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Abstract 

Sol–gel hybrid organic-inorganic networks, doped with a lithium salt, have been 

deposited on tungsten oxide (WO3) films by spin-coating to produce a prototype smart 

window. The work described in this presentation is focused on the use of these networks as 

dual-function electrolyte/adhesive components of solid-state electrochromic devices. The 

performance of multi-layer electrochromic devices was characterized as a function of the 

precursor used to prepare the polymer electrolyte component and the guest salt concentration. 

The preliminary results obtained during the study of electrochromic devices are also reported. 

Electrochromic parameters, such as coloration efficiency, optical contrast and stability were 

evaluated. The prototype devices assembled exhibited stable electrochromic performance and 

good open-circuit memory. 
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1.Introduction 

During the last two decades a remarkable international research effort has been 

dedicated to the development of solvent-free solid polymer electrolytes based on 
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poly(ethylene oxide) (PEO) [1-8]. The most probable application of these materials is in 

primary and secondary lithium batteries [7] or electrochromic windows [9]. Thin films of 

electrochromic materials deposited onto transparent conductive surfaces provide the basis of 

variable light transmission through controlled electrochemical oxidation or reduction. 

Applications in windows with adjustable light transmission for use in automotive and 

aeronautic vehicles and houses have already been proposed [10, 11]. 

In recent years, the sol-gel method has been successfully used for the production of a 

significant number of novel organic-inorganic frameworks with tunable characteristics [12-

15]. The intense activity in this sub-domain of solid-state research is motivated by the 

technological implications that arise from the possibility of tailoring advanced multifunctional 

compounds by mixing organic and inorganic components at the nano-dimension level in a 

single material [14-17]. The synergy of this combination and the specific role of the internal 

organic-inorganic interfaces enhances the range of application of nanohybrid materials in 

areas such as electrochemistry, biology, mechanics, ceramics, electronics and optics [14, 15]. 

The hybrid concept seems to be particularly well-adapted to the production of advanced solid-

state materials presenting ion-conducting properties, with the advantage of replacing viscous 

liquid systems by solid or rubbery materials [16-19]. 

Electrochromic materials are able to change their optical properties in a reversible 

manner over a large number of coloration/bleaching cycles as a result of the application of a 

voltage pulse. These materials are currently of interest as components of displays, rear-view 

mirrors, smart windows and time-elapse labels. Many polymers are soluble in common 

organic solvents and can be deposited as thin films, permitting the construction of low-cost 

devices with large display surfaces. 
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In this presentation the use of sol-gel tecniques to prepare thin electrolyte films 

containing LiClO4 dissolved in diureasil matrices, using a spin coating technique, is 

described.  

 

2. Experimental 

2.1. Materials 

Preparation of polymer electrolytes  

The host matrix of the ormosils (organically modified silicates), prepared from 

poly(oxyethylene) (PEO) chains of controlled lengths (Jeffamines 2000 and 900) grafted onto 

siloxane groups by means of urea bridges, are classed as di-ureasils and are designated as d-

U(2000) and d-U(900). In agreement with the terminology adopted in previous publications 

[20, 21], the electrolytes were identified using the notation d-U(2000)nLiClO4 and d-

U(900)nLiClO4. In this representation d-U(900) indicates the average molecular weight of  the 

host di-ureasil framework and n expresses the salt content in terms of the number of ether 

oxygen atoms per Li+ cation. Known amounts of lithium perchlorate were incorporated into 

the di-ureasil matrices, leading to the formation of ormolytes with compositions of 200 ≥ n ≥ 

0.5. 

All chemical reagents are commercially available and were used without further 

purification. Lithium perchlorate (LiClO4, Aldrich, 99.99%) and α,β-diamine 

poly(oxyethylene-co-oxypropylene) (commercially available as Jeffamine ED-2001®, Fluka, 

average molecular weight 2001 gmol-1) were dried under vacuum at 25 ºC for several days 

prior to use and O,O′-bis(2-aminopropyl) polyethylene glycol (commercially designated as 

Jeffamine ED-900®, Fluka, average molecular weight 900 gmol-1) were used as received. The 

bridging agent, 3-isocyanatepropyltriethoxysilane (ICPTES, Aldrich 95 %), was used as 

received. Ethanol (CH3CH2OH, Merck, 99.8%) and tetrahydrofuran (THF, Merck, 99.9%) 
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were dried over molecular sieves prior to use. High purity distilled water was used in all 

experiments. 

