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Abstract

Many bridges in Portugal and in other countries that are still in ser-

vice are subjected to loads far higher than those for which they were

designed. Also, due to insufficient investment in the bridge mainte-

nance, many of existing bridges have significantly deteriorated over

their years of service and thus their actual capacity has drastically

reduced. Aiming to avoid unexpected bridge failures, it is of vital

importance to verify that existing bridges can still provide adequate

levels of safety under increased loads. These concerns can in many

cases be addressed by using traditional bridge load capacity evalua-

tion methods. However, existing load evaluation procedures are usu-

ally adopted from the design codes, which are meant for new bridges,

and may not be adequate for the assessment of existing bridges.

This thesis deals with different topics related to the load capacity

evaluation of existing concrete bridges. At the beginning the currently

recommended procedures and methodologies for the assessment of ex-

isting bridges are presented and discussed. One of the presented pro-

cedures is selected as the most adequate for the Portuguese conditions.

The procedure systematize the use of several assessment approaches,

starting with the simplest semi-probabilistic approach, based on the

current design code, and finishing with fully probabilistic assessment,

based on the reliability theory.

Following the general introductory section, several probabilistic mod-

els of bridge geometry and mechanical properties of materials, used

in the construction of concrete bridges, are shown. Also, some new

models, developed within the program of this thesis, are presented.

These models aim to be representative for the stock of existing con-

crete bridges in Portugal. Subsequently, the problem of bridge loading

is discussed. Several probabilistic models of bridge permanent loads
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are shown. However, the major focus is placed on bridge traffic loads.

Two simplified probabilistic traffic load models are presented as an

alternative to the commonly used models from codes that were found

to give inconsistent results. Afterwards, several probabilistic models

of bending and shear resistance of concrete bridge elements are shown

and discussed. Also, some new models developed within the program

of this thesis are presented. The developed models can be considered

representative for stock of precast concrete bridges in Portugal.

After the load and the resistance models, the safety requirements and

safety formats applicable to bridge assessment are presented. Some

of the presented semi-probabilistic and probabilistic formats are able

to account for a bridge redundancy and the system effects that may

significantly increase the evaluation of a bridge capacity. All the pre-

sented safety formats are then practically verified and compared by

applying them to the assessment of reinforced concrete railway bridge.

Finally, the selected assessment procedure, the proposed resistance

models, the presented models of traffic loads and some of the dis-

cussed safety formats are applied to the assessment of two precast

prestressed concrete highway bridges. These examples show that

the bridges which fail evaluation using traditional procedures may

by rated as safe when using more advanced models and approaches

developed and presented in this thesis.
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Resumo

Em Portugal e noutros páıses, existe um número significativo de

pontes em serviço que se encontram sujeitas a cargas muito supe-

riores aquelas para as quais foram dimensionadas. Por outro lado, o

investimento reduzido na conservação das pontes faz com que muitas

dessas estruturas se deteriorem significativamente durante a sua vida

útil e que a capacidade de carga esteja drasticamente reduzida. Para

evitar um decréscimo acentuado do desempenho estrutural ou mesmo

o colapso de algumas dessas pontes, é de crucial importância avaliar

se ainda verificam os ńıveis de segurança adequados para esse maior

ńıvel de carregamento. Estas preocupações podem, em muitos casos,

ser analisadas usando métodos tradicionais de avaliação da segurança.

Porém, os procedimentos de avaliação da segurança existentes são,

normalmente, baseados nos regulamentos para o dimensionamento de

pontes novas e que podem não ser adequados para a avaliação de

pontes existentes.

Nesta tese é abordado um vasto conjunto de aspectos relacionados com

avaliação de segurança de pontes existentes de betão. Inicialmente,

são apresentados e discutidos os procedimentos e as metodologias ac-

tualmente recomendadas para a avaliação das pontes existentes. De

todos estes procedimentos, o mais adequado para as condições por-

tuguesas preconiza a utilização de vários métodos de avaliação de se-

gurança, começando pelo mais simples - avaliação semi-probabiĺıstica,

baseada nos actuais regulamentos para dimensionamento - e termina

com a avaliação totalmente probabiĺıstica, baseada na teoria de fia-

bilidade estrutural.

Após a secção geral introdutória, são apresentados os vários modelos

probabiĺısticos para o estudo das incertezas associadas à geometria

de elementos estruturais e de propriedades mecânicas de materiais,
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usados em pontes de betão. Apresenta-se também alguns modelos

desenvolvidos no âmbito do programa desta tese. Estes modelos pre-

tendem ser representativos da população de pontes de betão existentes

em Portugal. Posteriormente, é analisado o problema das acções em

pontes, propondo-se vários modelos probabiĺısticos para as acções per-

manentes e dando-se especial ênfase à modelação das acções variáveis

devidas ao tráfego. Como alternativa aos modelos regulamentares

correntemente utilizados, e que nem sempre conduzem a resultados

consistentes, são apresentados dois modelos probabiĺısticos simplifi-

cados. De seguida, são analisados alguns modelos probabiĺısticos de

resistência à flexão e ao corte de elementos de betão e alguns mode-

los novos, desenvolvidos dentro do programa desta tese, que podem

ser considerados representativos das pontes pré-fabricadas em betão

existentes em Portugal.

Descrevem-se ainda os ńıveis de segurança associados aos diferentes

ńıveis de desempenho estrutural e os formatos de segurança aplicáveis.

Alguns dos formatos, semi-probabiĺısticos e probabiĺısticos, podem ter

em conta a redundância e o tipo de sistema estrutural, podendo resul-

tar num aumento significativo da avaliação da capacidade duma ponte

em relação àquela que se obteria se a avaliação fosse efectuada individ-

ualmente a cada elemento estrutural. Todos os formatos de segurança

apresentados foram validados e comparados entre si, nomeadamente

na avaliação de segurança duma ponte ferroviária.

Finalmente, o procedimento escolhido para a avaliação de segurança,

os modelos da resistência desenvolvidos, os modelos das acções apre-

sentados e alguns formatos de segurança discutidos, foram aplicados

na avaliação de segurança de duas pontes rodoviárias pré-fabricadas

em betão pré-esforçado. Esses exemplos tornaram evidente como

pontes consideradas inseguras pelos procedimentos tradicionais po-

dem vir a ser consideradas seguras, recorrendo, para o efeito, aos

modelos e metodologias mais avançadas, desenvolvidas e apresentadas

nesta tese.
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Chapter 1

Introduction

1.1 Background and motivations

The transport network is extremely important to the World’s economic and so-

cial development. It has been a crucial factor in spurring economic growth and

prosperity and plays an important role in our daily lives, allowing the fast, easy,

and safe movement of people and goods. Recent studies have shown that the

movement of goods and people around the European Union is estimated to cost

500 billion Euros per annum, which is about 15 percent of the income of all Eu-

ropean citizens (BRIME, 2001). A great majority of this mobility in Europe is

provided by the roadway and railway infrastructures.

Bridges constitute a significant portion of the fixed assets of the roadway

and railway transportation infrastructure. Due to the fact that the expansion

of the road and railway networks in most of the European countries started in

the XIX century, a significant part of the bridge stock was built more than 100

years ago and a number of masonry arch bridges date back to the Roman times

(COST345, 2004). According to survey performed in countries of northern and

central Europe (SAMARIS, 2005) most of the road bridges have been built within

the period 1946-1965. However, many of Europe’s railway bridges were built more

than 50 years ago and 35% of the bridge stock is older than 100 years (Bell, 2004).

In Portugal the proportion of bridges at the age of around 50–60 years is

not so significant as in the countries affected by the Second World War where

all the transportation infrastructure had to be rebuild after war’s destruction.
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Nevertheless, within the national road network and within railway network there

exists a lot of bridges that have been built more than 50 years ago. Furthermore,

many bridges that have been built in last decades, were designed considering

traffic load model which was developed in the fiftieths (RSA, 1983; RSEP, 1961).

Due to the above discussed facts, many bridges that are still in service are

subjected to loads far higher than those for which they were designed. Also, due

to insufficient investments in bridge maintenance, many of the existing bridges

have significantly deteriorated over their years of service.

Moreover, due to the expansion of the European Community and due to the

continuous growth of its economy, the traffic loads on European highways and

railway lines have been increasing in recent years, a trend that is expected to

continue into the foreseeable future. As a consequence, demands in terms of

loads and robustness, on existing bridges will increase. Therefore, it is of vital

importance to upgrade the highway and railway bridge networks and ensure that

existing bridges can still provide adequate levels of safety under increased loads.

These concerns can in many cases be addressed by using traditional bridge

load capacity evaluation methods. However, existing load evaluation procedures

for existing structures are usually adopted from the design codes, which are meant

for new bridges, and may not be adequate for the assessment of existing bridges.

The majority of methods presently used for the safety assessment of bridges

are based on linear elastic analysis and the deterministic or semi-probabilistic

evaluation of individual member strengths. In reality, a bridge consists of a

system of interconnected members where the failure of any single member may

not necessarily cause the collapse of the whole structure. Therefore, the reliability

of the member may not be representative of the reliability of the whole bridge.

Furthermore, most of the variables describing structure geometry, mechanical

properties of materials and applied loads are not deterministic parameters and

their design or characteristic values, which are often used during the assessment of

existing bridges, do not always properly reflect their inherent uncertainties. Due

to all the simplifications and conservative assumptions usually made during the

design process, using the same standards for the assessment of existing bridges

may lead to having many bridges that are in reality completely safe be rated as

unsafe.
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1.1 Background and motivations

The benefits gained by performing a probability-based reliability analysis dur-

ing the process of designing new bridges are usually quite low. Therefore, the

significant computational effort necessary to perform system or even member re-

liability analysis is not usually justified at the design level. Alternatively, the

explicit consideration of bridge redundancy and/or variability in the important

parameters can be very important and could lead to significant economical ben-

efits when assessing the safety of existing bridges. This is mostly the case when

decisions have to be made regarding what appropriate maintenance actions to

undertake including rehabilitation, strengthening or replacement of bridges that

may not satisfy the deterministic single member criteria but are known to have

significant levels of reserve strength. For this reason, the use of probability-

based safety assessment methods for existing bridges is increasing in academical

studies and in practical applications (Casas, 1999; Enevoldsen, 2001; Jeppsson,

2003; Lauridsen, 2004; Sobrino, 1993; Strauss, 2003). However, in many cases the

probability-based methods are still applied to linear elastic models of the bridge,

without taking full advantage of the bridge’s redundancy and strength reserve in

the non-linear range. Furthermore, the probabilistic models of bridge geometry,

mechanical properties of materials and applied loads, used in the assessment, are

based on the limited amount of data collected in North America and in some parts

of Europe and are not necessarily representative of the variability of those param-

eters observed in bridges constructed in every European country or, particularly,

in Portugal.

Due to the above mentioned facts there is a need to review and verify appli-

cability of the various safety formats that can be used for the evaluation of load

carrying capacity of existing bridges. The selected safety formats need to take

into account the actual variability of parameters influencing bridge resistance

and the variability of all the bridge loads. Some of them should also take into

account bridge redundancy and mechanical and/or geometrical non-linearities.

Furthermore, there is a need to review existing and develop some new probabilis-

tic models of bridge loads, parameters influencing bridge’s resistance and also

the models of the shear and bending resistance of typical bridge sections itself.

Moreover, it is also necessary to verify the applicability of all those models to the

safety assessment of existing bridges and to the Portuguese conditions.
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1.2 Objectives and scope

This thesis is concerned with selecting, refining and improving procedures, safety

formats, and the load and resistance models employed in the load capacity eval-

uation of existing concrete bridges. In this regard the following objectives were

defined to be accomplished within the planned work:

• Review procedures and methodologies currently recommended for the load

capacity evaluation of existing bridges and check theirs applicability to Por-

tuguese conditions.

• Propose a new or/and verify the adequacy of the existing probabilistic mod-

els of bridge geometry and mechanical properties of materials that can be

used in the process of probability-based reliability assessment of existing

concrete bridges, particularly bridges in Portugal.

• Verify the adequacy of existing, or if necessary develop new probabilistic

models of bridge permanent and variable loads suitable for evaluation of

existing bridges, which allow to take into account specifics of Portuguese

traffic.

• Review existing probabilistic models of shear and bending resistance of

typical concrete bridge sections and if necessary develop new ones that

would be representative for Portuguese bridge stock.

• Select and verify adequacy of existing safety formats that can be used within

the proposed procedures for evaluation of load carrying capacity of existing

bridges.

• Develop examples that show how to assess existing concrete bridges using

procedures, formats and models proposed.

The above presented objectives are quite ambitious and could not be fulfilled

within the program of this thesis when all the bridge types would have to be cov-

ered. Therefore, only certain concrete bridge types were selected to be analysed

in this work and all other bridge types and construction materials were omitted.
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Furthermore, the problem of modelling bridge traffic loads was treated quite su-

perficially and the probabilistic traffic load models just for certain bridge types

and spans were decided to be presented. Moreover, all the common problems of

existing bridges regarding deterioration of capacity due to corrosion, fatigue or

other causes were decided to be neglected in this thesis. Finally, the problems

related to functionality or serviceability of bridges were also omitted.

1.3 Outline of the thesis

The thesis is organised in ten chapters and four related appendices.

In Chapter 1 general introduction to the problem is provided and the objec-

tives and scope of the current work are stated.

In Chapter 2 methodologies for the assessment of existing bridges are demon-

strated and analysed. At first the difference between assessment of existing

bridges and the design of new bridges are outlined. Then the concept of probabil-

ity based assessment is introduced and it is compared with semi-probabilistic or

deterministic capacity evaluation methods known from design codes. Afterwards

several procedures and methodologies for safety assessment of existing bridges are

presented based mainly on recent codes and guidelines, and finally one procedure

is selected to be used for load capacity evaluation of bridges in Portugal.

In Chapter 3 basics of statistics and some principles and methods of reliability

analysis are briefly introduced. The aim of this chapter was to provide theoretical

background necessary to understand the following parts of the thesis. It has to

be stressed that it was intended to give guidance to one who is not familiar with

statistical analysis or with reliability analysis, and generally it can be skipped by

everyone who has sufficient knowledge in those fields.

In Chapter 4 the probabilistic models of basic mechanical properties of con-

crete and reinforcing and prestressing steels are analysed. The probabilistic mod-

els of structure and structural member geometry are also presented and discussed.

Besides the models available in the technical literature and in specialized codes

or guidelines the probabilistic models developed within the program of this thesis

are also presented.
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In Chapter 5 the probabilistic models of bridge permanent loads are presented.

The models of bridge variable loads due to roadway or railway traffic are also

showed and analysed. Furthermore, probabilistic load models for load capacity

evaluation of existing highway bridges are presented. The models are based on

the results of traffic measurements using Weigh-in-Motion systems.

In Chapter 6 the probabilistic models of ultimate shear and bending responses

of typical concrete bridge sections are presented and analysed. Besides some mod-

els proposed by other authors the probabilistic models developed within the pro-

gram of this thesis are presented. The models developed aim to be representative

for stock of concrete bridges in Portugal.

In Chapter 7 the requirements regarding bridge safety, necessary to set when

assessing load carrying capacity of existing bridges, are showed. The theoretical

backgrounds based on which the target reliabilities are usually selected are also

discussed. Furthermore, several safety formats that can be used in the bridges

evaluation are presented. The described safety formats were selected in such

a way to form solid framework for the assessment of existing bridges based on

’step-level’ philosophy.

In Chapter 8 several safety formats presented previously are applied to the

reliability assessment of a reinforced concrete railway bridge. The assessment

using various methods proposed is carried out for the intact bridge and for the

bridge where the significant damaged is assumed in such a way that the bridge

does not fulfil the safety requirements of the legal design code. The evaluation

of bridge using the same basic material and geometrical parameters but different

safety formats shows clearly advantages of using more sophisticated assessment

methods in the process of bridge evaluation.

In Chapter 9 two examples that show how to assess existing concrete bridges

using procedures, formats and models proposed in previous chapters are pre-

sented. The bridges chosen for this purpose are a one span simply supported

precast prestressed concrete I girder bridge and a continuous two span concrete

overpass constructed from precast prestressed U shape girders.

In Chapter 10 summary and conclusions of this study are presented and sug-

gestions for future research are stated.
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Chapter 2

Assessment of existing bridges

2.1 Introduction

The need for the safety assessment of an existing bridge may arise due to several

reasons. One of the reasons is when there is a necessity to carry an exceptional

heavy load that are normally not permitted. Other, when the bridge has been

subjected to change such as deterioration, mechanical damage, repair or change

of use, as for example introduction of new carriageways or introduction of a

line of railway or tramway. Following, when a bridge was designed according to

outdated design code and it have to be check against new code and new traffic

load requirements, as for example in the case when it is going to be reused within

a new roadway or railway link. Finally, when the maximum permit load on a

road or railway network is going to be increased and there is a concern if this

change not put in hazard existing bridges.

The question ’is the bridge still sufficiently safe?’ is quite different to that

commonly faced by engineers during the design process of a new bridge and may

not be answered using traditional safety checking procedures known from design

codes. One of the reasons is that the many ’design uncertainties’ related to

prediction of mechanical properties of materials, structure geometry and loads

in the existing bridge can be eliminated since most of those parameters can be

measured. This make significant difference between the two processes. Therefore,

the procedures for assessment also differ from that known from the design.
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2. Assessment of existing bridges

This chapter introduces the concepts and procedures used in the safety and

serviceability assessment of existing bridges. At first the difference between safety

assessment of existing bridges and the design of new bridges are outlined. Then,

the main stages of assessment are specified and the concepts of probability based

assessment and experimental assessment are introduced. Afterwards several pro-

cedures and methodologies for safety assessment of existing bridges are presented

based mainly on recent codes, guidelines and research projects reports. Finally

one the most suitable procedure is selected to be used for load capacity evaluation

of bridges in Portugal.

2.2 Principles of assessment

2.2.1 Assessment versus design of bridges

The standard procedure used in the design process of a new bridge is as follows.

At first the road or railway line geometry is defined according to certain class

of traffic. Afterwards the bridge typology is chosen and the span lengths are

determined regarding required clearance. Then the static system is defined and

the dimensions of the members cross-sections are assumed. The loads acting on

the bridge are assumed according to information and models from design codes.

In the next step the load effects in the structural elements are calculated and the

the capacity of the bridge members is determined using values of the strength

properties of materials and the design formulas provided in the codes. When

the capacity of all the bridge members is greater than the calculated load effects

the process may stop (eventually optimization may be performed). Otherwise

the section geometry or class of material have to be adjusted to meet the safety

criteria.

When evaluating load carrying capacity of an existing bridge the procedures

are different due to the fact that the situation is totally different. At first, since

the bridge exists its geometry is already determined and can be measured. Even-

tually it can be assumed according to as-built or design drawings (assuring that

they corresponds to actual structure geometry). Furthermore, the strength prop-

erties of construction materials can be quantified using one of the available non-
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destructive or partially destructive methods. Alternatively they can be assumed

based on design specifications and/or data obtained within quality control proce-

dures. The loads acting on the bridge can also be obtained due to measurements.

For example the self weight of the bridge (including pavement, railings, kerbs,

etc.) can be determined by weighting the bridge with hydraulic jacks. However,

the traffic loads can be measured using bridge Weigh-in-Motion system and then

bridge-specific traffic load model can be developed using for example procedures

applied for the calibration of traffic load models from design codes. Furthermore,

the load effects in some bridge elements can be determined using for example

strain gauges. Then, the numerical model of the bridge can be calibrated in or-

der to predict distribution of internal forces between bridge members with greater

accuracy. Finally, the capacity of the bridge members can be also predicted or

updated based on measurements and load tests.

Due to all above mentioned facts it is evident that the amount of information

available in the process of assessment of existing bridges is significantly higher

than in the bridge design. Therefore, the uncertainty related to the assessment

is generally lower than uncertainty characteristic for the design. Nevertheless, it

have to be stated that in practical situations not all the information about an

existing bridge will be available from measurements and some of the available

measurement data may be of low quality. Thus, the uncertainty related to our

limited knowledge of the actual state of the structure may be still significant.

2.2.2 Main stages of assessment

The assessment of load carrying capacity of a bridge usually starts with the eval-

uation of its condition. The condition evaluation consists of examining existing

documents and visiting the bridge for a preliminary inspection. The aim of the

inspection is to identify bridge particularities (e.g. delamination, material loses,

cracking, etc.) which need to be investigated with more detail in order to deter-

mine their cause, extent and consequently their effect on structural behaviour and

carrying capacity. Finally, all this information is used in structural assessment

which consists of determining the bridge strength in relation to bridge loads.
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2. Assessment of existing bridges

Having in mind the above described usual procedure the following stages of

bridge assessment can be identified (BRIME, 2001):

• Study of design and inspection documents and their correctness.

• Preliminary inspection in order to identify visually the structural system

and possible damages.

• Supplementary investigations in order to refine information about the bridge.

• Structural assessment in order to evaluate load carrying capacity and safety

of the bridge.

The last two stages of the assessment can be carried out using different levels

of accuracy and complexity. For many bridges simple check based on informa-

tion from existing documentation and visual inspection may be enough to proof

their safety. However, for some bridges, named sometimes ’substandard bridges’,

more detailed investigation and sophisticated analysis (e.g. non-linear structural

analysis, probabilistic safety analysis, etc.) would be necessary.

2.2.3 Deterministic and probabilistic approach

Traditionally the design and safety evaluation of bridges were performed using

allowable stresses approach. In this method the maximum stresses calculated in

any member of a structure under worst case loading had to be checked against

a so-called allowable stress. The values of allowable stresses were set arbitrarily

on the basis of the mechanical properties of the materials used. In order to ra-

tionalise the design and to consider observed variability in mechanical properties

of material, geometry and loads, engineers have tried to approach the problem

from a different point of view by defining safety by means of a probability thresh-

old. This gives the beginning for the structural reliability theory and the use of

probabilistic safety assessment methods in bridge design and assessment.

In a probabilistic approach the stress S applied to a structural element and

the strength R of this element, due the fact that their values are not perfectly

known, are considered to be random quantities described by some probability

density functions (see Figure 2.1). The safety criterion remains very similar to
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that used in allowable stress methods and can be expressed by the following

inequality:

S ≤ R (2.1)

The actual measure of the reliability level corresponding to the analysed element

of the structure can be characterized by the probability Pf that stress (or gener-

alized load) S applied to the analysed element exceed the strength (or generalized

resistance) R of that element:

Pf = P (R ≤ S) (2.2)

This can be illustrated graphically as the shaded overlap area between two prob-

ability density functions as presented in Figure 2.1.

Figure 2.1: Fundamentals of risk evaluation, from Haldar & Mahadevan (2000a).

The semi-probabilistic approach currently used in most of the design and

assessment codes replaces this probability calculation by the verification of a

criterion involving nominal (or characteristic) values of R and S, denoted as RN

and SN , and partial safety factors γR (or ΦR) and γS which may be represented

in the following form:

γSSN ≤ RN

γR

= ΦRRN (2.3)

The nominal (or characteristic) generalized resistance RN is usually a conser-

vative value, perhaps one, two or three standard deviations σR below the mean
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µR (see Figure 2.1). The nominal (or characteristic) load SN is also a conserva-

tive value, however, it is several standard deviations σS above the mean µS (see

Figure 2.1). The partial safety factors for resistance γR (or ΦR) and loads γS are

usually conservatively chosen based on past experience, engineering judgement

or calibration.

The partial safety factor method is noted as semi-probabilistic, considering the

application of statistics and probability in the evaluation of the input data, the

formulation of assessment criteria and the determination of load and resistance

factors. However, from the point of view of the engineer performing assessment,

the application of this method is still completely deterministic and it not allowed

to assess the actual risk or reserves in carrying capacity of structural members.

In the process of bridge design the use of semi-probabilistic format is very

practical since it allows to provide relatively uniform level of safety in the designed

structural elements and it is very simple in application. In the process of bridge

assessment it could be also practical and sufficiently accurate. However, in some

situations it can be too conservative and could lead to unnecessary strengthening

or replacement of the bridge. Therefore, the direct use of probabilistic safety

evaluation method may be required.

2.2.4 Experimental approach

Alternatively to the analytical methods, the safety of a bridge may be assessed

using bridge load tests. Basically, there are two types of load tests: diagnostic

tests and proof tests. Diagnostic tests serve to verify and adjust the predictions of

analytical methods and structural models used in the assessment. Proof tests are

used to verify component and/or system performance and provide an alternative

evaluation methodology to analytically computing the load rating of a bridge.

Successful proof test shows directly that the bridge can safely resist the load as

big as that applied during the test. Therefore using simple deterministic (or semi-

probabilistic) safety concept one can assume that applying loads on the bridge up

to a value equivalent to the assessment loads factored for the ultimate limit state

gives the proof of sufficient bridge safety (Ryall, 2001). The problem is that if full

design factors are used the bridge would theoretically have collapsed. According
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to Ryall (2001), if it suspected that exist some hidden reserves of strength then

a test can be sanctioned. If not, then lower load factor will have to be assumed

and the safe load capacity will have to be calculated from the maximum test load

reduced by an appropriate factor.

A more rational way of dealing with the information from proof test is using

probabilistic framework. Based on the survival of proof load testing the reliability

of a bridge may be updated in accordance with the pattern and intensity of the

proof load applied (Faber et al., 2000).

Several approaches can be used to incorporate the information of successful

prove load test in reliability assessment. In the simplest one the probability

distribution function (PDF) of the bridge resistance, or the resistance of one

of its members, can be updated by truncating the lower tail of corresponding

theoretical distribution at the value which is equal to the load effect induced by

the applied proof load (see Figure 2.2).

Figure 2.2: Truncation of PDF of bridge resistance after application of proof load.

It has to be stated that the truncation of the probability density function of

resistance is not very effective when a low variability of resistance is adopted in

the initial assessment (Faber et al., 2000). This occurs because the lower tail of

the distribution of resistance is less sensitive to truncation at lower proof loads.

Proof load testing update information on bridge resistance and consequently

improve the assessment of bridge reliability. However, there is always a risk of

bridge failure during a proof load test. Furthermore, the risk increases when
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the required proof load level increases. Therefore some balance has to be found

between the risk of failure under the test load and the updated risk of bridge

failure.

2.3 Procedures and methods of assessment

2.3.1 General

According to Schneider (1997) and JCSS (2001b) the process of assessment of ex-

isting structures should be break down into three phases presented schematically

in a flowchart showed in Figure 2.3. Each of these phases should be complete in it-

self and should gives results allowing the bridge owner to make decision regarding

conditions of its further exploitation or eventual demolition.

In other references slightly different approaches are recommended. For ex-

ample in BRIME (2001) and COST345 (2004) five levels of assessment with in-

creasing levels of complexity are proposed. However, in AASHTO LRFR (2003)

and CAN/CSA-S6-00 (2000) the levels of assessment are not clearly identified.

Nevertheless, all the assessment procedures can be generally embedded in the

scheme similar to that presented in Figure 2.3. In the following section short

overview of the assessment procedures and methods proposed in some national

codes, guidelines and research project reports is presented based mostly on the

information from SAMARIS (2005).

2.3.2 Approaches proposed in European research projects

BRIME and COST 345. In the European research projects BRIME and

COST345 the assessment of existing highway bridges is proposed to be handled

using ’step-level’ philosophy. In the reports BRIME (2001) and COST345 (2004)

five levels of assessment are proposed with increasing level of complexity and

decreasing level of conservatism.

Level 1 is the simplest level of assessment, giving a conservative estimate

of load capacity. At this stage, only simple analysis methods are necessary and

partial safety factors from the design or assessment (if available) standards are

used.
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Figure 2.3: Illustration of the three phases approach, from Schneider (1997).

Level 2 assessment involves the use of more refined analysis (grillage, FEM,

eventually non-linear FEM or plastic) and better structural idealisation (refined

mesh, more adequate FEM types of elements). Furthermore, it allows for deter-

mination of characteristic strengths of materials based on available data (existing

certificates or recent tests on similar structure).

Level 3 assessment allows to use in the safety evaluation bridge-specific load-

ing (traffic load model developed based on WIM data collected on bridge in

cause). Moreover, it allows for material testing in order to determine character-

istic material strength properties. At this level assessment again partial safety
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factors from the design or assessment codes are recommended to be applied.

Level 4 assessments allows for any additional safety characteristic (member

importance in global safety of the structure, past performance and service proven

safety, failure consequences, etc.) of structure in cause and corresponding refine

of the assessment criteria. Any changes to the criteria used may be determined

through rigorous reliability analysis, or by judgemental changes to the partial

safety factors. It have to be stressed that special care should be taken not to

double count bridge specific benefits which have already been taken into account.

Level 5 assessment make use of reliability theory in the process of load carry-

ing capacity evaluation. Such analyses require statistical data for all the variables

defined in the loading and resistance equations. Assessment at that level provides

greater flexibility but it should be noted that the results are very sensitive to the

statistical parameters and the methods of structural analysis used. Generally the

assessment at that level requires special knowledge and expertise.

Sustainable Bridges The ’step-level’ philosophy has been also assumed in

the European Guideline for the load capacity and safety assessment of existing

railway bridges (Sustainable Bridges, 2006). In this document the assessment is

proposed to be carried out using three-steps approach and the procedure similar

to that presented in Figure 2.3. The phases can be generally characterized as

follows:

• Purely heuristic experience based statements (phase 1).

• Application of deterministic safety formats (phase 2).

• Instrumentation, testing and/or probabilistic analyses (phase 3).

An assessment is proposed to be carried out within the framework of these

phases, however, the levels of detail within each phase may vary. In this way it

is possible to tailor a reassessment for different purposes. The level of detail of

the assessment is recommended to be chosen for the analysed bridge considering

its specifics.

In the highest level assessment, when relevant, the ’Guideline’ recommends

to use: the information regarding observed behaviour (records from testing and
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monitoring), measured material properties, refined structural model, non-linear

or plastic analysis, probabilistic analysis, bridge specific loads, etc..

Furthermore, in Sustainable Bridges (2006) several safety formats for the as-

sessment are proposed, starting from deterministic up to fully probabilistic. The

several safety formats are clearly associated to each of the proposed assessment

phases.

2.3.3 Approaches in national codes and guidelines

According to surveys performed (BRIME, 2001; SAMARIS, 2005) the bridge as-

sessment in most of the European countries is still performed based on current

design standards. This is also the common practice in Portugal. In some coun-

tries some small adjustment in partial safety factors (France) or in traffic loads

(Norway) are allowed. Nevertheless, the procedures and basis for the assessment

remains the same as in the design.

In the United States and in Canada the specific procedures for assessment of

existing bridge have been developed during last decades and nowadays they are

already quite well established. Recently, also in some European countries, as for

example United Kingdom, Switzerland, Denmark, new codes or guidelines were

developed dealing with the problem of the assessment of existing bridges. In the

following paragraph the procedures and methods proposed in those documents

are briefly described.

Canadian code (CAN/CSA-S6-00). In the Canadian code for design of

bridges, CAN/CSA-S6-00 (2000), special section is dedicated to the assessment of

existing bridges. According to the procedure presented in the mentioned section,

bridge safety can be assessed using one of the three proposed methods.

The first method is based on the concept of partial safety factors known from

the design codes. However, in this case the partial safety factors are calibrated

for the assessment purposes. The specified factors are calculated using reliability

procedures to provide target safety level defined in the code.

The alternative method, so called Mean Load Method, may be also used in the

assessment when for example the structure fails the assessment using previously
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described method. The Mean Load Method is a probability based method and

requires knowledge about the statistics of all variables. In the commentary to

the code CAN/CSA-S6-00 (2000) some of the necessary informations regarding

stochastic modelling are presented. Alternatively, they can be obtained from

technical publications or from field measurements.

The third proposed method of an assessment is bridge load test. However,

this method is considered as a part or complement of the evaluation procedure

and have to be proceed by the theoretical evaluation.

American code (AASHTO LRFR). In the United States the procedures

and methods required for the assessment of existing bridges are defined in a

manual AASHTO LRFR (2003) specifically dedicated to this problem. This code

provides three methods for evaluating maximum live load capacity of bridges or

for assessing the safety under particular loading condition.

The first method named as Load and Resistance Factor Rating (LRFR) is

equivalent to partial safety factor method known from the design codes. In the

manual the rating is proposed to be performed at first for design load. In this

level two different partial safety factors for traffic load are proposed. One for

inventory level (safety factor equal to that from design) and second for operating

level (reduced safety factor). Bridges that pass check at the inventory level have

adequate capacity for all AASHTO and State legal loads. Bridges that pass the

check at operating level have adequate capacity for AASHTO legal loads. When

bridge fails the rating at the design loads it may be rated for legal loads in order

to establish the need for load posting or strengthening. In this level the safety

factor for traffic load has to be calculated using provided formula that take into

account actual traffic conditions on the bridge.

In all the mentioned situations, the safety factors for bridge permanent loads

remains as that used for the design, except the factor for wearing surface which

can be decreased if its thickness is measured on the field. However, the partial

safety factor for resistance has to be calculated according to the provided formula

that accounts for bridge redundancy and its condition.

The second method of safety evaluation proposed in AASHTO LRFR (2003)

is due to bridge load tests. Two types of bridge load test are available for bridge
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evaluation, diagnostic and proof test. Diagnostic tests allows to check certain

bridge response characteristics whereas proof test allows to check directly load

capacity of a bridge.

The third possible method of safety evaluation proposed in the code is using

direct structural reliability analysis. The first order reliability format (FORM) of

analysis and the ’a priori’ probabilistic models of variables specified in AASHTO

LRFD (1994) are recommended. This method of assessment is suggested to be

used in some exceptional situations when for example the load characteristics,

material properties, levels of deterioration or economic consequences differs sig-

nificantly form those considered in the manual.

British guidelines. In the UK, the set of assessment codes have been devel-

oped by modifying the design standards. The modifications provide more realistic

formulae for calculating member resistance, allowances for non-conforming details

and imperfections, methods for incorporating field tested material strengths in

calculations and also provides specific load model for assessment.

Five levels of assessment of increasing sophistication are proposed. They

may be applied when a simple assessment (Level 1) indicates that the bridge is

substandard. The first level uses a basic load model, codified resistance models

and simple analysis. If this does not prove the structure satisfactory, the analysis

and data are refined eventually up to the fully probabilistic analysis.

Among many others recommendations specific for bridge assessment the man-

uals BD21/01 (2001) and BD44/95 (1995) are the most relevant for the assessment

of concrete bridges. The first uses bridge specific loading which allows reduction

in traffic loads for low traffic flow and good surface condition. It also defines

partial safety factors to be used in the assessment and proposes some methods

of calculating member resistance considering its condition. The second manual

introduces the safety factors for materials different from those used in the design

based on the concept of ’worst credible strength’. The worst credible strength is

the lowest value of the strength that could be obtained according to the engineer

belief based on the prior experience and knowledge.
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2. Assessment of existing bridges

In opposite to the Canadian and American codes the BD21/01 (2001) clearly

states that the bridge load test may not be used for direct safety evaluation.

However, they can be used as complementary to the analytical assessment.

Swiss guideline (SIA 462). In Switzerland the assessment of existing struc-

tures is at first performed using current design code. When the structure fails

that ’first level’ assessment, the procedures proposed in SIA 462 (1994) have to

be applied. This guideline allows for the reduction of partial safety factors for

actions assuring that supplementary safety measures are taken. The safety mea-

sures may for example contain continuous or periodic monitoring of the structural

performance and/or serviceability level. When the additional safety measures are

envisaged the structure has to be inspected at least every 5 years.

