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Abstract  

Changes in volatiles during maturation in bottles of monovarietal Vinhos Verdes wines from 

Loureiro and Alvarinho grape varieties, were followed by chemical and sensory analyses. 

Young wines and wines matured for 8 and 20 months were studied. The volatiles were 

determined by GC-MS after extraction on XAD-2 resin. Straight chain fatty acid ethyl esters 

and acetates of fusel alcohols decreased quicker for Loureiro wine, while the increase in ethyl 

esters of branched fatty acids was similar for both varieties. Linalool, Ho-trienol, α-terpineol 

and β-damascenone could be used to differentiate between each variety. However, linalool 

decreased to negligible values after 20 months of maturation. β-damascenone decreased but 

remained high enough to be useful for differentiating each variety. Sensory analysis indicated 

a decrease of tropical fruit and tree fruit characters with conservation time for Alvarinho wine, 

and the opposite for Loureiro; moreover, citrus fruit character decreased in both varieties. 
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1. Introduction 

Wines designated “Appellation of Origin Vinhos Verdes” are produced in Northern 

Portugal composed of 9 sub-regions (Amarante, Ave, Baião, Basto, Cávado, Lima, Monção, 

Paiva and Sousa). There are seven recommended white grape varieties (Alvarinho, Arinto, 

Avesso, Azal, Batoca, Loureiro and Trajadura) and eight red grape varieties (Amaral, 

Borraçal, Brancelho, Espadeiro, Padeiro de Basto, Pedral, Rabo de Ovelha and Vinhão) to 

produce these wines. Among the white cultivars, Alvarinho and Loureiro are employed to 

produce quality monovarietal wines, which are characterized by freshness and floral and 

fruity flavours. In order to preserve these characteristics, traditional winemaking techniques 

are developed to encourage these notes and to avoid malolactic fermentation. Legislation 

stipulates ethanol concentrations of between 8.0 % and 11.5 %, but for Alvarinho wines it 

must be between 11.5 % and 14.0 %; other monovarietal wines may have concentrations 

below 14.0 %. Fix acidity, expressed as tartaric acid, must be at least 4.5 g L-1. It is well 

known, however, that Vinhos Verdes loses quickly their aromatic characteristics during 

maturation. So, they are usually drunk during the first year; nevertheless, no systematic 

studies were conducted on this subject. 

It is well known that during wine maturation and ageing there are many chemical changes 

in the volatile composition. These reactions depend on wine composition, pH, storage time 

and temperature (Marais, 1978; Marais et al., 1980; Ramey et al., 1980; Usseglio-Tomasset, 

1983). The majority of fatty acid ethyl esters is hydrolysed during conservation and, ethyl 

esters of fatty acids related to yeast nitrogen metabolism and esters of organic acids increase 

during this period (Díaz-Maroto et al., 2005; Dubois, 1994; Shinohara et al., 1981). Also, the 

terpenic profile may change, with the disappearance or strong decline of the compounds 

initially present, with the simultaneous formation of other terpenic compounds with higher 

oxidation state; temperature and pH have a decisive influence (Di Stefano, 1986 and 1989; Di 



Stefano and Castino, 1983; Marais et al., 1992). Some norisoprenoids may appear or increase 

their concentration during the ageing period, e. g. β-damascenone, TDN and vitispirane 

(Marais et al., 1992; Simpson, 1979; Simpson and Miller, 1983). The acidic medium also 

favours the hydrolysis of glycosidic precursors and the transformation of aglycon moieties 

(Dugelay, 1993; Günata et al., 1986; Sefton et al., 1993). 

Since Loureiro and Alvarinho wines should be drunk as young wines (with about 8 months 

of conservation, in expert’s opinion) and because their aromatic characteristics decline 

quickly during ageing, it is very important to study the volatile composition of these wines 

during storage in bottles. There are some published data on the volatile composition of 

Loureiro and Alvarinho wines (Guedes-de-Pinho, 1991; Oliveira, 1995; Oliveira et al., 1997; 

Rogerson and Silva, 1994) and the congeners Loureira and Albariño Galician wines of 

Northwest Spain (Falqué, 1998; García-Jares et al., 1994; Lema et al., 1996; Orriols and 

Camacho, 1991 and 1992; Orriols et al., 1993; Versini et al., 1994) but they do not refer to the 

changes occurring during maturation in the bottle. Nevertheless, Oliveira et al. (2008) 

conducted recently an exhaustive study on the volatile and glycosidically bound composition 

of Loureiro and Alvarinho wines.  

The aim of the present work was to study the evolution of volatile composition of Loureiro 

and Alvarinho wines during maturation, i. e., at the end of alcoholic fermentation, and after 

stored in bottles, with 8 months and 20 months. Sensory evaluation was also undertaken for 

the last two stages. 

2. Materials and Methods 

2.1. Grape samples 

About 40 kg of grapes were manually harvested in 1998, randomly, among the vines of 3 

selected rows of the vineyard, at the recommended sub-region for each studied variety: 

Loureiro at Estação Vitivinícola Amândio Galhano –EVAG– (Lima sub-region), LAV, and 



Alvarinho at Solar de Serrade (Monção sub-region), ASS. Both soils are from granitic origin 

and rows orientation is N-S. Loureiro and Alvarinho vineyards were 11 and 16 years old, 

respectively. Training systems and rootstocks are, respectively, for Loureiro and Alvarinho: 

single cordon and SO4; “cruzeta” and 1103 P. 

2.2. Vinifications 

Vinifications were made according to the traditional technology of the Vinhos Verdes 

region. The must obtained by crushing, pressing and static sedimentation was inoculated with 

Saccharomyces cerevisiae bayanus QA23. Fermentations took place at 18 oC, in 10 L vessels, 

and were in duplicate. The produced wines were combined and the blend was treated with 

sodium bentonite –Volclay KWK Food Grade, 20-70 mesh, 10 % in aqueous solution– (0.4 g 

L-1), the SO2 content was corrected to 35 mg L-1, and submitted to cold stabilization (between 

0 oC and 3 oC) before bottling. The maturation of the wines occurred at cellar temperature and 

in the dark. The wines did not undergo malolactic fermentation. The evaluation of volatile 

composition was made in young wines –W1– (subsequent to alcoholic fermentation), after 8 

months –W2– and 20 months –W3– of maturation, which corresponds, respectively, to a 

period of 6 months and 18 months in bottle. General analyses of wines were performed at 

Comissão de Viticultura da Região dos Vinhos Verdes. 

2.3. Solvents 

All solvents were analytical grade and further purified. Diethyl ether (Merck, ref. 1.00921) 

was distilled on iron (II) sulphate (Merck, ref. 1.03965). Dichloromethane (Merck, ref. 

1.06050) was washed with de-ionised water, and then distilled. Pentane (Carlo Erba, ref. 

468151) was washed with H2SO4 (Merck, ref. 1.00731), KMnO4 (Carlo Erba, ref. 473387) 

and ultrapure water, and next it was distilled on potassium hydroxide (Merck, ref. 1.05033). 

