH,
NADPH, nucleotides and ascorbic acid. The by-products of the
Cr(VI) reduction process, reactive oxygen species (ROS), can attack
DNA and proteins and cause them damage. Considering the com-
position of the bacterial cell wall (teichoic acids, polycarbohydrates
and other diol-containing substances that possess reducing ability)
and the activity of different specific and nonspecific membrane-
associated reductases, the authors suggest that Cr(VI) can be, at
least, partly reduced on the bacterial cell wall.

Equilibrium data are important for building an equation that
can be used for design purposes. Gerente et al. (2007), and Pehlivan
and Arslan (2007) affirm that equilibrium isotherm equations are
used to describe experimental sorption data and, therefore param-
eters and thermodynamic assumptions of these equilibrium mod-
els usually provide some insight into the sorption mechanism, the
surface properties and the affinity between sorbent and sorbate.
Those authors also stated that the importance of obtaining the best
fit isotherm becomes more and more significant as more applica-
tions are developed. As a consequence, more accurate and detailed
isotherm descriptions are required for the design of wastewater
treatment systems.

Until now, the biological reduction was tested only at labora-
tory scale. The applicability of a biofilm on the removal of chro-
mium in a pilot-scale reactor was an aim of this study. On this
report, the effect of the initial concentration of metal on the bio-
sorption behavior of an Arthrobacter viscosus biofilm, in batch and
column essays was also studied. Equilibrium isotherms for the
adsorption of Cr(VI) on the biofilm were described by Freundlich,
Langmuir, Redlich–Peterson, Dubinin–Radushkevich, Sips and Toth
models and the results obtained from the batch adsorption tests
were used to develop a pilot bioreactor able of remove chromium
from aqueous solutions.
2. Methods

2.1. Materials

The bacterium A. viscosus (CECT 908) was obtained from the
Spanish Type Culture Collection of the University of Valência.
Aqueous chromium solutions were prepared by diluting K2Cr2O7

(Riedel) in distillated water. All glassware used for experimental
purposes was washed in 60% nitric acid and subsequently rinsed
with deionised water to remove any possible interference by other
metals. Atomic absorption spectrometric standards were prepared
from 1000 mgCr/l solution.

The support was granular activated carbon (GAC) from MERCK
with an average particle size of 2.5 mm, characterized by N2

adsorption (77 K) with an ASAP Micromeritics 2001, which indi-
cated a Langmuir area of 1270 m2/g and an average pore diameter
of 2 nm.

2.2. Methods

2.2.1. Batch biosorption studies
The biofilm was prepared accordingly to previous studies

(Quintelas and Tavares, 2002, 2001). The batch experiments for
the determination of the adsorption isotherm for chromium (VI)
in solution on GAC with biofilm were performed in 250 ml Erlen-
meyer flasks containing 150 mL of chromium solution and 1.5 g
of GAC covered with biofilm, at 28 �C. The initial chromium con-
centrations varied between 50 mg/l and 1000 mg/l. The flasks were
rotated at a constant rate of 150 rpm and of a temperature of 28 �C,
until equilibrium was reached. Previous tests indicated that the
time needed for equilibrium to be reached was five days. Samples
of 5 mL were taken after reaching equilibrium, centrifuged at
4000 rpm during 5 min and the supernatant liquid was analyzed
for chromium ion.

2.2.1.1. Modelling batch biosorption. Six isotherm equations have
been tested in the present study and a brief resume of the equa-
tions and parameters is presented on this section.

(A) The general Langmuir (1918) sorption model is expressed by

Qe ¼ ðQmaxbCeÞ=ð1þ bCeÞ ð1Þ

Qe (mg/g) is the amount of metal ion sorbed by the biofilm at equi-
librium, Qmax (mg/g) is the maximum metal sorption, Ce (mg/l) is
the concentration of metal in solution at the equilibrium and b (l/
mg) is the Langmuir adsorption equilibrium constant.

(B) Freundlich (1906) isotherm is expressed by

Qe ¼ K f C
1=n
e ð2Þ

Qe and Ce are the same as in the Langmuir equation, and Kf and n
relate to the capacity and intensity of adsorption, respectively.

(C) Reddlich and Peterson (1959) isotherm can be described as
follows:

Qe ¼ ðKRCeÞ=ð1þ aRCb
eÞ ð3Þ

KR (l/g), aR (l/mg) and b (varied between 0 and 1) are empirical
parameters without physical meaning (Vilar et al., 2006).