The guideline SIA 462 (1994) also allows for more refined methods of analysis

when they are justified by new developments or adequately based on the solid

theory or reliable experiments. Therefore, all the advanced structural analysis

methods (plastic, non-linear, etc.) and probabilistic safety evaluation methods

may be applied in the assessment.

Danish guidelines. In Denmark all the bridges have to be at first evaluated

using deterministic analysis and procedures presented in the guideline Vejdirec-

toratet (1996) specific for assessment of existing bridges. When any particular

structure or structure element fails the deterministic assessment the probabilistic

assessment according to Vejdirectoratet (2004) may be performed. Since in the

deterministic analysis the critical (i.e. governing) ultimate and serviceability limit

states are already determined, in the probabilistic assessment just those critical

limit states are analysed.

The guideline Vejdirectoratet (2004) provides all the necessary information

required in the probabilistic assessment including probabilistic models of bridge

traffic loads and probabilistic models of resistance variables. It also gives some

guidance how to deal with supplementary information as for example some test

results.
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2.4 Proposed methodology

2.4 Proposed methodology

As it can be observed in all the codes and guidelines described in previous sec-

tion, it has been recognized and recommended that efficient structural assessment

strategies be based on the application of new and increasingly sophisticated anal-

ysis levels. This ’step-level’ philosophy seems also to be the most appropriate for

the assessment of existing bridges in Portugal.

Concerning that the assessment strategies in all the European countries should

be similar and should be based on the recommendations of European scientific

bodies, organizations or research groups the procedures proposed in BRIME

(2001) and COST345 (2004) are suggested to be applied for assessment of ex-

isting bridges in Portugal. Therefore, five levels of assessment with increasing

levels of complexity are proposed as presented in Table 2.1, with Level 1 being

the simplest and Level 5 the most sophisticated. The recommendation to go

forward to the next level is made only if the bridge fails to pass the previous

assessment level.

Table 2.1: General scheme of the 5 assessment levels.
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2. Assessment of existing bridges

As it can be seen in Table 2.1, the most advanced assessment method combines

load redistribution analysis (non-linear analysis) with a probabilistic analysis and

this level can be applied as the last resort to save the bridge from unnecessary

repair/strengthening or replacement. Because this level reflects more accurately

the real structural behaviour of the bridge, many bridges that are declared unsafe

based on the four previous levels, may show enough reserve strength to safely

support the applied loads when analysed at this fifth assessment level.
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Chapter 3

Concepts of statistics and the

introduction to reliability

analysis

3.1 Introduction

Engineers are responsible for proportioning the elements of the structure in such

a way that satisfy the design criteria related to performance, safety, serviceability

or durability under various demands. Handling this responsibility, in everyday

practice they have to deal with uncertainties. The sources of uncertainty are

various. Most of them are related to the uncertain mechanical parameters of

constructional materials, uncertain geometry of the structure and uncertain loads.

The models describing behaviour of the structure or the structural element are

also uncertain. The most rational way to deal with this problem is to treat

all the uncertain parameters as random variables (described by their probability

distribution function PDF) and perform reliability analysis which is basically a

probabilistic analysis of the assurance of system performance.

In this chapter basics of statistics and some principles and methods of relia-

bility analysis are briefly introduced based mainly on books of Melchers (1999),

Nowak & Collins (2000), Schneider (1997) and Haldar & Mahadevan (2000a).
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3. Concepts of statistics and the introduction to reliability analysis

3.2 Fundamental statistics

3.2.1 Random variables

Most of the physical phenomena are not able to be predicted with certainty. The

observations and measurement of those phenomena gives multiple outcome among

which some are more frequent than others. The occurrence of multiple outcomes

without any pattern is often called ’uncertainty’, ’randomness’ or ’stochasticity’.

Definition of random variables. Any quantity that is uncertain is a random

quantity and is often called ’random variable’. In general, most of the parame-

ters in engineering problems are uncertain and should be considered as random

variables. Random variables are discrete or continuous, however, in structural

engineering problems most of them are continuous.

The variation of a random variable is generally described by its cumulative

distribution function, CDF, FX(x) (see Figure 3.1), which defines the probability,

P, that a variable X is equal or less than a certain value x:

FX(x) = P (X ≤ x) (3.1)

Very often instead of cumulative distribution function probability density

function, PDF, fX(x) (see Figure 3.1), is used to describe variation of the pa-

rameter X. For continuous random variables the PDF is related to its CDF as

follows:

fX(x) =
dFX(x)

dx
(3.2)

Parameters of random variables. For any random variable X there is pos-

sible to define certain ’parameters’ that help to describe the properties of the

variable. Those parameters of random variables are often called ’statistical mo-

ments’.

Mean or expected value (First Moment). The mean of X is denoted

by µX and for continuous random variable is defined as:

E(X) = µX =

∫ +∞

−∞
xfX(x)dx (3.3)
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3.2 Fundamental statistics

Figure 3.1: PDF and CDF of a continuous random variable, from Haldar &

Mahadevan (2000a).

Variance and standard deviation (Second Moment). The variance of

X is denoted by σ2
X and for continuous random variable is defined as:

E(X − µX)2 = σ2
X =

∫ +∞

−∞
(x− µX)2fX(x)dx (3.4)

The standard deviation of X, σX , can be defined as follows:

σX =
√

σ2
X (3.5)

The coefficient of variation, COV, denoted often as VX is defined as:

VX =
σX

µX

(3.6)

Skewness (Third Moment). The skewness, also known as third central

moment, gives a measure of lack of symmetry of the distribution and is defined

as follows:

E(X − µX)3 =

∫ +∞

−∞
(x− µX)3fX(x)dx (3.7)

25



3. Concepts of statistics and the introduction to reliability analysis

The dimensionless ’skewness coefficient’, γ1, can be introduced as:

γ1 =
E(X − µX)3

σ3
X

(3.8)

If γ1 is zero, the randomness is symmetric, if γ1 is positive, the dispersion is more

above the mean, and if it is negative the the dispersion is more below the mean.

Kurtosis (Fourth Moment). The kurtosis, also known as fourth central

moment, gives a measure of flatness of the distribution and is defined as follows:

E(X − µX)4 =

∫ +∞

−∞
(x− µX)4fX(x)dx (3.9)

The dimensionless ’kurtosis coefficient’, γ2, can be introduced as:

γ2 =
E(X − µX)4

σ4
X

(3.10)

If γ1 is positive, the distribution is relatively peaked, and if it is negative the

distribution is relatively flat.

Common probability distributions. The common distribution types used

in the structural reliability analysis are as follows: uniform, triangular, normal,

lognormal, exponential, gamma, beta, extreme Type I (Gumbel), extreme Type II

(Frechet), extreme Type III (Weilbull), and Poisson. Nevertheless, the most com-

monly used are normal and lognormal distributions and just they are described

in this paragraph. Detailed information about all the remaining distributions

can be found in Melchers (1999), Nowak & Collins (2000), Schneider (1997) and

Haldar & Mahadevan (2000a).

Normal or Gaussian distribution. The normal distribution is probably

the most widely used distribution in structural reliability. The PDF of the dis-

tribution can be expressed as:

fX(x) =
1

σX

√
2π

exp

[
−1

2

(x− µX

σX

)2
]

(3.11)
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3.2 Fundamental statistics

where µX and σX are the mean and standard deviation respectively. The corre-

sponding CDF can be expressed as:

FX(x) =

∫ x

−∞

1

σX

√
2π

exp

[
−1

2

(x− µX

σX

)2
]
dx (3.12)

The normal distribution, denoted often as N(µ, σ), is symmetric about the

mean and it is applicable for any value of random variable from −∞ to +∞.

Figure 3.2 shows the shapes of PDF of normal distributions with mean 0 and

standard deviation 0.5, 1.0 and 2.0 respectively.

Figure 3.2: Normal probability density function, from Melchers (1999).

The normal distribution with zero mean and unit standard deviation, denoted

as N(0, 1), it is called standard normal distribution and its CDF is denoted as

FS(s) = ΦS. The CDF of standard normal distribution is widely available in

tabulated form. Any normal variable X can be transformed to standard normal

variable as:

S =
X − µX

σX

(3.13)

Performing transformation the PDF and CDF of S can be expressed as follows:

fS(s) =
1√
2π

exp
[
−1

2
s2

]
(3.14)

FS(s) =

∫ s

−∞

1√
2π

exp
[
−1

2
s2

]
ds (3.15)
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3. Concepts of statistics and the introduction to reliability analysis

Lognormal distribution. The lognormal distribution is the widely used

distribution in structural reliability when a random variable cannot have nega-

tive values. If a random variable has a lognormal distribution, then its natural

logarithm has a normal distribution. The PDF of the lognormal distribution can

be expressed as:

fX(x) =
1

ζX

√
2π

exp

[
−1

2

( ln x− λX

ζX

)2
]

(3.16)

where λX and ζX are the parameters of the distribution. The corresponding CDF

can be expressed as:

FX(x) =

∫ x

0

1

ζX

√
2π

exp

[
−1

2

( ln x− λX

ζX

)2
]
dx (3.17)

The lognormal distribution is unsymmetrical and it is applicable for any value

of random variable from 0 to +∞. Figure 3.3 shows the shapes of PDF of log-

normal distributions with λ equal to 0 and ζ of 0.5, 1.0 and 2.0 respectively.

Figure 3.3: Lognormal probability density function, from Melchers (1999).

The distribution parameters λX and ζX are related to the mean value µX and

the standard deviation σX as follows:

µX = exp
(
λX +

ζ2
X

2

)
(3.18)

σX = µX

√
exp (ζ2

X)− 1 (3.19)
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3.2 Fundamental statistics

3.2.2 Determination of distribution and moments from

observation

In engineering problems very often the distribution type and its parameters de-

scribing some random property are unknown and have to be selected based on

available experimental data. Furthermore, even when the distribution type can be

prescribed to some property arbitrary based on past experience there is necessity

to check if the experimental data fit well to the prescribed distribution.

Determination of probability distribution. Exist many procedures to de-

termine type of the probability distribution function for any sample data. They

can be subdivided into two groups, visual (histograms, cumulative histograms,

P-P plots, probability papers, etc.) and analytical known also as goodness of

fit tests (chi-square test and Kolmogorov-Smirnov test). In the following para-

graphs just histograms, P-P plots and Kolmogorov-Smirnov test are introduced

since they are further used in this thesis.

Histograms. Histogram is a bar diagram where each bar shows the relative

frequency of the data points in predefined interval. By looking at the bar graph

it can be observed trends in the data and visually can be determined the theo-

retical distribution that fits to the data. As an example Figure 3.4 shows typical

histogram for compressive strength of concrete.

P-P plots. P-P plot shows the correspondence of the experimental results

to the theoretical distribution function. It is basically a plot of the cumulative

curve of deflection against the cumulative normal distribution. As an example

Figure 3.5 shows typical P-P plot for compressive strength of concrete.

Kolmogorov-Smirnov (K-S) test. The K-S test compares the observed

cumulative frequency with CDF of assumed theoretical distribution. It is based

on the maximum difference between the two cumulative distributions defined as:

Dn = max
∣∣∣FX(xi)− Sn(xi)

∣∣∣ (3.20)
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3. Concepts of statistics and the introduction to reliability analysis

Figure 3.4: Typical histogram.

Figure 3.5: Typical P-P plot.

where FX(xi) is the theoretical CDF at the i-th observation of ordered samples xi

and Sn(xi) is the corresponding observed CDF of ordered samples. Dn is also a

random variable which distribution depends on the sample size n. The cumulative

distribution of Dn is related to the significance level α as follows:

P (Dn ≤ Dα
n) = 1− α (3.21)

Dα
n at various significance levels are tabulated. According to K-S test, if the

maximum difference Dn is less than or equal to Dα
n , the assumed distribution is

acceptable at the significance level α.
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3.2 Fundamental statistics

Estimation of parameters of a distribution. For a given sample of a ran-

dom variable the parameters of its distribution can be estimated using the ’method

of moments’ or ’method of maximum likelihood’. In the following text just the

method of moment is presented since it is further used in this thesis. The basic

concept behind this method is that all the parameters of a distribution can be

estimated using the information on its moments.

Mean or expected value (First Moment). The mean or expected value

of a random sample X, µX , can be estimated as:

x =
1

n
·

n∑
i=1

xi (3.22)

Variance (Second Moment). The variance of a random sample X, σ2
X ,

can be estimated as:

s2
X =

1

n− 1
·

n∑
i=1

(xi − µX)2 (3.23)

Skewness and kurtosis coefficients (Third and Fourth Moments).

The skewness coefficient, γ1, and the kurtosis coefficient, γ2 , of a random sample

X can be estimated as:

γ̂1 =
n

(n− 1)(n− 2)σ3
X

·
n∑

i=1

(xi − µX)3 (3.24)

γ̂2 =
n2

(n− 1)(n− 2)(n− 3)σ4
X

·
n∑

i=1

(xi − µX)4 (3.25)

3.2.3 Jointly distributed random variables.

Sometimes it is of interest to observe simultaneously two or more properties each

of them being random. The question that can be asked whether there exist

any interdependence between those properties an how important it is. To deal

with this problem the concepts of joint distribution and correlation have to be

introduced.
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3. Concepts of statistics and the introduction to reliability analysis

Joint and marginal probabilities. If some observed property is the result of

two (or more) random variables its CDF can be described as:

FX1X2(x1, x2) = P
[
(X1 ≤ x1) ∩ (X2 ≤ x2)

]
≥ 0 (3.26)

The corresponding joint PDF can be expressed as follows:

fX1X2(x1, x2) =
δ2FX1X2(x1, x2)

δx1δx2

(3.27)

However, a marginal probability density function may be obtained from the joint

density function by integrating over the other variables:

fX1(x1) =

∫ +∞

−∞
fX1X2(x1, x2)dx2 (3.28)

Bivariate joint probability density function and marginal probability density func-

tions are shows in Figure 3.6.

Figure 3.6: Joint and marginal PDFs, from Melchers (1999).

Correlation between variables. The interdependence between any two vari-

ables can be checked plotting each pair of the variable (x1, x2) as points in the

corresponding coordinate system. Figure 3.7 shows several possible outputs of

such graphical representation. The covariance, denoted as cov(X1, X2), is a mea-
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3.2 Fundamental statistics

Figure 3.7: Correlation plots and corresponding correlation coefficients, from

Schneider (1997).

sure of the interdependence of two random quantities and for continuous random

variables it is defined as:

cov(X1, X2) =

∫ +∞

−∞

∫ +∞

−∞
(x1 − µX1)(x2 − µX2)fX1X2(x1, x2)dx1dx2 (3.29)

The estimation of the covariance, cov(X1, X2), can be obtained as follows:

cov(X1, X2) =
1

n− 1
·

n∑
i=1

(x1,i − µX1)(x2,i − µX2) (3.30)

The dimensionless correlation coefficient, ρX1X2 , is defined as:

ρX1X2 =
cov(X1, X2)

σX1σX2

(3.31)

The correlation coefficient takes values from -1 to 1 and its correspondence to the

type of interdependency is illustrated in Figure 3.7.

3.2.4 Functions of random variables

When the response variable (e.g. bending resistance of reinforced concrete sec-

tion) is a function of several random variables (e.g. section depth, reinforcement

area, reinforcement and concrete strengths), its uncertainty analysis is quite com-

plicated. However, for some exceptional cases exist some simple, closed-form so-

lutions. This is the case of sums and differences of independent normal variables

and products and quotients of independent lognormal variables.
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3. Concepts of statistics and the introduction to reliability analysis

Sum of independent normal variables. When a random variable Y is a

sum (or difference) of independent normal random variables Xi, with mean µXi

and standard deviation σXi
, expressed as:

Y = a1X1 + a2X2 + . . . + aiXi + . . . + anXn (3.32)

where ai’s are constants, it can be shown that Y is also normal random variable

with mean and variance defined as follows:

µY =
n∑

i=1

aiµXi
(3.33)

σ2
Y =

n∑
i=1

a2
i µ

2
Xi

(3.34)

Product of independent lognormal variables. When a random variable Y

is a product (or quotient) of independent lognormal random variables Xi, with

parameters λXi
and ζXi

, expressed as:

Y = X1 ·X2 · . . . ·Xi · . . . ·Xn (3.35)

it can be shown that Y is also lognormal random variable with the following

parameters:

λY =
n∑

i=1

λXi
(3.36)

ζ2
Y =

n∑
i=1

ζ2
Xi

(3.37)

Central limit theorem. According to central limit theorem the sum of large

number of variables, where none of them dominates the sum, tends to the normal

distribution (regardless to their initial distributions) as the number of variables

increase. Similarly for product of a large number of random variables, where none

of them dominates the product, tends to the lognormal distribution (regardless

to their initial distribution) as the number of variables increase.
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3.3 Introduction to structural reliability

3.3 Introduction to structural reliability

3.3.1 Limit states and definition of reliability

According to Nowak & Collins (2000) the limit state is defined as the boundary

between the desired and undesired performance of the structure and is mathemat-

ically represented by the so called limit state function or performance function

g(Xi). Particularly in bridge structures, failure (or limit state violation) could be

defined as the inability to carry traffic. This undesired performance can have sev-

eral sources such as cracking, excessive deformation, insufficient bending or shear

strength to carry traffic and many others. Traditionally each of that sources (or

failure modes) is considered separately and for each the limit state function is

defined.

Generally in the structural reliability analysis two kinds of limit states can be

distinguished, Ultimate Limit States ULS and Serviceability Limit States SLS.

Some authors separate the third kind of limit state, namely Fatigue Limit State

FLS, considered traditionally as one of the ultimate limit states. Recently the

fourth group of limit states was distinguished that is related to the structural

durability.

The ultimate limit states are mostly related to loss of load-carrying capac-

ity. However the serviceability limit states are related to gradual deterioration,

comfort of the users, maintenance issues among others. In bridge engineering the

common ultimate limit states are due to bending, shear, punching, loss of stabil-

ity. The serviceability limit states in bridges are due to excessive deformations

or vibrations, cracking, excessive stresses (leading to permanent deformations).

As it was already shown each limit state can be represented by the limit

state function g(Xi), where Xi represents the vector of random variables, which

describe both the problem and the requirements for a particular problem. Viola-

tion of the limit state function can be defined by the following expression (failure

condition):

g(Xi) < 0 (3.38)

The probability of limit state violation (probability of failure) can be written as
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3. Concepts of statistics and the introduction to reliability analysis

follows:

Pf = P{g(Xi) < 0} (3.39)

Knowing already the probability of failure we can define the reliability (probabil-

ity of the complement of the adverse event):

R = 1− Pf (3.40)

The practical methods of quantitative evaluation of probability of failure or reli-

ability are the subject of reliability theory.

3.3.2 Fundamental case

In the simplest case the limit state function g(Xi) can be the function of just two

basic variables R and S, where the first is the generalized structural resistance and

the second is the generalized action or action effect. When the generalized action

or action effect is bigger than generalized resistance the failure occur. Therefore,

the probability of failure can be defined as follows:

Pf = P (R < S) = P (R− S < 0) = P

(
R

S
< 1

)
(3.41)

or more generally:

Pf = P{g(R,S) < 0} (3.42)

The problem can be also illustrated graphically, as it is presented in Figure

3.8, where marginal density functions fR(r) and fS(s) together with the joint

density function fR,S(r, s) of two random variables are showed. The shaded area

represents the failure domain D. For such illustrated problem the probability of

failure becomes:

Pf = P (R− S < 0) =

∫
D

∫
fR,S(r, s)drds (3.43)

When the basic variables R and S are independent (there is no any statistical

correlation between them) Equation 3.43 can be rewritten as follows:

Pf = P (R− S < 0) =

∫ ∞

−∞
FR(x)fS(x)dx (3.44)

where FR(x) is the probability that R ≤ x and fS(x) represents the probability

that load effects S takes the value between x and x+∆x (∆x → 0). The integral

over all possible x gives the total probability of failure.
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3.3 Introduction to structural reliability

Figure 3.8: Two random variable joint density function fR,S(r, s), marginal den-

sity functions fR(r) and fS(s) and as shaded failure domain, from Schneider

(1997).

3.3.3 Definition of the Reliability Index

In some particular cases it is possible to solve Equation 3.44 analytically, for

example when variables R and S are normally distributed with mean values µR

and µS and standard deviations of σR and σS respectively. Defining the new

variable called ’safety margin’ as:

Z = R− S (3.45)

and using theorem saying that the sum/difference of normal random variables is

also a normal variable with a mean µZ and a standard deviation σZ defined as:

µZ = µR − µS (3.46)

σZ =
√

σ2
R + σ2

S (3.47)

the probability of failure pf can be expressed by following equation:

Pf = P (R− S < 0) = P (Z < 0) = Φ

(
0− µZ

σZ

)
= Φ(−β) (3.48)

In Equation 3.48 Φ is the standard normal distribution function with zero mean

and unit standard deviation and β is so called ’reliability index’ often referred as
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3. Concepts of statistics and the introduction to reliability analysis

Cornell reliability index. The Cornell reliability index can be interpreted as the

number of standard deviations σZ necessary to subtract from the mean value µZ

to exceed zero (see Figure 3.9).

Figure 3.9: Distribution of safety margin Z = R− S, from Melchers (1999).

Substituting the µZ and σZ by the Equations 3.46 and 3.47, and subtract-

ing the definition of β from Equation 3.48 the Cornell reliability index can be

rewritten as follows:

βC =
µR − µS√
σ2

R + σ2
S

(3.49)

The definition of the reliability index proposed by Cornell (see Equation 3.49)

is valid for normal random variables. However, in structural reliability it is often

more convenient to use lognormal distributions for modelling random variables

due to the fact that they do not allow for negative values. In those situations the

reliability index can be defined as follows:

βRE =
ln

µR
µS√

V 2
R + V 2

S

(3.50)

where VR and VS are the coefficient of variations COV of R and S. The reliability

index defined by Equation 3.50 is often called Rosenbluth-Esteva reliability index.

The estimation of the Cornell reliability index depends on the formulation of

the limit state function and consequently it is not invariant. The formulation of

the reliability index known as the Hasofer-Lind reliability index allows to overpass

this invariance problem.
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The Hasofer-Lind reliability index is formulated based on the limit state func-

tion transformed into so-called standard normal space. The equations 3.51 and

3.52 show the transformation of normally distributed variables R and S into

standardized normally distributed variables U1 and U2 with mean zero and unit

standard deviation.

U1 =
R− µR

σR

(3.51)

U2 =
S − µS

σS

(3.52)

After transformation the limit state function becomes:

g(R,S) = µR − µS + U1σR − U2σS (3.53)

The reliability index βHL according to the Hasofer-Lind formulation is a minimum

distance between the origin and the limit state function (see Figure 3.10). The

limit state function g(R,S) after transformation no more passes through the

origin (compare with Figure 3.8). However, the so-called design point [u∗1,u
∗
2] still

lies at the highest elevation of the joint PDF above the straight line g(R,S) = 0

(compare with the design point [r∗,s∗] in Figure 3.8).

Figure 3.10: Bivariate standardized joint density function fU1,U2(u1, u2), marginal

standardized density functions fU1(u1) and fU1(u2) and as shaded failure domain,

from Schneider (1997).
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The advantage of the Hasofer-Lind definition of the reliability index, compare

to other definitions presented previously, is that it allows for further extension to

more general situations as it will be explained in following section.

3.4 Methods of reliability analysis

The definitions of the reliability index presented in previous section are valid for

the case of two independent normal (eventually lognormal, Rosenbluth-Esteva

definition) random variables R and S, and linear limit state function g(R,S) =

R−S = 0 (eventually g(R,S) = R/S = 1, Rosenbluth-Esteva definition). In the

real situations the limit state functions g() are often non-linear and dependent

on many, sometimes correlated, arbitrary distributed random variables Xi.

g(x1, x2, . . . , xn) = g(Xi) = 0 (3.54)

The methods that allow to estimate the probability of failure or the reliability in-

dex for more complicated limit state functions and arbitrary distributed variables

are called ’reliability analysis methods’.

3.4.1 First and second order reliability method (FORM

and SORM)

The first and second order reliability method, FORM and SORM, are based on the

extended definition of the Hasofer-Lind reliability index. In FORM and SORM all

the n random variables Xi are transformed into standardized normally distributed

variables Ui similarly as showed by Equations 3.51 and 3.52. Subsequently the

limit state function g(Xi) is redefined to be expressed in terms of the reduced

variables. Afterwards the reliability index is calculated as the shortest distance

from the origin of n-dimensional space of reduced variables to the curve described

by limit state function g(U1, U2, . . . , Un) = 0.

In case the limit state function is non-linear it have to be approximated in the

vicinity of the design point [U∗
i ] by some simpler function. It is done using Taylor’s

expansion series. When just the first order terms of Taylor’s series are used the

approximation function is linear and the method is then called FORM. When
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3.4 Methods of reliability analysis

the second order terms are used in the Taylor’s series the limit state function

is approximated by a tangent hypersurface and the method is named SORM.

The design point on the failure surface is normally unknown, therefore, it has to

be found interactively minimizing β (see e.g. Melchers, 1999; Nowak & Collins,

2000).

If the random variables are not normal, they are approximated near the de-

sign point by normally distributed variables using for example the so-called ’tail

approximation’ method. However, when the random variables are correlated they

are transformed to independent variables using Rosenblatt or Nataf transforma-

tion. Detailed information about those algorithms can be found in specialized

literature (Melchers, 1999; Nowak & Collins, 2000).

3.4.2 Monte-Carlo method

The alternative procedure to calculate the probability of failure or the reliability

index for any limit state function of arbitrary distributed variables is the Monte-

Carlo method. In this method the probability of failure or reliability index is

calculated based on the results of the large number, z, of the individual evaluation

of the limit state function g(Xi). Each individual evaluation, k, of the limit state

function is obtained using random realisations xik of the underlining variables’

distributions Xi.

In the simplest approach the probability of failure can be approximated as

follows:

pf ≈
z0

z
(3.55)

where z is total number of realisation of g(Xi) and z0 is the number of realisation

for which g(Xi) < 0. The greater the number of z the more accurate is the

approximation of pf . Unfortunately for low probability of failures huge number

of realisation is required to obtain reliable estimate of pf .

Alternatively to counting z0 and z, all the realisation of the limit state func-

tion could be analysed statistically in order to determine the corresponding prob-

ability distribution function, the mean value µg and the standard deviation σg.

Subsequently, assuming that the realisations of g(Xi) are normally distributed,
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3. Concepts of statistics and the introduction to reliability analysis

the reliability index can be estimated as:

β ≈ µg

σg
(3.56)

and the corresponding probability of failure pf can be calculated according to

Equation 3.48.

The ’crude’ Monte Carlo method introduced above is very simple and intu-

itive, however, it requires significant computational effort. The derivatives of this

method, so-called Importance Sampling methods, allow to reduce the minimum

required number of realisation. Further information about those methods can be

found, for example, in Melchers (1999).

3.5 Reliability of structural systems

The methods for estimating probability of failure pf presented in previous section

generally characterize the reliability of single element of the structure. However,

the real structures are usually composed by several structural elements composing

structural system where individual element failure not necessary leads to the

failure of the whole system. For example, in statically indeterminate structures

usually only combinations of failing elements cause the system failure but in

statically determinate structures the failure of one element it is enough to cause

total collapse.

3.5.1 Series system

In a series system the elements of the systems are connected in series and the

failure of any of the elements causes the failure of the whole system (see Figure

3.11). The series system is often calls weakest link system due to its correspon-

Figure 3.11: Series system.
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dence to the chain which breaks when the weakest link brakes. The probability

of failure of the series system is defined as follows:

Pf = 1−
n∏

i=1

(1− pfi) ≈
n∑

i=1

pfi (3.57)

where pfi are the probabilities of failure of the system’s elements. The summation

approximation is valid for small probabilities of failure pfi. The probability of

failure of the series system increase with the number of system’s elements and is

usually conditioned by the most failure prone element.

Equation 3.57 for calculation Pfi is valid only when all the elements of the

system are statistically independent. The correlation between the elements of

the series system reduce the probability of its failure. For perfectly correlated

elements the probability of failure can be expressed as:

Pf = max[pfi] (3.58)

For partially correlated elements Pfi lays between the values defined by Equations

3.58 and 3.57.

3.5.2 Parallel system

In a parallel system the elements of the system are connected in parallel and just

the failure of all the elements causes the failure of the whole system (see Figure

3.12). The probability of failure of the parallel system is defined as follows:

Pf =
n∏

i=1

pfi (3.59)

where pfi are the probabilities of failure of the system’s elements.

Again, Equation 3.59 for calculation Pfi is valid only when all the elements of

the system are statistically independent. However, the correlation between the

elements of the parallel system increase the probability of its failure. For perfectly

correlated elements the probability of failure can be expressed as:

Pf = min[pfi] (3.60)

For partially correlated elements Pfi lays within the limits defined by Equations

3.59 and 3.60.
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Figure 3.12: Parallel system.

3.5.3 Mixed system

In a mixed systems the elements of the system are connected in more complex

way. However, usually they can be simplified to series or parallel system composed

by several subsystems which can be either connected in series, parallel or some

mixed way. The probability of failure of the mixed systems can be determined

by a stepwise reduction to simple systems (see Figure 3.13). The probabilities of

subsystems are calculated according to rules given in previous section.

Figure 3.13: Mixed system.
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3.6 Computational approaches for advanced reliability problems

3.6 Computational approaches for advanced re-

liability problems

3.6.1 General

The safety assessment of existing concrete bridges requires, in the process of

structural analysis, the utilization of the most appropriate models allowing to

describe the real behaviour under certain load condition (Casas et al., 2005). In

many cases there are used simple models that in the reliability analysis can be

expressed by explicit limit state function g(X). However, in some situations,

where the imposed load or other conditions (e.g. corrosion of reinforcement, de-

lamination of concrete, cracks etc.) may lead to the excursion of the structure

into the non-linear behaviour in situations close to failure, more advanced theo-

retical models are needed. In those cases the performance function g(X) is not

available in an explicit form. It has to be computed through a numerical proce-

dure such as finite element analysis (including non-linearities) or other numerical

methods. This brings another level of complexity to the reliability analysis that is

not possible to solve using analytical or traditional methods described in previous

sections.

In the last decades, many computational approaches allowing to perform re-

liability analysis for the implicit performance function (e.g. available only due

to non-linear FEM) were proposed. According to Haldar & Mahadevan (2000a)

these can be broadly divided into three categories, based on their essential philos-

ophy: Monte Carlo simulation (including efficient sampling method and variance

reduction techniques), the Response Surface approach and a sensitivity based

analysis (including Stochastic Finite Element Method). All those methods are

briefly described in the following subsections.

3.6.2 Monte Carlo simulation

The most intuitive and probably the most commonly used method of structural

reliability analysis is the Monte Carlo simulation technique. Using this technique

it is possible to calculate the probability of failure or limit state violation for
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3. Concepts of statistics and the introduction to reliability analysis

implicit and also explicit limit state function g(x) using the most basic background

in probability and statistics.

The Monte Carlo simulation technique is based on the concept of random

sampling in order to simulate artificially a large number of experiments and to

observe the results. The availability of personal computers and software makes

the process very simple even for a significant number of simulations (trials, runs)

that are required to obtain reliable results. The Monte Carlo simulation method

allows to evaluate even very complicated problems defined by complicated implicit

functions as long as an algorithm (e.g. non-linear Finite Element code or non-

linear sectional analysis code) is available to compute the structural response,

given the values of the input variables. The method can easily evaluate g(X) for

each deterministic analysis and therefore compute the failure probability after

performing several deterministic analyses.

The simplest Monte Carlo simulation technique, sometimes called ’crude’

Monte Carlo, can be explained by the following six essential steps (Haldar &

Mahadevan, 2000b):

• Define the problem in terms of all the random variables.

• Quantify the probabilistic properties of all the random variables in terms

of their probability density functions and correlations.

• Randomly generate values for each random variable.

• Evaluate the problem deterministically for each set of realizations of all the

random variables.

• Extract the required probabilistic information from N such realizations (e.g.

determine how many sets from the total N evaluated sets lead to failure).

• Determine the accuracy and efficiency of simulation by increasing N and

verifying that the final conclusion is robust and meets a certain level of

accuracy.

The concept behind the Monte Carlo simulation is very simple, but its ap-

plication in engineering reliability analysis and its acceptance as an alternative
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reliability evaluation method depends mainly on the efficiency of the simulation.

Since the ’crude’ Monte Carlo simulation requires a significant number of runs, it

may not be practical when the deterministic analysis requires considerable com-

putational effort as is the case when non-linear models are used with a very fine

Finite Element mesh.

To improve the efficiency, the number of simulation cycles needs to be greatly

reduced. More advanced simulation techniques such as the importance sam-

pling method, the Latin Hypercube method or the directional sampling tech-

nique (Melchers, 1999) are often used. These advanced methods are based on the

same principles as the ’crude’ Monte Carlo method but employ some theoreti-

cal modifications, which would allow the reduction of the variance of the error

of the estimated output variable without affecting the mean value and without

increasing the sample size.

Latin Hypercube method is a special type of Monte Carlo numerical simu-

lation described which uses the stratification of the theoretical probability distri-

bution function of input random variables. In this method the range of possible

values of each random input variable is partitioned into ’strata’, and a value from

each stratum is randomly selected as a representative value (Nowak & Collins,

2000). The representative values for each random variable are then combined in

a way that they are used only once in the simulation. This procedure guarantees

that all the input variables have been equally represented in the simulation.

The basic steps in Latin Hypercube sampling are as follows (Crespo, 1996;

Nowak & Collins, 2000):

• Divide the range of each variable Xi into N intervals preferably of equal

probability (probability of a value Xi occurring in each interval is 1/N).

• For each variable Xi and each of its N intervals select representative value

for the interval (for large number of intervals the central point of each

interval can be used, for small number of intervals centroid of the interval

will be more appropriate).

• Shuffle the sets of the vector containing representative N values of each of

the variable Xi.
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• From the shuffled vectors create a fictitious matrix R with N rows and K

columns, where K is the number of input random variables.

• Evaluate the problem deterministically for each N sets of realizations of all

the random variables ordered in N rows of the matrix R.

• Based on the output obtained in previous step estimate the desired param-

eters and extract the required probabilistic information.

The algorithm has proved to be more efficient than the ’crude’ Monte Carlo,

reducing substantially the variance of the final estimates of the output param-

eters. It is very efficient for the estimation of the first two or three statistical

moments of structural response and requires a relatively small number of simu-

lations. However, in its original form the method may lead to the final matrix R

with the accidental correlations between variables, especially when variables are

divided into few intervals. On the other hand, in some situations statistical corre-

lation between random variables defined by a prescribed correlation matrix have

to be introduced. To solve that problems some modifications to the algorithm

can be introduced (Florian, 1992; Iman & Conover, 1982).

3.6.3 Response Surface method

The Response Surface method provides an approach that can be used for the

structural reliability analysis when a non-linear solution for the structural re-

sponse is required. RSM constructs a polynomial closed-form approximation

(usually a first order or second order polynomial is used) for the limit state func-

tion g(X) through a few selected deterministic analyses. A regression analysis (or

other curve fitting techniques) of the results provides an approximate closed-form

expression that is used to search for the design point (the point on the limit state

function closest to the origin in the normalized standard space of the random

variables), and the failure probability is computed using first order (FORM) or

second order (SORM) reliability methods as described in previous sections. A

Monte Carlo simulation may also be used with the closed form approximation to

estimate the failure probability. Clearly, the polynomial function needs to repre-

sent the structural response most accurately in the area around the design point

48



3.6 Computational approaches for advanced reliability problems

with lower accuracy elsewhere. Provided the approximating response surface fits

the point responses reasonably well, a fairly good estimate of the probability of

structural failure would be expected

The implementation of the response surface concept may proceed along the

following steps (Haldar & Mahadevan, 2000b):

• Select sets of values of the random variables to evaluate the performance

function g(X).