Azeotrope pentane-dichloromethane was distilled after combination of pentane and 

dichloromethane (2:1, v/v) and it was redistilled whenever necessary. 



2.4. Extraction of volatile compounds 

Wine samples result from the content of three bottles, by blend, and were extracted in 

triplicate. To 100 mL of wine, centrifuged (25 min, RCF = 12 225, 4 oC) and diluted with 

ultrapure water to reduce the alcohol content to less than 5 %, were added 14.5 µg of 4-

nonanol (Merck, ref. 818773). The solution was passed through an Amberlite XAD-2 resin 

(20-60 mesh, Supelco, ref. 1-0357) column according to the method of Günata et al. (1985). 

Volatile compounds were eluted with 50 mL of azeotrope pentane-dichloromethane. The 

eluate was dried over anhydrous sodium sulphate and concentrated to about 2 mL by solvent 

evaporation at 34 oC through a Vigreux column, prior to analyses. 

2.5. Gas chromatography – mass spectrometry (GC-MS) 

Gas chromatographic analysis of volatile compounds was performed using a GC-MS 

(Varian 3400 Chromatograph and an ion-trap mass spectrometer Varian Saturn II). Each 1 µL 

injection was made separately in two capillary columns, coated with CP-Wax 52 CB or CP-

Wax 57 CB (50 m x 0.25 mm i.d., 0.2 µm film thickness, Chrompack). The temperature of the 

injector (SPI – septum-equipped programmable temperature) was programmed from 20 oC to 

250 oC, at 180 oC min-1. The temperature of the oven was held at 60 oC, for 5 min, then 

programmed from 60 oC to 250 oC (60 oC to 220 oC for the second column), at 3 oC min-1, then 

held 20 min at 250 oC (30 min at 220 oC) and finally programmed from 250 oC to 255 oC at 1 

oC min-1 (220 oC to 225 oC at 2 oC min-1). The carrier gas was helium N60 (Air Liquide), at 

103 kPa. The detector was set to electronic impact mode (70 eV), with an acquisition range 

(m/z) from 29 to 360, and an acquisition frequency of 610 ms. 

2.6. Identification and quantification of volatile compounds 

Identification was performed using the software Saturn version 5.2 (Varian), by comparing 

mass spectra and retention index with those of pure standard compounds. In some cases, the 

identification was achieved by comparing our retention index and mass spectra with 



published data. The quantification was performed using data obtained in CP-Wax 52 CB 

column, mainly. The second column, CP-Wax 57 CB, served essentially to confirm spectra of 

the co-eluted compounds and, in general, it was useful for alcohols. All the compounds were 

determined, semi-quantitatively, as 4-nonanol equivalents. 

2.7. Sensory analysis 

Wines with 8 months (W2) and 20 months (W3) of maturation were submitted to sensory 

evaluation at Comissão de Viticultura da Região dos Vinhos Verdes (CVRVV). Judges were 

chosen amongst wine experts and they had a full knowledge about the products. W2 wines 

were evaluated by 7 tasters and W3 wines by 8 (5 of them being common to both); Loureiro 

and Alvarinho wines were coded randomly and tasted independently in each session using the 

distribution prepared according to aleatory tables. Normalised glasses were used (ISO 3591) 

and the room was kept at 21 oC and 65 % of relative humidity. The wine score card was that 

used by Tasting Room of CVRVV, evaluating several attributes (scale 0 to 5) relating to 

visual, olfactory and gustative characteristics. Tasters also classified global appreciation 

(scale 0 to 20). 

2.8. Statistical analyses  

Statistical differences between wines, with respect to chemical analysis, were evaluated by 

Analysis of Variance (ANOVA) or, by independent-samples T test, when comparing wines 

from the two varieties with the same age. Homogeneity of variances was checked with the 

Levene test and normality of the variables was checked by the Kolgomorov-Smirnov test with 

Lilliefors correction, both at a significance level of 5 %. Whenever one of these two 

conditions fails, the non-parametric Kruskall-Wallis test was applied. Also, global 

classification obtained in the sensory analysis was studied by means of Analysis of Variance 

in order to evaluate hypothetical differences between wines of the same variety. ANOVA was 

also used to assess the evolution of wines between W2 and W3 respecting global appreciation. 



The behaviour of some compounds during conservation period was checked by Regression 

Analysis using linear, quadratic, cubic and exponential models, at a significance level of 5 %. 

Similarities between wines, with respect to specific compounds, were analysed by Principal 

Component Analysis, being component extraction achieved by correlation matrix and their 

number fixed according to Kaiser criterion, i.e., all the components with eigenvalues over 1. 

The software used was SPSS 14.0 for Windows. 

3. Results and Discussion 

3.1. General analysis 

The various characteristics of the wines matured for 8 months are summarised in table 1. 

Both monovarietal wines fulfil the criteria to obtain the Appellation of Origin Vinho Verde 

label.  

3.2. Volatile composition of Loureiro and Alvarinho wines 

The volatile extracts were obtained by solid phase extraction of diluted wines (lowering the 

alcoholic content below 5 %) using XAD-2 resin as report previously (Voirin et al., 1992; 

Aubert et al., 1997). GC-MS analysis allowed the identification and quantification of 120 

volatile compounds including 5 C6-compounds, 23 alcohols, 6 fatty acid ethyl esters related to 

lipid metabolism and 3 related to nitrogen metabolism, 10 esters of organic acids, 7 acetates, 

8 monoterpenic alcohols, 15 monoterpenic oxides and diols, 13 C13-norisoprenoids, 13 

volatile phenols, 8 volatile fatty acids related to lipid metabolism and 3 related to nitrogen 

metabolism, 4 carbonyl compounds and also pantolactone and N-(2-phenylethyl)-acetamide 

(figure 1). This classification takes into account the chemical structure of the volatile 

compounds, the pathways that lead to their formation and the olfactory perception threshold. 

Only four compounds were identified by comparison of our retention index and mass spectra 

with published data and one was tentatively identified. 



Table 2 shows the mean level obtained for each compound in the nine samples analysed. 

These levels were determined, semi-quantitatively, as 4-nonanol equivalents. 

Monoterpenic compounds (alcohols, oxides and diols), C13-norisoprenoids and some 

volatile phenols may be considered as varietal compounds because they were present in grape 

and/or arise from grape precursors. Unsaturated C6-alcohols are related to varietal origin 

because they can be formed, via C6-aldehydes, through enzymatic reactions from linolenic 

and linoleic acids present in grapes (Crouzet et al., 1998). However, because of their mainly 

fermentative origin, 1-hexanol, 4-ethylphenol, 4-vinylguaiacol and 4-vinylphenol were 

excluded from the varietal group (Chatonnet et al., 1992 and 1993; Joslin and Ough, 1978). 

3.3. Evolution of volatile compounds during bottle conservation 

Figure 2 represents the evolution of each group of volatile compounds during maturation of 

Loureiro and Alvarinho wines. Since the levels of esters of organic acids and volatile fatty 

acids related to yeast lipid metabolism are much higher than those of the other groups, they 

are not shown; furthermore, alcohols such as 2-methyl-1-butanol, 3-methyl-1-butanol and 2-

phenylethanol, are not included for the same reason. However, the change in their levels can 

be observed in table 2. 