Preparation of inorganic thin films 

Transparent conductive oxide: gallium doped zinc oxide films (ZnO:Ga) were deposited 

on glass substrates by r.f. (13.56 MHz) magnetron sputtering using a ceramic oxide target 

(ZnO:Ga2O3 (95:5 wt%)); 5 cm diameter, supplied by SCM, Suffern, NY, USA). The 

sputtering process was carried out at room temperature, with an argon flow of 20 sccm and a 

deposition pressure of 0.11 Pa. The distance between the substrate and the target was 10 cm 

and the rf power was maintained constant at 175 W. Further details of film preparation as well 

as physical properties of the product can be found in ref [22]. 

Electrochromic films: tungsten oxide films (WO3) were prepared by thermal evaporation 

using WO3 pellets (SCM, 99.99% purity). The deposition pressure was 1.2x10-3 Pa with a 

deposition rate of 1.03 nm/seg. 

 

2.2. Synthesis 

The synthesis of LiClO4-doped di-ureasils has been described in detail elsewhere [20, 

21]. The procedure used for d-U(900)nLiClO4 involved grafting a diamine containing 

approximately 15.5 oxyethylene repeat units onto the ICPTES precursor, to yield the di-urea 

cross-linked hybrid precursor. This material was subsequently hydrolyzed and condensed in 

the sol-gel stage of the synthesis to induce the growth of the siloxane framework. 

Step 1 - Synthesis of the di-ureasil precursor, d-UPTES(900): 2.0 g of Jeffamine ED-

900® was dissolved in 10 ml of THF with stirring. A volume of 1.097 mL of ICPTES was 

added to this solution in a fume cupboard (molar proportion 1 Jeffamine ED-900®: 2 

ICPTES). The flask was then sealed and the solution stirred for about 12 h at moderate 

temperature (≈ 40 °C). A urea cross-linked organic-inorganic material, designated as di-
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ureapropyltriethoxysilane (d-UPTES(900)), was obtained under these conditions. The grafting 

process was followed by infrared monitoring. 

Step 2 - Synthesis of the di-ureasil xerogels, d-U(900)nLiClO4: A volume of 1.038 mL of 

CH3CH2OH, an appropriate mass of LiClO4 and 0.120 mL of water were added to the d-

UPTES(900) solution prepared in the previous step (molar proportion 1 ICPTES: 4 

CH3CH2OH: 1.5 H2O). The mixture was stirred, at room temperature, in a sealed flask for 

approximately 30 min and then decanted into a Teflon® mould, covered with perforated 

membrane of Parafilm® and stored in a fume cupboard for 24 h. The mould was transferred 

to an oven at 50 °C and the sample was aged for a period of 3 weeks. A final period of 1 week 

at 80 °C completed the process. 

The xerogels with n greater than 5 were obtained as flexible transparent, monolithic films 

with a yellowish hue, whereas the compounds with n = 1 and 0.5 were rather brittle, powdery 

agglomerates.  

 

2.3. Experimental techniques 

Ionic conductivity. The total ionic conductivity of the ormolyte was determined by 

locating an electrolyte disk between two 10 mm diameter ion-blocking gold electrodes 

(Goodfellow, > 99.95%) to form a symmetrical cell. The electrode/electrolyte/electrode 

assembly was secured in a suitable constant-volume support [23] and installed in a Buchi 

TO51 tube oven. A calibrated type K thermocouple positioned close to the electrolyte film 

was used to measure the sample temperature with a precision of about ±0.2ºC. Impedance 

measurements were carried out at frequencies between 96kHz and 500mHz with a Solartron 

1250 FRA and 1286 ECI, over a temperature range of 20 to 90oC. Measurements of 

conductivity were effected during heating cycles. The reproducibility of recorded 

conductivities was confirmed by comparing the results obtained for different electrolyte 
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samples removed from the same film and subjected to precisely-reproduced assembly and 

characterization procedures. Repeated measurements on samples confirmed that 

reproducibility was better than 5%. The experimental procedure adopted confirmed the 

correct operation of the cell support used to effect measurements and the mechanical stability 

of the sample films. A typical impedance spectra is illustrated in Figure 1. 