• Evaluate the performance function g(X) at discrete values of xi using a

deterministic non-linear finite element analysis of the structure for all the

sets of the values of the random variables selected in step 1.

• Construct a first-order (or higher) model of g(X) using a regression analysis

with the data collected in step 2.

• Use either FORM/SORM or Monte Carlo simulations with the closed form

expression developed in step 3 to estimate the probability of failure or prob-

ability of limit state violation and extract the corresponding reliability in-

dex β.

The selection of the sets of the random variables could be preceded by the

elimination of the variables which variability is not important, so, in further

analysis can be considered as deterministic. After this pre-selection, which could

reduce the size of the problem significantly, the selection of characteristic values

(samples) has to be performed. Usually two or three values of each variable are

used. If two values are used they are commonly selected as a low and a high value

(e.g. µ± kσ, where µ is the mean value, σ is the standard deviation and k is an

integer). If three values are used they are commonly selected as a low, medium

and a high value (e.g. µ + kσ, µ , and µ + kσ). In the case of the incorporation

of the response surface method to the non-linear Finite Element analysis or other

non-linear problems three or more values should be used to construct regression

model of higher order which allows to better capture the possible non-linearity

of the performance function.
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It is noted that the response surface method is quite practical and effec-

tive in most common situations. However its application for highly non-linear

performance functions, even when using its more advanced variants such as as

the adaptive methods (Rajashekhar & Ellingwood, 1993) or DARS, Directional

Adaptive Response Surface sampling method (Waarts, 2000), could be inefficient

in some cases. Also, as a general rule, the closed-form approximation to g(X) is

valid only within the range of the values considered for the random variables and

the extrapolation beyond that range may not be accurate. Thus, occasionally

the method may lead to the evaluation of the safety for the less critical modes of

failure.

Although the method described above is the most commonly used variant of

response surface technique, some modifications and refinements to that method

are continuously being introduced to improve its efficiency or accuracy. For exam-

ple instead of using polynomial function and the regression analysis the sugges-

tions have been made to approximate the performance function using Taylor series

expansion (Ghosn & Frangopol, 1999) or advanced interpolation techniques with

Splines or Kriging interpolations (Kaymaz, 2005; Schueremans & Van Gemert,

2005).

3.6.4 Sensitivity based analysis and probabilistic FEM

Other possible approach of structural reliability analysis applicable to non-linear

problems e.g. non-linear FEM consists of methods based on sensitivity analysis.

In this approach, the sensitivity of the structural response to the input variables

is computed and used in FORM or SORM methods. The fundamental concept

of the FORM and SORM method, the search for the design point or checking

point, requires only the value and gradient of the limit state function at a num-

ber of selected points. The value of the performance function is available from

deterministic structural analysis. The gradient is computed using a sensitivity

analysis.

Since the performance function is implicit (can only be obtained at discrete

points e.g. using finite element analysis) the gradient cannot be computed an-

alytically by the numerical differentiation of the performance function. Thus,
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approximate methods such as finite difference methods and perturbation meth-

ods can be used to compute the gradient of the performance function (Haldar &

Mahadevan, 2000b).

Once the derivatives of the performance function with respect to the random

variables are computed and the value of the performance function is defined g(X),

this information can be used directly in FORM or SORM algorithms to estimate

the reliability of the structure. Detailed information about these concepts can be

found in Teigen et al. (1991), Val et al. (1996) and Val et al. (1997).

The sensitivity based reliability analysis is more elegant and more efficient

than the Monte Carlo simulation and are more formally integrated into the the-

oretical formulation of the Finite Element solution as compared to the response

surface method. Sensitivity based methods use information about actual value

and the actual gradient of the performance function at each iteration during the

search for the design point and use an optimization scheme to converge to the

minimum distance point. The method however requires specialized programs that

are not yet widely available or easily adaptable for practical applications.

3.7 Stochastic processes and return periods

3.7.1 Stochastic processes

Many of the loads acting on the structures are variable in time, for example:

traffic loads, wind actions, snow, seismic actions. For this type of loads not only

the individual values (point in time) are of interest but also their chronological

sequence. Such loads can be described by the stochastic processes in time. For

example, they can be recorded in regular time intervals and reproduced on the

graph representing the process by plotting the recorded values and connecting

them by straight lines (see Figure 3.14).

The stochastic process characterized by constant mean, variance and higher

moments and by the constant correlation between the consecutive process reali-

sations is called stationary.

Describing some type of load defined by the stationary stochastic process two

types of histograms are usually useful. First is the histogram of average point in
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Figure 3.14: Stochastic process, from Schneider (1997).

time values Ai(x) and second is the histogram of extreme values Ei(x) in chosen

time intervals ∆t so-called reference periods (see Figure 3.14). The histogram of

average point in time values is created from all the recorded data. However, the

histogram of extreme values is created from the extreme values recorded within

each of the time intervals for which the time is divided (often a period of one year

is chosen).

3.7.2 Return periods

Sometimes the magnitude of the maximum load is not important and just the

fact that the load cross some threshold value within some predefined period of

time (e.g. lifetime of the structure) are of interest. The return period T is defined

as the average time between two successive statistically independent events, for

example exceedance of x, and is given by:

T =
1

1− FX(x)
(3.61)

where FX(x) is the cumulative probability distribution function of the maximum

of a random variable X within the reference period.

For example, when the annual probability that traffic load exceed some value

x is equal to 0.02 (F(x)=1-0.02=0.98), the return period calculated according to

Equation 3.61 will be 50 years. Using other words, the average time between two

consecutive exceedence of value x characterized by annual probability 0.02 will

be 50 years.
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Chapter 4

Probabilistic models of material

properties and geometry

4.1 Introduction

The theoretical models describing structural behaviour of reinforced or prestressed

concrete structures requires basic information about the structure geometry (di-

mensions of the cross-section, position of the reinforcement, eccentricities, etc.)

and about mechanical properties of the materials (compression strength of con-

crete, yielding strength of reinforcing steel, proportionality limits of prestressing

steel, etc.). Therefore, in order to analyse the capacity of a structure or some

of their member, it is required at first to define those parameters. However,

the structure geometry as well as mechanical properties of materials composing

the structure have a random nature and they should be treated as random vari-

ables. Consequently, in order to describe accurately the structural behaviour of

the reinforced or prestressed concrete structure the complete probabilistic mod-

els (probability distribution function and basic statistics) of those variables are

indispensable.

In this chapter the probabilistic models of basic mechanical properties of con-

cretes (precast and cast-on-site) and steels (reinforcing and prestressing) are anal-

ysed. The probabilistic models of structure and structural member geometry

are also presented and discussed. Besides the models available in the technical
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literature and in specialized codes or guidelines the probabilistic models devel-

oped within the program of this thesis are also presented. The original models

were proposed for concrete ultimate strength (separately for precast and cast-

in-place concretes) for precast bridge girders geometry, for proportionality limit

and ultimate strength of prestressing steel and for yield and ultimate strength of

reinforcing steel.

The original models of the mentioned mechanical and geometrical parame-

ters were mainly developed to verify the applicability of the probabilistic models

already available in the literature to the Portuguese conditions. However, the

statistical analysis of data collected in the bridge girder precast plants and in the

bridge sites also allows to validate the assumption of higher quality of precast

bridges execution comparing to bridges constructed on-site.

4.2 Material models for concrete

4.2.1 Basics

Concrete is a composite material consisting of cement paste and aggregates.

Due to its heterogeneity is characterized by strong non-linear and rheological

behaviour. Normally, the mechanical behaviour of concrete is defined by few

separate theoretical models. One, for the short-term loading (where long-term

effects are neglected) describes standard stress-strain relationship. Others, for

the long-term loading (where the rheology is crucial) describe the development

of stresses and strains in time.

Under short-term monotonic quasi-static uniaxial loading the mechanical be-

haviour of concrete can be described by the schematic stress-strain relationship

presented in Figure 4.1.

Although the probabilistic models of strength properties of concrete were an

object of intensive study for many years, they often have much smaller influence

on structural strength and ultimate behaviour than do reinforcement properties

(Melchers, 1999). This is due to the commonly used philosophy of designing

structures characterized by high level of ductility. Nevertheless, some mechanical
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Figure 4.1: Typical stress-strain diagram for concrete.

properties of concrete are important for the structure serviceability and durability

and for the ultimate strength of reinforced concrete columns.

The variability of the mechanical properties of concrete depends mostly on

the following factors:

• material properties (cements, aggregates, etc.);

• concrete composition (water-cement ratio, cement quantity, etc.);

• execution (mixing, transporting, placing, curing and hardening, etc.);

• testing procedure (type and dimensions of specimens, velocity of the load

application, etc.);

• concrete being in the structure rather in a control specimens;

• maintenance, material degradation, etc.;

The parameter of concrete which is investigated with higher frequency is the

compressive strength fc. This parameter serve commonly to control quality of

concrete during structure execution and is used by the legal codes to define the ac-

ceptance/rejection criteria. Other mechanical properties, namely tensile strength

fct, elasticity modulus Ec, ultimate strain εcu, etc., are sometimes also defined

during experimental tests. However, due to high correlation with the concrete

compressive strength they are usually defined via some empirical relations.
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The rheological properties of concrete, namely ageing, creep and shrinkage,

are also sometimes tested experimentally and exist reported statistical data on

those properties. However, they are very sensitive to environment conditions and

existing data is not sufficient to establish reliable probabilistic models.

In the following points the probabilistic models of most important material

properties of concrete found in specialized codes and in the technical literature are

resumed. Besides that the probabilistic models of concrete compressive strengths,

for precast and cast-in-place concretes, developed within the program of this

thesis are also presented.

4.2.2 Codes approach

Model proposed in Probabilistic Model Code. According to JCSS (2001)

the strength of concrete at the particular point i in a given structure j as a

function of standard strength fc0 is given by Equations 4.1 and 4.2.

fc,ij = α(t, τ)fλ
c0,ijY1j (4.1)

fc0,ij = exp(UijΣj + Mj) (4.2)

where:

fc0,ij is the lognormal variable, independent of Y1j, with distribution parameters

Mj and σj;

Mj is the logarithmic mean at job j;

σj is the logarithmic standard deviation at job j;

Y1j is a lognormal variable representing additional variations due to the placing,

curing and hardening conditions of in-situ concrete at job j (see Table 4.1);

Uij is a standard normal variable representing variability within one structure;

λ is a lognormal variable with mean 0.96 and coefficient of variation 0.005 (gen-

erally it is possible to consider λ as deterministic parameter);

The remaining concrete properties as tensile strength, elasticity modulus and ul-

timate strain in compression are given by Equations 4.3, 4.4 and 4.5 respectively.

fct,ij = 0.3f
2/3
c,ij Y2j (4.3)

Ec,ij = 10.5f
1/3
c,ij Y3j(1 + βdφ(t, τ))−1 (4.4)
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εu,ij = 6 · 10−3f
−1/6
c,ij Y4j(1 + βdφ(t, τ)) (4.5)

where the variables Y2j, Y3j and Y4j reflects variations due to factors not well

accounted for by concrete compressive strength (gravel type and size, type of

cement, etc.) and can be taken according to the Table 4.1.

Table 4.1: Data for parameters Yi (JCSS, 2001).

Related to the parameter Variable Distr. type Mean Coef. of Var. [%]

compression Y1j lognormal 1.0 6

tension Y2j lognormal 1.0 30

elasticity modulus Y3j lognormal 1.0 15

ultimate strain Y4j lognormal 1.0 15
Note: if the direct measurements are available the parameters in table can be taken as

parameters of equivalent prior sample with size n’=10

The distribution of xij = ln(fc0,ij) is normal if its parameters M and Σ are

obtained from an infinitely large sample, but because the concrete production

varies from production unit, site, construction period, etc. and the sample sizes

are limited the parameters M and Σ must be treated as random variables. Then,

xij has a Student distribution according to the Equation 4.6.

Fx(x) = Ftv′′

[
ln(x/m′′)

s′′

(
1 +

1

n′′

)−0.5
]

(4.6)

where Ftv′′ is the Student distribution for v′′ degrees of freedom. fc0,ij can be

represented by the Equation 4.7.

fc0,ij = exp

[
m′′ + tv′′s′′

(
1 +

1

n′′

)0.5
]

(4.7)

The values of m′′, n′′, s′′ and v′′ depends on the amount of specific information.

Table 4.2 gives the values if no specific information is available (prior information).

If n′′f ′′ > 10 a good approximation of the concrete strength distribution is the

lognormal distribution with mean m” and standard deviation s′′
√

n′′

n′′−1
v′′

v′′−2
.

The spatial variability of the concrete properties in the member is consid-

ered assuming that the variables Uij and Ukj are correlated by the correlation

57



4. Probabilistic models of material properties and geometry

Table 4.2: Prior parameters for concrete strength distribution (JCSS, 2001).

Conc. type Conc. grade Param. m′ Param. n′ Param. s′ Param. v′

Ready mixed

C15 3.40 3.0 0.14 10

C25 3.65 3.0 0.12 10

C35 3.85 3.0 0.09 10

C45 3.98 3.0 0.07 10

C55 — — — —

Plant cast

C15 — — — —

C25 3.80 3.0 0.09 10

C35 3.95 3.0 0.08 10

C45 4.08 4.0 0.07 10

C55 4.15 4.0 0.05 10
Note: fc0 in MPa; the prior parameters may depend on the geographical area and the

technology with which concrete is produced

coefficient defined as follows (see Equation 4.8):

ρ(Uji, Ukj) = ρ + (1− ρ) exp

[
(rij − rkj)

2

d2
c

]
(4.8)

where dc = 5m and ρ = 0.5. For different jobs Uij and Ukj are uncorrelated.

4.2.3 Existing probabilistic models

Concrete compressive strength. One of the first comprehensive probabilistic

model of this parameter was proposed by Mirza et al. (1979). The model bases on

the observations and analysis of experimental data collected by various authors

in the United States, Canada and Europe. The model can be expressed by the

following Equation 4.9:

fc,real = fc,nominalMFL (4.9)

where fc,real is the real concrete compressive strength in the structure; fc,nominal

is nominal concrete compressive strength; M is random variable relating real

cylinder strength to nominal compressive strength; F is random variable relat-

ing in-situ strength to real cylinder strength; and L is random variable relating

strengths obtained at different test conditions (e.g. velocity of load application).
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In their work Mirza et al. (1979) concluded that the variable F relating the in-

situ strength to the real cylinder strength has a normal distribution with a mean

value varied from 0.74–0.96 and a coefficient of variation around 10%. Based

on the works of other authors he also deduced that the mean value of the con-

crete cilinder compresive strength is about 5–7 MPa greater than the nominal

value. However, the probability distribution functions describing properly the

concret cylinder compressive strength are normal or lognormal (for low strength

concretes).

Considering those observations and neglecting the effect of the test conditions

Mirza et al. (1979) suggest the following expression for the mean value of concrete

compressive strength (see Equation 4.10):

f̄c,real = 0.675fc,nominal + 7.7 ≤ 1.15fc,nominal [MPa] (4.10)

The coefficient of variation of real concrete compressive strength, proposed by

Mirza et al. (1979), can be calculated due to Equation 4.11.

V 2
c,real = V 2

M + V 2
F + V 2

L (4.11)

where VM , VF and VL are coefficients of variation of variables M, F and L respec-

tively.

Neglecting the effect of test condition, VL = 0%, assuming variation of con-

crete strength in a structure with a respect to the compressive strength of control

cilinder, VF , of 10% and considering that the strength of concrete measured by

control cilinders includes variations in the ”real” concrete strength and and the

so-called ”in-test” variations due to testing procedure, V 2
M = V 2

c,cyl − V 2
test (where

the variation within cilinder test V 2
test = 4%), the expression 4.11 can be simplified

to the following Equation 4.12:

V 2
c,real = V 2

c,cyl + 0.0084 (4.12)

where Vc,cyl is the coefficient of variation for results for control cylinders taken

on-site.

Based on the observations of other authors Mirza et al. (1979) also concluded

that in general the coefficient of variation of compression strength of in-situ con-

crete test cylinders for high quality control oscillate around 7–10% and for normal
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quality control around 12–20%. This values refers to the test speciments from

the same batch. When the test speciments are taken from different batches the

additional dispersion are observed. For high quality control the additional coeffi-

cent of variation oscilate around 4–5% and for the normal control quality is close

to 6%.

In the 90-ties Stewart (1995) proposed a probabilistic model which define the

real in-situ concrete strength as a function of curing and compaction of concrete

(see Equation 4.13):

fc,real = fc,nominalFkcrkcp (4.13)

where fc,real is the real concrete compressive strength in the structure; fc,nominal is

nominal concrete compressive strength; F is random variable relating real cylinder

strength to nominal compressive strength; (kcr) is random variable describing

curing conditions and (kcp) is random variable describing compaction.

Based on the collected data Stewart (1995) suggested to model kcp by nor-

mal or lognormal probability distribution function with mean value oscillating

between 0.8 and 1.0 for poor and good concretes respectively. However, for the

kcr he proposed to use the same distribution types as previously with mean value

between 0.66 for poor concretes and 1.0 for concretes of good quality. The co-

efficient of variation of fc,real can be calculated assuming that the coefficient of

variation of kcp takes values between 6% and 0% for poor and good compaction

respectively and the coefficient of variation of kcr varies between 5% for poor con-

crets and 0% for concretes of good quality. However the variable F in Equation

4.13, relating in-situ strength to real cylinder strength, can be considered as in

the previously described model.

Another comprehensive and relatively simple model was proposed by Bartlett

& MacGregor (1996). It was developed based on the already described work of

Mirza et al. (1979). The model can be expressed by the following Equation 4.14:

fc,real = F1F2fc,nominal (4.14)

where fc,real is the real concrete compressive strength in the structure; fc,nominal

is nominal concrete compressive strength; F1 is random variable relating real

cylinder strength to nominal compressive strength and F2 is random variable

relating in-situ strength to real cylinder strength.
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The coefficient of variation of real concrete compressive strength, proposed by

Bartlett & MacGregor (1996), can be calculated due to Equation 4.15.

V 2
c,real = V 2

F1
+ V 2

F2
(4.15)

where VF1 is the coefficient of variation of F1 and VF2 is the coefficient of variation

of F2.

Based on the experimental results performed in Canada Bartlett & MacGregor

(1996) concluded that F1 can be described by the normal or lognormal probability

distribution function with the mean value of 1.25 and a standard deviation of 0.13

for concretes produced for cast-in-place constructions or a mean value of 1.19

and a standard deviation of 0.06 for concretes produced for precast production.

However, F2 at 28-days can be expressed by the lognormal distribution function

with the mean value oscillating between 0.95 and 1.03 (depending on the element

height) and the coefficient of variation of 14%. Bartlett & MacGregor (1996)

suggest that the in-place strength for a given specified strength is uncertain due

to the inherent randomness of factors F1 and F2 and also due to the variation

in strength within the structure (spatial variability). The coefficient of variation

due to spatial variability was assessed to vary between 7% for one member cast

form one batch and 13% for many members casted from many batches.

Besides the already described models of concrete compressive strength in

structures many others works characterizing statistically variations of concrete

strength in the test cylinders exist. Sobrino (1993) proposed models based on

the results collected on the bridge construction sites in Spain. Henriques (1998)

studied the variability of strength of concretes used in the constructions of two

viaducts in Portugal. In the Project Report PCSF (2002) authors present result

of the study of the variability of strength of concretes used for production of pre-

cast elements (obtained due to test campaign in 20 Europeans precast plants).

Moreover, Nowak & Szerszen (2003) published the results obtained for ordinary

ready mix, high strength and plant cats concretes collected in the United States

and used for the calibration of ACI Design Code for Buildings. The resume of all

the results obtained by various authors in all the mentioned works and also some

not mentioned in the text are presented in Tables 4.3 and 4.4.
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Table 4.3: Statistical parameters of site-cast concrete.

Origin Nominal Bias St. Dev. COV

(Reference) fck [MPa] λc σc [MPa] CVc [%]

US, Canada and Europe, < 27 — — 10 – 20

(Mirza et al., 1979) ≥ 27 — 2.7 – 5.4 —

Sweden,
35 1.24 — 8.5

(see Thelandersson, 2004)

Former Czechoslovakia,
20 – 25 1.17 – 1.33 2.8 – 4.6 9 – 14

(see Sobrino, 1993)

Germany, (see Sobrino, 1993) 25 – 45 — — 9 – 20

Spain, (Sobrino, 1993) 25 – 40 1.09 – 1.39 2.6 – 4.2 6 – 11

Canada,
≤ 55 1.25 — 10

(Bartlett & MacGregor, 1996)

Portugal, (Henriques, 1998) 20 – 35 1.23 – 1.55 3.9 – 6.6 9 – 17

Austria, (Strauss, 2003) 25 – 50 1.02 – 2.04 1.0 – 2.7 2 – 6

United States, 21 – 41 1.12 – 1.35 1.5 – 4.9 4 – 15

(Nowak & Szerszen, 2003) 48 – 83 1.04 – 1.19 5.4 – 9.0 9 – 12
Note: in general the lower values of bias factors, standard deviations and coefficient of

variations corresponds to concretes of higher resistance

Table 4.4: Statistical parameters of plant-cast concrete.

Origin Nominal Bias St. Dev. COV

(Reference) fck [MPa] λc σc [MPa] CVc [%]

Germany, (see Sobrino, 1993) 50 – 65 — — 6

Canada,
≤ 55 1.19 — 5

(Bartlett & MacGregor, 1996)

Europa, (PCSF, 2002) 40 – 90 — 2.0 – 6.0 3 – 11

United States,
34 – 45 1.14 – 1.38 4.1 – 5.7 8 – 12

(Nowak & Szerszen, 2003)
Note: in general the lower values of bias factors, standard deviations and coefficient of

variations corresponds to concretes of higher resistance
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As it was already mentioned before the concrete strength in the structure is

usually somehow smaller than the strength of the concrete test cylinders. In the

literature exist some models which allowed to relate the compressive strength of

the standard test cylinder with the compressive strength of cores drilled from

the structure. Besides the already described works of Mirza et al. (1979) and

Bartlett & MacGregor (1996) the study performed by Gonçalves (1987) and the

study performed within European Research Project ”Precast Concrete Safety

Factors” (PCSF, 2002) are examples of significant importance. In Table 4.5 the

models proposed by various authors are presented.

Table 4.5: In-situ concrete compressive strength versus test cylinder strength.

Origin
Type of Distrib.

Mean Coef. of Var.

(Reference) µ CV [%]

US, Canada and Europe,
Not specified 0.74 – 0.96 10

(Mirza et al., 1979)

Portugal, (Gonçalves, 1987) Not specified 0.69 – 1.02 3 – 14(a)

Canada,
Lognormal 0.95 – 1.03 14

(Bartlett & MacGregor, 1996)

Europa, (PCSF, 2002) Deterministic 0.86 —
(a) depending on the element type (slab, beam, etc.) and curing and compaction condition

Other mechanical properties of concrete. Besides compressive strength

the properties of concrete that are of interest are: tensile strength, fct; elasticity

modulus, Ec; and ultimate strain in compression, εcu. Unfortunately there are

not many publications where some probabilistic models of those parameters are

presented. However, in references (Mirza et al., 1979; Spaethe, 1992) some models

can be found.

The concrete uniaxial splitting tensile strength, according to Mirza et al.

(1979), can be modelled by the normal distribution with the mean value cal-

culated by the Equation 4.16 (where fc is the concrete compressive strength) and

with the coefficient of variation equal to 13%.

fcts = 0.53f 1/2
c [MPa] (4.16)

63



4. Probabilistic models of material properties and geometry

The concrete uniaxial flexural tensile strength can be modelled by the normal

distribution with the mean value calculated by the Equation 4.17 and with the

coefficient of variation equal to 20%.

fctf = 0.69f 1/2
c [MPa] (4.17)

However Spaethe (1992) suggests to model the uniaxial splitting tensile strength

by the normal or lognormal distribution function with the mean value defined by

the Equation 4.18 (where fc is the concrete compressive strength) and with the

coefficient of variation of 18–20%.

fcts = 0.30f
2/3
ck [MPa] (4.18)

For the high strength concretes (>C50/60), according to EC-2 (2004), the fol-

lowing relation should be used 4.19:

fcts = 2.12 ln

(
1 +

fcm

10

)
[MPa] (4.19)

The concrete initial tangent elasticity modulus, according to Mirza et al.

(1979), can be modelled by the normal distribution with the mean value cal-

culated by the Equation 4.20 (where fc is the concrete compressive strength) and

with the coefficient of variation equal to 8%.

Eci = 5015f 1/2
c [MPa] (4.20)

The concrete secant elasticity modulus (at 30% of maximum stress) can be mod-

elled by the normal distribution with the mean value defined by the equation 4.21

and the coefficient of variation of 12%.

Ecs = 4600f 1/2
c [MPa] (4.21)

However, according to EC-2 (2004), the following relation should be used to model

secant elasticity modulus up to 40% of maximum stress (see Equation 4.22):

Ecs = 22000f 0.3
c [MPa] (4.22)

The Equation 4.22 refers to the concretes with quartzite aggregates. For lime-

stone and sandstone aggregates the value should be reduced by 10% and 30%

respectively. For basalt aggregates the value should be increased by 20%.
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4.2.4 Obtained experimental results

In order to verify the correspondence between the probabilistic models of the

most important concrete properties presented in previous section and variability

of those properties observed in the precast concrete bridges in Portugal a signifi-

cant amount of data was collected and analysed statistically within the program

of this thesis. The analysed data was made available for this study by the con-

crete laboratories of one civil engineering contractor and two precast concrete

companies from north of Portugal.

The statistical evaluation of data confirmed that normal and lognormal prob-

ability distribution functions describes accurately variability of concrete compres-

sive strength. The basic statistics of that property obtained in the analysis are

showed in Tables 4.6 and 4.7. The results presented in tables correspond to con-

crete compressive strength at 28 days tested on the standard specimens used for

the purpose of the quality control.

The complete outcome of the performed statistical analysis is presented in the

report Wísniewski et al. (2006c) and its resume can be find in the Appendix A.

Table 4.6: Statistical parameters of site-cast concrete.

Origin, (Reference)
Nominal Bias fact. St. Dev. Var. coef.

fck [MPa] λc σc [MPa] CVc [%]

Portugal, (see Appendix A)

25 1.26 2.9 7.7

30 1.18 3.3 7.5

40 1.18 3.4 5.8

Table 4.7: Statistical parameters of plant-cast concrete.

Origin, (Reference)
Nominal Bias fact. St. Dev. Var. coef.

fck [MPa] λc σc [MPa] CVc [%]

Portugal, (see Appendix A)

35 1.08 2.3 4.7

40 1.08 2.4 4.5

45 1.00 2.2 3.9

30 1.23 4.0 8.8

45 1.02 2.9 5.2
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4.2.5 Proposed probabilistic models

Despite the fact that the analysed amount of data, regarding concrete compres-

sive strength at 28 days, was quite significant and corresponds to the production

of concrete of several producers during significant period of time the results pre-

sented in previous section are not exhaustive. However, comparing the results

showed in Tables 4.6 and 4.7 with those presented in Tables 4.3 and 4.4 it can be

observed that they are very similar, especially when comparing them with just

the most recent data. Therefore, it can be assumed that the results obtained in

the performed study and presented in Tables 4.6 and 4.7 are representative for

the concrete compressive strength in the test specimens of site-cast and plant-cast

concretes used for the construction of bridges in Portugal.

In order to define compressive strength of concrete in structure one of the

models described previously in this chapter may be used. In particular the model

proposed by Bartlett & MacGregor (1996) (defined by Equations 4.14 and 4.15)

can be recommended as relatively simple and sufficiently comprehensive. The

distribution function recommended to use are normal and lognormal.

Considering above mentioned model and using somehow averaged values of

the parameters presented in Tables 4.6 and 4.7 the following statistical parameters

of 28 days concrete compressive strength in structures were obtained:

• for site-cast concrete: fc,real = 1.0 × fc,nominal considering F1 = 1.20 and

F2 = 0.85; Vc,real = 12% considering VF1 = 7% and VF2 = 10%.

• for plant-cast concrete: fc,real = 1.0 × fc,nominal considering F1 = 1.10 and

F2 = 0.90; Vc,real = 9% considering VF1 = 5% and VF2 = 8%.

Lower value of F2 and a bit bigger VF2 were chosen for site-cast concrete due to

the fact that the level of concrete compaction in those structures is usually not

as good as in plant-cast structures.

Regarding probabilistic models of other concrete properties, the tensile strength

can be modelled by normal or lognormal distribution with the mean value cal-

culated using Equation 4.18 and with the coefficient of variation of 20%. The

elasticity modulus can be modeled by normal distribution with the mean value

defined by the Equation 4.22 and with the coefficient of variation of 8%.
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4.3 Material models for reinforcing steel

4.3.1 Basics

The mechanical behaviour of the reinforcing steel is characterized by the ultimate

tensile strength, by the yielding strength and by the ductility or deformation

capacity. Knowing all those parameters it is possible to define unambiguously

the reinforcing steel behaviour expressed by the stress-strain curves. In Figure

4.2 the typical stress-strain curve for hot rolled steel is presented.

Figure 4.2: Typical stress-strain diagram for reinforcing steel.

The variability of mechanical properties of reinforcing steel is generally lower

than variability of parameters describing concrete. This is mostly due to higher

industrialization of the production and higher level of the quality control. Ac-

cording to Sobrino (1993) the principal factors that influence the variability of

mechanical behaviour of reinforcing steel bars are as follows:

• variability of the material strength (which depends of material itself, fabri-

cation process, producer, etc.);

• variability of bar’s geometry;

• material degradation (e.g. corrosion);

• load history (fatigue phenomena);
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• method of definition of the conventional strength parameters fsy and fsu

and their’s experimental evaluation (type of the test, velocity of the load

application, etc.);

Several mechanical properties of the reinforcing steel can be defined during

experimental tests, namely yielding strength fsy, ultimate strength fsu, ultimate

strain εsu, etc. However, the property which is tested most often is the yielding

strength. Remaining parameters describing steel behaviour are investigated with

lower frequency. Even so the existing results allow to define the probabilistic

models of those properties and allow to check the correlations between them.

Some data about variation in the bar diameters and related with it bar area As

are also collected and probabilistic models are proposed.

In the following points the probabilistic models of most important material

and geometrical properties of the reinforcing steel found in specialized codes and

in the technical literature are resumed. Besides that the probabilistic models

developed within the program of this thesis are also presented.

4.3.2 Codes approach

Model proposed in Probabilistic Model Code. According to JCSS (2001),

the yield stress of the reinforcing steel bar can be defined as the sum of three

independent Gaussian variables (see Equation 4.23)

X1(d) = X11 + X12 + X13 (4.23)

where:

X11 = N(µ11(d), σ11) represents the variations related to different steel producers,

X12 = N(0, σ12) represent the batch to batch variation,

X13 = N(0, σ13) represent the variation within the single batch and

d is the nominal bar diameter.

For a steel production of good quality the following values of standard devia-

tions can be used: σ11 = 19 MPa, σ12 = 22 MPa and σ13 = 8 MPa resulting in an

overall standard deviation σ1 = 30 MPa. The mean value of the yield strength is

defined by the Equation 4.24.

µ1 = Snom + 2σ1 (4.24)
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The Table 4.8 shows remaining steel parameters as defined in JCSS (2001).

However Table 4.9 shows the correlations between all the parameters. For all the

quantities presented in the Table 4.8 normal distribution can be adopted.

Table 4.8: Statistical parameters of reinforcing steel (JCSS, 2001).

Steel Mean value Standard dev. Coef. of Var.

Property Xmean σX CV

Bar area As As,nom — 2.0%

Yield strength fsy fsy,nom + 2σ 30 MPa —

Ultimate strength fsu — 40 MPa —

Ultimate strain εsu — — 9.0%

Table 4.9: Correlations between parameters of reinforcing steel (JCSS, 2001).

Bar area Yield strength Ult. strength Ult. strain

As fsy fsu εsu

Bar area 1.00 0.50 0.35 0.00

Yield strength 0.50 1.00 0.85 −0.50

Ult. strength 0.35 0.85 1.00 −0.55

Ult. strain 0.00 −0.50 −0.55 1.00

4.3.3 Existing probabilistic models

Yield strength of reinforcing steel. The probabilistic model of this parame-

ter was already proposed in the end of the 70-ties by Mirza & MacGregor (1979a)

when the first generation of partial safety factor design codes were under devel-

opment. The proposed model bases on the experimental data collected in the

United States, Canada and Europe mostly in the 50-ties and 60-ties.

In the last decades also some probabilistic models were defined based on the

more recent data collected in Europe. Among others, the works of Sobrino (1993)

and Pipa (1995) should be mentioned here as the examples of great relevance.

Aiming to verify hypothesis about higher quality of ordinary reinforcing steel

produced nowadays in comparison to the steels produced in past decades numer-

ous data of yielding tensile strength were collected recently in the United States.
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Based on those data probabilistic models were developed by Nowak & Szerszen

(2003) and they where used in the calibration of the latest version of the ACI

design code for buildings.

In Europe also new campaign of data collection was recently performed and

the probabilistic models for produced reinforcing steels bars were proposed by

Strauss (2003).

In Table 4.10 the resume of the experimental results obtained by various

authors is presented. Table shows the nominal values, the bias factors and the

coefficients of variations of the steel yield strength. It is important to notice that

the coefficients of variation presented in the table are affected by all the sources

of uncertainty as: variation in the strength of material itself, variation in the

area of the cross-section, effect of bar diameter on properties of bars and effect

of strain at which yield is defined.

Table 4.10: Experimental results of steel yielding strength.

Origin Nominal value Bias fact. Coef. of Var.

(Reference) fsyk [MPa] λsy CVsy [%]

Denmark, (see Sobrino, 1993) 370 – 420 — 4 – 5(a); 10(b)

Sweden, (see Sobrino, 1993) — — 8(b)

US, Canada and Europe, 280 1.20 10.7(b)

(Mirza & MacGregor, 1979a) 410 1.20 9.3(b)

France, (see Henriques, 1998) — — 4(a); 10(b)

Spain, (Sobrino, 1993) 500 1.20 8.1(b)

Europe, 400 1.24 4.7(b)

(Pipa, 1995) 500 1.17 5.2(b)

Europe, (Strauss, 2003) 500 1.156 2.3(b)

US, (Nowak & Szerszen, 2003) 420 1.145 5.0(b)

(a) samples derived from one batch; (b) samples derived from different batches or sources

As can be observed the bias factor which relates the mean value obtained

from the experimental test with the nominal or expected value, regardless to the

steel grade, oscillate around value 1.20 except two last cases when it is close to

1.15. The coefficients of variation obtained for the specimens taken from the same

batch or from the same producer are taking values around 4–5%. However the
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coefficients of variations obtained for the speciments taken from different sources

are oscilating around 8–10% except the cases of the most recent results when the

coefficients of variation are between 2.5% and 5%. Observed significant difference

in the coefficient of variation between data collected in the past decades and that

collected recently could be explained by the improvements of the fabrication

process and by more stricted requirements related to the control of quality.