The different groups of compounds generally behaved predictability. C6-compounds, 

alcohols and volatile fatty acids related to yeast lipid metabolism are almost stable during the 

20 months of maturation. The small fluctuations observed in table 2 and figure 2 were not 

statistically significant (p>0.05) except for C6-compounds in Alvarinho wine which 

demonstrated a slight decline (F=6.228, p=0.034). Nevertheless, the analytical method used 

gave high concentration error for the more abundant alcohols (2-methyl-1-butanol, 3-methyl-

1-butanol and 2-phenylethanol), probably attributed to the mechanism of 

adsorption/desorption on XAD-2 resin and/or to column and/or detector saturation. Excluding 

these compounds, the sum of the other alcohols decrease for Alvarinho wine, chiefly between 



W1 and W2, whereas Loureiro wine present a minimum for the W2 stage  (p<0.05). However, 

benzyl alcohol increased significantly between W1 and W3 (p<0.05), predominantly for 

Alvarinho wine (F=942.083, p=0.000), probably because of precursor hydrolysis. 

The sum of 2-methyl-1-butanol and 3-methyl-1-butanol concentrations were near to their 

perception threshold limits of 7 mg L-1, contributing certainly to the olfactory characteristics 

of the 6 wines (Rapp and Mandery, 1986; Rapp and Versini, 1995; Salo, 1970). Also 3-

(methylthio)-1-propanol, with Odour Activity Values –OAV– (concentration/perception 

threshold) of approximately 0.1, may contribute, although marginally, since its odour 

threshold is about 1 mg L-1 (Escudero et al., 2004; Meilgaard, 1975). On the other hand, 2-

phenylethanol may contribute decisively to the aroma of these wines, mainly Loureiro ones, 

as the concentration was at least twofold the perception threshold of 7.5 mg L-1 (Salo, 1970); 

nevertheless, the floral descriptor found by sensory analysis was not significantly related with 

its concentration, as it was expected from the rose-like aroma (Escudero et al., 2004; 

Meilgaard, 1975). 

The (E)/(Z) isomer ratio of 3-hexen-1-ol was almost constant during the storage period, 

with mean values of 6.33 ± 0.22 (n=9) and 0.66 ± 0.02 (n=9) for Loureiro and Alvarinho, 

respectively (95 % confidence level). These results indicate the possibility to discriminate 

wines from these two varieties. 

The levels of esters of organic acids underwent a significant increase during the storage 

period, because of chemical esterification. This was most pronounced for monoethyl 

succinate, diethyl succinate and diethyl malate, in agreement with previous observations 

(Shinohara, 1984). 

On the other hand, while the levels of acetates decreased sharply with ageing in the wines 

of both varieties, the ethyl esters of straight chain fatty acids related to yeast lipid metabolism 

decreased slowly and progressively during maturation of Loureiro wines, and did not 



significantly decreased in Alvarinho wines (p>0.05). Thus, W3 Loureiro wine had 80 % of the 

total level of the straight chain fatty acid ethyl esters present at the end of alcoholic 

fermentation (W1) but it contained 5 % only of acetates; W2 stage presented 97 % and 30 %, 

respectively. In Alvarinho wines, acetates also decreased sharply from W1 to W2 and W3 

stages, being about 52 % and 11 % respectively of the initial level, but this decrease was 

slower than in Loureiro wines. The faster ester hydrolysis in Loureiro wines could be due to 

their lower pH (Ramey and Ough, 1980). Contrarily to these esters, the ethyl esters of fatty 

acids related to yeast nitrogen metabolism, i. e. ethyl 2-methylbutyrate, ethyl 3-

methylbutyrate and ethyl benzeneacetate, increased in the wines of both varieties during the 

conservation period, as their esterification ratios were very low in W1 (Díaz-Maroto et al., 

2005). The first two esters may contribute marginally to the aroma of Loureiro and Alvarinho 

wines as they present OAV values above 0.1, since their odour thresholds are 18 μg L-1 and 3 

μg L-1, respectively (Escudero et al., 2004); additionally, for W2 and W3 wines of both 

varieties, ethyl 3-methylbutyrate has OAV values much higher than 1.0. 

With the notable exception of linalool in Loureiro wines, the monoterpenic alcohols in the 

wines of both varieties had similar behaviours, showing a sharp increase between W1 and W2. 

As their levels were much lower than the levels of their bound forms (Oliveira et al., 2008), 

these variations were mainly due to the acid-catalyzed transformations of these 

monoterpenols during ageing, particularly that of linalool into α-terpineol, linalool hydrate 

and furan linalool oxides, explaining its sharp decrease in Loureiro wines, but the hydrolysis 

of the bound forms could also be involved at a lesser extent, explaining the increase of 

linalool in Alvarinho wines (Di Stefano and Castino, 1983; Dugelay, 1993; Günata et al., 

1986; Marais et al., 1992; Simpson and Miller, 1983; Usseglio-Tomasset and Di Stefano 

1980; Williams et al., 1980 and 1982). Then, between W2 and W3, these effects continue, but 

due to the lowering of the levels of the starting materials of the above primary 



transformations, they were no longer able to match the decrease of the products formed, due 

to their own transformations into even more polar forms or more complex ones, leading to the 

beginning of their decrease. 

Thus, monoterpenic alcohols present a maximum concentration in W2 wines for both 

varieties. The levels of linalool in Loureiro wine decreased almost linearly during the 

conservation period, being present in W3 only at trace amounts, whereas α-terpineol and Ho-

trienol remained at these last stages the most abundant monoterpenols. It must be noted that 

after alcoholic fermentation (W1), the level of linalool was approximately 3.5 times higher 

than in Alvarinho wine, but it decreased to the level in Alvarinho wine after 8 months of 

maturation (W2), then kept on decreasing to very low levels for both varieties after 20 months 

of maturation (W3) (2.0 μg L-1 and 12.0 μg L-1, respectively). On the other hand, the levels of 

Ho-trienol and α-terpineol in the wines of both varieties became increasingly similar with 

ageing. Thus, ageing appeared to decrease differentiation of the wines of each variety based 

on these compounds. Myrcenol was characteristic of Loureiro wines, but it was not detected 

in grapes and musts of this variety (Oliveira, 2000; Oliveira et al., 2000). 

The total levels of monoterpenic oxides and diols increased during the storage of the wines 

of both varieties. However, 2 groups of compounds could be differentiated. The first included 

furan linalool oxides, neroloxide and the hydrates of linalool, citronellol and terpin and 

demonstrated a sharp increase in their levels during the 20 months of maturation. The second 

group, included 3 oxides (pyran linalool oxides and exo-2-hydroxy-1,8-cineole) and the 

diendiols, did not present a significant evolution during the same period, but generally 

reached a maximum of concentration in the W2 wine. The behaviours of these 2 groups could 

be explained by the mechanisms detailed above for the monoterpenic alcohols. As reported 

previously (Oliveira et al., 2008), (Z)-8-hydroxylinalool may distinguish Alvarinho and 

Loureiro wines, increasing the difference with the storage time.  