(D) Sips (1948) proposed a new equation that can be expressed
by

Qe ¼ ðKSC1=bs
e Þ=ð1þ aSC1=bs

e Þ ð4Þ

KS (Lbs mg1�bs/g), aS (l/mg)bs and bS are the Sips isotherm
parameters.

(E) The Toth (1971) model can be represented by the following
equation:

Qe ¼ ðKtCeÞ=½ðat þ CeÞ1=t � ð5Þ

Kt (mg/g), at and t represent the Toth isotherm constants.
(F) The Dubinin and Radushkevich (1947) equation is generally

expressed as follows:

Qe ¼ qD expð�BD½RT lnð1þ 1=CeÞ�2Þ ð6Þ

The constant, BD, is related to the mean free energy of sorption per
gram of the sorbate as it is transferred to the surface of the solid
from infinite distance in the solution. T is the temperature (K) and
R is the universal gas constant.

The simplest method to determine isotherms constants with
two parameters (Langmuir, Freundlich and Dubinin–Radushke-
vich) is to transform those parameters so that the equation pre-
sents linear form and then linear regression is applied. For the
other equations, the model parameters were estimated by non-lin-
ear regression using MATLAB and EXCEL software.

2.2.2. Pilot bioreactor studies
The bioreactor was a 15.8 L cilindric tank (inner diameter

14.2 cm, total height 100 cm), with a maximum packing fraccion
of 1/3. The biofilm formation was prepared accordingly to Section
2.2.1, adjusted to the bioreactor dimensions. About 2 kg of GAC
were placed in a 5 l Erlenmeyer flask with distilled water. It was
heated at 120 �C for 20 min to release the air inside the pores.
Then, it was placed in the bioreactor for open system essays. Eigh-
teen liters of a rich nutrient broth was prepared, sterilized at
120 �C for 30 min, inoculed with the bacteria and were pumped
through the reactor at a flow rate of 250 ml/min, during 24 h, with
total recirculation. During the next 48 h, 45 L of a different nutrient



Table 1
Equilibrium concentrations and removal percentages of Cr(VI) ion obtained at
different initial metal ion concentration (28 �C, 150 rpm)

C0 (mg/l) Ceq (mg/l) Rp (%)

Arthrobacter viscosus
5 0.24 95.2

10 0.26 97.4
25 1.26 95.0
50 6.10 87.8

250 90.67 63.7
500 263.35 47.3
750 403.26 46.2

1000 617.23 38.3
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broth were used to grow the biofilm also at a flow rate of 250 ml/
min, with total recirculation. The composition and purpose of the
two different nutrient broths were well described in Quintelas
and Tavares (2002). After biofilm formation, the bed was washed
out and the metal solutions with Cr concentrations of 10–
100 mg/l (prepared in laboratory) were passed continuously
through the column with a flow rate of 25 ml/min. At the end,
the column was washed out and samples of the effluent were
seeded in Petri plates with nutrient agar to assess the metabolic
activity of the microorganism. Cr concentration at the inlet and
at the outlet of the columns was measured by Atomic Absorption
Spectroscopy, Varian Spectra AA-250 Plus, by acetylene flame
emission and wavelengths of 357.9 nm, 425.4 nm and 520.8 nm.
The inlet solution pH values were also measured during the exper-
imental essays (Jenway 350 pH meter).

2.2.3. Scanning electron microscopy (SEM)
Samples of the supported biofilm were taken and analyzed

(after dehydration with different concentrations of ethanol) by
SEM (Leica Cambridge S360). Samples were gold coated prior to
SEM observation. It was confirmed that the biofilm uniformly cov-
ered the GAC surface.
3. Results and discussion

The metal adsorption is strongly dependent of pH values. This
dependence could be related to the type and ionic state of the func-
tional groups present on the adsorbent as well as on the metal
chemistry in solution (Mohanty et al., 2006). Garg et al. (2007) af-
firm that in the pH range of 1.0–6.0, chromium ions co-exist in dif-
ferent forms, such as Cr2O2�

7 , Cr3O2�
10 , Cr4O2�

13 and HCrO�4 , this last
one being predominant. For pH values higher than six the predom-
inant species are CrO2�

4 and Cr2O2�
7 . Those authors also stressed

that more adsorption at acidic pH indicates that an increase in
H+ ions on the adsorbent surface results in a significantly stronger
electrostatic attraction between the positively charged adsorbent
surface and the chromate ions. Reduced adsorption of Cr(VI) at
pH values greater than 6.0 may be due the competition between
the anions CrO2�

4 and OH� for adsorption sites on the surface of
the adsorbent, with OH� predomination. It has also been postu-
lated by Garg et al. (2007) that under acidic conditions, Cr(VI)
could be reduced to Cr(III) in the presence of an adsorbent. On
the other hand, studies developed by Leyva Ramos et al. (1994)
show that the maximum adsorption occurred at pH 6 and the
adsorption capacity was reduced about 17 times when pH was in-
creased from 6 to 10. More recently, Krishnani et al. (2008) affirm
that the reduction of Cr(VI) mainly depends on the proton concen-
tration in solution, as the higher the proton concentration, the
higher the efficiency of Cr(VI) reduction. This can be explained by
a surface exchange reaction between chromate and hydroxyl ions,
which favors chromate adsorption in acidic media and by the
reduction process of hexavalent to trivalent chromium, which re-
quires a large amount of protons. These statements reinforce the
decision of using chromium solutions with pH values in the range
5–5.5 in all the experimental essays of this study.

3.1. Effect of the initial chromium concentration

It was observed that as the initial chromium concentration in-
creases, the uptake increases too, but the removal percentage de-
creases. On changing the initial chromium concentration from 5%
to 1000 mg/l, the amount of chromium biosorbed increased from
0.48% to 38.28 mg/g, but the removal percentage decreased from
95.20% to 38.28% (Table 1). At lower concentrations, the ratio be-
tween the initial number of moles of chromium in solution and
the available surface area is low and subsequently the sorption is
independent of the initial concentrations. On the other hand, at
higher concentrations the available sites become fewer compared
to the number of moles of chromium present and hence the re-
moval percentage of chromium is dependent on the initial percent-
age (Padmesh et al., 2006). Horsfall et al. (2006) reinforce this idea
and affirm that this decrease on the removal percentage when the
initial concentration increased is due to the increase of the number
of ions competing for the available binding sites on the biomass
and to the lack of binding sites at higher concentration levels. At
higher concentrations, the reduced average distance between the
adsorbing species affects the charge distribution of their neigh-
bours, thus altering the ability of the species to migrate to the bio-
mass surface and resulting in reduced fixation.

Akhtar et al. (2007) explain that at higher equilibrium concen-
trations, uptake by surface binding was negligible due to saturation
of biosorbent binding sites. The increase in biosorption capacity at
higher concentrations could be related to the different concentra-
tion gradient between the solution and the inside of the microbial
cells and due to penetration of metal ions inside the cells rather
than surface adsorption. At very high solute level, solid-liquid equi-
librium becomes limited by diffusion of metal ions into the cells.

3.2. Adsorption isotherms

The fixation capacity of an adsorbent towards a specific adsorbate
can be described by different equilibrium sorption isotherm models,
which are characterized by constants that express the surface proper-
ties and affinity between the adsorbent and the adsorbate.

Adsorption first presents a linear rising with instantaneous and
extremely fast uptake, followed by a stationary state. Pehlivan and
Arslan (2007) and Ertugay and Bayhan (2007) explain that the first
step could be attributed to the instantaneous utilization of the
most available adsorbing sites on the adsorbent surface and the
second part of the isotherm curve may be attributed to a very slow
diffusion of the metal through the sorbent micropores. Akhtar et al.
(2007), affirm that the fast biosorption kinetics observed initially is
typical of biosorption process involving no energy-mediated reac-
tions and metal removal from solution is due to purely physico-
chemical interactions between biomass and metal solution.

For the biosorbent used (Biofilm + GAC), equilibrium data were
experimentally determined. The Qe represents the practical limit-
ing adsorption capacity and allows the comparison of adsorption
performance, particulary in the cases where the sorbent does not
reach its full saturation in experiments (Aksu, 2001) and Ce

represents de equilibrium concentration in solution. Six different
models (Langmuir, Freundlich, Redlich–Peterson, Dubinin–
Radushkevich, Sips and Toth) were fitted to experimental data
and the calculated constants are presented in Table 2. This table
also shows the R parameter of each adjustment. All equations fit
the data reasonably well (Fig. 1) but the best fit was obtained with
the Freundlich isotherm model. The fact that the fit obtained with
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Langmuir model showed the worst results, suggests that the bind-
ing of chromium does not occur as a monolayer on the surface of
the biomass. Vázquez et al. (2006) suggested that the disagreement
with the Langmuir model might be due to the heterogeneity of the
biosorbent surface with resulting variation in adsorption energy.
Aksu and Balibek (2007) affirm that values for 1/bS > 1 (from the
Sips model) indicates heterogeneous adsorbents. The fact that a va-
lue of 2.1 was obtained for the 1/bS and the disagreement with the
Langmuir model suggests heterogeneity of the biosorbent used.