Thermal analysis. Electrolyte sections were removed from dry films and transferred to 

40µL aluminium cans with perforated lids within a dry argon-filled glovebox. These samples 

were subjected to thermal analysis under a flowing argon atmosphere between 25 and 300ºC 

and at a heating rate of 5 ºC.min-1 using a Mettler DSC 821e. Samples for thermogravimetric 

studies were prepared in a similar manner, transferred to open crucibles and analyzed using a 

Rheometric Scientific TG1000 thermobalance operating under a flowing argon atmosphere. A 

heating rate of 10 ºC.min-1 was used with all samples. 

Electrochemical stability. Evaluation of the electrochemical stability window of 

electrolyte compositions was carried out within a dry argon-filled glovebox using a two-

electrode cell configuration. Preparation of a 25µm diameter gold microelectrode surface by 

the conventional polishing routine was completed outside the dry-box prior to washing and 

drying before transfer into the dry-box. The cell assembly was initiated by locating a clean 

lithium disk counter electrode (Aldrich, 99.9%, 10mm diameter, 1mm thick) on a stainless 

steel current collector. A thin-film sample of electrolyte was centered over the counter 

electrode and the cell assembly was completed by locating and supporting the microelectrode 

in the centre of the electrolyte disk. The assembly was held together firmly with a clamp and 

electrical contacts were made to the Autolab PGSTAT-12 (Eco Chemie) used to record 

voltammograms at a scan rate of 100mVs-1. Measurements were conducted at room 

temperature within a Faraday cage located inside the measurement glovebox. 
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Device fabrication and characterization. Device assembly was carried out by direct 

application of a small volume of the gel electrolyte to the surface of a glass plate onto which a 

ZnO:Ga/WO3 coating had been previously deposited. Two layers of gel were spread onto 2.5 

x 2.5 cm substrates by using a spinner, with a rotation rate of 2000 rpm for 40 s. The 

thicknesses used for each layer were ZnO:Ga – 200 nm and WO3 – 300 nm. A second glass 

plate with ZnO:Ga coating was placed on top of the gel electrolyte sample. The optical 

transmission measurements were obtained using a Shimadzu-3100 UV–Vis–NIR double 

beam spectrophotometer in the wavelength range from 300 to 900 nm. The coloring and 

bleaching voltages were 0 and 4.0 V, respectively, for all the devices under analysis. 

3. Results and Discussion 

3.1 - Electrochemical behaviour of the d-U(900)nLiClO4 ormolytes 

Conductivity Measurements 

The ionic conductivity of the polymer electrolytes was measured as a function of salt 

composition and temperature. The objective of this characterization was to identify the 

electrolyte with the most favorable behaviour for use as a component of the electrochromic 

display. In general, salts with a polarizing cation and a large anion with a well-delocalized 

charge, and therefore also with a low lattice energy, are the most suitable for use in polymer 

electrolytes [7]. In spite of the dangers associated with the anion, LiClO4 is a salt that satisfies 

the conditions mentioned above and provides good electrolyte behaviour, relative to the d-

U(900) di-ureasils doped with lithium triflate, LiCF3SO3 [24]. Figures 2a) and b) ilustrate the 

variation of total ionic conductivity of the d-U(900)nLiClO4 electrolyte as a function of 

temperature. These figures also demonstrate the non-linear variation of ionic conductivity 

with temperature in the range between 25 and 100 ºC. In addition, the plots reveal that there is 

a conductivity maximum at 15 ≥ n ≥ 8 at temperatures above 30ºC, an observation confirmed 
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by the conductivity isotherms shown in Figure 3. For compositions with high salt content (n < 

8) the total ionic conductivity decreases, particularly at lower temperatures. 

Figure 4 is included to demonstrate the effect of the choice of ureasils networks on the 

total ionic conductivity. The Arrenhius plots show the variation of ionic conductivity with 

temperature of selected compositions of the U(2000), U(900) and U(600) d-ureasils [25]. As 

expected, U(600)-based ormolytes are less conducting than the other d-ureasils, because the 

PEO chain segments of U(600) are very short, restricting the chain mobility necessary to 

transport the guest ions. The higher molecular weight PEO chains of the doped U(900) and 

U(2000) di-ureasils were found to support higher conductivity [26, 27]. 