For both varieties, the concentration of all the C13-norioprenoids increased during wine 

maturation, with the exception of β-damascenone and 3-hydroxy-β-damascone. These 

compounds constantly decreased, but β-damascenone was always present above its human 

perception threshold which is very low, 45 ng L-1 (Ribéreau-Gayon et al., 2000). Indeed, C13-

norisoprenoids were found in musts and young wines almost exclusively as glycosidic 

precursors, with levels much higher than those of the free forms in the W1 wines. This 

explained their increase through hydrolysis of these bound forms during winemaking and the 

relatively short storage time of the study (Winterhalter, 1992 and 1996; Winterhalter and 

Schreier 1994). Thus, the C13-norisoprenoids listed in table 2 from 3-hydroxy-7,8-dihydro-β-

ionone to vomifoliol were unchanged aglycons from these glycosides. On the other hand, the 

compounds listed from vitispirane I to 3-hydroxy-β-damascone arise from norisoprenoidic 

precursor transformations during wine conservation. The referred precursors of β-

damascenone and 3-hydroxy-β-damascone are 3,6,9-trihydroxymegastigma-6,7-diene and 3-

hydroxy-7,8-dehydro-β-ionol (Puglisi et al., 2005; Winterhalter and Schreier, 1994); however, 

3,6,9-trihydroxymegastigma-6,7-diene could not be identified under our GC-MS conditions. 

The sharp decrease of β-damascenone and 3-hydroxy-β-damascone, in contrast to the increase 

of other C13-norisoprenoids, would be explained by their rapid release from 3,6,9-

trihydroxymegastigma-6,7-diene and their interaction with sulfur dioxide, as demonstrated 

previously (Daniel et al., 2004). Indeed, β-damascenone and 3-hydroxy-β-damascone 

contained two reactive cross-conjugated enones moieties, absent in the ionone derivatives. On 

the other hand, TDN could derive from different precursors, namely 3-hydroxy-β-ionone, 3,4-

dihydroxy-β-ionol, 3,4-dihydroxy-7,8-dihydro-β-ionol, 3,9-dihydroxytheaspirane and 3,4-

dihydroxy-7,8-dihydro-α-ionone, and as well as vitispiranes from 3,4-dihydroxy-7,8-dihydro-

β-ionol, megastigma-4-ene-3,6,9-triol and 3,4-dihydroxy-6,9-epoxymegastigmane 



(Winterhalter, 1993; Winterhalter and Skouroumounis, 1997; Winterhalter and Schreier, 

1994; Winterhalter et al., 1998). 

The most abundant volatile phenols, 4-vinylguaiacol and 4-vinylphenol, were mainly 

generated by yeasts during alcoholic fermentation, and decreased significantly during the 

storage time. That was consistent with their conversion during wine storage, into derivatives 

not amenable to our GC-MS conditions, such as 4-(ethoxyethyl)-phenol, 4-(ethoxyethyl)-

guaiacol and pyroanthocyanins (Dugelay et al., 1995; Hayasaka and Asenstorfer, 2002; 

Mateus et al., 2004). The other volatile phenols had a varietal origin, occurring mainly from 

hydrolysis of their glycoconjugates (Oliveira et al., 2000). As in the W1 wines, the levels of 

these bound forms were as low as those of their free forms (Oliveira et al., 2008). Variations 

were generally not significant, despite an upward trend. 

Finally, volatile compounds supposed to influence the aromatic characteristics of Alvarinho 

and Loureiro wines (from their levels and perception thresholds) which exhibited statistically 

significant (p<0.05) variations during bottle conservation were grouped according to their 

behaviour, i. e., if their level decreased, increased or if a maximum at W2 stage was observed 

(table 3). These results corroborate the discussion above as demonstrated in table 2 and figure 

2. However, most variations observed in the wines of the two varieties were small, 

particularly those between the stages W2 and W3. 

Overall results, concerning the total levels by groups of the varietal compounds in the 6 

wines were analyzed by principal component analysis. Figure 3 represents the two first 

principal components, which accounted for 82.8 % of samples initial variability. Component 

1 accounted for 42.6 % of total variance and showed the potential to discriminate between 

Loureiro and Alvarinho wines. Component 2, which explained 40.2 %, allowed 

differentiation according to the ageing period. Loureiro wines were characterized by higher 

levels of C6-compounds and monoterpenic compounds, including alcohols, oxides and diols, 



whereas higher levels of varietal volatile phenols and C13-norisoprenoids were characteristic 

of W3 wines.  On the other hand, the fermentative compounds listed in table 2 did not permit 

discrimination the wines of each cultivar, which was consistent with their usual classification 

as non-varietal compounds. 

3.4. Sensory analysis 

Sensorial descriptive analyses of Loureiro and Alvarinho wines with 8 months and 20 

months of maturation were made (table 4). 

Loureiro wines were clear. W2 wines revealed a pale citrus colour while W3 wine present a 

citrus colour, more appreciated by tasters. Wines were also classified as medium quality from 

overall sensations, including olfactory and gustative ones. Statistically, reporting on global 

appreciation, there were no differences between the two wines (F=0.008, p>0.05), i.e., there 

was not any change of organoleptic characteristics. Alvarinho wines were clear and 

demonstrated an open straw colour. Concerning olfactory overall impression, the tasters 

considered that wines lost quality between W2 and W3 stages, having classified as “good” the 

wine after 8 months and as “medium” quality the wine after 20 months. This was caused by 

the lost of aromatic intensity on floral, citrus fruit and tropical fruit characters, and by the 

appearance of a slightly vegetal character. Gustative analysis revealed the same tendency. 

These considerations were also confirmed by statistic analysis considering global 

classification (F=16.603, p<0.01). 

Alvarinho variety are characterised by a more intense tropical fruit and tree fruit character 

(figure 4), while in Loureiro wines the floral and citrus fruit aromas are more pronounced. 

Alvarinho wines were also characterised by dried fruit flavour. These considerations are in 

agreement with Guedes-de-Pinho et al. (1998) and Cerdeira et al. (1998 and 1999). 

The main aromatic descriptors for Alvarinho wine were tropical fruit, tree fruit and dried 

fruit whereas for Loureiro they were floral and citrus fruit. These descriptors may be 



associated to some flavour compounds; among them, (Z)-3-hexen-1-ol (green leaves), 3-

methylbutyl acetate (banana, apple), β-damascenone (tropical fruit, stewed apple), 4-

vinylguaiacol (phenolic, clove) and 4-vinylphenol (stramonium) may contribute chiefly for 

Alvarinho wines and 2-phenylethanol (rose), linalool (rose, floral, lemon) and Ho-trienol 

(linden) for Loureiro ones (Boidron et al., 1988; Escudero et al., 2004; Meilgaard, 1975; 

Ribéreau-Gayon et al., 2000). 