Another interpretation of surface binding site heterogeneity has
been proposed by Scatchard (1949) and Dahlquist (1978). Accord-
ingly to Krishnani et al. (2008), if a straight line is obtained by plot-
ting Qe/Ce versus Qe then the sorbent presents only one type of
sites, a convex curvature indicates a single site binding with posi-
tive cooperative between each other and a concave curve shows
the binding with a negative cooperative phenomenon between
strong and weak binding sites. In this study, the Scatchard and
Dahlquist plot presents concave curve which indicates the pres-
ence of two different types of site.

The value obtained for the maximum adsorption capacity with
the biofilm of A. viscosus supported on GAC (38.3 mg/g) is higher
than those obtained for the removal of Cr(VI) with Saccharomyces
cerevisiae (6.8 mg/g) (Goyal et al., 2003), Candida utilis (7.0 mg/g)
(Muter et al., 2002), Neurospora crassa (15.9 mg/g), Chlamydomonas
reinhardtii (18.2 mg/g) (Arica et al., 2005) and Bacillus thuringiensis
(28.6 mg/g) (Sahin and Ozturk, 2005).

3.3. Pilot bioreactor studies

The biological reduction of Cr(VI) has been well studied along
the last two decades, in laboratory studies. The extensive use of
chromium in industry is responsible for the discharge of large
amounts of chromium being discharged into the environment. A
pilot scale reactor test is a very important step for the industrial
implementation of a biosorption system. No special measures were
taken to avoid contamination as, at industrial scale, those mea-
sures would become very expensive; the study of a biosorption
system consisting in a biofilm of A. viscosus supported on GAC
capable of treating large amounts of chromium contaminated solu-
tions, for industrial usage, is the aim of this work.

The bacteria A. viscosus is a good exopolysaccharide producer
(EPS), which allows good qualities for adhesion to the support,
for metal ions entrapment and contribute to the formation of a
protective barrier against harmful effects. These capabilities rein-
Table 2
Adsorption constants and adjustment regression parameter for the isotherm models
studied for chromium (VI) onto a biofilm of A. viscosus supported on GAC

Langmuir parameters
Qmax b R2

29.240 0.0288 0.985

Freundlich parameters
Kf n R2

1.935 2.144 0.998

Dubinin-Radushkevich parameters
qD BD R2

33.385 9.811 0.804

Redlich–Peterson parameters
KR aR b R2

61.220 33.680 0.522 0.992

Sips parameters
KS aS bS R2

1.806 �0.0004 0.478 0.992

Toth parameters
Kt at t R2

1.811 0.0555 1.916 0.992
force the decision to use these bacteria for the pilot scale reactor
studies. The use of a support provides the necessary surface for
the development of biofilm structures. Biofilms provide high bio-
mass concentration per unit volume, while bacteria can remain
in the reactor for unlimited time, thus allowing the bacteria to ad-
just to the environmental conditions (Dermou et al., 2005).

The biofilm of A. viscosus supported on GAC was tested for the
initial Cr(VI) concentrations of 10–100 mg/l. The essay for the ini-
tial concentration of 10 mg/l was followed during 226 days
(approximately 7.5 months) and the essay for the initial concentra-
tion of 100 mg/l lasted during 104 days (approximately 3.5
months). The volume of chromium solution treated was of 8140 l
for the essay with the initial concentration of 10 mg/l and of
3732 L for the more concentrated solution. The results in terms
of breakthrough curves, for both initial concentrations, are pre-
sented in Fig. 2.

It is important to refer that at the end of each run, columns were
washed out and samples of the effluent were seeded in Petri plates
with nutrient agar to assess the metabolic activity of the microor-
ganism and even concentrations of 100 mg/l did not seem to be
toxic for the bacterial culture used, indicating that this specific cul-
ture appears to be resistant in an actual industrial environment.
After the biofilm formation, the microorganism survived without
any kind of nutrients. It is possible to conclude that the bacteria
incorporate chromium on their metabolism and this is probably
the reason why the bacteria were metabolically active after several
months without nutritional supplements. This conclusion is extre-
mely important because the addiction of a pollutant to the nutrient
supply of a microorganism is a fundamental step for the success of
a biosorption process.