Regarding the types of the probability distribution functions, various authors

suggest different theoretical models. Nowak & Szerszen (2003) use the normal

probability distribution function to model the yield strength of reinforcing steel.

However, other authors recommend lognormal distribution (Sobrino, 1993) or

Beta distribution (Mirza & MacGregor, 1979a) as more appropriate.

Other properties of reinforcing steel. Besides the yield strength of steel

some other properties were also observed by several authors. Tables 4.11, 4.12

and 4.13 show the results of experimental test gathered and statistically treated

by Sobrino (1993) and Pipa (1995). The results correspond to steel grades S500

and S400 produced in Europe.

Table 4.11: Experimental results obtained by Sobrino (1993) for S500 steel grade.

Steel Mean value Min. value Max. value Coef. of Var.

Property Xmean Xmin Xmax CV

Ultimate strength fsu 690 MPa 614 MPa 856 MPa 7.8%

Yield strength fsy 602 MPa 511 MPa 770 MPa 8.1%

Ratio fsu/fsy 1.147 1.055 1.250 4.0%

Ultimate strain εsu 23.3% 12.6% 30.3% 12.7%

Ratio As,real/As,nom 1.005 0.965 1.055 2.1%

Analysing the results presented in those tables, it can be observed that for

the reinforcing steel bars produced in Europe the ultimate strength is 15 to 20%

higer than yield strength. Results obtained by Strauss (2003) are nearly the same.

However, based on data collected in US, Canada and Europe Mirza & MacGregor

(1979a) concluded, that ultimate strength of reinforcing bars is aproximatelly 55%

higher than yield strength.
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Table 4.12: Experimental results obtained by Pipa (1995) for S400 steel grade.

Steel Mean value Min. value Max. value Coef. of Var.

Property Xmean Xmin Xmax CV

Ultimate strength fsu 598 MPa 552 MPa 646 MPa 3.3%

Yield strength fsy 496 MPa 431 MPa 544 MPa 4.7%

Ultimate strain εsu 11.8% 7.5% 16.0% 14.3%

Inic. of hard. εsh 2.2% 1.6% 3.1% 20.0%

Modul. of hard. Esh 3.00 GPa 2.17 GPa 5.02 GPa 22.0%

Table 4.13: Experimental results obtained by Pipa (1995) for S500 steel grade.

Steel Mean value Min. value Max. value Coef. of Var.

Property Xmean Xmin Xmax CV

Ultimate strength fsu 680 MPa 613 MPa 752 MPa 4.2%

Yield strength fsy 585 MPa 519 MPa 656 MPa 5.2%

Ultimate strain εsu 9.4% 6.0% 13.0% 14.9%

Inic. of hard. εsh 1.4% 0.7% 2.3% 31.0%

Modul. of hard. Esh 3.51 GPa 2.72 GPa 5.33 GPa 15.0%

Mirza & MacGregor (1979a) observed as well that the coefficients of variation

of the ultimate strength is very similar to the coefficient of variation of the yield

strength. It can be explained by the fact of the same sources of variation for

this two parameters. The results obtained by Sobrino (1993) and Strauss (2003)

confirm this observation. However, analysing result of Pipa (1995) it can be

noticed that coefficient of variation of ultimate strength is slightly lower than

this corresponding to the yield strength.

Regarding the probability density functions, various authors suggest different

types. However, in general they recommend to be consistent and use the same

distribution for ultimate and yield strength.

In their work, besides the already discussed ultimate and yield strengths of

steel, Mirza & MacGregor (1979a) analysed also the ratio of the real to notional

reinforcing bar area. They concluded that the mean value of this parameter oscil-

late between 0.96 and 1.20. However the coefficient of variation takes the values

between 0.2% and 9%. Sobrino (1993) obtained results of 1.005 for mean value
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of the ratio and 2.1% for its coefficient of variation. The type of the probability

distribution function considered by both authors most appropriate for modeling

this parameter is the Gaussian distribution.

Mirza & MacGregor (1979a) proposed also the probabilistic models of steel

elasticity modulus. The recommended distribution type is the normal distribution

with the mean value of 201 GPa and coefficient of variation 3.3%.

As it can be observed in Tables 4.11, 4.12 and 4.13, the ultimate strain of

reinforcing steel is characterized by relatively high coefficient of variation oscil-

lating between 12-15%. The mean values of the ultimate strain are taking values

between 9 and 24%. Similar results of the mean ultimate strains were obtained

by Strauss (2003). However, the coeficients of variation were smaller, around 8%.

4.3.4 Obtained experimental results

In order to verify the correspondence between the probabilistic models of the

properties of reinforcing steel bars presented in previous section and variability of

these properties observed on construction-sites in Portugal the significant amount

of data were collected and analysed statistically. The analysed data were made

available for this study by the Department of Civil Engineering of the University

of Coimbra. The data were collected for reinforcing bars of various diameters

(10–25 mm) and for steels S500 of normal (NR) and special (NRSD) ductility.

The statistical evaluation of data confirmed that normal and lognormal prob-

ability distribution functions describes accurately variability of most of the prop-

erties of reinforcing steel bars. The basic statistics of all the parameters obtained

in the analysis are showed in Tables 4.14 and 4.15. The results presented in Ta-

bles correspond to properties tested on the standard specimens. The complete

outcome of the performed statistical analysis is presented in the Appendix B.

4.3.5 Proposed probabilistic models

Although the analysed amount of data, regarding properties of reinforcing steel

bars, was quite significant the results presented in previous section are not suf-

ficient to propose reliable probabilistic models. However, comparing the results

showed in Tables 4.14 and 4.15 with those presented in Tables 4.10, 4.11, 4.12
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Table 4.14: Experimental results of reinforcing steel strength.

Origin Str. Nominal Bias fact. Coef. of Var.

(Reference) val. [MPa] λ CV [%]

Portugal, (see Appendix B)

fsy 500 1.21 6.0

fsu 550 1.28 5.9

fsy 500 1.16 5.5

fsu 575 1.20 4.9

Table 4.15: Experimental results of other properties of reinforcing steel.

Origin Param. Nominal Bias Var. Coef.

(Reference) value λ CV [%]

Portugal, (see Appendix B)

fus/fys 1.10 (1.15) 1.06 (1.04) 3.3 (2.8)

Es 200 GPa 1.01 – 1.03 1.0 – 4.9

εs 5% (8%) 2.7 (1.64) 24.5 (19.2)

As 10–25 mm2 0.92 – 0.94 4.3 – 4.4
Values in the parenthesis corresponds to steel bars of special ductility.

and 4.13 it can be observed that they are quite similar especially when compar-

ing them to the most recent data. Therefore, it can be assumed that the results

obtained in the performed study are representative for the reinforcing steel bars

used in the construction of bridges in Portugal.

Based on the results presented mostly in Tables 4.14 and 4.15 but also in

Tables 4.8–4.15 the following statistical parameters of strength properties of re-

inforcing steel are recommended for using in the probabilistic analysis:

• yield strength: for older steels λ=1.20 and CV=10%; for modern steels

λ=1.15 and CV=5%.

• ultimate strength: 15-20% higher than yield strength; CV=10% and CV=5%

for older and modern steels respectively.

Both properties can be modelled by lognormal or normal probability distribution

function.

Regarding probabilistic models of other properties of reinforcing steel, the

ultimate strain can be modelled by lognormal or normal distribution function
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with mean value equal to 10% and the coefficient of variation equal to 15%. Steel

elasticity modulus can be modelled by normal distribution with the mean value

equal to 202 GPa and the coeficient of variation of 4%. The area of reinforcement

can also be modelled by normal distribution with coeficient of variation of 2%

and the mean value equal to nominal.

4.4 Material models for prestressing steel

4.4.1 Basics

The mechanical behaviour of the prestressing steel is characterized by the ultimate

tensile strength, by the proportionality limits and by the ductility or deformation

capacity. In Figure 4.3 the typical stress-strain diagram of prestressing steel in

uniaxial tension is presented.

Figure 4.3: Typical stress-strain diagram for prestressing steel.

As in the case of reinforcing steel the variability of mechanical behaviour of

prestressing steel bars, strands or wires depends on the following factors:

• variability of the material strength (which depends of material itself, fabri-

cation process, producer, etc.);

• variability of wire, strand or bar geometry;
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• material degradation (e.g. corrosion);

• load history (fatigue phenomena);

• method of definition of the conventional strength parameters fpy and fpu

and their’s experimental evaluation (type of the test, velocity of the load

application, etc.);

Due to the fact that prestressing steel do not have a distinct yield point their

yield stress is determined according to strain criteria. Depending on the standard,

the yield stress fpy can be defined as the stress at 0.1% offset, fp0.1, as the stress

at 0.2% offset, fp0.2 or as the stress that corresponds to total strain of 1% for

wires and strands and of 0.75% for prestressing bars. Besides those parameters

defining proportionality limits for prestressing steel, other mechanical properties

as ultimate tensile strength fpu, modulus of elasticity Ep, ultimate strain εpu, are

also of interest.

In the following points the probabilistic models of most important material

properties of the prestressing steel found in codes and in the specialized literature

are resumed. The probabilistic models developed based on data collected in

Portugal are also presented.

4.4.2 Codes approach

Model proposed in Probabilistic Model Code. According to JCSS (2001),

the variability of mechanical properties of prestressing steel can be described by

the following independent Gaussian variables: fpu, Ep and εpu. Statistical param-

eters of these variables are presented in Table 4.16, where fpk is the characteristic

(nominal) tensile strength of prestressing steel which usually denotes the steel

grade.

According to JCSS (2001), due to the strong correlations between the ultimate

tensile strength fpu and other stresses that characterize the stress-strain diagram

(fpp, fp0.1, fp0.2, fpy), these stresses can be expressed via ultimate tensile strength

fpu. Table 4.17 shows the relations between the stresses and fpu which can be

adopted when the steel supplier does not provide more adequate informations.
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Table 4.16: Statistical parameters of properties of prestressing steel (JCSS, 2001).

Steel Mean value Stand. dev. Coef. of Var.

Property Xmean σX CV

Ultimate strength fpu 1.04fpk — 2.5%

fpk + 66 MPa 40 MPa —

Elasticity modulus Ep 200 GPa(a), 195 GPa(b) — 2.0%

Ultimate strain εpu 0.05 0.0035 —
(a) for bars and wires; (b) for strands

Table 4.17: Relations between fpu and proof stresses (JCSS, 2001).

Steel Stress fpp Stress fp0.1 Stress fp0.2 Stress fpy

type (proportional) (0.1% offset) (0.2% offset) (1% strain)

Wire 0.70fp 0.86fp 0.90fp 0.85fp

Strand 0.65fp 0.85fp 0.90fp 0.85fp

Bar — — — 0.85fp

4.4.3 Existing probabilistic models

Strength of prestressing steel. The statistical parameters of the prestressing

steel mechanical properties were not so well reported before the middle of the 90-

ties. However, some probabilistic models based on data from United States were

already proposed by Mirza et al. (1980) two decades ago.

In the beginning of the 90-ties some results of experimental tests performed

in the United States were published (Devalapura & Tadros, 1992). However,

the number of tested samples was relatively low and the probabilistic models

proposed based on those results were not sufficiently reliable.

The important step on the definition of probabilistic models of prestressing

steel mechanical properties was done by Sobrino (1993). He proposed model

based on data from more than 800 results of strength test performed in Spain.

Recently significant amount of data was gathered in United States and in

Europe in order to upgrade the existing probabilistic models of prestressing steel

strength parameters. The upgraded models corresponding to North American

production were proposed by Nowak & Szerszen (2003). However, Strauss (2003)
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proposed models based on European data.

In Table 4.18 the resume of the experimental results obtained by various

authors is presented. Table shows the nominal values, the bias factors and the

coefficients of variations of the prestressing steel ultimate and theoretical yield

strengths. The theoretical yield was considered, in the most cases presented in

the table, as the stress corresponding to 1% strain.

Table 4.18: Experimental results of prestressing steel strength.

Origin Str. Nominal Bias Coef. of Var.

(Reference) val. [MPa] λ CV [%]

US, (Mirza et al., 1980) fpu — — 2.5

France, fpy — — 2.0 – 5.5

(see Sobrino, 1993) fpu — — 1.5 – 4.5

United States, fpy — — 3.0

(see Sobrino, 1993) fpu — — 1.0

United States, fpy 1670 1.06 1.3

(Devalapura & Tadros, 1992) fpu 1860 1.02 1.1

Spain, fpy 1670 1.04 – 1.06 1.7 – 2.5

(Sobrino, 1993) fpu 1860 1.04 – 1.06 1.8 – 2.0

Europe, fp0.2 1570 1.07 – 1.14 0.6 – 2.3

(Strauss, 2003) fpu 1770 1.03 – 1.08 0.5 – 2.2

United States, fpu 1720 1.07 – 1.14 1.0 – 3.0

(Nowak & Szerszen, 2003) fpu 1860 1.04 – 1.06 1.0 – 3.0

As can be observed the bias factor which relates the mean value obtained from

the experimental test with the nominal or expected value take values between 1.02

and 1.08 for the ultimate strength. However, the values of the bias factor for the

theoretical yield are slightly higher. The coefficient of variation of the ultimate

steel strength oscillates around 0.5–3.0%. The coefficients of variations obtained

for yield strength are on the same order.

In opposite to ordinary reinforcing steel it was not possible to observe sig-

nificant improvements in the quality of prestressing steels produced nowadays in

comparison to steels produced some decades ago. It can be explained by the fact

that the quality of the production of prestressing steel was always very high.
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Regarding the types of the probability distribution functions, Nowak & Szer-

szen (2003) propose to use Gaussian distribution function to model the ultimate

strength of prestressing steel. Sobrino (1993) recommends to use lognormal dis-

tribution. However, Strauss (2003) concludes that either normal, lognormal or

gamma distributions types can be applied.

Other properties of reinforcing steel. Besides the statistical distribution of

the ultimate tensile strength and the yield strength the probabilistic models of

some other prestressing steel properties were proposed by Sobrino (1993) based

on collected experimental data. Tables 4.19 and 4.20 show the results obtained

for strands of 0.5” and 0.6” diameter with the characteristic (nominal) ultimate

strength equal to 1860 MPa. However, the results were originally presented as the

loads registered by the strength machine, in the tables they are presented in stress

convention. The stresses in the specimens corresponding to certain level of load

were calculated assuming nominal strand area equal to 0.987cm2 and 1.40cm2 for

0.5” and 0.6” strands respectively.

Table 4.19: Experimental results obtained by Sobrino (1993) for strands 0.5”.

Steel Mean value Min. value Max. value Coef. of Var.

Property Xmean Xmin Xmax CV

0.1% proof stress fp0.1 1766 MPa 1660 MPa 1925 MPa 3.2%

0.2% proof stress fp0.2 1823 MPa 1677 MPa 1987 MPa 2.9%

1% proof stress fpy 1778 MPa 1671 MPa 1903 MPa 2.5%

Ultimate strength fpu 1973 MPa 1874 MPa 2091 MPa 2.0%

Elasticity modulus Ep 197.2 GPa 189.3 GPa 205.1 GPa 1.8%

Ultimate strain εp 5.07% 4.01% 5.58% 4.2%
Note: All the stresses were calculated considering strand area Ap = 0.987 cm2.

Analysing the results presented in those tables, it can be observed that the

coefficients of variation of the 0.1%, 0.2% and 1% proof stresses are slightly higher

than the coefficient of variation of the ultimate strength. The results obtained

by Strauss (2003) confirm this observation. Due to this fact the probabilistic

models of those parameters proposed by both authors recomend higher values of

the coeficient of variation for proof stresses than for ultimate strength. Regarding
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Table 4.20: Experimental results obtained by Sobrino (1993) for strands 0.6”.

Steel Mean value Min. value Max. value Coef. of Var.

Property Xmean Xmin Xmax CV

0.2% proof stress fp0.2 1766 MPa 1660 MPa 1907 MPa 2.2%

1% proof stress fpy 1734 MPa 1682 MPa 1855 MPa 1.7%

Ultimate strength fpu 1942 MPa 1864 MPa 2077 MPa 1.8%

Elasticity modulus Ep 196.5 GPa 186.7 GPa 208.3 GPa 1.9%
Note: All the stresses were calculated considering strand area Ap = 1.40 cm2.

the type of probability distribution function, both authors recomend to use the

same functions as in the case of ultimate strength.

Besides strength parameters Sobrino (1993) proposes also the probabilistic

models for ultimate strain and for elasticity modulus of prestressing steel. In

Tables 4.19 and 4.20, the values obtained and suggested by him as representative

for whole population are presented. The values proposed by Strauss (2003) are

nearly the same. The probability distribution function recommended to model

those parameters are normal, lognormal and gamma.

Regarding the statistical parameters of the prestressing steel area, there is

almost no data. This is due to the fact, that normally variability of this property

is included in the total variability of the specimen strength. The only found data

were presented in Mirza et al. (1980) where the coefficient of variation of the

prestressing steel area is reported to be around 1.25%.

4.4.4 Obtained experimental results

In order to verify the correspondence between the probabilistic models of the

properties of prestressing steels presented in previous section and variability of

those properties observed in Portugal the significant amount of data was analysed

statistically within the program of this thesis. The analysed data was made avail-

able for this study by the Department of Civil Engineering of the University of

Coimbra. The data was obtained for 7 wires prestressing strands of two different

grades, 1770 and 1860, and two different diameters, 15.2 and 16 mm.
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The statistical evaluation of data confirmed that normal and lognormal prob-

ability distribution functions describes accurately variability of most of the pre-

stressing steel properties. The basic statistics of all the parameters obtained in

the analysis are showed in Tables 4.21 and 4.22. The results presented in tables

correspond to properties tested on the standard specimens used for the purpose

of the quality control. The complete outcome of the performed statistical analysis

is presented in the Appendix C.

Table 4.21: Experimental results of prestressing steel strength.

Origin Str. Nominal Bias Coef. of Var.

(Reference) val. [MPa] λ CV [%]

Portugal, (see Appendix C)

fpy 1520 1.05 1.7

fpu 1770 1.02 1.2

fpy 1670 1.03 – 1.04 2.6 – 2.9

fpu 1860 1.03 – 1.04 2.2 – 2.3

Table 4.22: Experimental results of other properties of prestressing steel.

Origin Par. Nominal Bias Var. Coef.

(Reference) value λ CV [%]

Portugal, (see Appendix C)

Ep 195 GPa 1.00 – 1.02 1.7 – 2.1

εp 3.5 % 1.10 – 1.19 8.7 – 13.8

Ap 140/150 mm2 1.00 – 1.01 0.4 – 1.3

4.4.5 Proposed probabilistic models

Despite the fact that the analysed amount of data, regarding properties of pre-

stressing steel, was quite significant and corresponds to the production of pre-

stressing strands of various producers during several years the results presented

in previous section can not be considered as representative for whole population

of prestressing steels used in the construction of bridges in Portugal. However,

comparing the results showed in Tables 4.21 and 4.22 with those presented in

Tables 4.16, 4.18,4.19 and 4.20 it can be observed that they are very similar.
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Therefore, it can be assumed that the results obtained in the performed study

are of rather good quality and may represent properties of the prestressing steel

strands with sufficient accuracy.

Based on the results presented mostly in Tables 4.21 and 4.22 but also in

Tables 4.16–4.20 the following statistical parameters of strength properties of

prestressing steel are recommended for using in the probabilistic analysis:

• ultimate strength: λ=1.04 and CV=2.5%.

• proof stress: 10-15% lower than yield strength; CV=3.0%.

Both properties can be modelled by lognormal or normal probability distribution

function.

Regarding probabilistic models of other properties of prestressing steel, the

ultimate strain can be modelled by lognormal or normal distribution function

with mean value equal to 5% and the coefficient of variation equal to 8%. Steel

elasticity modulus can be modelled by normal distribution with the mean value

equal to 197 GPa and the coeficient of variation of 2%. The area of reinforcement

can also be modelled by normal distribution with coefficient of variation of 1.3%

and the mean value equal to nominal.

4.5 Models of geometry

4.5.1 Basics

Geometric imperfections in concrete elements are caused by deviations from the

specified values of the cross-sectional shape and dimensions, the position of active

and passive reinforcement, the horizontality and verticality of concrete lines, the

alignment of columns and beams and the grades and surfaces of constructed

structure (Mirza & MacGregor, 1979b).

Obviously the geometric imperfections affects both, actions on the structure

(structure self weight) and the structure response (ultimate resistance, stiffness,

etc.). Besides this it could also affects the structure durability (e.g. due to

reduced reinforcement cover).
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The geometrical imperfections are strictly related to the execution quality

and to the tolerances permissible by the legal codes or norms for structure execu-

tion. The following factors affects the basic statistical characteristics (bias factor,

coefficient of variation, correlations, etc.) of structure geometric imperfections:

• structural type (slab bridge, voided slab bridge, I girder bridge, box girder

bridge, etc.);

• construction process and applied technology (precast, in-situ, launching

method, cantilever method, etc.);

• execution quality;

– constructor, workmen, experience in the same types of construction;

– site location;

– size, type and quality of formworks;

– easiness of concreting and compaction operations;

– easiness of reinforcement placement;

– control and speed of execution;

– construction season and weather conditions (winter, summer, extreme

temperatures, precipitations, etc.);

The geometrical imperfections are in many cases very particular to some type

of structures, construction methods or execution technologies and they require

individual models (Sobrino, 1993). Consequently the probabilistic models or ex-

perimental data obtained on some certain structures should be used with special

concern when trying to adopt them to different cases.

In the following points the probabilistic models of the most important dimen-

sions of typical reinforced and prestressed concrete sections found in the literature

are presented. Also the models proposed by the codes are discussed and some

results of measurements performed within the program of this thesis are showed.

83



4. Probabilistic models of material properties and geometry

4.5.2 Codes approach

Model proposed in Probabilistic Model Code. According to JCSS (2001),

the dimensional deviations of a dimension X can be described by the statistical

characteristics of its deviations Y from the nominal value Xnom (see Equation

4.25):

Y = X −Xnom (4.25)

The deviations of the external dimensions of precast and cast in-situ concrete

components, for the nominal dimensions Xnom up to 1000 mm, can be modelled

by the normal distribution with the mean value and standard deviation defined

by the Equations 4.26 and 4.27 respectively.

0 ≤ µY = 0.003Xnom ≤ 3 [mm] (4.26)

σY = 4 + 0.006Xnom ≤ 10 [mm] (4.27)

The deviations of the concrete cover in the reinforced and prestressed concrete

elements can be generally modelled by the normal distribution with the mean and

standard deviation as defined in Table 4.23. However, in some cases other types

of distribution, namely one or two side limited distributions (e.g. beta, gamma,

shifted lognormal, etc.) can be more appropriate.

Table 4.23: Statistical parameters of concrete cover (JCSS, 2001).

Element and cover Mean value Stand. dev.

type µY [mm] σY [mm]

column and wall 0 – 5 5 - 10

slab bottom steel 0 – 10 5 – 10

beam bottom steel −10 – 0 5 – 10

slab and beam top steel 0 – 10 10 – 15

The deviations of the effective depth of the concrete cross-sections can be

calculated from the external dimensions and concrete cover (remembering that

the depth and concrete cover could be highly correlated). However, when better

estimates do not exist, they could be assumed as normally distributed with mean

value µY
∼= 10 mm and with the standard deviation σY

∼= 10 mm.
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4.5.3 Existing probabilistic models

As in the case of probabilistic models of reinforcing steel and concrete mechanical

properties, one of the first comprehensive probabilistic models of the geometric

deviations in reinforced concrete members were proposed by Mirza & MacGregor

(1979b). The models base on the measurement results obtained by other authors

on buildings and bridges (precast and cast in-situ) constructed in Europe and in

North America. The values of basic statistical parameters proposed by Mirza &

MacGregor (1979b) to model geometric deviations in slabs, beams and columns

are presented in Tables 4.24, 4.25 and 4.26 respectively.

Table 4.24: Variability of slab dimensions (Mirza & MacGregor, 1979b).

Dimension Technology Nominal Dev. from Standard

description of execution range [mm] Nominal [mm] dev. [mm]

Thickness
In-situ 100 – 230 0.8 12

Precast 100 – 230 0.0 5

Effective depth In-situ 100 – 200 ±20 15 – 20

(top reinforcement) Precast 100 – 200 ±20 3 – 6

Effective depth In-situ 100 – 200 −8 – 9 10 – 15

(bottom reinf.) Precast 100 – 200 0 3 – 6

Table 4.25: Variability of beam dimensions (Mirza & MacGregor, 1979b).

Dimension Technology Nominal Dev. from Standard

description of execution range [mm] Nominal [mm] dev. [mm]

Overall depth
In-situ 460 – 690 2.5 5

Precast 530 – 990 3.2 4

Rib width
In-situ 280 – 305 2.8 4.8

Precast 480 – 610 4 6.5

Flange width Precast 280 – 305 2.8 4.8

Concrete cover In-situ 12 – 25 −3 – 6 16 – 18

(bottom reinf.) Precast 50 – 60 3 8 – 9

Concrete cover In-situ 19 – 25 −5 – 2 11 – 13

(top reinforcement) Precast 19 3 8 – 9
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Table 4.26: Variability of column dimensions (Mirza & MacGregor, 1979b).

Dimension Technology Nominal Dev. from Standard

description of execution range [mm] Nominal [mm] dev. [mm]

Rectangular In-situ 280 – 760 1.6 6.4

(width, thickness) Precast 180 – 410 0.8 3.2

Circular In-situ 280 – 330 0 4.8

(diameter) Precast 280 – 330 0 2.4

Regarding the types of distribution functions, Mirza & MacGregor (1979b)

recommended Gaussian distribution for all dimensions except concrete cover

where normal truncated distribution is suggested in order to avoid negative val-

ues.

Based on data obtained in United States Siriaksorn (1980) proposed to use

also normal probability distribution function for modelling geometric variabil-

ity of bridge sections. However, he recommends to consider the mean value of

every geometric parameter equal to the nominal and the standard deviation as

defined by the Equations 4.28 and 4.29 respectively for section effective depth

and remaining dimensions (height, width, thickness, etc.) respectively.

σD = 17.8/D [mm] (4.28)

σA = 10.2/A [mm] (4.29)

Melchers (1999) suggests, based on the observation that the actual thickness

of slabs is greater then the nominal thickness, to use mean thickness about 6%

greater than nominal (bias factor 1.06) and consider the coefficient of variation

up to about 8%. For precast slabs and in-situ high quality bridge decks he

recommends to use mean thickness of 0.5% greater than nominal (bias factor

1.005) and coeffcient of variation equal to 2%.

Another study related to probabilistic description of bridge section geometric

variations was performed by Sobrino (1993). During the years 1990–1993 he col-

lected data on several bridges (precast and cast in-situ) in Spain. Based on that

data he proposed mean values and standard deviation of distribution functions

which can be used in modelling characteristic dimensions of the bridge sections
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(see Tables 4.27 and 4.28). Sobrino (1993) also recommends to use normal dis-

tribution function for the modelling of geometric variations.

Table 4.27: Variability of bridge sections dimensions (Sobrino, 1993).

Dimension Technology Nominal Dev. from Standard

description of execution range [mm] Nominal [mm] dev. [mm]

Horizontal

In-situ
< 600 — —

≥ 600 0.2 3

Precast

≤ 250 −2 (0)(b) 5 (2)(b)

250 – 600 10 (−4–5)(b) 12 (2–3.5)(b)

≥ 600 −2–1 —

Vertical

In-situ

≤ 250 0–2 (−13–34)(a) 2–3 (10–12)(a)

250 – 600 −2 8–10 (10–18)(a)

≥ 600 40–20 15–22

Precast

≤ 250 5 (2.5)(b) 5–9 (2–4)(b)

250 – 600 12 (6)(b) 5 (2–3.5)(b)

≥ 600 — —

Note: Normal execution quality; (a) low execution quality; (b) high execution quality;

Table 4.28: Variability of reinforcement position in bridges (Sobrino, 1993).

Dimension Nominal Dev. from Standard

description range [mm] Nominal [mm] dev. [mm]

Concrete cover H ≤ 200 5–10 (15)(a) 10–12 (10–15)(a)

(top reinforcement) H ≥ 200 5–30 (50–70)(a) 7–10 (10–15)(a)

Effective depth D ≤ 200 2.5 6 (12)(a)

(bottom reinforcement) D ≥ 200 −7–10 6 (12)(a)

Effective depth (cable) D ≥ 1000 −30–0 16.3

Transversal spacing 150 – 200 1–4 13–36

Note: Normal and high execution quality; (a) low execution quality;

During the European Research project ”Precast Concrete Safety Factors”

(PCSF, 2002) the measurements campaign has been performed on precast struc-

tural elements representative of the production of several European countries.

The measurements were taken on reinforced and prestressed beams, columns and
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slabs produced in 20 different precasting factories. Most of the measurements

were performed on the structural elements of the buildings rather than bridges.

However, some measurements were also taken on the prestressed concrete I bridge

girders. Based on the data from this campaign the probabilistic models as pre-

sented in Table 4.29 were proposed. For all the dimensions presented in the table

normal distribution were recommended.

Table 4.29: Geometric variability of precast concrete (PCSF, 2002).

Dimension Level of quality Dev. from Standard

description control Nominal [mm] dev. [mm]

Reinforcement position
Standard 0 6.1

Enhanced 0 3.0

Effective depth
Standard 0 7.89

Enhanced 0 3.61

Section depth
Standard 0.85 5.0

Enhanced 0 2.0

Section width
Standard 0.23 5.0

Enhanced 0 1.5

Section thickness
Standard 2.6 3.7

Enhanced 0 1.6

4.5.4 Obtained experimental results

Aiming to verify the correspondence between the probabilistic models of geom-

etry of concrete bridges presented in previous section and variability of bridge

geometry observed in Portugal the dimensions of few types of precast concrete

beams were collected and analysed statistically within the program of this the-

sis. The analysed data were collected on the casting plants of two Portuguese

precasters - Maprel and Civibral.

The basic statistics of girders’ geometry obtained in the analysis are showed

in Tables 4.30 and 4.31. The results presented in tables correspond to dimensions

of U-shape and I-shape precast prestressed concrete bridge girders measured on

the executed elements.
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The complete outcome of the performed statistical analysis is presented in the

Appendix D.

Table 4.30: Variability of the dimensions of precast U-shape girders.

Dimension Nominal Dev. from Standard Bias Var. coef.

description range [mm] Nominal [mm] dev. [mm] fact. λ CV [%]

Height 900 – 1900 14 – 18 4.3 – 6.9 1.008 0.55

Width 2800 – 3500 -10 – 18 0 – 8 0.999 0.20

Thickness 200 6 – 22 5.3 – 14.1 1.061 4.69

Table 4.31: Variability of the dimensions of precast I-shape girders.

Dimension Nominal Dev. from Standard Bias Var. coef.

description range [mm] Nominal [mm] dev. [mm] fact. λ CV [%]

Height 600 – 1200 -1 – 12 3.4 – 4.2 1.005 0.69

Width
350 – 440 0 – 2 3.3 – 4.4 1.007 0.95

450 – 800 1 – 5 1.6 – 2.5 1.002 0.56

Thickness
75 – 100 -1 – 2 2.0 1.009 1.98

100 – 150 1 – 8 2.2 – 2.4 1.036 2.10

4.5.5 Proposed probabilistic models

The amount of data about bridge girders geometry collected within the program

of this thesis was relatively small and does not allow for defining reliable prob-

abilistic models. Furthermore, the collected data corresponds to precast presc-

tressed concrete girders and are not representative for other types of bridge girders

and bridge secondary members. Nevertheless, based on data collected by other

authors and presented in Tables 4.25, 4.27 and 4.29 and comparing them with

results presented in Tables 4.30 and 4.31 some proposal of probabilistic models of

precast bridge girder geometry can be made. For other types of bridge members

results from Tables 4.24–4.29 can be used.

The effective depth and the overall height of precast prestressed concrete U-

shape and I-shape bridge girders may be modelled by normal distribution with
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the mean value 0.5% higer then the nominal (bias factor λ=1.005) and a standard

deviation σ=5mm. The section width in this type of elements can be modelled

also by normal distribution with the following paramaters: bias factor λ=1.00;

standard deviation σ=5mm. The thickness of a bottom slab (U-shape girders)

may be assumed as normally distributed with bias λ=1.05 and standard deviation

σ=10mm.

The effective depth and overall height of precast reinforced concrete bridge

slabs may be modelled by normal distribution with a mean value 0.5% higher

than nominal (bias factor λ=1.005) and a standard deviation σ=5mm.

The effective depth and overall height of cast in-situ reinforced concrete slabs

may be modelled as normally distributed with following distribution parameters:

bias factor λ=1.00; standard deviation σ=10–15mm.
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Chapter 5

Probabilistic models of bridge

loads

5.1 Introduction

The safety assessment of a bridge structure involves the verification if the effects

of loads applied to the structure do not exceed its capacity or the capacity of one

of its members. As already mentioned in previous chapters, the determination

of structure capacities and the effects of loads applied to the structure is a quite

complex task associated with high level of uncertainty. Particularly, the loads due

to highway or railway traffic are the main cause of uncertainty and usually the

governing variables in the reliability analysis of short and medium span bridges.

Nevertheless, the permanent loads are also relatively important in the safety

assessment, especially for the case of concrete bridges.

In this chapter the probabilistic models of bridge permanent loads are pre-

sented. The models of bridge variable loads due to railway traffic are also showed.

However, the major emphasis is placed on the models of highway traffic loads.

Furthermore, site-specific load models for load capacity evaluation of existing

highway bridges are discussed. The model are based on results of traffic measure-

ments using Weigh-in-Motion systems.

Due to the fact that effects of other loads (e.g. wind, snow, temperature,

etc.) are usually insignificant for short and medium span bridges, they are not
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discussed in this thesis. Furthermore, the accidental loads due to earthquake or

collision are also omitted, because of their exceptional character.

5.2 Types and general models of bridge loads

5.2.1 Basis

The loads applied on a bridge may arise from the self-weight of the structure,

man-made sources, and environmental phenomena (Ghosn, 1999). Man-made

sources include variable loads due to vehicular and pedestrian traffic, collision

forces and additional permanent loads (asphalt wearing surface, rail truck, ballast,

bridge equipment, etc.). Environmental loads are due to snow, wind, temperature

gradients, earthquakes, etc. Loads on bridges are usually classified based on their

variability in magnitude and position in time (i.e. permanent or transient, moving

or fixed), and based on the type of structural response (i.e. static or dynamic).

All above mentioned load types are random variables, including permanent loads

which do not change with time nor create dynamic oscillation. This is explained

because their magnitudes and their effects on the structure are not precisely

known.

The modelling of bridge loads is quite a complex task due to the fact that, it

requires long term data (which is often not available) and it requires the prediction

of future loads (which can only be based on subjective engineering judgement).

According to Melchers (1999), due to above mentioned difficulties, perfect models

are not possible. Therefore, the objective of load modelling is rather to represent

most important features of the loading phenomenon than to come up with exact

mathematical formulation (Ghosn, 1999).

The process of developing a probabilistic load model for the purpose of the

reliability assessment of bridges may be resumed in the following three steps

(Melchers, 1999):

• identification and definition of variables which can be used to represent the

uncertainties in loading description (this requires a real understanding of

loading phenomenon and the physical factors affecting the loading process);
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• selection of appropriate probability distribution for each random variable

identified in previous step;

• estimation of the distribution parameters required to determine unambigu-

ously the probability distribution identified in the previous step (the statis-

tical parameters should be based on available data and prior knowledge).