During the maturation period (from 8 months to 20 months), Alvarinho wine lose overall 

aromatic intensity mainly related to tropical fruit, tree fruit and citrus fruit characters, while 

for Loureiro, only citrus fruit character decreased its intensity and the other two descriptors 

increased. 

From the presented results it is clear that not all aroma sensations could be explained by the 

studied compounds. These monovarietal wines may contain some other aromatic contributors 

which were not identified by the methodology. In this context, varietal volatile thiols like 4-

methyl-4-mercaptopentan-2-one, 3-mercaptohexanol and 3-mercaptohexyl acetate were not 

considered because analytical methodology was not available, although they may have an 

important role. 

Future work may consider a large number of analyses between initial and end points, i. e.  

between young wine and matured wine for several months. Maturation influence on flavor 

characteristics of wines may be only discussed on the basis of some key volatile compounds, 

which should be quantitatively determined.  
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Table 1. General analysis of wines with 8 months (LAV-W2 and ASS-W2) 

 Loureiro Alvarinho 

Ethanol/(% vol.) 10.2 13.5 

Reducing sugars/(g L-1) 1.1 3.4 

Total acidity */( g L-1) 10.6 7.6 

Volatile acidity **/( g L-1) 0.33 0.40 

pH 2.81 3.03 
*, as tartaric acid 
**, as acetic acid 
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Table 2. Mean levels* (C) with 95 % confidence limits for the volatile compounds found in 
Loureiro (LAV) and Alvarinho (ASS) wines, after alcoholic fermentation (W1) and after 8 
months (W2) and 20 months (W3) of maturation 

  

roi RI 

 Loureiro Alvarinho 

  W1    W2    W3   W1     W2    W3   

  # C/(μg L-1)  ±  C/(μg L-1)  ±  C/(μg L-1)  ± C/(μg L-1)  ±   C/(μg L-1)  ±  C/(μg L-1)  ± 

C6-compounds(5)             

1-hexanol  1 a 1348 972.2 145.9 976.8 109.4 1195.6 689.5 869.5 137.1  739.5 152.0 765.5 91.7 

(E)-3-hexen-1-ol 2 a 1358 206.2 56.9 182.7 11.6 233.0 139.9 57.6 11.9  46.6 4.9 49.8 9.3 

(Z)-3-hexen-1-ol  3 a 1379 33.6 11.3 29.6 3.9 35.0 22.4 90.4 17.8  71.3 4.8 72.7 10.7

(E)-2-hexen-1-ol  4 a 1400 tr 0.2 0.7 tr ––  tr  0.2 0.2

(Z)-2-hexen-1-ol  5 a 1410 2.3 0.8 2.0 0.5 2.4 1.4 0.9 0.2  0.8 0.1 0.7 0.2 

total      1214.3  1191.3  1466.0  1018.4    858.2    888.9   

Alcohols (23)             

2-methyl-3-buten-2-ol 6 a 1068 2.6 0.0 6.7 2.8 7.8 2.7 ?   3.7 0.9 2.8 0.7 

2-methyl-1-propanol 7 a 1082 1233.1 535.3 775.1 100.2 932.7 689.9 1435.0 141.1  1067.2 344.2 986.6 143.8 

1-butanol 8 a 1140 22.7 14.0 18.3 1.8 20.9 13.7 68.6 9.5  50.0 15.0 47.2 7.0

4-methyl-2-pentanol 9 a 1164 45.5 18.6 41.6 10.6 55.6 31.6 53.9 15.3  52.4 11.7 49.8 3.3

2-methyl-1-butanol  
        + 3-methyl-1-butanol 

10 
11 a 

1204 58535.5 28686.6 54741.1 12317.2 64583.2 3058.8 74488.5 25717.8  71637.3 29248.7 65672.3 23675.9

3-methyl-3-buten-1-ol  12 a 1243 4.3 1.9 3.6 0.9 2.4 1.1 5.5 0.9  4.1 1.6 3.5 1.1 

1-pentanol 13 a 1244 6.5 3.2 6.5 2.9 13.4 16.7 11.6 2.7  10.0 4.5 10.7 1.8 

2-methyl-1-pentanol 14 a 1298 ? 0.6 0.1 0.3 0.6 ––  ––  –– 

4-methyl-1-pentanol 15 a 1309 26.8 6.8 24.3 3.7 29.6 14.6 37.5 6.5  32.5 4.9 32.2 3.5

(Z)-2-penten-1-ol 16 a 1313 0.7 0.3 0.3 0.1 0.4 0.3 0.7 1.4  0.4 0.3 0.6 0.1 

3-methyl-2-buten-1-ol  
        + 2-heptanol 

17 
18 

a 
a 

1316 2.5 0.9 2.8 0.7 3.8 2.9 2.3 1.4  1.3 0.3 1.3 0.5 

3-methyl-1-pentanol 19 a 1322 65.5 16.5 54.5 29.1 75.1 38.8 140.3 32.7  113.7 8.7 118.6 19.3 

3-ethoxy-1-propanol 20 a 1369 66.5 41.6 58.2 7.4 56.8 41.7 75.5 16.6  54.2 11.5 48.6 6.1

1-octen-3-ol 21 a 1445 1.1 0.1 1.0 0.4 1.1 0.3 0.7 0.4  0.6 0.3 0.7 0.2

1-heptanol 22 a 1449 16.4 3.3 14.7 0.9 16.6 3.4 13.7 2.4  12.3 2.8 12.0 0.3 

2-nonanol 23 a 1541 1.0 1.3 1.0 0.3 1.1 2.7 1.5 0.7  2.7 5.1 1.5 1.1 

1-octanol 24 a 1552 9.5 0.6 13.5 3.1 10.8 2.0 6.2 1.6  8.3 0.6 7.7 1.2

3-(methylthio)-1-propanol 25 a 1709 103.4 67.2 79.8 11.8 84.5 55.5 135.2 25.3  98.5 20.6 87.1 8.3 

benzyl alcohol 26 a 1869 5.2 1.2 18.2 8.3 16.2 9.6 5.9 1.2  13.7 1.8 36.4 3.2 

2-phenylethanol 27 a 1908 28196.3 21202.6 23561.6 3908.8 31281.4 14343.7 20507.9 4319.5  15894.8 6174.5 16464.7 8149.2

tyrosol 28 a 3008 127.1 65.8 152.1 30.8 222.6 157.7 61.7 25.4  123.0 30.0 142.9 31.9 

total    88472.2 79575.5 97416.3 97052.2  89180.7  83727.2  

total**      1740.4    1272.8    1551.7    2055.8     1648.6    1590.2   
Fatty acid ethyl esters – lipid 
metabolism (6)                 

ethyl butyrate 29 a 1032 167.7 15.9 141.7 4.7 146.3 55.3 221.4 19.4  211.2 28.6 196.2 14.9

ethyl hexanoate 30 a 1234 465.1 46.0 422.8 51.1 336.7 44.1 513.6 75.5  488.5 46.4 462.5 49.1 