The removal percentage for the experimental essay at initial
concentration of 10 mg/l was of 100% during the first 26 days of
the experimental run. At the 27th day, the removal percentage
started to decrease and after 226 days, the removal percentage
was 32%. For the experimental essay with initial concentration of
100 mg/l, the removal percentage was 100% during the first six
days of the experimental run. At the end of the experiment, the re-
moval percentage was 38%. Comparing the removal percentages
obtained for the two different initial concentrations, it becomes
apparent that with the increase in chromium concentration the
bioremoval efficiency decreases. This evidence could plausibly be
attributed to the inhibitory effect of chromium on the microorgan-
ism at higher concentrations (Radhika et al., 2006).

At the end of the experiments, the biofilm was analyzed by SEM
(scanning electron microscopy) and it is possible to confirm the
presence of a large number of bacteria. Some degradation of the
activated carbon was detected. This state of degradation is a conse-
quence of erosion motivated by the hydrodynamic effects suffered
by carbon during the 226 days of experimental essay. The biofilm
from the bioreactor operating with the initial concentration of
100 mg/l, covered uniformly the carbon surface. The activated car-
bon remains less degradated than the carbon used for the experi-
mental essay at an initial concentration of 10 mg/l and this is
justified by the lower erosion suffered due to a shorter essay
period.

Studies developed by Battaglia-Brunet et al. (2006) showed a
removal percentage of Cr(VI) of 100% during the first 18 days of
experimental essay. These studies were developed in a pilot biore-
actor, inoculated with a bacterial population containing the sul-
phate- reducing organism Desulfomicrobium norvegicum, for the
treatment of a Cr(VI) solution with an initial concentration of
15 mg/l.

Barros et al. (2007) inoculated a reactor with wastewater sludge
for the treatment of a chromium solution with an initial concentra-
tion of 10 mg/l. This reactor was operating during 30 days and the
authors verified that the average removal percentage of 90.4%
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Fig. 1. Comparison between the experimental results and those predicted by the models for the chromium adsorption isotherms for all the six models tested (— model,
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varying from 96.1% to 60.8%. In the pilot bioreactor presented here-
in and considering the results obtained during the first 30 days, for
the initial concentration of 10 mg/l, an average removal percentage
of 99.9% was obtained, varying from 100% to 99.3%.

The uptake values obtained for the pilot-scale bioreactor were
11.35 mg/g and 14.55 mg/g, respectively for the initial chromium
concentrations of 10 and 100 mg/l. These values were compared
with previous results obtained using minicolumns (Quintelas et
al., 2006), 0.72 mg/g and 5.30 mg/g, for the initial chromium con-
centrations of 10 mg/l and 100 mg/l, respectively. It is evident that
the uptake values obtained with the pilot bioreactor are much
higher than those obtained with the minicolumns. The higher
amount of carbon and consequent amount of biomass and the in-
crease of the retention time are possible reasons for the increase
on the uptake values.

These results are very promising. The high removal rates of
hexavalent chromium that were achieved indicate a feasible, eco-
nomical and efficient process for biological hexavalent chromium
removal from industrial wastewater effluents.

4. Conclusions

The behavior of a biosorption system consisting of an A. viscosus
biofilm supported on GAC was investigated in a batch system. Six
different adsorption models for equilibrium were applied to de-
scribe the experimental isotherms and isotherm constants were
determined. Data were very well fitted by the Freundlich model.
It was observed that as initial chromium concentration increases,
the uptake increases too, but the removal percentage decreases.
When the initial chromium concentration increases from 5 mg/l
to 1000 mg/l, the amount of chromium biosorbed increased from
0.48 mg/g to 38.28 mg/g, but the removal percentage decreased
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from 95.20% to 38.28%. Studies made with a pilot scale bioreactor
showed average removal percentage of 99.9%, during the first 30
days, for the initial concentration of 10 mg/l and average removal
percentage of 72%, for the same period and for the initial concen-
tration of 100 mg/l. Uptakes values of 11.35 mg/l and 14.55 mg/l
were obtained, respectively, for the initial concentration of
10 mg/l and 100 mg/l. These values are much higher than the ob-
tained in previous studies developed with minicolumns. After the
biofilm formation, the microorganism survived without any kind
of nutrients allowing to conclude that the bacteria incorporate
chromium on their metabolism and this is probably the reason
why the bacteria were metabolically active after several months
without nutritional supplements.
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