5.2.2 General load models and modelling uncertainty

In the structural reliability assessment it is often convenient to express the mag-

nitude of the generalized load Qi as follows (Nowak & Collins, 2000):

Qi = AiBiCi (5.1)

where Ai is the load itself, Bi is the variation due to the mode in which the load is

assumed to act, and Ci is the variation due to the method of structural analysis.

The variable Ci accounts for the simplifications and the idealization made in

the creation of the structural analysis model (e.g. two dimensional idealisation

of three-dimensional structure, support assumption, etc.). The variable Bi take

into account the assumption about how the loading is applied to the structure

(e.g. uniformly distributed load instead of the group of concentrated loads and

non-uniform distributed loads, etc.).

Unfortunately, according to Ghosn (1999), do not exists any reliable statistical

data about modelling uncertainties, BiCi, that one can use in the reliability

assessment of bridges. One possible approach, to define such uncertainties, would

be by comparing the results of the structural analysis with the measured response

of bridges subjected to known loads. So far, the modelling uncertainties, BiCi,

that are available in literature, are defined based basically on the engineering

judgement. For example, in Vejdirectoratet (2004), the model uncertainty for

permanent loads is suggested to be introduced into the computational model

by adding to the relevant basic variables an independent normally distributed

random variable with mean value 0.0 and a standard deviation of 5% of the mean

value of the permanent load. However, the model uncertainty for variable loads

is suggested to be introduced into the computational model by multiplying the
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basic parameters by normally distributed random variable with mean value 1.0

and variation coefficient of 10%, 15% and 20% depending on the loading situation.

5.3 Models of permanent loads

5.3.1 Models of permanent loads due to self-weight

For bridges, the primary permanent loads are due to the self-weight of the bridge

deck and the weight of non-structural elements permanently installed on the

bridge. The uncertainty in predicting the magnitude of the permanent load are

due to variations in the density of the materials used as well as the variations in

dimensions of the elements (Ghosn, 1999). The variations in the dimensions of

structural elements have been already discussed in Section 4.5. The variations in

the density of the materials can be assumed as presented in Table 5.1.

Table 5.1: Weight density statistics (JCSS, 2001).

Construction material Mean value [kN/m3] Coefficient of Variation

Steel 77 1%

Ordinary concrete (a) 24 4%

High strength concrete 24-26 (b) 3%

Lightweight concrete (b) 4–8%

Note: All the values refer to large populations; (a) valid for concrete without reinforcement
and with stable moisture content; (b) depends on mix, composition and treatment.

The permanent loads due to the weight of structural and non-structural ele-

ments are usually modelled by normal distribution with the mean equal to the

nominal load and the coefficient of variation of 5–10% (Melchers, 1999). However,

some researchers observed that often there is a tendency on part of designers to

underestimate the total permanent load (Nowak & Collins, 2000). Therefore, to

account for this, the use of the mean load somehow bigger than the nominal may

be recommended.

In the Project Report PCSF (2002) authors define the bias factor and the

coefficient of variation of the self-weight of precast concrete elements. Based on

the results of the measurement campaign they observed that the mean weight of
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precast concrete elements is usually higher than nominal (calculated considering

nominal dimensions and volume weight of concrete equal to 2500 kg/m3) up to

7%. The observed coefficient of variation oscillates around 2.5%.

In Vejdirectoratet (2004) the permanent loads are suggested to be modelled

by normally distributed random variable with mean value equal to the nominal

and with the coefficient of variation of 5% and 10%, respectively for load of the

structure itself and for the superimposed permanent loads. In addition to the

given variations, the uncertainty of the model has also to be taken into account

(see Section 5.2.2).

Because of different degrees of variation in different structural and non-structural

elements, Nowak & Szerszen (1998) and Nowak & Collins (2000) propose to break

up the total permanent bridge load into following components:

• weight of factory-made elements (steel and precast concrete elements);

• weight of cast-on-site concrete members;

• weight of the wearing surface (asphalt);

• weight of the bridge installations and equipment (railing, luminaries, etc.)

Nowak & Szerszen (1998) recommend to model each of the above listed component

by independent normally distributed random variable with the statistics presented

in Table 5.2.

Table 5.2: Statistics of permanent loads (Nowak & Szerszen, 1998).

Component Bias factor Coefficient of Variation

Factory-made members 1.03 8%

Cast-on-site members 1.05 10%

Asphalt 75 mm 25%

Other 1.03–1.05 8–10%

In the case of railway bridges, the permanent loads due to ballast and rail track

can be modelled according to the information presented in Sustainable Bridges

(2006). Concerning the variability in the geometry and in the density of the

track components the total coefficient of variation proposed are 3%, 8% and 15%
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respectively for steel elements, pre-cast concrete sleepers and timber sleepers. For

ballast, the mean weight is proposed to be calculated assuming actual depth and

density of 1600-2000 kg/m3. No specific value is presented in Sustainable Bridges

(2006) for the coefficient of variation of the ballast weight. However, in normal

circumstances it might be considered in the order of 10–15%.

5.3.2 Models of permanent loads due to prestress

In the concrete structures the effect of prestress is usually considered as a pre-

stressing force applied to the structure. A prestressing force P (x, t) at a distance

x from the active end (jacking end) at a time t can be expressed as follows (JCSS,

2001):

P (x, t) = P0 −∆P (x, t) (5.2)

where P0 is the jacking force and ∆P (x, t) are losses of prestress. In practi-

cal applications it is usually sufficient to assess prestressing losses at two times:

immediately after prestress transfer t = t0, and after losses have stabilised t = ∞.

Due to the multiplicity of the factors affecting prestress losses and due to the

existing interrelations between some of them, does not exist analytical models al-

lowing to predict ∆P (x, t) with high accuracy. Therefore, different codes provide

different empirical models to estimate the losses.

The uncertainty of the prestressing force applied to the structure depends on

the uncertainty of the models used to estimate the prestress losses and variability

of parameters employed in these models. According to JCSS (2001), currently do

not exist sufficient data to quantify uncertainties of the prestress losses models

and of the parameters associated with the models. However, for typical situa-

tions JCSS (2001) recommends to estimate the mean value of losses using models

provided in design codes and consider the coefficient of variation as presented in

Table 5.3. Considering the typical magnitudes of prestress losses the correspond-

ing coefficients of variations of actual prestressing force are estimated to be as

showed in Table 5.3.

According to JCSS (2001) for the group (bundle) of prestressing tendons,

prestress losses in different tendons of the group can be assumed fully correlated.
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Table 5.3: COV of prestress losses and prestressing force (JCSS, 2001).

Parameter
Coefficient of variation

Immediate, t = t0 Long-term, t = ∞
Prestress losses, ∆P (x, t) 30% 30%

Prestressing force, P (x, t) 4–6% 6-9%

The prestress losses in different location of the same tendon group can be also

assumed fully correlated.

In other sources slightly different values may be found than those presented in

Table 5.3. For example, for prestressing force at transfer (considering immediate

losses) Mirza et al. (1980) suggest to use a normal distribution with the coef-

ficient of variation of 1.5% and 2% for pretensioned and post-tensioned beams

respectively. However, for the prestressing force, after considering all long-term

losses (with corresponding coefficient of variation 15–20%), they suggest normal

distribution with the coefficient of variation of 3.8% for stress relived strands and

3.3% for stabilized strands.

5.4 Models of variable loads on bridges

5.4.1 General

There is a number of variable loads that are normally acting on a bridge struc-

ture (vehicular and pedestrian traffic, temperature, wind, snow, etc.). However,

for typical short and medium span bridges, the most important loads are due to

moving vehicular traffic including their static and dynamic effects (Ghosn, 1999).

The static and dynamic effects occur simultaneously as vehicles move across the

bridge. However, traditionally, in some countries, the dynamic effects are sepa-

rated from the static effects in the bridge analysis. In such approach the bridge

is analysed statically considering static vehicle load factored by dynamic ampli-

fication factor which accounts for bridge vibrations due to the moving vehicles.

The effect of vehicular variable load on the bridge depends on following param-

eters: bridge span, total vehicle weight, axle loads, axle configuration, position

of the vehicle on the bridge (transverse and longitudinal), number of vehicles on
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the bridge (multiple presence), girder spacing and stiffness of bridge members

(Nowak & Collins, 2000). In practical analysis of a bridge, it is also convenient

to characterize the distribution of the load to the bridge girders.

Due to the fact that the effect of the vehicular load on the bridge depends on

so many factors and, furthermore, most of these factors are stochastic random

variables (changing in time), the modelling of the effect of a bridge traffic load

is a very complex task. In common bridge design and assessment practice this

problem is overcome by using load models defined in codes (composed usually by

a group of concentrated forces and uniformly distributed loads). These models

are aimed to produce load effects in bridge members similar to that the bridge

will experience during its lifetime under regular traffic and under special passage

situations (passages of very heavy vehicles). Since these load models have to

cover a wide range of bridge locations, spans, typologies, materials, etc., they are

usually very conservative. However, some of them may not be conservative at all,

especially when they have been developed some decades ago. Such models may

not reflect appropriately the actual heavy traffic.

In the bridge analysis it is necessary to distinguish between two different

phenomena that may lead to the bridge failure (Ghosn, 1999). First phenomenon

is the occurrence of the set of loads that causes stresses in the bridge component

that exceed the stress capacity of the component. This problem is known as

the barrier crossing problem or the first passage problem. Second phenomenon

is when the accumulated damage due to repeated crossing of a large number

of vehicles produce a brittle fracture in the component. This is known as the

fatigue fracture problem. The traffic load models used for assessment of these two

phenomena are quite different. Traffic load models for barrier crossing problems

need to focus only on the maximum load that may occur during the lifetime of

the bridge. However, the load models for fatigue problems need to represent all

load history during the bridge entire life of the bridge. In this thesis just the load

models for barrier crossing problem are going to be presented in more details.

In the following sections some selected aspects related to the modelling of

bridge traffic loads are discussed. They are presented aiming to give some general

overview, allowing to understand the following parts of this thesis, rather than

to give complete information regarding modelling of bridge traffic loads.
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5.4.2 Traffic regulations and measured loads

The bridge load models defined in design or assessment codes should reflect the

actual loading conditions on bridges. Therefore, they should be somehow related

to the traffic regulations, defining the dimensions, maximum axle loads and max-

imum gross weights of vehicles allowed to circulate freely, or with some restriction

(special permited vehicles, e.g. mobile cranes, military vehicles, etc.), within the

highway network. Furthermore, they should account for possible exceed of the

legal weight limits since overloading of the vehicles is profitable for transportation

companies and it is actually quite commonly practised.

In Portugal, the current load regulations for vehicles are defined in document

Portaria n.1092/97 (1997). The maximum gross weight of the rigid vehicles is

limited to 190 kN, 260 kN and 320 kN for two, three and four (or more) axle

vehicles respectively. The maximum gross weight of the semi-trailer vehicles is

limited to 290 kN, 380 kN and 400 kN for three, four and five (or more) axle

vehicles respectively. For five (or more) axle vehicles transporting containers ISO

40’, the maximum gross weight is limited to 440 kN. For the rigid vehicles with

trailers, the maximum gross weight is limited to 290 kN, 370 kN and 400 kN for

three, four and five (or more) axle trailer vehicles respectively. The maximum

gross weight per axle is 75–120 kN for single axle, 120–200 kN for tandem axle

and 210–240 kN for tridem axle.

Tables 5.4 and 5.5 compare the current Portuguese traffic load regulations

with former Portuguese regulations and with the regulations in other European

countries as they are presented in COST323 (1997) and SAMARIS (2005). As it

can be observed, the legal gross weight limits for heavy vehicles varies between

the countries. The limits for maximum axle load are more uniform but small

differences can also be observed. Nevertheless, in recent years there is a tendency

to standardize the maximum axle loadss and weights of vehicles in Europe and

the new regulations usually follows the requirements set by European Union.

The growing problem on the highway network in many countries is the com-

monly practised overloading of the vehicles. This fact has been confirmed by the

extensive campaign of measurement of real traffic performed in several EU mem-

ber states (Carlson, 2006; COST323, 1997; O’Brien & O’Connor, 1998; SAMARIS,
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Table 5.4: Allowed axle load in selected countries (COST323, 1997).

Country

Allowed axle load [kN]

Single axle

Double axle Triple axle

axle dist. 1–1.8 m axle dist. 2–3.6 m

Austria 115 160–200 210–240

Belgium 120 160–200 200–240

Czech Republic 100 (115*) 180 240

Denmark 100 (115*) 160–200 210–240

Spain 115 160–200 210–270

Finland 115 160–200 210–240

France 130 210 240

Great Britain 105 160–200 210–225

Hungary 100 (110*) 160 220–240

Netherlands 115 160–200 240

Norway 100 (115*) 180 240

Poland 80 (115*) 180 240

Portugal-new 100 (120*) 170–200 210–240

Slovenia 100 (115*) 160–200 210–240

European Union 115 160–200 210–240
Note: (*) corresponds to driving axle.

2005). The measurements have been performed using Weigh-in-Motion (WIM)

systems allowing weighing the vehicles without stopping. For example, during

the campaign of measurements of real traffic loads, performed for the purpose of

calibration of the bridge traffic load model in Eurocode (O’Connor et al., 1998),

it has been observed that the daily maximum gross weight of the vehicles exceed

650 kN. The daily maximum single, tandem and tridem axle load exceed 190 kN,

300 kN and 380 kN respectively.

This tendency of overloading heavy vehicles has also been observed in Portu-

gal. Figure 5.1 shows the histograms of gross vehicle weights (GVW), for vehicles

over 3.5 t, registered on one of the highways belonging to ’SCUTVIAS - Au-

toestradas de Beira Interior’ located in the centre of Portugal. The data have

been collected during 24 hours on 22-nd of July 2005. All three histograms (cor-
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Table 5.5: Allowed gross weight [kN] of vehicles (COST323, 1997).

R2 R3 R4 S21 S22 S23 S32 S33 T22 T23 T33 T44

AT 180 250 320 280 360 380 380 380 360 380 380 380

BE 190 260 360 320 390 430 440 440 440 440

CH 160 190 280 260 280 280 280 280 280 280 280 280

DE 160 220 260 360 380 380 380 320 380 380 380

DK 180 240 320 280 340 420 400 480 380 420 480 480

SP 180 250 310 280 360 400 400 400 360 400 400 400

FI 180 250 310 280 360 420 440 440 360 440 530 600

FR 190 260 320 260 400 400 400 400 380 400 400 400

GB 170 260 320 260 350 380 380 380 350 380 380 380

HU 200 240 300 280 360 400 400 400 360 400 400 400

IE 160 220 280 220 320 320 320 320 320 320 320 320

LU 190 260 360 320 380 380 400 440 380 400 440

NL 200 300 400 300 400 410 500 500 400 500 500 500

PT 160 220 260 320 380 380 380 320 320 320 320

PT* 190 260 320 290 380 400 400 400 370 400 400 400

SL 180 250 320 280 380 400 400 400 360 400 400 400

EU 400 400 400 400 400
Note: R, S and T corresponds to rigid vehicles, semi-trailers and vehicles with trailer
respectively; the subscript numbers after the letter defining the type of the vehicle
corresponds to the number of axles in the vehicle and in the trailer respectively; (*)

corresponds to new regulations presented in Portaria n.1092/97 (1997).

responding to the registered data for both traffic directions and separately for

the direction South-North and North-South) have a two peak shape, more or

less visible, typical for GVW histograms. The first peak corresponds to the fully

loaded small trucks and unloaded or partially loaded large trucks. The second

peak corresponds to fully loaded large trucks.

The data presented in Figure 5.1 corresponds to rather light traffic, with the

average intensity of heavy vehicles per day around 1000 in each direction. Despite

the fact that the highway, where the WIM measurements have been performed, is

located far away from the industrial regions of the country, significant number of

overloaded vehicles, with weight exceeding 400–440 kN, has been observed. There
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are also some records of the vehicles with weight approaching 600 kN, however,

they might be erroneous. The collected data is rather of poor quality and the

individual records are neither precise nor very reliable. Nevertheless, the general

trends presented in histograms should not deviate much from the reality.

Figure 5.1: Gross vehicle weight histogram for one day data - Beira Interior.

It should be kept in mind that performing the measurements close to the

busy industrial areas can significantly affect the registered maximum (i.e. higher

value will be observed). Furthermore, the extension of the measuring period (e.g.

1 week instead of 1 day) will also increase the value of the maximum observed

vehicle weight.

5.4.3 Traffic load models in bridge codes

The traffic load models defined in current bridge design codes consist of a number

concentrated loads, representing heavy axles of trucks (or locomotive), and a

uniformly distributed load representing light vehicles (or wagons). As it was

already mentioned, the load intensities are selected by the code authors in a way

to produce effects similar to that the bridge is going to experience during its

lifetime. The bridge load models of railway and highway traffic, commonly used

in the design and assessment of bridges in Portugal, are presented in the following

sections.
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RSA load model for railway traffic. The load model that is used for the

design of railway Bridges in Portugal is shown in Figure 5.2. The characteristic

values of load intensities for this load model are presented in Table 5.6 (RSA,

1983). This load model has been developed by National Union of Railways (UIC)

and is meant to represent normal railway traffic on international lines.

Figure 5.2: Description of UIC model of railway traffic loads.

Table 5.6: Intensities of load in UIC railway traffic load model.

Type of track Concentrated loads Qk Distributed loads qk

Normal track 250 kN 80 kN/m

Narrow track 180 kN 50 kN/m

The load should be placed at the most unfavourable position for the structural

component and local effect in question. It does not take into account the dynamic

effects. Therefore, in order to obtain design value, the effects produced by this

load have to be multiplied by the partial safety factor for load (γS=1.5) and by

the dynamic amplification factor defined as follows (RSA, 1983):

φ = 1 +

(
2.16√
l − 0.2

− 0.27

)
(5.3)

where l is the reference length (span length for simply supported bridges, aver-

age span length multiplied by (1 + 0.1n) for continuous bridges, where n is the

number of spans, and half of span length for frames and arches). The dynamic

amplification factor should never be considered lower than 1.1 and higher than

2.0 (or 1.5 for continuous bridges).

For multiple track bridges the most unfavourable of the two possibilities should

be considered. The load placed on one or two trucks and other tracks unloaded,

or load placed on all trucks but with intensity reduced by 25%.
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EC1 load model for railway traffic. The principal railway load model ’Load

Model 71’ defined in EC-1b (2002) is basically the same as that shown in Figure

5.2. The characteristic values of the basic load intensity for this load model is

also the same (see the first row of Table 5.6). However, EC-1b (2002) allows

for adjusting the load intensity, according to the railway line classification, by

multiplying it by a factor α taking one of the following values: 0.75; 0.83; 0.91;

1.00; 1.10; 1.21; 1.33; 1.46. In EC-1b (2002), the dynamic amplification factor

for normally maintained tracks is equal to that from RSA (1983) (see Equation

5.3). However, for carefully maintained tracks it is defined as follows:

φ = 1 +

(
2.16√
l − 0.2

− 0.18

)
(5.4)

The reference length l in EC-1b (2002) is defined in a more complex way, depend-

ing on many bridge features. According to EC-1b (2002), the dynamic amplifi-

cation factor should never be considered lower than 1.0 and higher than 2.0.

RSA load model for highway traffic. The load models, ’Vehicle’ and ’Knife’,

that are used for the design of highway bridges in Portugal are shown in Figures

5.3 and 5.4. The characteristic values of load intensities for these load models are

presented in Table 5.7 (RSA, 1983). The characteristic load intensities presented

in table take into account the dynamic effects.

Figure 5.3: Description of RSA model (Knife) of highway traffic loads.

The load should be placed on the bridge deck, longitudinally or transversally,

at the most unfavourable position for the structural component and local effect

in question. For bridges with dual carriageway, supporting traffic in two opposite

directions, the vehicle should be placed in each of the carriageway or in both of
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Figure 5.4: Description of RSA model (Vehicle) of highway traffic loads.

Table 5.7: Intensities of load in RSA highway traffic load model.

Bridge class Conc. load Qk Distr. load q1k Distr. load q2k

Class 1 200 kN 4 kN/m2 50 kN/m

Class 2 100 kN 3 kN/m2 30 kN/m

them simultaneously, provided that each of the carriageway supports two or more

traffic lines.

These load models have been developed in the beginning of 60-ties (RSEP,

1961) and, almost unchanged, are used until now. The only changes involve the

increase of the intensity of the q1k for class 1 (formerly it was 3 kN/m2) and the

definition of lower load classes (three classes for vehicle and only one class for

distributed load).

EC1 load model for highway traffic. The principal highway load model

’LM1’ defined in EC-1b (2002) is shown in Figure 5.5. The load model LM1 can be

used for both local and global verification of bridge elements. The characteristic

values of load intensities for this load model, defined as 95-th percentile of a

maximum distribution for a return period of 50 years, are presented in Table 5.8.

The load should be placed at the most unfavourable position for the structural

component and local effect in question. However, at first it is necessary to identify

notional lanes. Generally, a carriageway is divided into an integer number of

3 meters wide notional lanes. Among these lanes, the one causing the most

unfavourable effect is termed Lane 1, with the second most unfavourable Lane

2, etc. These lanes do not have to correspond to intended lane markings on the

bridge. Furthermore, a demountable central safety barrier is ignored in locating
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Figure 5.5: Description of EC1 principal model (LM1) of highway traffic loads.

Table 5.8: Intensities of load in EC1 highway traffic load model.

Lane Concentrated loads Qik Distributed loads qik

Lane 1 300 kN 9 kN/m2

Lane 2 200 kN 2.5 kN/m2

Lane 3 100 kN 2.5 kN/m2

Other lanes, n 0 2.5 kN/m2

Remaining area 0 2.5 kN/m2

the notional lines. Space not occupied by the lanes is named remaining area.

The additional load model, LM2, is specified to cover the dynamic effects of

the normal traffic on short structural members. This model consist of a single

axle load of 400kN (or 200kN per wheel).

The load intensities specified for load models LM1 and LM2 can be multi-

plied by a national adjustment factor α. The factor α is meant to cover all the

differences between the highway traffic characteristics in different EU member

countries and different road classes. The load models LM1 and LM2 already

takes into account the dynamic effects. The code EC-1b (2002) also specifies a

specialized load model, LM3, that is intended to be used in special situations

(e.g. heavy industrial transport).

5.4.4 Comparison of traffic load models in EC1 and RSA

The two railway traffic load models (i.e. RSA and EC1) presented in previous

section are both based on the UIC recommendations and are almost the same

(the only difference is in the intensity of load for the rail line classes different
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than standard). Consequently, the load effects produced by these models are

also the same and there is probably no much sense to analyse these models in

more detail. In contrast, the EC1 and RSA highway traffic load models are

quite different and they are expected to produce significantly different traffic load

effects. Considering the fact that the traffic load model defined in RSA (1983),

which has been used for design and assessment of bridges in Portugal since 60-ties,

soon it is going to be replaced by the load model from EC-1b (2002), it might be

interesting to compare the traffic load effects produced by these two models in

most common bridge configurations.

Figures 5.6 and 5.7 show the maximum bending moment, as a function of a

bridge span, in the simply supported bridges with two and three traffic lanes.

As it can be observed, the bending moment produced by the EC1 load model

in two lane bridges is around two times higher than the maximum moments

produced by the conditioning RSA load model (i.e. ’knife’ in this case). For three

lane bridges this difference is lower, however, the EC1 load model still produces

bending moments around 1.6–1.8 times higher than the RSA-knife. Quite similar

results can be observed for the maximum shear force presented in Figures 5.8

and 5.9. The difference between the maximum shear force produced by the EC1

load model and the shear force produced by conditioning RSA load model (i.e.

’vehicle’ or ’knife’) exceeds 70–100%.

The difference in the load effects produced by EC1 and RSA load models is not

surprising. However, the magnitude of this difference is kind of scaring, especially

when having in mind that the safety formats (checking equations, partial safety

factors, definition of characteristic and design values, etc.) in both codes are

nearly the same. This difference basically means that most of the bridges designed

according to Portuguese codes will probably fail the assessment performed using

Eurocodes. Of course, it does not mean that all the bridges designed using RSA

load model are unsafe. However, the safety margin for all these bridges is lower

than that provided when using EC1 load model for design. In this situation one

may ask ’which load model provide more rational safety margin’? The answer

to this question depends very much on that which load model reflects better the

actual traffic loading conditions in a country, region or even in a specific site.
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As it has been already mentioned, the bridge traffic load model defined in

current Portuguese code, RSA (1983), has been developed in 60-ties for the pur-

pose of former bridge load regulations, RSEP (1961). Therefore, nowadays it can

be considered rather obsolete. The traffic intensity, the maximum gross weight

of the heavy vehicles and the maximum pressures of axle loads (single, tandem

or tridem) increased brutally during last 40 years. In 60-ties Portugal has been

rather undeveloped country with almost no industry and with quite poor road

network limiting the transportation of goods to other regions of the country and

abroad. Today the situation is totally different. Portugal has very well developed

network of highways. It is much more industrialized and it is commercially con-

nected with other countries. This of course reflects in the traffic loads and theirs

effects on bridges.

On the other hand, the bridge traffic load model defined in Eurocode, EC-1b

(2002), has been developed in the late 80-ties based on real traffic data recorded

in some EU member states. Furthermore, it has been verified against new traffic

data in the late 90-ties (O’Connor, 2001). Therefore, it is expected to represents

the actual traffic loads in Europe reasonably well. Nevertheless, the EC1 load

model LM1 has been developed based on traffic records from very busy high-

ways connecting the industrial regions of France, Germany, Netherlands, Bel-

gium, Spain and Italy. Consequently, this load model is more representative for

a very heavy traffic in strongly industrialized countries of Europe rather than for

the normal traffic in Portugal or other countries on the boundaries of Europe,

as for example Ireland or Greece. The study performed in Ireland, in order to

calibrate the national adjustment factor α, shows that considering actual traffic

records from Irish highways, the load effects in common bridge typologies can

be significantly lower (O’Brien & O’Connor, 1998). This calibration study has

been performed using exactly the same simulation and extrapolation procedures

as that used for the development of the EC1 load model.

The selected results of the simulations performed by O’Brien & O’Connor

(1998) are presented in Figures 5.6, 5.7, 5.8 and 5.9. They are showed together

with the load effects produced by EC1 and RSA load models to facilitate the

verification of the adequacy of the code models against the real data. Besides

the fact that the simulation results presented in O’Brien & O’Connor (1998) are
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Figure 5.6: Comparison of maximum bending moments for 2-lane bridges.

Figure 5.7: Comparison of maximum bending moments for 3-lane bridges.
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Figure 5.8: Comparison of maximum shear force for 2-lane bridges.

Figure 5.9: Comparison of maximum shear force for 3-lane bridges.

110



5.4 Models of variable loads on bridges

corresponding to Irish traffic they are believed to be more representative for the

Portuguese conditions than the results produced be EC1 traffic load model, which

has been calibrated against traffic data mainly from French highway with very

heavy traffic.

When comparing the load effects presented in Figures 5.6, 5.7, 5.8 and 5.9

one have to keep in mind that those corresponding to EC1 load model are values

with the probability of exceedance of 5% in 50 years (or 1000 year return period)

(EC-1b, 2002). The load effects obtained due to simulations (considering Irish

data and free flow and jammed scenario) are the values with the probability of

exceedance of 5% in 100 years (or 2000 year return period). According to O’Brien

& O’Connor (1998) this difference in the reference period (50 to 100 years) will

affect the results only by 1–2%. Regarding the load effects produced by ’vehicle’

or ’knife’, RSA (1983) do not specify any reference period characteristic for these

models. All the load effects presented in Figures 5.6, 5.7, 5.8 and 5.9 take into

account the dynamic effects when relevant (e.g. in the jammed situations the

dynamic effects are not included).

5.4.5 Probabilistic bridge traffic load models

The use of probabilistic framework for the modelling of bridge traffic loads has

been a subject for research during last few decades. Consequently, most of

the load models present in recent bridge codes (e.g. AASHTO LRFD, 1994;

CAN/CSA-S6-00, 2000; EC-1b, 2002), have been developed using probabilistic

methods and are based on real traffic records. Therefore, behind deterministic

values of the load intensities, characteristic for each of these load models, the fully

probabilistic bridge traffic load models are hidden. Usually, the load intensity in

the models corresponds to 95-th or 98-th percentile of the probability distribution

function of the load (or the effect of the load). Due to the fact that the traffic

load model has to represent the maximum load which a bridge is going to expe-

rience during its lifetime, the extreme value distributions (e.g. type I - Gumbel

distribution; type II - Fréchet distribution) are commonly used (Vejdirectoratet,

2004). However, for a sake of simplicity, some authors describe bridge loads using

also normal or lognormal distributions.
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The traffic load effects on bridges can be modelled using several different prob-

ability based approaches. Generally they can be divided into the four following

groups (Ghosn, 1999; Melchers, 1999):

• methods based on the simulation of real traffic flow;

• methods based on the simulation of static traffic configuration;

• methods based on the convolution or numerical integration;

• methods based on the theory of stochastic processes, including Markov

models.

The first group of methods for modelling traffic load effects involves the sim-

ulation of real traffic flow over bridges (Carlson, 2006; Crespo, 1996; Getachew,

2003; James, 2003; O’Connor, 2001). In this method the sequences of random

loads passing the bridge are generated using Monte Carlo simulation technique.

All the characteristics of the traffic (composition of traffic, headway distance,

traffic intensity, vehicles velocity, etc.) and the vehicles (vehicle gross weight,

axle loads, axle configuration) are assumed according to the records of real data

(collected using bridge Weigh-in-Motion systems). The methods allow to define

histograms of load effects in any bridge section. Then, the theoretical probabil-

ity distribution function may be fitted to the histogram and the extrapolation

may be performed to obtain a prediction of the maximum value within certain

reference period. These real flow simulations algorithms are the most complete

models. They are applicable to the complete range of bridge spans and static

configurations. Furthermore, besides the maximum load effects required for ulti-

mate limit state analysis, they are also able to estimate the complete spectrum

of load effects for fatigue or serviceability analysis.

The second group of ’simulation based’ methods analyses two traffic situations,

namely congested and free (Bez & Hirt, 1991; Nowak & Hong, 1991). The method

uses real traffic data to describe the basic parameters (i.e. vehicle length and

weight, axle configuration, axle loads, probabilities of the vehicles to take certain

location of the bridge, correlations between the vehicles at certain locations, etc.)

and to define the distribution between free and congested situations within the
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bridge service life. The results from the basic load situations (i.e. one truck

on the bridge, two tracks following each other, two side-by-side trucks, etc.)

are combined and extrapolated to give the maximum load effects for a certain

reference period. In the present form, these models are valid only for short and

medium span bridges. This is because they are based upon simplified assumptions

of multiple presence of the heavy vehicles on the bridge (usually up to four heavy

vehicles are considered). Furthermore, since they are focused only on maximum

load effects, they are not suitable for the fatigue analysis.

The third group consists of convolution or numerical integration approaches

(Moses & Ghosn, 1985). The calculation of the distribution of the maximum

moment in a bridge over a period of time using convolution approach involves

two stages: first, a probability distribution for the moment due to a single event is

determined; then, the distribution of the maximum response over the lifetime of

the structure is projected given the number of the events for that period of time

(Moses & Ghosn, 1985). For a given bridge influence line, the probability of the

event is defined as the product of the probability of the placement of the trucks

on the bridge, the probability of the weight of the truck and the probability of

axle spacing or truck type. The same as the methods described in the previous

section, the convolution approaches are suitable for ultimate analysis of short and

medium span bridges only.

The methods within the fourth group are based on the theory of stochastic

processes as Poisson process or Markov renewal models (Ghosn, 1999; Ghosn &

Moses, 1985). These models assume that the trucks arrive on a bridge follow-

ing one of these process and that the bridge acts as a filter represented by its

moments influence line at a given location. Consequently, the bridge response

is a filtered Poisson (or Markov renewal) process. The theories provide a set

of equations, which under certain assumptions allow to obtain the probability

distribution function of the bridge response. Then, the mean upcrossing rate

is calculated according to the Rice’s formula. These methods are usually more

efficient than the convolution method and can model all load effects. They can

also be used for studying the fatigue problems.

Most of the above discussed approaches require quite advanced theoretical

backgrounds (e.g. extreme value theory, theory of stochastic processes, etc.).
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Furthermore, some of them (i.e. simulation based methods) require significant

computational effort. Therefore, they are not very practical for standard engi-

neering application. Nevertheless, they are usually used for calibration of traffic

load models in codes or as a basis for some other simplified models.

5.4.6 Simplified probabilistic traffic load models for as-

sessment of highway bridges

The simplified probabilistic traffic load models have been developed in order to

assess the bridge traffic loads without the necessity of performing numerous simu-

lations or complicated theoretical analysis. They are usually based on some sim-

plified assumptions (regarding composition of traffic, multiple presence of heavy

vehicles, position of the heavy vehicles on a bridge, etc.). The simplified models

are very practical in the modelling of traffic loads (or load effects) characteristic

for a specific bridge location and are especially suitable for reliability based load

capacity evaluation of existing bridges.

Model of Moses and Ghosn. One of the first simplified probabilistic models

of bridge traffic loads, for short and medium span bridges, has been proposed in

Moses & Ghosn (1985). In this report it is assumed that the maximum traffic

load is due to the occurrence of several heavy trucks simultaneously on the bridge.

Just two types of trucks (single unit trucks and semi-trailer trucks) are considered,

with random weight and a limited number of possible locations of the trucks on

a bridge.

Performing analysis for a wide range of bridge spans and bridge locations

Moses & Ghosn (1985) observed that a good representation of the tail of the

gross vehicle weight histogram at a given site can be obtained from the gross

weight value corresponding to the 95-th percentile value of all the gross weights

recorded at that site. Also, they observed that 50-th percentile (i.e. median) value

of the maximum moment distribution is a good representation of the maximum

lifetime response.

Based on the above mentioned observations it is proposed to approximate the

median of the total response of the maximum load, M , for a general truck traffic
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at a given site by the following relation (Moses & Ghosn, 1985):

M = amW95H (5.5)

where: a is a deterministic value relating the load effect to a reference loading

scheme; m is a factor reflecting the variations of load effects of random heavy

vehicles, compared to the standard, reference vehicle; W95 is a characteristic

vehicle weight, defined as 95-th percentile of the weight probability function; H

is a headway factor, describing the multiple presence of the vehicles on the bridge,

it depends on the truck volume and span length. All parameters except a are

random variables. Table 5.9 shows the parameters of the Equation 5.5 calibrated

based on WIM data from nine different sites in United States (Moses & Ghosn,

1985).

Table 5.9: Model parameters (Moses & Ghosn, 1985).

Bridge span Parameter a Parameter m Parameter H

[m] [kNm/kN] Mean COV Mean COV

9.1 1.85 0.92 15% 2.63 10%

12.2 2.61 0.93 12% 2.69 10%

18.3 4.14 0.94 6% 2.75 10%

24.4 4.08 0.93 9% 2.78 7%

30.5 5.61 0.95 7% 2.80 7%

38.1 7.44 0.96 6% 2.86 7%

45.7 9.42 0.96 5% 2.87 7%

53.3 11.25 0.97 4% 2.98 7%

61.0 13.23 0.97 4% 3.05 7%

The statistics of the parameter H presented in Table 5.9 have been obtained

assuming 75-years projection, average truck volume of 2000 trucks per day and

considering traffic moving in the same direction of two lane highways. For differ-

ent traffic volumes, for different projection (reference) period, for opposing traffic

or for one/three lane highways the parameter H may require some adjustment.