ethyl octanoate 31 a 1434 482.1 30.3 545.5 48.3 437.1 153.5 577.8 91.0  672.7 170.3 664.2 71.2 

ethyl decanoate 32 a 1636 151.0 25.3 107.1 16.8 76.4 38.1 169.9 17.9  240.1 104.9 171.2 10.4 

ethyl 9-decenoate 33 b,c 1688 55.6 11.4 52.7 8.5 36.1 18.2 42.9 6.0  67.5 28.2 48.5 5.7

ethyl dodecanoate 34 a 1855 7.1 3.3 3.8 1.8 ?  9.7 1.0  6.3 4.6 5.7 1.6 

total      1328.6 1273.6 1032.6 1535.3  1686.3  1548.3  
Fatty acid ethyl esters – nitrogen 
metabolism (3)             

ethyl 2-methylbutyrate 35 a 1049 ––  3.2 1.4 8.8 1.4 tr   5.1 2.5 12.9 0.9 

ethyl 3-methylbutyrate 36 a 1066 2.4 0.3 8.5 2.2 22.2 1.1 1.8 0.5  11.3 0.8 28.2 1.5 

ethyl benzeneacetate 37 a 1782 1.3 0.4 2.0 0.6 4.0 1.3 0.5 0.4  2.8 0.8 5.9 0.1

total      3.7    13.7  35.0  2.3   19.2  47.0   

This paper was published in Journal Food Composition and Analysis 21:8 (2008) 695-707



Esters of organic acids (10)             

ethyl pyruvate 38 a 1267 ––  7.1 1.6 37.9 30.1 ––   9.6 0.0 39.6 4.9

ethyl lactate 39 a 1338 266.3 145.9 472.3 103.5 463.8 246.8 188.4 33.8  437.7 72.9 478.6 73.0

ethyl 3-hydroxybutyrate 40 a 1512 40.3 22.7 36.2 4.2 43.1 28.7 77.1 14.7  58.4 7.9 59.3 5.7 

diethyl malonate 41 a 1574 ––  1.7 0.2 5.3 1.9 tr   3.1 0.2 11.6 0.8 

ethyl 2-furoate 42 a 1618 0.4 0.3 2.2 0.5 6.7 2.2 1.6 1.3  4.4 1.3 11.9 0.4

diethyl succinate 43 a 1672 41.0 5.6 896.4 7.1 3760.0 1227.6 27.5 9.1  966.3 101.5 4569.4 426.1 

diethyl glutarate 44 a 1774 0.5 0.2 6.2 0.2 13.1 1.4 tr   8.2 1.1 24.5 0.6 

diethyl malate 45 a 2037 164.7 52.6 2477.7 292.6 11363.6 5670.8 39.1 13.0  1248.8 108.7 6162.3 479.2

diethyl tartrate 46 a 2351 ––  43.2 10.4 590.3 1537.0 ––   10.6 5.2 186.8 16.3 

monoethyl succinate 47 a 2377 452.8 131.7 3473.8 525.2 8905.7 7612.2 105.8 81.4  3305.1 604.4 8940.2 1321.3 

total      966.0 7416.8 25189.5  439.5    6052.2   20484.2 

Acetates (7)                 

2-methylpropyl acetate 48 a 1009 32.0 17.5 11.3 6.6 2.6 1.8 40.8 13.3  16.9 12.0 4.2 3.1

butyl acetate 49 a 1071 2.3 0.5 tr  ––  3.0 1.3  1.5 1.0 ––  

3-methylbutyl acetate 50 a 1125 1041.4 89.3 331.3 16.4 63.5 4.6 1567.5 150.2  823.5 36.8 168.4 4.1 

hexyl acetate 51 a 1272 181.4 7.3 47.1 1.4 2.4 1.9 151.5 13.9  64.5 8.8 8.6 1.3

(Z)-3-hexenyl acetate 52 a 1307 8.9 0.8 2.7 0.7 ––  3.0 0.5  1.3 0.2 tr  

2-phenylethyl acetate 53 a 1810 249.9 7.8 93.2 8.5 16.1 0.3 325.1 7.7  189.4 10.1 41.8 2.6 

tryptophyl acetate 54 b,c 3369 75.1 8.0 6.1 1.4 –– 20.5 2.0  3.9 1.7 0.3 0.1

total      1591.0    491.7    84.6    2111.4     1101.0    223.3   

Monoterpenic  alcohols (8)                 

myrcenol 55 a 1533 3.9 2.1 8.0 5.6 17.9 1.9 ––  ––  ––  

linalool 56 a 1541 143.2 11.6 68.6 5.3 2.0 0.8 39.9 3.7  78.4 5.5 12.0 1.5 

4-terpineol  57 a 1597 1.0 0.4 1.0 0.1 1.4 0.5 0.9 0.2  0.8 0.4 0.9 0.6 

Ho-trienol 58 a 1605 31.0 8.0 102.0 24.7 80.2 43.7 25.5 2.3  60.8 15.9 54.0 4.0

α-terpineol 59 a 1691 21.2 3.7 111.6 11.5 66.0 18.3 11.8 2.1  67.8 8.3 72.7 8.9 

citronellol 60 a 1760 7.2 1.7 2.6 0.4 tr  7.3 1.4  4.0 0.8 0.7 0.2 

nerol 61 a 1793 2.6 1.4 3.1 1.3 tr 1.2 0.4  5.7 2.1 ? 

geraniol 62 a 1847 3.2 1.8 ?  ?  8.3 1.8  ?  3.3 0.5 

total      213.3 269.9 167.5  94.9    217.5   143.6   

Monoterpenic oxides and diols (15)             

trans- furan linalool oxide 63 a 1436 13.7 2.4 29.1 3.3 81.6 18.4 1.2 0.5  13.6 5.8 36.8 4.7 

cis- furan linalool oxide 64 a 1464 3.2 0.9 11.5 0.1 33.1 9.6 0.6 0.0  3.6 0.9 12.7 1.4 

neroloxide 65 b,c 1467 9.1 2.7 16.3 0.6 38.0 9.9 6.5 0.8  11.6 1.7 26.8 0.3

trans- pyran linalool oxide 66 a 1732 92.5 29.0 73.3 7.8 93.3 48.9 7.0 3.5  7.0 1.1 12.2 2.1 

cis- pyran linalool oxide 67 a 1756 16.6 3.2 17.9 2.8 15.6 9.7 tr   0.5 0.2 tr  

exo-2-hydroxy-1,8-cineole 68 a 1857 2.0 0.9 0.9 0.5 2.1 2.2 ––  ––  –– 

3,7-dimethylocta-1,5-dien-3,7-diol 69 a 1935 223.4 48.4 297.7 32.4 210.1 135.1 64.9 31.7  217.1 17.3 189.7 32.0 

linalool hydrate 70 a 1967 3.0 1.6 47.6 5.3 63.9 21.7 0.6 1.0  15.1 5.9 41.7 0.9 

terpin hydrate 71 a 2087 ––  11.0 3.5 53.6 41.8 ––   3.2 1.1 13.3 1.6 

3,7-dimethylocta-1,7-dien-3,6-diol 72 a 2121 58.7 12.9 64.4 7.2 55.1 25.0 3.9 1.1  12.3 6.0 14.3 3.9

citronellol hydrate 73 a 2196 ––  1.0 0.2 3.1 1.5 ––   0.7 0.4 2.4 1.0 

8-hydroxy-6,7-dihydro-linalool 74 a 2197 0.7 0.8 1.1 0.6 1.0 0.7 0.6 0.5  1.9 0.9 1.2 0.7 