 

Thermal analysis 

From the DSC analysis of the d-U(900)nLiClO4 di-ureasils it was possible to conclude 

that these materials are completely amorphous over the range of temperatures studied. The 

onset of thermal decomposition was estimated from thermogravimetric analysis. The upper 

limit of the application of di-ureasils incorporating LiClO4 is effectively determined by the 

guest salt concentration. The results presented in Figure 5 show a decrease in thermal stability 

with increasing salt concentration, confirming that the salt has a destabilizing influence on the 

hybrid matrix host. The highest decomposition temperature of 283ºC was registered for the n 

= 200 composition, a value similar to that observed for the d-U(2000)nLiClO4 di-ureasil [25]. 

The difference in behaviour of d-ureasils U(2000) and U(900) doped with LiClO4 is also clear 

in Figure 5, where for n < 25 compositions, the d-U(900)nLiClO4 di-ureasils show a much 

lower thermal stability (209ºC) than the corresponding d-U(2000)nLiClO4 electrolyte [25]. In 

spite of this moderate thermal stability, these materials are appropriate for use in a variety of 

technological applications at ambient or close-to-ambient temperatures. 
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The ionic mobility of charged species in a polymer electrolyte is to a large extent 

determined by the mobility of the polymer host segments [7]. As expected from previous 

studies of similar PEO/siloxane ormolytes [25, 28], an increase in salt concentration causes a 

corresponding increase in Tg of the d-U(900)nLiClO4 di-ureasils (Figure 6). The poor 

mechanical properties of the compositions with the highest salt content (n = 0.5 and n = 1) 

limit the practical usefulness of the electrolyte in the sense that the electrolyte performs 

inadequately as a device component. It is interesting to observe that the Tg of electrolytes 

based on the di-ureasil matrix is almost constant (-50ºC) in samples with n ≥ 40. This 

observation suggests that the PEO chains of the d-U(900)nLiClO4 are not involved in the 

coordination of the lithium ions in this range of composition. Figure 6 also shows that for 

compositions with n ≤ 40 the addition of guest ionic species does not affect the d-U(2000) 

matrix host so significantly as in the case of the d-U(900)nLiClO4 compositions. 

 

Electrochemical stability 

The electrochemical stability range of the lithium-doped di-ureasils was determinated 

by microelectrode cyclic voltammetry over the potential range between –0.5V and 4.5V. The 

potential limit for the electrolyte system corresponds to the value at which a rapid rise in 

current was observed and where the current continued to increase as the potential was swept 

in the same direction. The overall stability of electrolytes was excellent, with no 

electrochemical oxidation occurring at anodic potentials less than about 5V versus Li/Li+. 

Figure 7 shows a typical voltammogram of an electrolyte samples of d-U(900)8LiClO4 

composition. 
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3.2 – Electrochromic device operation 

The scheme in Figure 8 shows the structure of the prototype electrochemical display 

device characterized in the preliminary experiments reported herein. The optical behaviour of 

the display was reproducible and superior to that observed with comparable devices 

employing conventional liquid electrolytes, particularly with respect to the stability of the 

electrochromic material. We observed that the initial value of the luminous transmittance for 

the case of use of polymer electrolytes was also slightly higher than that of comparable 

devices with liquid LiClO4 electrolyte. This may be due to the significant reduction of the 

electrolyte layer thickness made possible through the use of the polymeric component. 

Leakage performance, memory effect and humidity deterioration were also notably improved. 

The results presented in Figures 9 and 10 report the optical transmittance in the wavelength 

range 300-900 nm for the devices based on d-U(2000)nLiClO4 and d-U(900)nLiClO4 di-

ureasils, respectively. It is clear that the best results are obtained for compositions with high 

ionic conductivity. In the case of the d-U(2000)nLiClO4 and d-U(900)nLiClO4 di-ureasils the 

ormolyte compositions are 20<n<40 and  8<n<15, respectively. While these exploratory 

results are encouraging it is obviously necessary to optimize device assembly procedures and 

further improve mechanical and conductivity performance of the electrolyte layer to 

demonstrate the full potential of sol-gel derived solid polymer electrolytes as multifunctional 

components. 