Table 5.9 may give an idea about the necessary adjustments for different traffic

volumes and different projection.
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Table 5.10: Model parameters H for different volumes and projection periods

(Moses & Ghosn, 1985).

Bridge span Truck volume per day Projection period

[m] 200 t/d 2000 t/d 10000 t/d 1 year 5 years 50 years

12.2 2.41 2.69 2.79 2.35 2.42 2.58

30.5 2.51 2.80 2.93 2.48 2.55 2.68

61.0 2.54 3.05 3.57 2.65 2.80 3.01

The parameters a presented in Table 5.9 are corresponding to maximum (mid-

span) moment effect. For the bending moment in a different location than mid-

span, or for the shear force, the corresponding values of a have to be calculated

separately. They can be easily obtained by comparing the weight of the refer-

ence vehicle with the corresponding load effect (moment or shear) caused by this

vehicle (i.e. dividing the load effect by the load).

The parameters m presented in Table 5.9 are corresponding to the statistics of

axle configuration of random truck traffic obtained from WIM measurements in

United States. For European conditions and for some specific sites this parameter

may take different values. Factor m is calculated as a ratio of the maximum

response of a random truck to the maximum response of a reference truck (single

unit or semi-trailer) of the same gross weight.

The characteristic vehicle weight W95 in Equation 5.5, for a specific bridge

location, may take two different values depending on the bridge span. For spans

less than 18.3 m the single unit trucks produce the critical loads, however, for

spans longer than 18.3 m, semi-trailers control the loading. Based on the WIM

data from nine different sites in United States Moses & Ghosn (1985) estimated

the average value of W95 as 209 kN and 334 kN for the single unit and the semi-

trailer trucks respectively. The corresponding coefficients of variation are 15%

and 10%.

Equation 5.5 corresponds to the maximum total static traffic load applied on

the bridge within its lifetime (considered usually as 50, 75 or 100 years). Fur-

thermore, it considers that the traffic characteristics (vehicle weights and traffic

volume) do not change with time during entire bridge life. To account for the

possible traffic growth, for the dynamic effects and to take into consideration the
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distribution of load to the girders, Moses & Ghosn (1985) propose to modify the

Equation 5.5 to the following form:

L = amW95HIgGr (5.6)

where: I is a impact factor (dynamic amplification factor) taking into account

dynamic effects; g is a girder distribution factor and Gr is traffic growth factor.

The impact factor I is dependent on the surface roughness. As suggested in

Ghosn (1999) it can be considered equal to 1.1, 1.2 and 1.3 for smooth, medium

and rough surfaces respectively. The corresponding coefficient of variation can be

taken as 10%. However, Nowak (1999) suggests for prestressed concrete bridges

the dynamic amplification factor of 1.09 with the coefficient of variation equal to

5%

According to Ghosn (1999), the girder distribution factor g calculated using

the following relation:

g =
S

D
(5.7)

is characterized by the bias factor 1.01 and 0.96 for reinforced concrete T-beams

and prestressed concrete I girders respectively. The corresponding coefficient of

variations are 5% and 8%. In the Equation 5.7 S is a girder spacing (in meters)

and D is the factor depending on girder types (D=5.5 for prestressed concrete

girders).

The mean value of the parameter Gr assumed by Moses & Ghosn (1985) is

1.15 with the corresponding coefficient of variation of 10%.

Model of Flint and Neill Partnership. The FNP (Flint and Neill Partner-

ship) traffic load model (Cooper, 1997) has been created to help in checking the

United Kingdom bridge stock for adequacy of carrying current (at the time) and

future heavy vehicle (i.e. 40 tonne vehicles that were not allowed in UK before

1999). The model has been developed using full simulation performed based on

WIM records collected during two weeks on the motorway carrying heavy inter-

city traffic in UK. Then, it has been verified against the WIM traffic data from

some rural motorway. The model provide a set of modification factors on a gen-

eral traffic load model which is similar to that presented in Eurocode (see Section
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5.4.3). The model comprises statistically defined factors that, applied to the load

effects produced by the basic deterministic load model, provide the probabilistic

effects.

The basic deterministic static load model is very similar to the load model in

EC-1b (2002). The only difference is that the tandem load on the Lane 2 in this

model is considered to has the same intensity as the tandem load on the Lane

1 (axle load 300 kN). The additional lanes are loaded with tandem load equal

to that defied for the Lane 3 in EC1 (axle load 100 kN). The area outside the

notional lines are considered to be unloaded.

The probabilistic model assumes that the maximum load effects in a bridge

element in question are well described by the type I extreme value distribu-

tion (Gumbel distribution). The probability density function of this distribution

(PDF) is defined as follows (Cooper, 1997):

fX(x) = α exp (−α(x− U)− exp (−α(x− U))) (5.8)

The cumulative distribution function (CDF) is given by:

FX(x) = exp (− exp (−α(x− U))) (5.9)

where U is the mode of the distribution and α is an inverse measure of dispersion.

In order to obtain the probabilistic load effect, the deterministic load effect

have to be multiplied by the above defined distribution function considering the

distribution parameters U and α as presented in Tables 5.11 and 5.12.

The values of the parameter U , presented in Tables 5.11 and 5.12, correspond

to annual maxima. The mode of the distribution for the maxima within N years

would be (Cooper, 1997):

UN = U − ln(− ln(1− 1/N))

α
(5.10)

which for large N can be simplified to:

UN = U +
ln(N)

α
(5.11)

The parameters of the probabilistic distribution presented in Tables 5.11 and

5.12 are applicable only for simply supported spans. Furthermore, they do not
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Table 5.11: Lane 1 load effect factors (Cooper, 1997).

Bridge Moment Shear

span U
α

U
α

[m] 50000(a) 10000(b) 2000(c) 50000(a) 10000(b) 2000(c)

5 0.423 0.383 0.354 56 0.443 0.400 0.370 53

10 0.387 0.350 0.324 62 0.407 0.368 0.340 58

16 0.444 0.399 0.368 52 0.490 0.435 0.396 42

20 0.411 0.381 0.360 77 0.421 0.381 0.354 58

40 0.373 0.351 0.335 102 0.382 0.347 0.323 67

Note: (a) trucks per direction per day (motorway); (b) trucks per direction per day (main
road); (c) trucks per direction per day (minor road).

Table 5.12: All lanes load effect factors (Cooper, 1997).

Bridge Moment Shear

span U
α

U
α

[m] 50000(a) 10000(b) 2000(c) 50000(a) 10000(b) 2000(c)

5 0.311 0.275 0.250 64 0.307 0.271 0.246 64

10 0.341 0.302 0.275 58 0.334 0.294 0.265 56

16 0.388 0.344 0.313 52 0.389 0.349 0.322 58

20 0.386 0.341 0.310 52 0.386 0.344 0.315 55

40 0.376 0.332 0.301 52 0.353 0.315 0.289 61

Note: (a) trucks per direction per day (motorway); (b) trucks per direction per day (main
road); (c) trucks per direction per day (minor road).

Table 5.13: Dynamic amplification factors (Cooper, 1997).

Bridge Bridge Road Dynamic amplification factor

span Frequency surface 1 lane 1+2 lanes

[m] [Hz] roughness Mean St. Dev. Mean St. Dev.

<25 >5
Good 1.08 0.10 1.08 0.07

Medium/Poor 1.13 0.15 1.13 0.10

>40 < 3
Good 1.20 0.15 1.20 0.10

Medium/Poor 1.27 0.20 1.27 0.14
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consider the dynamic effects. To account for them, the load effects have to be

multiplied by the normally distributed random variable with the distribution

parameters presented in Table 5.13.
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Chapter 6

Probabilistic response of typical

concrete bridge sections

6.1 Introduction

The verification of a load carrying capacity of a bridge or other structures in ac-

cordance with the existing design or assessment codes is usually performed on the

sectional level. In this approach the structure safety is checked comparing load

effects in each particular component obtained from global structural analysis with

its resistance calculated separately using sectional analysis. The resistance of a

component is typically a function of the mechanical properties of materials and

cross-sectional geometry. As it was already discussed in Chapter 4 all these quan-

tities are uncertain and should be considered as random variables. Consequently,

the resistance of a component is also a random variable.

In this chapter the probabilistic models of ultimate shear and bending re-

sponses of typical concrete bridge sections are presented and analysed. Besides

some models proposed by other authors the original probabilistic models devel-

oped within the program of this thesis are presented. The models developed aims

to be representative for stock of concrete highway bridges in Portugal with spans

ranging from 3 to 35 meters. The developed models are focused on precast con-

crete bridges as they became quite common in Portugal and there is a lack of

reliable models for this bridge typologies available in literature.
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6.2 Methods of analysis and uncertainties of the

analytical models

6.2.1 Basics

As it was already stated the resistance of a bridge component, commonly denoted

by R, is a random variable. Theoretically the overall uncertainty in R could be

determined based on results of extensive full scale tests. However, the possibil-

ity of performing a significant number of such test is rather limited because of

significant costs. Therefore, the behaviour of structure components are usually

analysed using some theoretical models and numerical simulations.

According to Nowak & Collins (2000) the possible sources of uncertainty in

the resistance of a structural element can be divided into the following categories:

• Material properties (uncertainty in the material strength, the modulus of

elasticity, cracking stress, ultimate strain, etc.);

• Fabrication (uncertainty in overall dimension of a component affecting cross-

section area, inertia, section modulus, etc.);

• Analysis (uncertainty resulting from approximate methods of analysis and

idealized models of material behaviour).

Therefore the resistance R may be considered as a function of nominal resis-

tance Rn (as determined from a code rule) and three factors: material properties

M , fabrication (geometry) F , and analysis (professional) P (Schneider, 1997).

R = Rn ·M · F · P (6.1)

Factors P , M and F are ratios of actual to nominal values and have their

own distribution properties. Considering that they are normally distributed and

statistically independent it is possible to express the mean value of the variable

R as:

µR = Rn · µM · µF · µP (6.2)

and its coefficient of variation as:

VR =
√

V 2
M + V 2

F + V 2
P (6.3)
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where µM , µF and µP are the mean values and VM , VF and VP are the coefficient

of variations of factors M , F and P respectively.

6.2.2 Simulations

Many times the dimensional and material properties used for the derivation of

some member property are non-normal. Furthermore, the relationship between

them, describing the response of the component, are quite complex. Thus, the

Equations 6.2 and 6.3 can not be directly applied and simulation may be required.

The simulation procedure is presented schematically in Figure 6.1. Detailed in-

formation about ’crude’ Monte Carlo simulation technique and about Latin Hy-

percube sampling method, two procedures commonly used to obtain statistical

properties of member strength, is presented in Section 3.6.

Figure 6.1: General scheme of simulation procedure, from Melchers (1999).

Since the distribution of the resistance is desired with most of the interest

over the whole region rather than just the tails (an objective is to define mean

and standard deviation of the response), relatively few simulations are required to

obtain reasonable results (Melchers, 1999). For ’crude’ Monte Carlo simulations

it would be typically 100–500 and for Latin Hypercube 10–50.
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The results of simulations, although take into account variability in geomet-

rical (fabrication), F , and material, M , parameters (see Equation 6.1) already

discussed in Chapter 4, may not reflect results of experimental tests. This can

be explained by the fact that mathematical models used in the simulation algo-

rithm do not predict the actual strength of the structure component with perfect

accuracy. The expected deviations between analysis and tests may be taken into

account by introducing a model (professional) variable P , the same as explained

in previous section. This parameter theoretically can be also incorporated into

the simulation algorithm. However, most of the authors prefer to consider it in

the analysis separately (Casas, 2005; Nowak et al., 1994; Tabsh & Nowak, 1991).

6.2.3 Model uncertainties

The probabilistic model of the professional factor P , known also as a model

uncertainty, can be obtained by comparing the results of experimental tests Re

with values predicted by the analytical model R̂n considering the real geometry

and mechanical properties of materials (Schneider, 1997):

P =
Re

R̂n

(6.4)

From a number of experimental data a histogram for professional factor P can be

obtained together with the mean value µP and the standard deviation σP . Then,

some theoretical probability distribution function can be fitted to this sample of

experimental results.

In general for good resistance prediction models µP ≈ 1 and the coefficient

of variation is around few percent. For poor models, typically very conservative,

µP > 1 and the coefficient of variation is about 10–20%.

As discussed in Melchers (1999) the model of the professional factor defined

by the Equation 6.4 is not dependent just on the quality of the mathematical

model itself but also contains errors due to testing procedure and in-batch vari-

ations. These errors should to be excluded in order to obtain strictly modelling

uncertainty. According to Melchers (1999) the mean values for both type of errors

can be considered equal to 1.00 and the coefficients of variation can be taken as

2–4% and 4% for testing errors and in-batch variations respectively.
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Since the full size test of structural components are relatively expensive, do

not exist many information about the statistics of professional factor P . However,

in the literature and in some codes it is possible to find several proposed values to

be used in the reliability analysis and in the development of probabilistic models

of components resistance.

Bending resistance of concrete elements. Mathematical models of bend-

ing capacity of reinforced and prestressed concrete sections gives generally good

results when compared to the experimental data. This reflects in the statistics of

the professional factor related to this property.

According to Melchers (1999), for the bending response of the reinforced and

prestressed concrete elements calculated considering the non-linear behaviour of

materials and the real stress-strain relations, the mean value, µP , of the model

uncertainty can be considered equal to 1.02 and the corresponding coefficient of

variation, VP , equal to 3–4.6%.

Similar values for the same model of the bending response have been used by

Nowak et al. (1994) and Nowak (1999) in the development of the resistance mod-

els of typical concrete bridge sections. For the resistance of reinforced concrete

elements Nowak et al. (1994) and Nowak (1999) used µP =1.02 and VP =6% and

for prestressed concrete µP =1.01 and VP =6%.

Quite different values, namely µP =1.20 and VP =15%, are recommended in

JCSS (2001). However, they corresponds to simple bending models based on

linear behaviour of material and simplified stress-strain relations.

Generally, in order to avoid negative values, all authors recommend to use

lognormal or normal truncated distribution function to model uncertainty of the

analytical models of the bending response.

Shear resistance of concrete elements. As it is illustrated in Table 6.1,

where statistics of the ratio RT /RP (tested/predicted resistance) obtained by

Bohigas (2002) are presented, the existing models of shear capacity of reinforced

and prestressed concrete elements are generally not very accurate. Therefore, the

professional factors are characterized typically by higher mean and bigger scatter

than in case of bending resistance models.
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Table 6.1: Uncertainty of models of shear response RT /RP (Bohigas, 2002).

Shear model
Without shear reinf. With shear reinf.

Mean value COV [%] Mean value COV [%]

EHE - Spanish code 1.23 23.61 1.64 26.26

EC-2 - Eurocode 1.02 22.03 1.83 40.29

LRFD - AASHTO code 1.28 16.80 1.18 19.23

ACI 11-5 - ACI code 1.28 26.36 1.36 24.60

ACI 11-3 - ACI code 1.29 31.21 1.41 26.70

MCFT 1.13 20.00 1.07 17.39
Note: Presented statistics are based on the results of 316 experimental shear tests of

high-strength concrete beams; MCTF - Modified Compression Fields Theory.

Nowak et al. (1994) and Nowak (1999) for relatively accurate model of shear

response of reinforced and prestressed concrete elements, known as MCTF - Mod-

ified Compression Fields Theory (Vecchio & Collins, 1986), use the professional

factor with mean µP =1.075 and the coefficient of variation VP =10%. However, for

concrete elements without shear reinforcement they used µP =1.20 and VP =10%.

Similar values were observed by Bentz (2000). He compared results of 534

experimental tests with the values predicted using Modified Compression Field

Theory. The statistics obtained for the professional factor are: µP =1.05 and

VP =12%. When the coefficients of variation of in-batch uncertainty, 4%, and

testing error, 2%, would be subtracted from the overall value VP , as suggested in

Melchers (1999), the coefficient of variation of the model uncertainty would be

reduced to 11%.

Significantly different values, namely µP =1.40 and VP =25%, are recommended

in JCSS (2001). However, they corresponds to very simple shear models as present

in design codes.

Comparing results of the already mentioned 534 tests with values calculated

using relatively simple shear model present in ACI code Bentz (2000) obtained

the following statistics of the professional factor µP =1.20 and VP =32.2%.

The same as in previous case, in order to avoid negative values, all authors

recommend to use lognormal or normal truncated distribution function to model

uncertainty of the analytical models of the shear response.
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6.3 Models of flexural response

6.3.1 Basics

The behaviour of the reinforced or prestressed concrete elements subjected to

bending is usually described by a moment-curvature relationship. In the case of

reinforced concrete member the moment-curvature diagram is characterized by

the cracking moment, Mcr, by the moment corresponding to steel yielding, My,

by the ultimate bending resistance, Mu, and by the rotation capacity, Θu. As

an example, the typical moment-curvature relationship for reinforced concrete

element is showed in Figure 6.2.

Figure 6.2: Typical moment-curvature diagram for reinforced concrete elements.

For prestressed concrete members, besides already mentioned points charac-

teristic for reinforced concrete, on the moment-curvature diagram the decompres-

sion moment, Md, may be also distinguished as a point of relevance. The typical

moment-curvature relationship for a prestressed concrete element is shown in

Figure 6.3.

The variability in the flexural response of reinforced and prestressed concrete

elements depends on the following factors:

• variability of the mechanical properties of concrete and steel (concrete com-

pressive strength, strength of reinforcing and prestressing steel, etc.);
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Figure 6.3: Typical moment-curvature diagram for prestressed concrete elements.

• variability in element geometry (effective depth, flange dimensions, etc.);

• materials degradation (e.g. corrosion);

• load history (fatigue phenomena);

• method of definition of the structural response.

Neglecting the effects of material degradation and load history, which are not a

subject of this thesis, the causes of uncertainty about structural resistance can

be put into three categories, already discussed in previous sections: material M ,

fabrication F and analysis P .

Although the decompression moment, the cracking moment and the moment

corresponding to steel yielding, may be important from the serviceability point

of view, in the capacity evaluation the ultimate bending resistance is the key pa-

rameter. Therefore, its variability has been studied more than variability of other

characteristic properties of concrete members what is reflected on the availability

of probabilistic models.

In the following points the probabilistic models of cracking moment and ulti-

mate bending capacity of the reinforced and prestressed concrete bridge sections

found in literature are discussed. Besides that, the probabilistic models developed

within the program of this thesis are also presented.
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6.3.2 Existing probabilistic models

Models for US highway bridges. The statistical parameters of bending re-

sistance for typical reinforced and prestressed concrete bridge sections in United

States were derived by Tabsh & Nowak (1991), Nowak et al. (1994) and Nowak

(1999). They have analysed three reinforced concrete T-beams (depth 0.90–

1.20m) and three prestressed concrete AASHTO-type girders (depth 1.13–1.58m),

all of different depths corresponding to different spans. Considering probabilis-

tic models of the basic variables representative for bridges in United States (for

details see Nowak, 1999; Nowak et al., 1994; Tabsh & Nowak, 1991) and using

numerical procedure allowing for non-linear behaviour of concrete and steel they

obtain results presented in the column assigned FM in Table 6.2. After taking

into consideration the model uncertainty P the final values shown in the last two

columns (R) of the Table 6.2 have been obtained.

Table 6.2: Statistical parameters of bending resistance (Nowak, 1999).

Type of structure
FM P R

Bias COV Bias COV Bias COV

Reinforced concrete - T-beams 1.12 12% 1.02 6% 1.14 13%

Prestressed concrete - I-girders 1.04 4% 1.01 6% 1.05 7.5%

In general, the major parameters which determine the flexural performance

of reinforced concrete elements with the defined geometry are the amount of

reinforcement, steel yield stress and concrete strength. However, Nowak et al.

(1994) observed that for ductile members (designed to fail by steel) the most

important parameter is the steel yield stress. Therefore, the bias factor and the

coefficient of variation of the member resistance FM , obtained from simulations

(see Table 6.2), are similar to the bias and coefficient of variation of the steel

yield strength, considered in the analysis as λ=1.12 and V =10% respectively.

In the prestressed concrete members designed to fail in a ductile manner,

the ultimate flexural response is governed by the strength of prestressing steel

(Nowak et al., 1994). This happens because precast prestressed concrete girders

are usually under reinforced (the amount of traditional reinforcing steel is very

small). Therefore, the bias factor of the member resistance FM obtained from
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simulations (see Table 6.2) is equal to the bias of the ultimate strength of pre-

stressing steel considered in the analysis as λ=1.04. However, the coefficient of

variation of the ultimate bending capacity (see Table 6.2) is just slightly higher

than the coefficient of variation of the ultimate strength of prestressing steel taken

as V =2.5%.

Tabsh & Nowak (1991), Nowak et al. (1994) and Nowak (1999) use normal

distributions to model ultimate bending capacity of reinforced and prestressed

concrete sections.

Models for Spanish highway bridges. Sobrino (1993) developed probabilis-

tic models for bending capacity of some bridge typologies common in Spain. He

studied the performance of reinforced concrete solid slab (depth 0.65m), pre-

stressed (post-tensioned) concrete voided slab (depth 1.50m), designed to fail

in ductile manner, and prestressed (post-tensioned) concrete voided slab (depth

0.90m), designed to fail by concrete crushing. Considering probabilistic models of

material properties and geometrical variations representative for bridge construc-

tions in Spain (for details see Sobrino, 1993) and using professional factor P with

unit mean and coefficient of variation of 4% he obtained the results presented in

Table 6.3.

Table 6.3: Statistical parameters of bending resistance (Sobrino, 1993).

Type of structure
Cracking moment Ultimate moment

COV Distrib. COV Distrib.

Reinforced concrete slab 12.9% Normal 8.3% Normal

Prestressed concrete slab (ductile) 8.1% Lognor. 5.5% Lognor.

Prestressed concrete slab (n/ductile) 8.2% Lognor. 7.4% Normal

Sobrino (1993) similarly to Nowak et al. (1994) observed that the coefficient of

variation of the ultimate bending response of reinforced concrete slab (see Table

6.3) is nearly the same as the coefficient of variation of yielding stress of steel

(in this case assumed as V ≈ 8%). Nevertheless, the coefficient of variation of

the ultimate bending response of prestress concrete slabs obtained by Sobrino

(1993) is significantly higher than the coefficient of variation of yielding stress
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of steel (taken as V ≈ 2%). For the case of slab designed to fail by steel, this

can be explained by the fact that in opposite to prestressed sections analysed by

Nowak et al. (1994) the slabs analysed by Sobrino (1993) are strongly reinforced

with ordinary reinforcement. However, for the case of slab designed to fail by

concrete, it can be explained by the fact that the ultimate response of the section

is governed more by concrete strength and geometry rather than by prestressing

steel strength.

Regarding cracking moment capacity of reinforced and prestressed concrete

bridge sections, based on the results presented in Table 6.3 it can be observed

that the coefficient of variation describing this property is higher than the co-

efficient of variation corresponding to ultimate bending capacity. This can be

explained by the fact that the cracking capacity is usually governed by concrete

strength properties that are characterized by higher coefficient of variation than

steel properties.

Sobrino (1993) recommends to use normal or lognormal distributions to model

cracking moment and ultimate bending capacity of reinforced and prestressed

concrete sections.

Models for European railway bridges. The statistical parameters of bend-

ing resistance for reinforced and prestressed concrete elements representative

for European railway bridges were derived by Casas (2005). He analysed rein-

forced concrete rectangular beams (depth 1.2–1.8m), reinforced concrete T-beams

(depth 0.8–1.5m), prestressed (post-tensioned) concrete rectangular beams (depth

1.0–1.8m) and prestressed (post-tensioned) massive slabs (depth 1.0m). Besides

the influence of section geometry (different section of the same typology) Casas

(2005) analysed the influence of several other parameters. For reinforced con-

crete rectangular beams and reinforced concrete T-shape beams he investigated

the influence of variability of steel yielding strength on the mean value and the

coefficient of variation of the ultimate flexural response. For the post-tensioned

concrete rectangular beam and the post-tensioned massive slab he investigated

the influence of variability of reinforcing and prestressing steel strengths and vari-

ability of concrete strength on the mean value and the coefficient of variation of

the ultimate bending resistance.
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Based on the results of several analysis performed, Casas (2005) proposed

probabilistic models resumed in the column assigned FM in Tables 6.4 and 6.5.

After taking into consideration the model uncertainty P the values shown in last

two columns (R) of Tables 6.4 and 6.5 have been obtained. These values can be

directly used in the reliability analysis.

Table 6.4: Statistics of bending resistance for RC and PC members (Casas, 2005).

Type of structure
COV FM P R

of fsy Bias COV Bias COV Bias COV

RC beams and slabs

5% 1.15 5.5% 1.02 6% 1.17 8%

10% 1.15 10% 1.02 6% 1.17 12%

15% 1.15 15% 1.02 6% 1.17 16%

PC slabs, As/Ap < 1.2 5-15% 1.11 5% 1.01 6% 1.12 8%

PC slabs, As/Ap > 1.2

5% 1.11 4% 1.01 6% 1.12 7%

10% 1.11 5% 1.01 6% 1.12 8%

15% 1.11 6% 1.01 6% 1.12 8.5%
Note: As and Ap are the area of reinforcing and prestressing steel respectively:

fsy is the steel yielding strength.

The study performed by Casas (2005) confirm the observation of other authors

that for reinforced concrete ductile members (designed to fail by steel) the most

important parameter in the ultimate flexural response is the steel yield stress.

Therefore, the bias factor and the coefficient of variation of the member resistance

FM obtained from simulations (see Table 6.4) are similar to the bias and the

coefficient of variation of the steel yield strength considered in the analysis as

λ=1.15 and V =5–15% respectively.

In the prestressed concrete beams, depending on the ratio Ap/Ac (area of

prestressing steel to area of concrete) the ultimate flexural response is governed by

the strength of prestressing steel and/or strength of concrete (Casas, 2005). The

influence of the traditional reinforcing steel is quite small. It could be expected

since the prestressed concrete beams are usually reinforced with minimum amount

of traditional reinforcement. Owing to the fact that the response is governed by

more than one variable there is not possible to correlate statistics of ultimate

bending resistance with the statistics corresponding to one only variable.
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Table 6.5: Statistics of bending resistance for PC rect. beams (Casas, 2005).

Type of structure
COV FM P R

of fc Bias COV Bias COV Bias COV

PC beams, Ap/Ac ≈ 0.3%
5-15% 1.10 3%(a) 1.01 6% 1.11 7%

5-15% 1.10 5%(b) 1.01 6% 1.11 8%

PC beams, Ap/Ac ≈ 0.5%

5% 1.06 3% 1.01 6% 1.07 6.5%

10% 1.06 4% 1.01 6% 1.07 7%

15% 1.06 6% 1.01 6% 1.07 8.5%

PC beams, Ap/Ac ≈ 0.7%

5% 1.00 3% 1.01 6% 1.01 6.5%

10% 1.00 4% 1.01 6% 1.01 7%

15% 1.00 6% 1.01 6% 1.01 8.5%
Note: Ap is the area of prestressing steel and Ac is the area of concrete; fc is the concrete

strength; (a) and (b) corresponds to COV of ultimate strength of prestressing steel, fpu, equal
to 2% and 5% respectively.

In the prestressed concrete massive slabs, depending on the ratio As/Ap (area

of reinforcing steel to area of prestressing steel), the ultimate flexural response

is governed by the strength of reinforcing steel and/or strength of prestressing

steel (Casas, 2005). The influence of concrete strength is quite small due to

the fact that prestressed concrete massive slabs have very large area of concrete

that can work in compression and change in concrete strength does not influence

significantly the section capacity. The same as previously, in this case the response

is governed by more than one variable. Therefore, it is not possible to correlate

easily the statistics of ultimate bending resistance with the statistics of any single

variable.

Casas (2005) suggest to use normal distributions to model ultimate bending

capacity of reinforced and prestressed concrete elements.

6.3.3 Selection of representative examples

In recent years, precast concrete solutions for highway bridges become really

common in Portugal (Cruz & Wísniewski, 2004; Lopes & Wísniewski, 2004). The

national programs of the development of the railway and highway network, which

starts in the last decade, cause huge progress on the area of civil engineering. Very
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harsh requirements related to the time of contract execution forced engineers and

contractors to use efficient technologies of constructing small and medium span

bridges. In many cases the precast solutions have been found the most compet-

itive. Therefore, at the moment precast concrete bridges make up a significant

part of the stock of existing bridges in Portugal.

Considering the above mentioned facts and assuming that for older, cast in-

situ concrete bridges, the models proposed by Nowak et al. (1994), Sobrino (1993)

and Casas (2005), and described in previous section may be used, it has been

decided to develop probabilistic models of flexural response just for typical precast

concrete sections representative of the stock of bridges in Portugal.

Very short span bridges in Portugal (spans ranging from 3 to 10 meters) are

commonly constructed from reinforced concrete elements (Lopes & Wísniewski,

2004; Wísniewski et al., 2005). The longitudinal sections are usually closed boxes,

two legs frames or vaults. However, their cross-sections are normally in a form of

a massive slab with depth ranging between 0.25 m and 0.55 m. Therefore, in the

development of the probabilistic models of ultimate flexural response of bridge

slab elements (see Figure 6.4), several different depths have been considered (see

Table 6.6). Furthermore, for each depth three different cases, corresponding to

different amount of reinforcement (A - minimum; B - moderate; C - high), have

been analysed. The slab depth and area of reinforcement have been designed for

each considered bridge span according to REBAP (1985) and assuming bridge

traffic loads from RSA (1983).

Short and medium span bridges in Portugal (spans ranging from 10 to 40

meters) are commonly constructed as cast in-situ reinforced concrete slabs on

precast prestressed concrete I-shape and U-shape girders (Lopes & Wísniewski,

2004; Wísniewski et al., 2004a). In the longitudinal configuration they can be

simply supported or continuous (with partial or full continuity provided between

adjacent spans). However, their cross-sections are normally composed by 0.25–

0.30 m thick reinforced concrete slab cast on several precast prestressed concrete

girders, with depth ranging from 0.75 m to 2.40 m, spaced by 1.5–8.0 m (depend-

ing on girder type and depth). Therefore, in the development of probabilistic

models of ultimate flexural response of precast prestressed concrete bridge sec-

tions (see Figures 6.5 and 6.6), several different sections dimensions have been
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considered (see Tables 6.7 and 6.8). Furthermore, for each section three differ-

ent cases, corresponding to different amount of prestressing steel (A - minimum;

B - moderate; C - high), have been analysed. The principal dimensions of the

section (girder depth, girder spacing, etc.) have been assumed according to ta-

bles developed by girder producer. However, the area of prestressing steel have

been designed for each considered bridge span according to REBAP (1985) and

assuming bridge traffic loads from RSA (1983).

Reinforced concrete slabs - bridges with spans between 3 m and 10 m.

Figure 6.4: Cross-section of reinforced concrete slab (dimensions [mm]).

Table 6.6: Parameters of RC slab elements for flexural analysis.

Type of structure Designation
Span Height Depth Steel area

L [m] H [mm] D [mm] Asb/t [mm2]

Box culvert

S-250-A 3.0 250 220 251

S-250-B 3.0 250 220 565

S-250-C 3.0 250 220 1571

S-350-A 5.0 350 320 393

S-350-B 5.0 350 320 565

S-350-C 5.0 350 320 3142

Optimized frame

S-450-A 7.5 450 410 565

S-450-B 7.5 450 410 1571

S-450-C 7.5 450 410 2199

S-550-A 10.0 550 510 792

S-550-B 10.0 550 510 2199

S-550-C 10.0 550 510 3142
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Prestressed concrete I-shape girders - bridges with spans 15–30 m.

Figure 6.5: Cross-section of prestressed concrete I-shape girder (dim. [mm]).

Table 6.7: Parameters of I-shape girders for flexural analysis.

Designation
Span Height Tot. heig. Width Strands area [mm2]

L [m] h [mm] H [mm] B [mm] Ap1 Ap2 Ap3

I-750-A – 750 1000 2000 292.8 – –

I-750-B – 750 1000 2000 878.4 – 198

I-750-C 15.0 750 1000 2000 1464 585.6 585.6

I-1000-A – 1000 1250 2000 292.8 – –

I-1000-B – 1000 1250 2000 1171.2 – 198

I-1000-C 20.0 1000 1250 2000 1464 1171.2 396

I-1400-A – 1400 1650 2500 439.2 – –

I-1400-B – 1400 1650 2500 1464 – 198

I-1400-C 25.0 1400 1650 2500 1610.4 1464 396

I-1800-A – 1800 2050 2500 585.6 – –

I-1800-B – 1800 2050 2500 1464 – 198

I-1800-C 30.0 1800 2050 2500 1756.8 1610.4 396
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Prestressed concrete U-shape girders - bridges with spans 20–35 m.

Figure 6.6: Cross-section of prestressed concrete U-shape girder (dim. [mm]).

Table 6.8: Parameters of U-shape girders for flexural analysis.

Designation
Span Height Tot. heig. Width Strands area [mm2]

L [m] h [mm] H [mm] B [mm] Ap1 Ap2 Ap3

U-1000-A – 1000 1250 6750 1024.8 – –

U-1000-B – 1000 1250 6750 2928 – 198

U-1000-C 20.0 1000 1250 6750 5856 585.6 396

U-1200-A – 1200 1450 6750 1171.2 – –

U-1200-B – 1200 1450 6750 3806.4 – 198

U-1200-C 25.0 1200 1450 6750 5856 2049.6 198

U-1500-A – 1500 1750 8000 1317.6 – –

U-1500-B – 1500 1750 8000 4392 – 198

U-1500-C 30.0 1500 1750 8000 5856 3220.8 198

U-2000-A – 2000 2250 8000 1610.4 – –

U-2000-B – 2000 2250 8000 4684.8 – 198

U-2000-C 35.0 2000 2250 8000 5856 3513.6 396

6.3.4 Models and parameters used in the simulations

The analysis of the flexural response of concrete bridge sections, selected in previ-

ous paragraph, have been performed using special numerical code ’Seccao’ (Hen-

riques, 2002). The code allows to determine the moment-curvature relationship
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corresponding to the given material properties and the geometry of any kind of

reinforced and/or prestressed concrete section. The program assumes that strains

are linearly distributed within a given cross-section. The cross-section is modelled

by a number of trapezoidal horizontal thin strips. For a given strain stage, the

corresponding stresses are calculated using the apropriate material constitutive

models. The bending moment correspondent to given curvature is calculated by

integrating the internal stresses.

The models of the material behaviour considered in the analysis have been

adopted from EC-2 (2004). Figures 6.7 and 6.8 show the constitutive models used

for concrete and reinforcing and/or prestressing steel respectively.

Figure 6.7: Stress-strain diagram for concrete.

Figure 6.8: Stress-strain diagram for reinforcing and/or prestressing steel.
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The statistics of the material and geometrical parameters considered in the

analysis as random are shown in Table 6.9. They have been assumed based on

the information presented in Chapter 4. All random variables presented in Table

6.9 have been considered normally distributed. Remaining parameters have been

considered deterministic and their representative values have been taken from

EC-2 (2004), Figures 6.4, 6.5, 6.6, and Tables 6.6, 6.7, 6.8. The representative

values of the elasticity modulus of the reinforcing and prestressing steels have

been taken as 200 GPa and 195 GPa respectively.