(E)-8-hydroxy-linalool 75 a 2265 ? ? tr ?  ?  3.4 2.5

(Z)-8- hydroxy-linalool 76 a 2302 0.5 1.3 2.0 0.4 2.0 2.0 2.0 1.0  15.8 4.2 30.0 3.7 

p-1-menthen-7,8-diol 77 a 2517 tr  1.4 0.6 tr  ––   ––  ––  

total      423.4    575.2    652.5    87.3     302.4    384.5   

C13-norisoprenoids (13)             

vitispirane I 78 a 1524 ––  1.4 0.7 4.0 0.2 ––   2.1 0.5 9.0 0.5 

vitispirane II 79 a 1527 ––  0.8 0.3 2.5 0.4 ––   1.8 1.1 7.3 0.9 

1,1,6-trimethyl-1,2-dihydronaphtalene 80 b,c 1741 tr tr 0.8 0.2 ––  ––  0.6 0.3
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β-damascenone 81 a 1816 4.3 0.7 1.3 0.3 0.7 0.1 5.3 0.8  3.4 0.2 1.1 0.3 

3-hydroxy-β-damascone 82 a 2529 1.0 0.8 tr tr 0.9 0.1  0.7 0.2 –– 

3-hydroxy-7,8-dihydro-β-ionone 83 a 2533 ––  tr  ––  ––   ––  ––  

megastigm-7-ene-3,9-diol 84 d 2568 ––  4.4 0.9 4.7 1.4 ––   4.8 0.5 10.4 3.1 

3-oxo-α-ionol 85 a 2628 4.4 2.1 7.6 1.5 7.2 3.7 3.0 1.8  7.0 0.7 10.6 2.5 

3-hydroxy-7,8-dihydro-β-ionol 86 a 2654 0.3 0.2 0.6 0.3 –– ––  0.8 0.5 tr 

3-oxo-7,8-dihydro-α-ionol 87 a 2702 0.7 0.5 0.5 0.0 1.9 1.4 tr   0.9 0.3 0.6 0.5 

3-hydroxy-5,6-epoxy-β-ionone 88 a 2721 0.7 0.4 ––  tr  ––   tr  tr  

3-hydroxy-7,8-dehydro-β-ionol 89 a 2742 –– tr –– ––  0.7 0.1 0.8 0.2

vomifoliol 90 a 3139 2.0 1.1 2.4 0.3 2.4 1.0 ––   tr  0.6 0.2 

total      13.4  19.0  24.2  9.2    22.2    41.0   

Volatile phenols (13)             

methyl salicylate 91 a 1770 tr  tr  tr  tr   tr  tr  

guaiacol 92 a 1852 tr  1.2 1.5 2.8 2.4 tr   2.7 2.0 3.3 0.4 

phenol 93 a 2006 1.1 0.3 1.6 0.5 1.4 1.4 1.2 0.4  1.1 0.2 2.2 1.2

4-ethylphenol 94 a 2172 1.5 0.6 0.5 0.3 1.5 1.6 1.4 0.1  1.2 0.5 0.8 0.2 

4-vinylguaiacol 95 a 2192 89.3 12.0 24.5 1.3 21.1 9.3 192.7 31.7  62.9 12.9 49.4 13.0 

4-vinylphenol 96 a 2409 50.3 7.4 tr ? 144.9 31.4  20.9 5.9 ? 

vanillin 97 a 2560 ––  ––  2.9 0.7 ––   tr  5.6 0.9 

methyl vanillate 98 a 2601 tr  tr  tr  10.7 1.5  7.9 1.6 7.0 1.7 

acetovanillone 99 a 2635 8.9 2.3 10.8 1.7 14.4 7.5 9.8 4.2  11.6 0.7 11.4 2.9

3,4-dimethoxyphenol 100 a 2759 ––  ––  tr  tr   0.7 0.1 1.1 0.4 

2-(4'-guaiacyl)-ethanol 101 a 2844 6.1 1.9 6.7 2.5 8.2 6.1 0.8 0.3  2.5 0.2 2.1 1.0 

3,4,5-trimethoxybenzyl alcohol 102 a 2879 4.3 0.5 5.1 1.8 6.4 3.0 4.3 2.2  8.0 0.8 9.8 2.2

3,4,5-trimethoxyphenol 103 a 3060 1.2 0.3 2.6 1.2 1.6 1.7 tr   1.9 0.8 2.2 0.6 

total      162.7    53.0    60.3    365.8     121.4    94.9   
Volatile fatty acids – lipid 
metabolism (8)                 

acetic acid 104 a 1453 16.0 7.6 9.4 4.2 19.3 13.8 16.1 4.9  16.1 6.1 18.2 7.5

butanoic acid 105 a 1626 133.1 71.0 125.3 20.1 138.3 97.4 156.7 42.5  139.2 33.5 131.5 13.5 

hexanoic acid 106 a 1841 2995.1 561.1 3045.0 497.4 3716.8 1630.1 3461.6 972.9  3643.4 326.3 3331.7 179.4 

(E)-2-hexenoic acid 107 a 1964 21.2 2.7 23.0 5.9 24.0 8.6 14.9 3.2  16.9 3.4 10.4 2.0

octanoic acid 108 a 2057 3501.4 259.4 3565.4 264.1 2902.4 298.9 3235.2 347.8  3419.2 218.5 2844.8 148.6 

decanoic acid 109 a 2269 1451.7 218.8 1418.4 111.3 1080.9 339.8 1739.8 84.9  1542.7 311.6 1222.2 71.9 

dodecanoic acid 110 a 2481 17.6 2.8 12.6 3.9 4.8 3.5 27.4 5.2  13.7 4.9 4.1 1.5

hexadecanoic acid 111 a 2903 tr  tr  ––  1.9 2.2  tr  tr  

total      8136.1 8199.1 7886.5 8653.6  8791.2  7562.9  
Volatile fatty acids – nitrogen 
metabolism (3)             

2-methylpropanoic  acid 112 a 1567 59.2 27.7 52.1 7.6 54.4 39.0 71.4 20.8  56.7 10.8 52.1 6.7 

3-methylbutyric acid  
            + 2-methylbutyric acid 

113 
114 

a 
a 

1667 241.2 115.0 206.9 16.7 234.3 138.7  361.1 88.6  311.7 50.4 269.7 24.5 

total      300.4  259.0  288.7  432.5   368.4  321.8  

Carbonyl compounds (4)                 