Table 1 summarizes the average transmittance and optical density exhibited by 

devices. The average transmittance in the visible region of the spectrum was above of 68% for 

all the samples analyzed. After coloration the devices assembled with d-U(2000)20LiClO4 and 

d-U(900)8LiClO4 di-ureasils present an average transmittance of 44% and an optical density 
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of 0.30. All the devices under analysis presented good stability, and may be of interest for 

application in smart windows (Figure 11). 

 

4. Conclusions 

In this work novel di-ureasil (d-U(900) and d-U(2000)) composites incorporating 

LiClO4 guest salt were investigated and used as dual-function components in prototype 

devices. These electrolytes were obtained as amorphous films, with excellent mechanical 

adaptation and adhesion to the electrode surface and good electrochemical and thermal 

stability. These materials provide significant advantages in optical performance, cycle lifetime 

and durability of the electrochromic device relative to conventional liquid electrolytes. In 

general, the use of solid polymer electrolytes may be expected to improve leakage 

performance, memory effect and humidity resistance. In addition, the sol-gel processing 

strategy provides ready access to materials with a greater precision of structural control than 

that of traditional methods of polymer synthesis. Appropriate alterations in the sol-gel 

procedure may permit progressive improvements in the mechanical and conductivity 

behaviour of the electrolyte component. The encouraging initial results obtained with 

electrochromic smart windows based on di-ureasil matrices doped with LiClO4, provide 

motivation for future optimization studies. 
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Fig. 2(a) and (b). Variation of conductivity of selected d-U(900)nLiClO4 di-ureasils with temperature (n = 8 , 10 , 15 , 25 , 35 , 60 ⊞, 

80  and 100 ). 



Electrochimica Acta 15/24 P. Barbosa et al. 

 

 

 

 
 
Fig. 3. Isothermal variation of ionic conductivity of d-U(900)nLiClO4 di-ureasils 

(30ºC , 60ºC , 80ºC  and 95ºC ) 
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Fig. 4. Comparison of ionic conductivity between d-U(2000)nLiClO4, d-U(900)nLiClO4 and d-

U(600)nLiClO4 di-ureasils (U(2000)20LiClO4 , U(2000)30LiClO4 , U(900)8LiClO4 , 

U(900)10LiClO4 , U(600)10LiClO4 ⊞, U(600)5LiClO4 ⊕)). 
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Fig. 5. Extrapolated onset of degradation temperatures from TGA results: oval rods – d-U(900)nLiClO4, rectangular rods – d-U(2000)nLiClO4. 
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Fig. 6. Extrapolated onset of glass transition temperatures of di-ureasils: oval rods – d-

U(900)nLiClO4, rectangular rods – d-U(2000)nLiClO4. 
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Fig. 7. Voltammogram of d-U(900)8LiClO4 electrolyte at a 25 µm diameter gold 

microelectrode vs Li/Li+. Initial sweep direction is anodic and sweep rate is 100 mVs-1. 
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Fig. 8. Schematic illustration of the prototype electrochromic device structure. 
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Fig. 9.  Optical transmittance as a function of wavelength for the electrochromic device in 

bleached and colored state using (a) d-U(2000)20LiClO4; (b) d-U(2000)30LiClO4; (c) d-

U(2000)40LiClO4. 

a) 

b) 
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Fig. 10. Optical transmittance as a function of wavelength for the electrochromic device 

structure in bleached and colored state using (a) d-U(900)8LiClO4; (b) d-U(900)10LiClO4; (c) 

d-U(900)15LiClO4. 
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Fig. 11. Electrochromic device in bleached and colored states for compositions with highest 

ionic conductivity. 
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Table 1 

Average transmittance and optical density exhibited by electrochromic devices. 

Sample Transmittance in bleached 

state (%) 

Transmittance in colored 

state (%) 

Optical 

density 

U(2000)20LiClO4 68.84 44.50 0.30 

U(2000)30LiClO4 78.90 57.23 0.23 

U(2000)40LiClO4 75.80 61.84 0.09 

U(900)8LiClO4 68.40 44.45 0.30 

U(900)10LiClO4 74.40 54.40 0.24 

U(900)15LiClO4 75.90 58.05 0.17 

 