Table 6.9: Statistical parameters of material properties and dimensions.

Variable Notation Nominal Bias COV

Concrete compressive strength fc 30 MPa 1.0 9%(a); 12%(b)

Concrete elasticity modulus Ec 33 GPa 1.0 8%(c)

Concrete tensile strength fct 2.0 MPa 1.45 20%(d)

Concrete compressive strength fc 50 MPa 1.0 9%(a)

Concrete elasticity modulus Ec 37 GPa 1.0 8%(c)

Concrete tensile strength fct 2.85 MPa 1.45 20%(d)

Steel yielding strength fsy 500 MPa 1.15 5%

Steel ultimate strength fsu 575 MPa 1.15 5%(e)

Strain at ultimate load εsu 7.5% 1.33 15%

Strands yielding strength fpy 1670 MPa 1.04 2.5%

Strands ultimate strength fpu 1860 MPa 1.04 2.5%(f)

Strain at ultimate load εpu 3.5% 1.43 8%

Reinforcement area As nominal 1.0 2.0%

Prestressing strands area Ap nominal 1.0 1.3%

Section depth h nominal 1.0 500/h%(g)

Effective depth d nominal 1.0 500/h%(g)

In-situ slab thickness t 250 mm 1.0 4%

Stirrups spacing s nominal 1.0 500/h%(g)

Prestressing strain P 0.537% 1.0 6%

Note: (a) for plant cast concrete; (b) for concrete cast in-situ; (c) correlated with fc, correl.
coef. C=0.9; (d) correlated with fc, correl. coef. C=0.7; (e) correlated with fsy, correl. coef.

C=0.85; (f) correlated with fpy, correl. coef. C=0.80; (g) h in [mm].
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6.3.5 Results obtained from simulation

The numerical analysis performed allows to define moment-curvature relation-

ships for each of 36 selected examples. Firstly, the analysis has been carried out

for each case considering all the variables at their characteristic or nominal value.

Then, the analysis has been executed for all variables taken as their mean value.

After that, simulations have been performed using ’crude’ Monte Carlo method.

In each case analysis has been executed 250 times for the set of variables gener-

ated randomly according to the corresponding probability distribution function.

In the next step the characteristic points of the response, yielding moment and

ultimate moment, have been evaluated statistically. The histograms have been

created and basic statistics of the distribution (mean, standard deviation and

coefficient of variation) have been calculated. Then, the K-S Lilliefors goodness-

of-fit test has been performed to check if the obtained response can be modelled

by normal distribution.

Figures 6.9 and 6.10 show the moment-curvature relationships obtained for

reinforced concrete elements S-250-A and S-550-C. In referred figures, besides

moment-curvature diagrams the histograms of yielding and ultimate moments are

also presented. In general, the moment-curvature relationships and histograms

of the yielding and ultimate moments obtained for all the analysed reinforced

concrete sections are very similar to those presented in Figure 6.10. The only ex-

ception is the case of the section S-250-A characterized by very low reinforcement

area which cause that in certain simulations the cracking moment was higher

than the moment sustained by reinforcement after cracking. Therefore, two dif-

ferent failure modes have been observed which can be seen in the histogram of

the ultimate moment where two peaks are visible.

Figures 6.11 and 6.12 show the moment-curvature relationships obtained for

prestressed concrete bridge sections I-1800-C and U-2000-C. As previously, in re-

ferred figures the histograms of yielding and ultimate moments are also presented.

Generally, the moment-curvature relationships and histograms of the yielding and

ultimate moments obtained for all the analysed prestressed concrete sections are

very similar to those presented in Figures 6.11 and 6.12.
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In Tables 6.10 6.11 and 6.12 all the results of the simulations are resumed.

For every analysed section the nominal values, bias factors (ratio of mean to

nominal value) and coefficients of variation for yielding and ultimate moments

are presented. As it can be seen there is a clear tendency in the obtained results.

For all the reinforced concrete sections, except S-250-A, the bias factor for ul-

timate moment is oscillating between 1.09 and 1.15 and the coefficient of variation

takes values between 5% and 6%. Those values are very similar to that corre-

sponding to the yielding strength and the ultimate strength of reinforcing steel.

For yielding moment the bias factors and coefficients of variation are slightly

higher.

Looking to the sensitivity plot presented in Figure 6.13 it can be seen that

strength properties of reinforcing steel have actually the highest influence on

the yielding and ultimate response of the analysed sections. Thus the observed

relation between the bias factors and the coefficients of variation of steel strength

properties and ultimate flexural response can be understood. Furthermore, it

can be seen that besides strength properties of reinforcing steel the reinforcement

area and the section effective depth shows significant correlation with the yielding

and ultimate moments. Influence of the remaining variables is almost negligible.

An exception is the case of the section S-250-A where, due to already explained

reasons, the tensile strength of concrete is an important parameter.

In case of prestressed concrete sections, the bias factor and the coefficient

of variation for the ultimate moment are 1.01–1.05 and 3.1–3.8% respectively.

Those values are very similar to that corresponding to the yielding strength and

the ultimate strength of prestressing steel. For yielding moment the statistics are

nearly the same.

Analysing the sensitivity plots presented in Figures 6.14 and 6.15 similar con-

clusions can be drawn as in the previous case. The variables that have the highest

influence on the yielding and the ultimate response of the analysed sections are the

strength properties of the prestressing steel. The girder depth, the slab thickness

and the area of bottom prestressing strands are also quite important. Remaining

variables have negligible influence on the results.

For all the analysed cases the lognormal and normal distributions have been

found appropriate to model the yielding moment and the ultimate moment.
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6. Probabilistic response of typical concrete bridge sections

Figure 6.9: Moment-curvature diagrams for section S-250-A.

Figure 6.10: Moment-curvature diagrams for section S-550-C.
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6.3 Models of flexural response

Figure 6.11: Moment-curvature diagrams for section I-1800-C.

Figure 6.12: Moment-curvature diagrams for section U-2000-C.
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6. Probabilistic response of typical concrete bridge sections

Figure 6.13: Sensitivity plot for sections S-250-A and S-550-C.

Figure 6.14: Sensitivity plot for section I-1800-C.

Figure 6.15: Sensitivity plot for section U-2000-C.
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Table 6.10: Statistical parameters of My and Mu for RC slab elements.

Designation
Yielding moment My Ultimate moment Mu

Nominal Bias COV Nominal Bias COV

S-250-A 26.60 kNm 1.147 6.1% 34.00 kNm 1.138 7.9%

S-250-B 51.10 kNm 1.271 7.4% 72.47 kNm 1.089 5.7%

S-250-C 155.06 kNm 1.143 6.5% 169.88 kNm 1.119 5.8%

S-350-A 61.17 kNm 1.137 6.4% 73.99 kNm 1.151 5.6%

S-350-B 86.02 kNm 1.151 5.6% 106.22 kNm 1.110 5.2%

S-350-C 453.05 kNm 1.146 5.8% 498.44 kNm 1.120 5.4%

S-450-A 112.49 kNm 1.068 6.8% 138.21 kNm 1.092 5.1%

S-450-B 300.06 kNm 1.445 5.9% 340.78 kNm 1.112 5.1%

S-450-C 413.59 kNm 1.117 5.7% 462.50 kNm 1.088 5.1%

S-550-A 184.30 kNm 1.120 6.4% 232.84 kNm 1.107 5.1%

S-550-B 530.00 kNm 1.104 7.3% 592.47 kNm 1.111 5.0%

S-550-C 738.91 kNm 1.147 5.6% 820.87 kNm 1.118 5.1%

Table 6.11: Statistical parameters of My and Mu for prestressed I girders.

Designation
Yielding moment My Ultimate moment Mu

Nominal Bias COV Nominal Bias COV

I-750-A 501 kNm 1.045 3.9% 584 kNm 1.054 3.1%

I-750-B 1435 kNm 1.035 4.0% 1692 kNm 1.040 3.6%

I-750-C 3101 kNm 1.040 3.7% 3702 kNm 1.007 3.7%

I-1000-A 613 kNm 1.053 3.8% 719 kNm 1.052 3.4%

I-1000-B 2324 kNm 1.041 3.6% 2753 kNm 1.033 3.5%

I-1000-C 4933 kNm 1.040 3.5% 5724 kNm 1.027 3.5%

I-1400-A 1216 kNm 1.029 4.2% 1368 kNm 1.046 3.3%

I-1400-B 3844 kNm 1.041 3.5% 4447 kNm 1.037 3.5%

I-1400-C 7767 kNm 1.042 3.5% 8914 kNm 1.043 3.4%

I-1800-A 1963 kNm 1.042 3.6% 2235 kNm 1.048 3.7%

I-1800-B 4803 kNm 1.041 3.5% 5520 kNm 1.042 3.5%

I-1800-C 10728 kNm 1.040 3.6% 12197 kNm 1.042 3.4%
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Table 6.12: Statistical parameters of My and Mu for prestressed U girders.

Designation
Yielding moment My Ultimate moment Mu

Nominal Bias COV Nominal Bias COV

U-1000-A 2132 kNm 1.053 3.8% 2491 kNm 1.055 3.8%

U-1000-B 5878 kNm 1.040 3.7% 6760 kNm 1.045 3.4%

U-1000-C 12434 kNm 1.040 3.5% 14301 kNm 1.036 3.6%

U-1200-A 2898 kNm 1.015 3.9% 3248 kNm 1.049 3.5%

U-1200-B 8759 kNm 1.041 3.6% 10094 kNm 1.043 3.5%

U-1200-C 417584 kNm 1.041 3.5% 20079 kNm 1.040 3.5%

U-1500-A 3868 kNm 1.033 4.0% 4359 kNm 1.047 3.4%

U-1500-B 12248 kNm 1.041 3.5% 14148 kNm 1.035 3.5%

U-1500-C 24579 kNm 1.040 3.7% 27999 kNm 1.041 3.4%

U-2000-A 5948 kNm 1.041 3.5% 6773 kNm 1.044 3.4%

U-2000-B 16898 kNm 1.040 3.5% 19283 kNm 1.041 3.4%

U-2000-C 33189 kNm 1.038 3.7% 37494 kNm 1.042 3.4%

6.3.6 Proposed probabilistic models

Based on the results of performed simulations (see Tables 6.10, 6.11 and 6.12) and

assuming the modelling errors as presented in Section 6.2.3, the final statistics of

the bending resistance have been obtained as showed in Table 6.13. The values

presented are representative for a range of precast concrete bridges in Portugal.

They may be also used for bridges in other countries that have similar material

and geometrical characteristics. It have to be noted that the models may not be

appropriate for sections with significantly different geometry and characteristics.

Table 6.13: Statistics of bending resistance for precast concrete bridges.

Type of structure Response
FM P R

Bias COV Bias COV Bias COV

Reinforced concrete
My 1.17 6.5% 1.02 6% 1.19 9%

Mu 1.11 5.5% 1.02 6% 1.13 8%

Prestressed concrete
My 1.04 4% 1.01 6% 1.05 7%

Mu 1.04 3.5% 1.01 6% 1.05 7%
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6.4 Models of shear response

6.4 Models of shear response

6.4.1 Basics

The behaviour of the reinforced or prestressed concrete elements subjected to

shear may be described by the relationship between the shear force and the shear

strain. For reinforced concrete members the shear force-shear strain diagram is

characterized by the cracking shear, Vcr, by the shear corresponding to stirrups

yielding, Vy, by the ultimate shear resistance, Vu, and by the ultimate deformation

capacity, τu. As an example, the typical shear force-shear strain relationship for

reinforced concrete T-section with web reinforcement is showed in Figure 6.16.

Figure 6.16: Typical shear force-shear strain diagram for reinforced concrete ele-

ments.

For prestressed concrete members the shape of shear force-shear strain curve

is usually different than the curve typical for reinforced concrete. However, the

characteristic point describing the curve are the same. Figure 6.17 shows typical

shear force-shear strain relationship for prestressed concrete I-shape girder.

The variability in the shear response of reinforced and prestressed concrete

elements depends on the similar factors as already discussed variability of flexural

response, namely:

• variability of the mechanical properties of concrete and steel (concrete com-

pressive and tensile strength, stirrups strength, etc.);
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Figure 6.17: Typical shear force-shear strain diagram for prestressed concrete

elements.

• variability in element geometry (stirrups spacing, effective section depth,

web thickness, etc.);

• materials degradation (e.g. corrosion);

• load history (fatigue phenomena);

• method of definition of the structural response.

Neglecting the effects of the material degradation and load history, which are not

a subject of this thesis, the causes of uncertainty about structural resistance can

be put into three categories, already discussed in previous sections: material M ,

fabrication F and analysis P .

In the capacity evaluation of structures, the ultimate shear resistance is the

most relevant parameter. Therefore, its variability has been studied more than

the variability of other characteristic properties of concrete members subjected to

shear force. This fact is also reflected on the availability of probabilistic models.

In the following points the probabilistic models of ultimate shear capacity

of the reinforced and prestressed concrete bridge sections found in literature are

resumed. Besides that the probabilistic models developed within the program of

this thesis are also presented.
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6.4.2 Existing probabilistic models

Models for US highway bridges. The statistical parameters of shear resis-

tance for reinforced and prestressed concrete bridge sections common in United

States have been derived by Nowak et al. (1994) and Nowak (1999). Three re-

inforced concrete T-beams (depth 0.90–1.20m) and three prestressed concrete

AASHTO-type girders (depth 1.13–1.58m) have been analysed. Considering

probabilistic models of the basic variables representative for bridges in US (see

Nowak, 1999; Nowak et al., 1994) and using numerical procedure based on Mod-

ified Compression Fields Theory (Vecchio & Collins, 1986) they obtained results

resumed in the column assigned FM in Table 6.14. After taking into considera-

tion the model uncertainty P , the final values showed in last two columns (R) of

the Table 6.14 have been achieved.

Table 6.14: Statistical parameters of shear resistance (Nowak, 1999).

Type of structure
FM P R

Bias COV Bias COV Bias COV

Reinforced concr. - w/stirrups 1.13 12% 1.075 10% 1.20 15.5%

Reinforced concr. - no stirrups 1.165 13.5% 1.20 10% 1.40 17%

Prestressed concr. - w/stirrups 1.07 10% 1.075 10% 1.15 14%

For members designed to have shear failure by stirrups yielding, the most

important parameter is the steel yield stress. Therefore, the bias factor and the

coefficient of variation of the member resistance FM obtained from simulations

(see Table 6.14) are similar to the bias and coefficient of variation of the steel

yield strength (considered in the analysis as λ=1.125 and V =12% respectively).

In the reinforced concrete elements without shear reinforcement, concrete ten-

sile strength governs the ultimate capacity. Therefore the statistics of the member

resistance FM obtained from simulations (see Table 6.14) are characterized by

quite large scatter.

In the prestressed concrete members with shear reinforcement, the ultimate

shear response is governed by several parameters where yielding strength of stir-

rups is probably the most important. Therefore, the bias factor and the coefficient

of variation of the member resistance FM obtained from simulations (see Table
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6.14) are quite similar to the bias and coefficient of variation of the stirrups

yield strength (considered in the analysis as λ=1.125 and V =12% respectively).

However, due to the influence of other parameters this relation is not very clear.

Plotting the results of simulations on normal probability papers, Nowak et al.

(1994) and Nowak (1999) concluded that normal distribution may be used to

model the ultimate shear capacity of reinforced and prestressed concrete sections.

Model for Spanish highway bridges. Sobrino (1993) studied the perfor-

mance of precast prestressed concrete I-type girders (depth 1.5m) common in

Spain. Considering probabilistic models of material properties and geometrical

variations representative for bridges in Spain (for details see Sobrino, 1993) and

using professional factor P with mean equal to 1.05 and coefficient of variation

of 10% he obtained the coefficient of variation of shear resistance equal to 9.2%.

As previously observed this value is very similar to the variability of yielding

strength of stirrups.

Sobrino (1993) recommends to use translated lognormal distributions to model

ultimate shear capacity of prestressed concrete section. However, he observed that

normal and lognormal distributions are also appropriate to model this property

of prestressed concrete elements.

Models for European railway bridges. The statistical parameters of shear

resistance for reinforced and prestressed concrete elements representative for Eu-

ropean railway bridges have been derived by Casas (2005). He analysed rein-

forced concrete rectangular beams (depth 1.5m) and prestressed (post-tensioned)

concrete rectangular beams (depth 1.3m). Besides the influence of the amount

of longitudinal and transverse reinforcement Casas (2005) analysed the impor-

tance of several other parameters. For reinforced concrete rectangular beams he

investigated the effect of the variability of steel yielding strength and concrete

compressive strength on the mean value and the coefficient of variation of the

ultimate shear response. However, in the case of post-tensioned concrete rect-

angular beam he investigated the influence of the variability of reinforcing and

prestressing steel strengths and the variability of concrete strength.
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Based on the results of several analysis performed, Casas (2005) proposed

probabilistic models resumed in the column assigned FM in Table 6.15. After

taking into consideration the model uncertainty P the values shown in last column

(R) of the Table 6.15 have been obtained.

Table 6.15: Statistical parameters of shear resistance (Casas, 2005).

Type of structure
COV FM P R

of fys Bias COV Bias COV Bias COV

RC beams w/stirrups

5% – 5.5% 1.075 10% – 11.5%

10% – 10% 1.075 10% – 14%

15% – 15% 1.075 10% – 18%

RC beams no stirrups 5-15% – 7.5%(∗) 1.20 10% – 12.5%

PC beams w/stirrups

5% – 3%(∗) 1.075 10% – 10.5%

10% – 4%(∗) 1.075 10% – 11%

15% – 7.5%(∗) 1.075 10% – 12.5%

Note: (∗) values obtained considering perfect correlation between fct and fc (fct = 0.45(fc)0.4);
with this assumption the COV of fct is ≈7% for COV of fc considered equal to 15%.

In Table 6.15 the values of the bias factor (nominal/mean ratio) are omitted

due to the fact that it varies significantly dependent on the amount of longitu-

dinal and transverse reinforcement. Furthermore, it depends very much on the

mathematical model used for calculating the nominal values. The values of the

bias factor corresponding to the nominal values calculated according to several

national and European codes, reported in Casas (2005), varies between 0.7 and

2.3.

The study performed by Casas (2005) confirm the observation of other authors

that for reinforced concrete members, designed to fail by shear reinforcement,

the most important parameter in the ultimate shear response is the strength

of stirrups. Therefore, the coefficient of variation of the member resistance FM

obtained from simulations (see Table 6.15) is similar to the coefficient of variation

of the steel yield strength considered in the analysis.

The most important parameter in the ultimate shear response of concrete

members without stirrups is the concrete strength. Therefore, the coefficient

of variation of the member resistance obtained from simulations corresponds to
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coefficient of variation of concrete tensile strength considered in the analysis (see

Table 6.15).

In the prestressed concrete members with shear reinforcement, the ultimate

shear response is governed by several parameters where yielding strength of stir-

rups and concrete strength are probably the most important. However, due to

influence of other parameters this relation is not very clear.

Casas (2005) suggested to use normal distributions to model ultimate shear

capacity of reinforced and prestressed concrete elements.

6.4.3 Selection of representative examples

Having in mind the fact, already discussed in Section 6.3.3, that the precast

concrete bridges compose a significant part of the stock of existing bridges in

Portugal and assuming that for older, cast in-situ concrete bridges, the models

proposed by Nowak et al. (1994) and Casas (2005), and described in the previous

section may be used, it has been decided to develop probabilistic models of shear

response just for selected types of precast concrete bridge sections.

Generally, similar sections have been selected as for the case of bending anal-

ysis, namely reinforced concrete slab (see Figure 6.4) with depth ranging between

0.25 m and 0.55 m and cast in-situ reinforced concrete slab on precast prestressed

concrete I-shape girders (see Figure 6.5) with depth ranging from 0.75 m to 1.80

m. The bridge sections with precast prestressed U-shape girders, analysed in

bending, have been omitted in this case due to the fact that they have been

found to behave similarly to the prestressed I-shape girders (half of the U-shape

girder has similar dimensions to the I-shape girder and behaves nearly the same

when subjected to shear).

In case of the reinforced concrete slabs, for each considered depth (see Table

6.16) four different situations, corresponding to different amount of longitudinal

and shear reinforcement, have been analysed (D - minimum longitudinal and no

shear; E - minimum longitudinal and minimum shear; F - high longitudinal and

minimum shear; G - high longitudinal and high shear). The slab depth and the

area of shear and longitudinal reinforcement have been designed according to

REBAP (1985) and RSA (1983).
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In the case of cast in-situ reinforced concrete slab on precast prestressed con-

crete I-shape girders for each section dimensions considered (see Tables 6.17)

several different cases, corresponding to different amount of shear and prestress-

ing reinforcement have been analysed (D - minimum prestress and high shear; E

- moderate prestress and high shear; F - moderate prestress and minimum shear;

G - high prestress and minimum shear). The principal dimensions of the section

have been assumed according to design tables. However, the area of the reinforc-

ing and prestressing steel have been designed according to REBAP (1985) and

RSA (1983).

Reinforced concrete slabs - bridges with spans between 3 m and 10 m.

Table 6.16: Parameters of RC slab elements for shear analysis.

Designation

Bridge Total Effect. Longitud. Stirrups Stirrups

span height depth reinf. area area spacing

L [m] H [mm] D [mm] Asb/t [mm2] Ass [mm2] s [mm]

S-250-D 3.0 250 220 251 – –

S-250-E 3.0 250 220 251 84 100

S-250-F 3.0 250 220 1571 84 100

S-250-G 3.0 250 220 1571 237 100

S-350-D 5.0 350 320 393 – –

S-350-E 5.0 350 320 393 150 150

S-350-F 5.0 350 320 1571 150 150

S-350-G 5.0 350 320 1571 339 150

S-450-D 7.5 450 410 565 – –

S-450-E 7.5 450 410 565 150 200

S-450-F 7.5 450 410 2199 150 200

S-450-G 7.5 450 410 2199 565 200

S-550-D 10.0 550 510 792 – –

S-550-E 10.0 550 510 792 237 300

S-550-F 10.0 550 510 3142 237 300

S-550-G 10.0 550 510 3142 565 200
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Prestressed concrete I-shape girders - bridges with spans 15–30 m.

Table 6.17: Parameters of I-shape girders for shear analysis.

Desig- Bridge Total Slab Strands area Stirrups Stirrups

nation span height width [mm2] area spacing

L [m] H [mm] B [mm] Ap1/2 Ap3 Ass [mm2] s [mm]

I-750-D 15.0 1000 2000 292.8 – 226 100

I-750-E 15.0 1000 2000 878.4 198 226 100

I-750-F 15.0 1000 2000 878.4 198 158 300

I-750-G 15.0 1000 2000 2049.6 585.6 158 300

I-1000-D 20.0 1250 2000 292.8 – 226 100

I-1000-E 20.0 1250 2000 1171.2 198 226 100

I-1000-F 20.0 1250 2000 1171.2 198 158 300

I-1000-G 20.0 1250 2000 2635.2 396 158 300

I-1400-D 25.0 1650 2500 439.2 – 226 150

I-1400-E 25.0 1650 2500 1464 198 226 150

I-1400-F 25.0 1650 2500 1464 198 158 300

I-1400-G 25.0 1650 2500 3074.4 396 158 300

I-1800-D 30.0 2050 2500 585.6 – 226 150

I-1800-E 30.0 2050 2500 1464 198 226 150

I-1800-F 30.0 2050 2500 1464 198 158 300

I-1800-G 30.0 2050 2500 3367.2 396 158 300

6.4.4 Models and parameters used in the simulations

The analysis of the shear response of concrete bridge sections, selected in the

previous paragraph, have been performed using the Modified Compression Field

Theory (Vecchio & Collins, 1986) and a special numerical code ’Response 2000’

(Bentz, 2000). The code allows to determine shear force-shear strain relationship

corresponding to given material properties and geometry of any kind of reinforced

and/or prestressed concrete section.
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The Modified Compression Field Theory is based on the truss analogy con-

cept. After the stresses in concrete reach the concrete tensile strength and the

first cracks forms, the reinforced concrete beam behaves as a truss with parallel

longitudinal chords composed of longitudinal reinforcement embedded in con-

crete. The web is composed of transverse steel ties and diagonal concrete struts.

The shear force applied to such truss causes tension in the chords and ties and

compression in the struts.

The most important assumption in the Modified Compression Field Theory

is that the cracked concrete in reinforced concrete members, when taken over

areas or distances large enough to include several cracks, can be treated as a

new material with its own stress-strain behaviour. The strains used for these

stress-strain relationships are average strains that covers the combined effects of

local strains at cracks, strains between cracks, bond slip and crack slip. The

calculated stresses are also average stresses and they implicitly include stresses

between cracks, interface shear on cracks and dowel action (Bentz, 2000).

In this theory equilibrium, compatibility and constitutive relationships are

formulated in terms of already explained average stresses and strains. The theory

takes into account strain-softening effects in concrete and allows for variability in

the angle of inclination of the struts. Besides already explained assumption about

averages stresses and strains the theory assumes that concrete and reinforcing bars

are perfectly bonded together and that longitudinal and transverse reinforcing

bars are uniformly distributed over the element. Furthermore, it imposes for

each strain state only one corresponding stress state.

The analyses of the shear response have been carried out considering the

constitutive relations for the material behaviour as suggested in Bentz (2000) and

implemented in the ’Response 2000’. The basic relations considered for concrete

and steel are generally similar to that presented in Figures 6.7 and 6.8.

The statistics of the material and geometrical parameters considered in the

analysis as random are the same as used for the flexural analysis and are shown

in Table 6.9. The only exception is the elasticity modulus of concrete which

due to software restrictions have been assumed as totally dependent on concrete

strength. All the random variables presented in Table 6.9 have been considered

to be normally distributed. Remaining parameters necessary to perform analysis
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have been considered deterministic and their representative values have been

taken from EC-2 (2004), Figures 6.4, 6.5, and Tables 6.16, 6.17.

6.4.5 Results obtained from simulations

The numerical analysis performed allows to define shear force-shear strain rela-

tionships for each of 32 selected examples. For each case, at first the analysis

has been carried out considering all the variables at their characteristic or nom-

inal value. Then, the analysis has been executed for all variables taken as their

mean value. After that, simulations have been performed using Latin Hyper-

cube method. In each case, analysis has been executed 25 times for the set of

variables defined according to the corresponding probability distribution func-

tion and selected and shuffled using Latin Hypercube concept. In the next step

the characteristic points of the response, cracking shear and ultimate shear, have

been evaluated statistically. The P-P plots have been created and basic statistics

of the distribution (mean, standard deviation and coefficient of variation) have

been calculated. Then, the K-S Lilliefors goodness-of-fit test has been performed

to check if the obtained response can be modelled by normal distribution.

Figures 6.18, 6.19, 6.21 and 6.20 show the shear force-shear strain relationship

obtained for reinforced concrete elements S-550-D, S-550-E, S-550-F and S-550-G

respectively. In referred figures, besides two shear force-shear strain diagrams

obtained considering the characteristic values (dashed bold line) and the mean

values (continuous bold line) for all parameters, the curves obtained from 25

simulations performed using Latin Hypercube sampling are also presented (grey

thin lines). In general, the shear strain-shear force relationships and scatters of

the cracking and ultimate shears obtained for all the analysed reinforced concrete

sections are similar to those presented in Figures 6.18–6.20.

In Table 6.18 the results of simulations performed for reinforced concrete

slabs are resumed. For every analysed section the nominal values, bias factors

and coefficient of variation for cracking and ultimate shear are presented. The

ultimate shear has been defined as the maximum shear capacity of the section

after formation of cracks. Despite the fact that the results obtained for different

sections are quite different some tendency can be observed.
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For all the sections without shear reinforcement the bias factor for the cracking

shear is close to 1.53 and the corresponding coefficient of variation is oscillating

around 20.5%. Those values are very similar to the values of the bias factor

and the coefficient of variation assumed for concrete tensile strength which is

the governing parameter in this case. This can be confirmed on the sensitivity

plot presented in Figure 6.22 where the correlations between the section shear

capacity and the basic variables are shown. Despite the fact that the sections

without shear reinforcement due to the presence of longitudinal reinforcement

usually show some ductility after formation of the first shear cracks, the cracking

capacity should be considered the ultimate shear capacity.

For remaining sections analysed within this study the cracking shear is also

governed mostly by concrete tensile strength. This can be observed in the sen-

sitivity plots presented in Figures 6.22 and 6.23. The statistics of the cracking

capacity of the sections with shear reinforcement are as follows: bias factor 1.55–

1.65 and coefficient of variation 20.5–21.5%.

For the slab sections with the area of longitudinal reinforcement close to min-

imum and with the low percentage of shear reinforcement the statistics of the ul-

timate shear response obtained by simulations do not show any reasonable trend.

The bias factor for sections of different depth vary between 0.95–1.497 and the

corresponding coefficient of variation oscillate between 26.4–40.5%. This happens

because for this kind of sections the ultimate shear response, or the behaviour at

failure, may be governed by different parameters leading to completely different

failure modes (e.g. failure by stirrups, failure by longitudinal reinforcement, lack

of equilibrium after cracking). This can be observed in Figure 6.19 where few

shear strain-shear force diagrams are completely separated from the others. Fur-

thermore, this can also be confirmed on the sensitivity plot presented in Figure

6.22 where the importance of the strength properties of the reinforcing steel on

the ultimate shear capacity may be observed.

Slabs with the high amount of longitudinal reinforcement and with shear

reinforcement close to minimum show more uniform behaviour. Except the case

of section S-250-F where the statistics of the ultimate shear response are slightly

different, the bias factor and the coefficient of variation for the ultimate shear

capacity are around 1.11 and 9.5% respectively. However, looking to the shear
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strain-shear force relationships presented in Figure 6.20 it can be observed that

for some simulations the failure occur in a different mode than for the others.

By coincidence in the analysed cases (except section S-250-F) the different failure

modes are characterized by mean values and the coefficients of variation relatively

similar to each other. This results have similar bias and relatively low scatter.

However, for other configurations these modes can be separated resulting in non-

uniform bias and higher scatter (e.g. the case of section S-250-F).

Properly reinforced concrete slabs, namely the slabs with relatively high per-

centage of longitudinal and shear reinforcement, behaves similarly regardless the

section dimensions. The bias factor and the coefficient of variation of the ultimate

shear capacity obtained by the simulations for this type of section are oscillating

around 1.07 and 4.5% respectively. Looking to the shear strain-shear force rela-

tionships presented in Figure 6.21 it can be observed that this kind of sections

fails normally in a single mode. The analysis of the sensitivity plot presented

in Figure 6.23 allows to distinguish this mode. Since the parameters governing

the ultimate shear capacity in this case are the stirrups yielding strength and the

concrete compressive strength, the failure occurs by stirrups yielding which after

certain deformation lead to the crushing of concrete. This hypothesis has been

confirmed by detailed analysis of all the results produced by the ’Response 2000’.

For the reinforced concrete sections with the area of shear reinforcement close

to the minimum it has also been observed that, very often, the real shear cracking

capacity, described by the mean value and the coefficient of variation, is higher

than the shear capacity after the formation of the first cracks. Therefore, it can

be considered that the shear capacity for such sections is the cracking capacity.

This sometimes can not be noticed on the shear strain-shear force relationship

obtained with the analysis performed considering the characteristic values of all

the parameters.

For most of the analysed cases the lognormal and normal distribution have

been found appropriate to model the cracking shear and the ultimate shear ca-

pacity of the reinforced concrete slabs. The cases where none of these probability

distribution functions fit properly to the obtained results are the cases of sections

with minimum longitudinal and shear reinforcement where distinct failure modes

have been observed.
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Figure 6.18: Shear force-shear strain diagrams obtained for section S-550-D.

Figure 6.19: Shear force-shear strain diagrams obtained for section S-550-E.
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6. Probabilistic response of typical concrete bridge sections

Figure 6.20: Shear force-shear strain diagrams obtained for section S-550-F.

Figure 6.21: Shear force-shear strain diagrams obtained for section S-550-G.
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Figure 6.22: Sensitivity plot for sections S-550-D and S-550-E.

Figure 6.23: Sensitivity plot for sections S-550-F and S-550-G.
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Table 6.18: Statistical parameters of Vcr and Vu for RC slab elements.

Designation
Cracking shear Vcr Ultimate shear Vu

Nominal Bias COV Nominal Bias COV

S-250-D 307.3 kN 1.528 20.3% – – –

S-250-E 280.1 kN 1.596 21.8% 245.4 kN 0.950 40.5%

S-250-F 293.0 kN 1.544 20.4% 287.6 kN 1.162 14.6%

S-250-G 279.5 kN 1.618 20.4% 540.6 kN 1.077 4.8%

S-350-D 431.4 kN 1.525 20.5% – – –

S-350-E 391.2 kN 1.609 20.7% 247.5 kN 1.320 26.8%

S-350-F 391.2 kN 1.649 21.7% 462.5 kN 1.104 9.4%

S-350-G 391.2 kN 1.649 21.7% 748.6 kN 1.075 3.9%

S-450-D 554.6 kN 1.529 20.6% – – –

S-450-E 503.0 kN 1.609 20.8% 287.6 kN 1.497 31.7%

S-450-F 507.9 kN 1.633 21.7% 501.7 kN 1.106 10.2%

S-450-G 503.0 kN 1.649 21.7% 1107.3 kN 1.076 3.8%

S-550-D 678.0 kN 1.535 20.7% – – –

S-550-E 614.8 kN 1.610 20.8% 392.7 kN 1.485 26.4%

S-550-F 614.8 kN 1.650 21.7% 663.5 kN 1.112 8.7%

S-550-G 614.8 kN 1.649 21.7% 1437.2 kN 1.067 4.6%

The behaviour of typical prestressed concrete bridge sections subjected to

shear is even more complicated than the already described behaviour of rein-

forced concrete slabs. Figures 6.24, 6.25, 6.26 and 6.27 show the shear force-shear

strain relationship obtained for prestressed sections I-1800-D, I-1800-E, I-1800-F

and I-1800-G respectively. As previously, in the referred figures, besides the two

shear force-shear strain diagrams obtained considering the characteristic values

(dashed bold line) and the mean values (continuous bold line) for all parameters,

the curves obtained from 25 simulations performed using Latin Hypercube sam-

pling are also presented (grey thin lines). In general, the shear strain-shear force

relationships and scatters of the cracking and ultimate shears obtained for all the

analysed prestressed concrete sections are similar to those presented in Figures

6.24–6.27.

In Table 6.19 the results of simulations performed for prestressed concrete
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bridge sections are resumed. For every analysed sections the nominal values, bias

factors and coefficients of variation for cracking and ultimate shear are presented.

The ultimate shear has been defined as the maximum shear capacity of the section

after formation of first diagonal cracks. Looking to Table 6.19 it can be seen that

the results obtained for different sections are somehow different. However, some

trends in the results may also be observed.

For all sections with minimum prestress the bias factor for the cracking shear

is oscillating around 1.50–1.65 and the corresponding coefficient of variation is

close to 20–21%. Those values are very similar to the values of the bias factor

and the coefficient of variation assumed for concrete tensile strength which is

the governing parameter in this case. This can be confirmed on the sensitivity

plot presented in Figure 6.28 where the correlations between the section shear

capacity (cracking and ultimate) and the basic variables are showed.