2-nonanone 115 a 1386 1.3 0.2 1.5 0.1 1.0 0.4 2.4 0.2  2.7 0.5 2.7 0.2 

2-furaldehyde 116 a 1460 –– 0.3 0.3 5.2 12.2 ––  0.6 0.1 6.8 0.9

benzaldehyde 117 a 1517 7.4 1.9 7.1 0.7 8.9 5.8 8.3 2.0  7.9 0.8 7.4 0.1 

4-ethylbenzaldehyde 118 a 1703 25.5 4.6 25.7 8.7 28.7 17.7 27.6 8.1  27.2 5.1 22.4 1.9 

total      34.2    34.6    43.8    38.3     38.4    39.3   

Other (2)                

pantolactone 119 a 2026 3.0 0.8 6.9 2.0 10.5 9.5 2.2 1.1  4.8 1.2 7.8 2.4 

N-(2-phenylethyl)-acetamide 120 a 2575 91.4 24.1 89.5 6.5 92.4 46.3 46.7 13.3  53.5 8.2 41.9 3.3 

total      94.4    96.4    102.9   48.9   58.3  49.7  
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TOTAL      102953.3  99468.8  134450.4  111889.6   108817.4  115556.6  

TOTAL**     16221.9  21166.1  38585.8  16893.2   21285.3  33419.6  

roi, reliability of identification 
RI, linear retention index on column CP-Wax 52 CB 
a, identified by comparing retention time and mass spectra with those of a pure standard 
b, identified by comparing retention index with published data 
c, identified by comparing mass spectra with published data 

d, tentative identification: molecular weight = 212 g/mol; m/z (%) = 43 (100.0), 41 (42.8), 39 (30.9), 29 (25.2), 79 (20.4), 55 
(18.2), 97 (18.0), 120 (16.6), 94 (15.4), 77 (14.4); other characteristic ions, m/z (%) = 212 (int, M+), 179 (int, M+-H2O-CH3), 
161 (int, M+-2H2O-CH3) 

*, levels were determined as 4-nonanol equivalents 
**, without 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol 
?, quantification not possible 
–, not detected 
tr, traces 
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Table 3. Behavior during maturation, of volatile compounds found in Loureiro and 
Alvarinho wines 

Behavior Compound 
Loureiro  Alvarinho 

Regression 
equation 

R2 
 Regression 

equation 
R2 

Increase 

ethyl 2-methylbutyrate 
ethyl 3-methylbutyrate 
diethyl succinate 
neroloxide 
guaiacol 

y=-a+bx 

y=a+bx+cx2 

y=a+bx+cx2 
y=a+bx 
y=a+bx 

0.988 
0.997 
0.979 
0.975 
0.791 

y=-a+bx 
y=a+bx+cx2 
y=a+bx+cx2 
y=a+bx+cx2 
y=-a+bx-cx2 

0.991 
0.999 
0.998 
0.998 
0.933 

Decrease 

(Z)-3-hexen-1-ol 
3-methylthio-1-propanol 
ethyl butyrate 
ethyl hexanoate 
ethyl decanoate 
3-methylbutyl acetate 
hexyl acetate 
2-phenylethyl acetate 
linalool 
citronellol 
β-damascenone 
4-vinylguaiacol 
decanoic acid 
3-methylbutanoic acid  
+ 3-methylbutanoic acid 

(lack of correlation) 
(lack of correlation) 
(lack of correlation) 
y=a-bx-cx2 

y=a-bx+cx2 

y=a-bx+cx2 
y=a-bx+cx2 

y=a-bx+cx2 
y=a-bx+cx2 
y=a-bx+cx2 
y=a-bx+cx2 
y=a-bx+cx2 
y=a+bx-cx2 

(lack of correlation) 
 

--- 
--- 
--- 

0.922 
0.916 
0.998 
1.000 
0.999 
0.998 
0.988 
0.992 
0.992 
0.816 

--- 

y=a-bx+cx2 
y=a-bx 
y=a-bx 
y=a-bx+cx2 
(maximum at W2) 
y=a-bx+cx2 
y=a-bx 
y=a-bx 
(maximum at W2) 
y=a-bx 
y=a-bx+cx2 
y=a-bx+cx2 
y=a-bx 

y=a-bx+cx2 

0.822 
0.912 
0.677 
0.541 

--- 
0.997 
0.997 
1.000 

--- 
0.987 
0.991 
0.989 
0.920 
0.779 

Maximum 
at W2 

ethyl octanoate 
ethyl decanoate 
linalool 
Ho-trienol 
α-terpineol 
octanoic acid 

y=a+bx-cx2 
(decreasing behaviour) 
(decreasing behaviour) 
y=a+bx-cx2 
y=a+bx-cx2 

y=a+bx-cx2 

0.671 
--- 
--- 

0.905 
0.987 
0.916 

(lack of correlation) 
y=a+bx-cx2 

y=a+bx-cx2 
y=a+bx-cx2 

y=a+bx-cx2 

y=a+bx-cx2 

--- 
0.723 
0.998 
0.959 
0.993 
0.893 
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Table 4. Sensory characterisation of Loureiro and Alvarinho wines with 8 months (W2) and 

20 months (W3), represented by the median of each attribute and the average of the final 

classification (attributes ranging from 0 to 5 in order of increasing intensity) 

Attribute 
Loureiro Alvarinho 

W2 W3 W2 W3

Visual      

Assessment 

clarity limpid limpid limpid limpid 

colour pale citrus citrus open straw open straw

colour quality 2 3 3 3 

Olfactory 

Assessment 

intensity 3 3 4 3.5 

floral 2 2 2 1.5 

citrus fruit 3 2 1.5 1 

tree fruit 1 2 3 3 

tropical fruit 1 1.5 3 2 

dried fruit 0 0 0.5 1 

vegetal 0 1 0 1 

overall sensation 3 3 4 3 

Gustative 

Assessment 

sweetness 1 1 2 2 

acidity 3 3.5 2 2.5 

heat 2 2 4 3 

bitterness 1 2 0.5 1 

structure 3 3 3 3 

balance 2.5 3 4 3 

persistence 3 3 4 3 

overall sensation 3 3 4 3.5 

Final     

Classification 

(median) 13 13 15.5 15 

(mean) 13.5 12.9 15.6 14.9 
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Figure 1. Representative section of a GC-MS chromatogram respecting W2 Loureiro wine (peak identification may be assessed on table 2). 
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Figure 2. Evolution of each group of volatile compounds in the Loureiro and Alvarinho 

wines, after alcoholic fermentation (W1) and with 8 months (W2) and 20 months (W3) (* 

without 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol; LM – lipid 

metabolism, NM – nitrogen metabolism).  
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Figure 3. Graphic representation of the two principal components for the volatile varietal 

compounds (total levels by groups) of W1, W2 and W3 wines of Alvarinho and Loureiro 

varieties. The ellipsoids represent the 95 % confidence level. 
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Figure 4. Aromatic descriptor intensity (median) for Loureiro and Alvarinho wines at the W2 

and W3 stages. 
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