Increasing amount of prestressing reinforcement reduces the bias factor and

the coefficient of variation for the cracking shear. For the section with moderate

amount of the prestressing reinforcement the bias factor is in a range of 1.38–1.50

and the corresponding coefficient of variation is close to 17-18%. However, for

sections strongly prestressed the bias factor oscillates around 1.24–1.42 and the

coefficient of variation takes values between 14.6–17.4%. This reduction in the

bias and in the coefficient of variation can be explained by the fact that, with the

increase of prestress in the section, the importance of the concrete tensile strength

on the cracking shear capacity slightly reduces. Simultaneously, the importance of

the parameters related to amount of prestressing force applied slightly increases.

This minor change in the response is almost not visible in the sensitivity plots

presented in Figures 6.28, 6.29, 6.30 and 6.31. Nevertheless, it has been observed

in sections I-1000-G and I-1400-G.

The response of prestressed concrete sections after formation of the first diago-

nal cracks is quite complex which is reflected on the statistics of the ultimate shear

capacity. As it can be observed in Table 6.19 the bias factors for different sections

vary between 1.06 and 1.43. The corresponding coefficient of variation oscillates

between 3.6–13.3%. Nevertheless, when analysing the sections with similar per-

centage of prestressing steel and with similar amount of shear reinforcement some

trends are observed.
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For all sections with high amount of shear reinforcement and with minimum

area of prestressing strands, the shear response is similar to that presented in

Figure 6.24, where on the shear strain-shear force relationships three picks are

easily visible. First corresponds to formation of the diagonal cracks in a web,

second corresponds to the formation of transversal cracks in bottom flange and the

third corresponds to the formation of transversal cracks in the top flange. When

the section is already completely cracked the section fails by steel. Depending on

the situation, the ultimate shear capacity may be reached in one of four different

modes. However in the analysed examples the maximum shear capacity has been

usually obtained before formation of the transversal cracks in the bottom flange.

This can be confirmed on the sensitivity plot presented in Figure 6.28 where the

high correlation of the tensile strength of concrete of the girder with ultimate

shear capacity can be observed. The bias factor of the ultimate shear capacity

for this kind of sections is varying significantly and takes values between 1.15 and

1.43. However, the corresponding coefficient of variation oscillates between 9.5%

and 13.3%.

The increase of the prestress in the sections with the same geometry and with

the same high amount of shear reinforcement changes the shear strain-shear force

relationships. This can be observed in Figure 6.25 where just two peaks on the

shear strain-shear force relationship are visible. The same as previously, the first

corresponds to the formation of diagonal cracks. However, the second corresponds

to the formation of the transversal cracks in the top flange. The third peak visible

previously does not exist in this situation. This can be explained by the fact that

the high prestress applied to the bottom flange of the girder effectively prevent

from its cracking. After the development of the diagonal and transversal cracks,

the sections fails by reinforcing steel or by concrete crushing preceded by plastic

deformation of reinforcement. Therefore, in this case the ultimate shear capacity

may be also reached in one of few different modes. In the analysed examples the

maximum shear capacity has been usually obtained before the formation of the

transversal cracks in the top flange. This can be confirmed on the sensitivity plot

presented in Figure 6.29 where, besides the importance of concrete strength of

the girder, the high correlation of the tensile strength of concrete of the top flange

with ultimate shear capacity of the section can be observed. The bias factor of the
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ultimate shear capacity for this kind of sections takes values between 1.03–1.24.

The corresponding coefficient of variation oscillates between 5.2% and 7.7%.

All sections with moderate amount of prestress and with amount of shear rein-

forcement close to minimum behave similarly, regardless the section dimensions.

The bias factor and the coefficient of variation of the ultimate shear capacity,

obtained by the simulations for this type of sections, are oscillating around 1.10

and 4.5% respectively. Looking to the shear strain-shear force relationships pre-

sented in Figure 6.26 it can be observed that this kind of sections fails normally

in a single mode that may be identified analysing the sensitivity plot presented in

Figure 6.30. Since the parameters governing the ultimate shear capacity in this

case are the stirrups yielding strength and the concrete compressive strength of

the girder, the failure occurs by stirrups yielding, which after certain deformation

lead to the crushing of concrete struts. This hypothesis has been confirmed by

detailed analysis of the results produced by the ’Response 2000’.

Further increase of the prestress in the sections with the shear reinforcement

close to the minimum does not change the section behaviour significantly. How-

ever, the bias factor and the coefficient of variation of the ultimate shear capacity

obtained by the simulations for this type of section are slightly different than in

the previous case and are oscillating around 1.15 and 4.5% respectively. Look-

ing to the shear strain-shear force relationships presented in Figure 6.27 it can

be observed that, except few cases, this kind of sections fails generally also in

a single mode, similar to that characteristic for the previously described case.

Analysing the sensitivity plot presented in Figure 6.31 it can be observed that

the increase in the prestress causes the increase of the importance of the concrete

tensile strength of the top flange on the ultimate shear capacity of the section.

Therefore, the few cases, when the different failure mode has been observed are

probably governed by cracking capacity of the top flange.

For most of the analysed cases the lognormal and normal distribution have

been found appropriate to model the cracking shear and the ultimate shear ca-

pacity of the prestressed concrete bridge sections. The cases where none of these

probability distribution functions fit properly to the obtained results are the cases

of sections with minimum prestress and with high percentage of shear reinforce-

ment where distinct failure modes have been observed.
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Figure 6.24: Shear force-shear strain diagrams obtained for section I-1800-D.

Figure 6.25: Shear force-shear strain diagrams obtained for section I-1800-E.

166



6.4 Models of shear response

Figure 6.26: Shear force-shear strain diagrams obtained for section I-1800-F.

Figure 6.27: Shear force-shear strain diagrams obtained for section I-1800-G.
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Figure 6.28: Sensitivity plot for section I-1800-D.

Figure 6.29: Sensitivity plot for section I-1800-E.

Figure 6.30: Sensitivity plot for section I-1800-F.
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Figure 6.31: Sensitivity plot for section I-1800-G.

Table 6.19: Statistical parameters of Vcr and Vu for prestressed I girders.

Designation
Cracking shear Vcr Ultimate shear Vu

Nominal Bias COV Nominal Bias COV

I-750-D 255.4 kN 1.547 20.0% 907.4 kN 1.427 13.3%

I-750-E 343.7 kN 1.417 17.7% 1543.5 kN 1.028 6.7%

I-750-F 343.7 kN 1.417 17.7% 660.8 kN 1.116 4.1%

I-750-G 430.9 kN 1.420 15.1% 690.2 kN 1.100 3.6%

I-1000-D 334.4 kN 1.631 20.7% 1260.7 kN 1.154 10.7%

I-1000-E 450.5 kN 1.498 18.2% 1900.9 kN 1.140 5.6%

I-1000-F 450.5 kN 1.498 18.2% 866.6 kN 1.095 4.5%

I-1000-G 665.4 kN 1.244 14.6% 843.7 kN 1.152 4.1%

I-1400-D 595.8 kN 1.501 20.1% 1172.3 kN 1.381 12.6%

I-1400-E 749.7 kN 1.380 17.2% 1993.5 kN 1.242 5.2%

I-1400-F 749.7 kN 1.380 17.2% 1264.9 kN 1.060 4.2%

I-1400-G 902.2 kN 1.315 15.4% 1150.5 kN 1.171 3.8%

I-1800-D 780.8 kN 1.644 21.0% 1601.6 kN 1.288 9.5%

I-1800-E 981.4 kN 1.397 17.8% 2187.9 kN 1.244 7.7%

I-1800-F 981.4 kN 1.397 17.8% 1539.2 kN 1.130 4.2%

I-1800-G 1181.9 kN 1.289 17.4% 1464.4 kN 1.186 5.4%
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6.4.6 Proposed probabilistic models

Based on the results of the performed simulations (see Tables 6.18 and 6.19) and

assuming the modelling errors as presented in Section 6.2.3, the final statistics

of the shear resistance have been obtained as showed in Table 6.20. The values

presented are representative for a range of precast concrete bridges in Portugal.

They may be also used for bridges in other countries that are characterized by the

similar variability in the material properties and in the section geometry. It have

to be noted that the models may not be appropriate for sections with significantly

different geometry and executed from different materials.

The values presented in Table 6.20 are valid for precast reinforced and pre-

stressed concrete bridge sections that are properly reinforced. It means that they

have sufficient area of longitudinal and shear reinforcement (except the case of the

slab without shear reinforcement). Furthermore, the bias factor presented in the

last group of columns R relates the mean shear capacity with the characteristic

capacity calculated using Modified Compression Field Theory.

Table 6.20: Statistics of shear resistance for precast concrete bridges.

Type of structure Resp.
FM P R

Bias COV Bias COV Bias COV

RC slabs - no stirrups Vc 1.53 20.5% 1.20 10% 1.80 23%

Reinforced concrete Vc 1.60 21.0% 1.20 10% 1.90 23%

slabs V
(a)
u 1.11 9.5% 1.075 10% 1.20 15%

with stirrups V
(b)
u 1.07 4.5% 1.075 10% 1.15 12.5%

Poorly prestressed Vc 1.60 21.0% 1.20 10% 1.90 23%

concrete - w/stirrups V
(b)
u 1.15 10.0% 1.075 10% 1.23 15%

Prestressed concrete Vc 1.45 18.0% 1.20 10% 1.70 21%

girders - w/stirrups V
(b)
u 1.10 7.5% 1.075 10% 1.18 12.5%

moderately prestressed V
(a)
u 1.10 4.5% 1.075 10% 1.18 11%

Strongly prestressed Vc 1.30 16.0% 1.20 10% 1.55 19%

concrete - w/stirrups V
(a)
u 1.15 4.5% 1.075 10% 1.23 11%

Note: (a) low shear reinforcement area; (b) high shear reinforcement area.
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Chapter 7

Safety requirements and formats

for assessment of bridges

7.1 Introduction

In this chapter the requirements regarding bridges safety, necessary to set when

assessing load carrying capacity of existing bridges, are showed. They were mostly

collected from the existing national and international codes and guidelines. The

theoretical backgrounds based on which the target reliabilities are usually selected

are also discussed. Furthermore, several safety formats that can be used in the

bridges evaluation are presented. The described safety formats were adopted

from works of many authors and they were selected in such a way to form solid

framework for the assessment of existing bridges based on ’step-level’ philosophy.

In this philosophy, discussed in more detail in the Chapter 2 of this thesis, the

application of new and increasingly sophisticated analysis levels is made only if

the bridge fails to pass the previous assessment level.

The requirements regarding bridges safety and the safety formats presented

in the following sections were partially selected and described for the purpose

of ’Sustainable Bridges’ European Project and are also presented in Casas &

Wísniewski (2005). Furthermore, some of them are discussed in Wísniewski et al.

(2006a,b), Wísniewski & Casas (2006) and Wísniewski et al. (2007).
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7.2 Safety requirements

7.2.1 General

One of the key issues when assessing an existing structure or bridge is to set the

required minimum safety level that this structure should have in order not only

to guarantee the security of the users and the surrounding infrastructure, but also

to take a right decision on the future of the structure: leave as it is, strengthen,

renew (Casas & Wísniewski, 2005).

In the following section the problems related to the acceptability of a risk

of a bridge collapse are discussed. Subsequently the concept of the nominal

target probability is presented. Afterwards the cost-benefit issues in setting target

reliabilities are discussed and finally target values of minimum reliability indices

proposed in some national and international codes and guidelines are showed.

7.2.2 Risk acceptability

The acceptability of risk in general is affected by many factors such as the nature

of hazard, the voluntary or involuntary nature of exposure to risk, the possible

consequences and the benefits associated. In particular, the acceptability of risk

of deaths and a social reaction to bridge collapse depends on (Menzies, 1997):

• The size of the bridge and its public profile.

• The class of road carried.

• The cause of collapse.

In defining acceptable risk criteria, it is possible to take into account ac-

ceptable or tolerable risk levels for other risk in society (Melchers, 1999). As

an example Table 7.1 shows the indicative estimates of selected risk in society

including structural failures.

Another approach is the concept of ALARP (as low as reasonably practical)

(Melchers, 1999). Defining an upper limit to the risk, where greater risk can not

be tolerated and a lower limit below which is of no practical interest and reducing
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Table 7.1: Selected risk in society (Melchers, 1999).

Activity

Approximate Typical Typical

death rate exposure risk of death

[x10−9 deaths/h exp.] [h/year] [x10−6/year round.]

Alpine climbing 30000–40000 50 1500–2000

Boating 1500 80 120

Swimming 3500 50 170

Cigarette smoking 2500 400 1000

Air travel 1200 20 24

Car travel 700 300 200

Construction work 70–200 2200 150–440

Manufacturing 20 2000 40

Building fires 1–3 8000 8–24

Structural failures 0.02 6000 0.1

(e.g. through spending money) the limit of the risk between these two limits the

optimum value (as low as reasonably practical) can be found.

Considering these two approaches Menzies (1997) estimate that a maximum

socially acceptable annual risk of loss of life associated with bridge collapse would

be 1 in 106 for single life and 1 in 107 for many lives. This rate is actually bigger

than the observed rate of bridge collapses in most of the countries.

For example in United Kingdom the observed failure rate of bridges is about

one collapse every 1–2 years (Menzies, 1997). More than half of collapses are

due to accidental impact or scour. The rate of bridge collapse due to structural

deficiencies is about one collapse every five years. Therefore, the per annum

fatality risk for the total UK population of bridges is about 1 in 5× 108 which is

lower than proposed by Menzies (1997) maximum socially acceptable value of 1

in 106 per annum.

7.2.3 Nominal probability of failure

The definition of the acceptable risk criteria is not an easy task as it was already

discussed in previous subsection. However, the proper estimation of actual risk
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associated to the operation of any structure or a bridge is even more difficult.

The risk of any structural collapse is influenced by several uncertain factors.

Despite load acting on the structural elements and its resistance these might in-

clude various environmental conditions, workmanships and human error, and pre-

diction of future events (Melchers, 1999). In general all the uncertainties involved

in the structural engineering problems can be divided to ’aleatory’ (or intrinsic

uncertainties) and ’epistemic’. The first refers to inherent uncertainties and the

second to uncertainties which might be reduced with additional data, better mod-

elling and better parameter estimation. There is also possible to breakdown all

the uncertainties as follows (Melchers, 1999):

• Phenomenological uncertainty, which may arise whenever the form of con-

struction or design technique extend the ’state of the art’.

• Decision uncertainty, which arises in connection with the decision as to

whether a particular phenomena occurred.

• Modelling uncertainty, which is associated with simplified relationship used

to describe real phenomenon.

• Prediction uncertainty, which is related to prediction of some future state

of affairs.

• Physical uncertainty, which arises from inherent random nature of basic

variables.

• Statistical uncertainty, which is associated with estimation of statistical

parameters based on limited samples of the population.

• Uncertainty due to human factors, which arises from human involvement

in the process (e.g. gross errors).

Generally it is very difficult to estimate most of the uncertainties mentioned

above. Therefore in structural engineering it is common to neglect some of them

(e.g. human errors, phenomenological and decision uncertainties, etc.). More-

over, very often in practical situations additional simplifications are made in the
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calculations. This cause that calculated probability of failure is a nominal one

and does not reflect the actual failure rate of bridges.

Since the probabilities of failure calculated in the process of the safety assess-

ment of bridges are usually the nominal (or notional) values it is necessary to

compare these values with some target nominal values that are known to provide

required overall safety and are consistent with risk acceptability criteria. The tar-

get nominal values of failure probabilities for bridges (expressed usually by the

reliability index β) are usually established based on past performance criteria.

In this criteria it is assumed that the average reliability of structures designed

according to former rules is the required one. Therefore the target failure proba-

bilities are generally close to an average of failure probabilities computed from a

sample of past design.

7.2.4 Cost-benefit issues

According to Moses (2001) an optimum cost target safety level corresponds to a

situation in which the marginal cost of further increasing the safety index is just

balanced by marginal reductions in the risk-associated cost. The risk-associated

cost can be defined as probability of failure times the cost of failure.

As is generally accepted, the cost of failure of an existing bridge should be

the same as of a newly designed. Therefore, due to the fact that marginal costs

of further increase the capacity in the case of existing structures are much higher

than that corresponding to the newly designed structures, the target safety level

for the assessment of existing bridges should be lower comparing to that used

in the design. The reason that the marginal costs of safety increase for existing

bridges are much higher is related to the fact that in the case of existing bridges

the minor increase of safety requirements may lead to the strengthening or re-

placement while in newly design bridges it leads just to insignificant increase of

section dimensions or reinforcement area.

The cost-benefit approach of choosing the required values of target reliabilities,

described more detailed in JCSS (2001b), is conceptually very accurate and can be

used for setting target values in some particular cases as for example assessment of

large bridges. However, due to lack of data, regarding for example projected cost
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of failure, is rarely used in the bridge assessment practice and even in development

of the design or evaluation codes.

7.2.5 Target reliabilities in codes and guidelines

As it was already stayed the nominal target reliabilities have to be established

based on reliability analysis of many structures assumed to be sufficiently safe.

Furthermore, the nominal target values have to take into account several other

factors (e.g. failure type, associate risk and its costs, etc.). This is a quite

comprehensive problem, therefore, it is normally handled by the specification

bodies. In this section the target reliabilities for the design or assessment of

existing bridges proposed in several codes and guidelines are resumed.

7.2.5.1 Target reliabilities for member level assessment

Eurocodes. Since the Eurocodes are the legal codes in most of the European

countries the reliability levels stated there could give some idea on the required

safety of bridges in Europe. The values of target reliability indices for Ultimate

Limit State ULS, Serviceability Limit State SLS and for Fatigue presented in EC-

0 (2002) are resumed in Table 7.2. Two sets of reliability indices are presented

for different reference periods. Furthermore, in the case of ULS several values,

corresponding to different reliability classes are defined. The reliability classes

RC1, RC2 and RC3 correspond to the failure consequences, low, medium and

high respectively. The consequences of failure are related to consequences for loss

of human life and economic, social and environmental consequences.

Table 7.2: Target reliability index β (EC-0, 2002).

Limit Refer. period 1 year Refer. period 50 years

State RC-1 RC-2 RC-3 RC-1 RC-2 RC-3

Ultimate 4.2 4.7 5.2 3.3 3.8 4.3

Fatigue — — — — 1.5–3.8(a) —

Serviceability (irreversible) — 2.9 — — 1.5 —
Note:(a) depends on degree of inspectability, reparability and damage tolerance.
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The values of the reliability index presented in Table 7.2 can give some indica-

tion to the evaluator on the required safety of bridges in Europe. However, using

them as a target for the assessment of existing bridges can be over-conservative

since they were proposed principally for bridge design.

Canadian CAN/CSA-S6-00 code. In CAN/CSA-S6-00 (2000) different val-

ues of the target reliability index for safety assessment of bridges are defined based

on the system behaviour, the element behaviour and the inspection level. The

proposed values for all traffic categories, except permit controlled, are presented

in Table 7.3. In the case of traffic with permit controlled vehicles, the values in

Table 7.3 may be decreased by 0.5. For structures that could affect the life safety

of people or are essential to the local economy, or necessary for the movement

of emergency vehicles, a value at least 0.25 greater than that given in Table 7.3

shall be used.

Table 7.3: Target reliability index β (CAN/CSA-S6-00, 2000).

System Element behaviour Inspection level

behaviour (failure type) INSP-1 INSP-2 INSP-3

S1 - Element E1 - sudden failure 4.00 3.75 3.75

failure leads to E2 - sudden with post-peak 3.75 3.50 3.25

total collapse E3 - gradual failure 3.50 3.25 3.00

S2 - Element E1 - sudden failure 3.75 3.50 3.50

failure not lead E2 - sudden with post-peak 3.50 3.25 3.00

to total collapse E3 - gradual failure 3.25 3.00 2.75

S3 - Element E1 - sudden failure 3.50 3.25 3.25

failure leads to E2 - sudden with post-peak 3.25 3.00 2.75

local failure only E3 - gradual failure 3.00 2.75 2.50
Note:INSP-1 corresponds to not inspectable components; INSP-2 corresponds to situation
when inspection is to the satisfaction of evaluator; INSP-3 corresponds to the case when

inspection has been carried out by evaluator.

AASHTO LRFD and AASHTO LRFR codes. The minimum reliability

index β=3.5 required for the design of bridges (AASHTO LRFD, 1994) in the
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United States of America is based on average betas computed from a sample of

past design. This value corresponds to the reliability of an individual member

and the strength limit states. It was computed considering specific probabilistic

models of loads, geometry and mechanical properties of materials. Therefore,

if different probabilistic models were used different target reliability would be

obtained for the same sample of past design. Moreover, the target value was

computed considering an ADTT (Average Daily Truck Traffic) of 5000 trucks

which is quite severe.

The evaluation code AASHTO LRFD (1994) proposes a value of the target

reliability index for the strength assessment of bridge members, β=2.5, which

was calibrated to corresponds to past AASHTO operating level load rating. This

lower reliability for evaluation is justified by the fact that evaluation is performed

for a much shorter exposure period, related to inspection every 2 to 5 years,

consideration of site realities and the economic considerations of rating versus

design. It does not take into account the structure redundancy as well.

Danish Reliability-Based Classification Guideline. In Vejdirectoratet (2004)

the required safety index β for the verification of the ultimate limit state was

adopted from NKB-36 (1978) for high safety class. Table 7.4 shows the recom-

mended values corresponding to different failure tapes. It have to be noted, that

the values presented in Table 7.4 should be used together with the probabilistic

models based on which they were developed.

Table 7.4: Target reliability index β (NKB-36, 1978).

Consequences Failure type

of Ductile with extra Ductile, no extra Brittle, no warning

failure carrying capacity carrying capacity and capacity reserve

Less serious 3.1 3.7 4.2

Serious 3.7 4.2 4.7

Very serious 4.2 4.7 5.2

For the verification of serviceability limit state the guideline Vejdirectoratet

(2004) recommends values proposed in EC-0 (2002) and ISO/CD 13822:1999
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(1999), which range from 2.2–2.9, or that defined in NKB-36 (1978), which are

1.0 and 2.0 for reversible and irreversible limit states.

Probabilistic Model Code. Based on cost-benefit analysis performed for

some representative structures, the Joint Committee of Structural Safety pro-

posed a set of target reliabilities that are also compatible with calibration studies

and statistical observations (JCSS, 2001). Table 7.5 shows the values recom-

mended for serviceability as well as for ultimate limit state. In Table 7.5 different

values are proposed for different relative costs of safety measures. Furthermore,

similarly as in EC-0 (2002) the target reliabilities for ultimate limit state are

differentiated according to consequences of failure: minor, moderate and large.

However, in JCSS (2001) is stated that the failure consequences besides that de-

scribed in previous paragraph depends also on type of failure, brittle and ductile

with and without reserve strength.

Table 7.5: Target reliability index β (JCSS, 2001).

Relative Ultimate Limit State Serviceability

cost of safety Minor failure Moderate fail. Large failure Limit

measure consequences consequences consequences State

Large 3.1 3.3 3.7 1.3

Normal 3.7 4.2 4.4 1.7

Small 4.2 4.4 4.7 2.3
Note: All the values correspond to 1 year reference period.

The values presented in Table 7.5 are intended to be used in design of struc-

tures. According to JCSS (2001), for existing structures the costs of achieving

a higher reliability level are usually higher compared to structures under design

and for this reason the target level should be lower.

Standard ISO 2394:1998. The choice of the target reliability index for as-

sessment of existing structures in standard ISO 2394:1998 (1998) is related to the

consequences of a structural failure as well as to the costs of a safety measure.

The values proposed in that document are presented in Table 7.6. In the calibra-

tion of the proposed target reliability values the following distribution types were
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used: resistance - lognormal or Weibull; permanent loads - normal; time-varying

loads - Gumbel.

Table 7.6: Target reliability index β (ISO 2394:1998, 1998).

Relative costs Consequences of failure

of safety measure Small cons. Some cons. Moderate cons. Great cons.

High 0 1.5(a) 2.3 3.1(b)

Moderate 1.3 2.3 3.1 3.8(c)

Low 2.3 3.1 3.8 4.3
Note: (a) use β=0 for reversible SLS and beta=1.5 for irreversible SLS; (b) use β=2.3–3.1 for

fatigue depending on possibility of inspection; (c) use β=3.1, 3.8 and 4.3 for ULS.

Standard ISO/CD 13822:1999. The target reliability for the assessment of

existing structures, proposed in ISO/CD 13822:1999 (1999) and presented in

Table 7.7, depends on the limit states analysed and related characteristics. For

the ultimate limit state the main characteristics is the consequence of failure,

for serviceability limit state the main characteristic is reversibility and finally for

fatigue it is inspectability.

Table 7.7: Target reliability index β (ISO/CD 13822:1999, 1999).

Limit state Conditions
Reliability

Reference period
index

Serviceability
Reversible 0.0 Intended remaining life

Irreversible 1.5 Intended remaining life

Fatigue
Inspectable 2.3 Intended remaining life

Not inspectable 3.1 Intended remaining life

Ultimate

Very low fail. cons. 2.3 Min. stand. safety period

Low fail. conseq. 3.1 Min. stand. safety period

Medium fail. con. 3.8 Min. stand. safety period

High fail. conseq. 4.3 Min. stand. safety period
Note: Minimum standard period of safety (e.g. 50 years).
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7.2.5.2 Target reliabilities for system level assessment

The reliability of a bridge treated as a structural system is usually bigger than

reliability of one of its members. According to Tabsh & Nowak (1991), the

difference in the reliability indices for common types of bridge decks in United

States is about 2, i.e. instead of β=3–4 for bridge member, for the bridge system

β=5–6.

Traditional design or assessment methods did not consider this additional

structure capacity in quantitative manner, however it was known that this addi-

tional over-strength exists and the requirements for the members can be chosen

less conservative. Nowadays the assessment of existing structures can be per-

formed at the member level as well as at the system level. Therefore, in order to

these two different level assessment be consistent, the target reliabilities for the

evaluation of existing bridges at the system level should be bigger than target

reliabilities presented in the previous section.

Unfortunately, so far does not exist any code or guideline that clearly define

target reliabilities for the assessment of bridges at the system level. Most of

the codes are still member orientated and the research effort in last decades

was to define the target safety for design or evaluation of structural members

without accounting for redundancy and the system effect. However, in the current

Canadian code CAN/CSA-S6-00 (2000) and in recent reports of Ghosn & Moses

(1998) and Liu et al. (2001) some target values of reliability indices are proposed

for the structural systems or at least for the members considering structural

systems effect.

Canadian CAN/CSA-S6-00 code. From the specific clause of CAN/CSA-

S6-00 (2000), regarding the evaluation of existing bridges, it could be concluded

that the safety of structural system should be higher than the safety of the average

member type by about 0.25. The target safety level expressed by β index, for the

failure of the member which causes the total collapse of the structure, is fixed at

a value between 4.0 and 3.0 depending of inspection level and ductility (see Table

7.3). The target safety indices for members which failures do not lead to the total

collapse of the bridge or members of minor importance to the global safety are
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somehow lower (3.75–2.50). Since in the first case the member failure means the

system failure (the total collapse) the target safety indices for the system can be

taken the same as for target safety indices for members which failure lead to the

system failure. Concluding, the target safety level for the systems expressed by

β indices can be assumed as the same as in the first row block, S1, of the Table

7.3.

NCHRP Reports 406 and 458. In those reports Ghosn & Moses (1998) and

Liu et al. (2001), besides the definition of target safety indices for the structural

systems, they propose the procedure (see Section 7.3.3.2) which allowed to as-

sess the redundancy of the structure and suggest how the structural redundancy

may be considered in the definition of different safety margins concerning the

behaviour of a bridge as a whole and in the adoption of the corresponding target

system values of the reliability index.

According to Ghosn & Moses (1998), a bridge superstructure provides ade-

quate levels of redundancy and system safety if all the following conditions are

satisfied:

• The reliability index for a member is greater than the target value, e.g.

β=3.5 (AASHTO LRFD, 1994);

• The difference between the system reliability index for the ultimate limit

state and the reliability index for a member is greater than ∆βult=0.85;

• The difference between the system reliability index for the functionality

limit state and the reliability index for a member is greater than ∆βfunc=0.25;

• The difference between the system reliability index in damaged conditions

and the reliability index for a member is greater than ∆βdam=-2.70

Therefore, the definition of the target values of the reliability level for the system

should be always related to the target value assumed for the members (Ghosn &

Moses, 1998). If the target value at a member level is βmemb the target system

reliability indices can be defined by the following equations.

For ultimate limit state:

βult = ∆βult + βmemb (7.1)
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For functionality limit state:

βfunc = ∆βfunc + βmemb (7.2)

For damaged condition limit state:

βdam = ∆βdam + βmemb (7.3)

As an example, if the target reliability index at a member level is set at a

value β=3.5, than a bridge with an adequate redundancy will guarantee at least

a value of βult=4.35, a βfunc=3.75 and βdam=0.8.

On the other side, according to Casas & Wísniewski (2005), if the reliability

index evaluated for a member is less than 3.5, this does not automatically send

the bridge out of safety. In fact, if the superstructure presents a high level of re-

dundancy, then even that βmemb is less than for example 3.5, the system reliability

index βult may be higher than 4.35, βfunc higher than 3.75 and the βdam higher

than 0.8, and, therefore, the bridge may be considered as safe. Following the

same concept, if the structure is non-redundant it does not mean that it can not

be safe enough. However the non-redundant structure must have higher member

safety in order to satisfy the safety requirements of the structural system.

Similar requirements, as in the case of bridge superstructure, were also defined

by Liu et al. (2001) for the bridge substructure. The requirements are as follows:

• The reliability index for a member is greater than the target value, e.g.

β=3.5 (AASHTO LRFD, 1994);

• The difference between the system reliability index for the ultimate limit

state and the reliability index for a member is greater than ∆βult=0.50;

• The difference between the system reliability index for the functionality

limit state and the reliability index for a member is greater than ∆βfunc=0.50;

• The difference between the system reliability index in damaged conditions

and the reliability index for a member is greater than ∆βdam=-2.00
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The important comment is that the results of target relative safety indices

showed above were defined based on the analysis of typical highway multi-girder

bridges and typical highway multi-pier bridge bents assumed to be adequately

redundant. However according to Ghosn & Moses (1998) and Liu et al. (2001)

a generalization can be made for other type of bridges. The generalization is

based on the same assumption that was used to derive the target values for the

calibration of safety factors in most design codes. The β values obtained for a

set of actual bridges considered as safe by bridge engineers and representative of

whole bridge population are used to define a target values that is finally accepted

for all bridges (this is for instance the case of βtarget=3.5 used in the calibration

of the AASHTO LRFD (1994)).

7.3 Safety formats for assessment of bridges

7.3.1 General

The safety formats which are commonly used in bridge engineering for the purpose

of design or safety assessment are based on the concept of limit states. According

to Nowak & Collins (2000) the limit state is defined as the boundary between

the desired and undesired performance of the structure and is mathematically

represented by the so called limit state function or performance function g(Xi).

The safety format can be defined as the mathematical approach which allows to

ensure that the performance (or limit state) function takes desired values.

In most of the bridge design codes permissible stresses format (single safety

factor format) or partial safety factor format are traditionally used. Nevertheless,

the permissible stresses format is quite archaic and can be extremely conservative

for the purpose of the safety evaluation. However, the partial safety factor format

as appears in the design codes may not be directly applicable to the assessment

of existing bridges. It is due to the fact that the partial safety factors in the

design codes are calibrated for the design purposes considering all the sources of

uncertainty characteristic for the design of new structures.

On the other hand, the assessment of existing bridges often requires the use

of advanced analytical models of the structural response (e.g. non-linear Finite
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Element analysis, plastic analysis, etc.). The safety formats recommended in the

design codes can not be used together with those kinds of structural analysis

method without significant changes. Therefore, it can be stayed that in the pro-

cess of assessment of existing bridges more advanced safety formats are required.

In general, enhanced safety formats can be divided into formats applicable

to the member level assessment and to the system level assessment. The safety

formats for member evaluation allow to assess safety of a individual member of the

structure. However, the safety formats for system level evaluation allow to assess

safety of a whole bridge considering its redundancy and robustness. Furthermore,

for both member and system level assessment, three different groups of safety

formats can be considered: deterministic or semi-probabilistic (partial or global

safety factor methods), fully probabilistic and simplified probabilistic.

In the following sections a number of safety formats proposed by Casas &

Wísniewski (2005) for the assessment of existing bridges are presented. The

methods were selected originally for the purpose of the assessment of existing

railway bridges. However, they are general and can be applied to the assessment

of all kind of bridges.

7.3.2 Safety formats for member level assessment

Semi-probabilistic formats. Partial Safety Factor Method is the most basic

assessment method that can be used for the evaluation of existing bridges at the

member level. The general form of the checking equation in this method is as

follows:

φRRn ≥ γS1Sn1 + . . . + γSiSni + . . . + γSkSnk (7.4)

where Rn is the nominal resistance of the section, Sni is the nominal value of

i-th action or action effect (dead load, live load, etc.), φR is the resistance factor

(taking into account the uncertainty of mechanical and geometrical parameters

describing the section resistance as well as the uncertainty of the resistance model

itself) and γSi is the partial safety factor of load i-th (taking into account the

uncertainty in the estimation of actions or actions effects).
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Table 7.8: Partial safety factors for design of concrete bridges.

Ultimate Limit State ULS

RSA, REBAP EC-0, EC-2 PCSF

Permanent loads 1.5, 1.35(a) / 1.0 1.35 / 1.0 1.28, 1.22(a) / 1.0

Traffic loads 1.5 / 0.0 1.35, 1.45(e) / 0.0 —

Concrete resistance 1.5 1.5, 1.4(a)–1.3(c) 1.43

Steel resistance 1.15 1.15, 1.05(b) 1.15, 1.09(d)

Note: Values after slash are for favourable load effects; (a) corresponds to structures executed
with enhanced quality; (b) corresponds to situation where measured geometrical data are

used; (c) corresponds to situation when concrete strength is assessed based on cores retrieved
from the structure; (d) applicable to the elements with depth below 250 mm; (d) applicable

for railway traffic loads.

In Table 7.8 the partial coefficients for design of concrete bridges defined by

Eurocodes (EC-0, 2002; EC-2, 2004; EC-2b, 2003) and Portuguese codes (RE-

BAP, 1985; RSA, 1983) are summarized. Also the factors proposed in the report

PCSF (2002) for design of precast concrete elements are showed. Factors corre-

sponding to the resistance of materials, showed in Table 7.8, are the inverse of

the factor φR from the Equation 7.4.

Due to different uncertainty related to modelling of the section resistance and

actions of the existing bridges comparing to the new bridges, the partial safety

factors used in assessment should be different from those used in the design.

However, conservatively, the factors used for the design are normally used due to

the lack of calibrated safety factors specific for existing structures.

Fully probabilistic format. Reliability analysis methods can be applied for

the assessment of the bridge safety at the member level when calibrated partial

safety factors for resistance and actions are not available or in case the bridge

fails to pass assessment performed using partial safety factor method. The general

form of the checking equation in the probabilistic methods is as follows:

β ≥ βtarget (7.5)

where β is the reliability index as defined in Section 3.3.3 and βtarget is the tar-

get reliability index that can be determined based on information presented in
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Section 7.2. The reliability index β should be calculated using one of the exist-

ing reliability methods, FORM, SORM, Monte Carlo, discussed previously (see

Section 3.4).

In order to perform the analysis using mentioned reliability methods the com-

plete statistical information (mean value, standard deviation, type of distribution

and correlations between variables) about basic variables is required. The proba-

bilistic models of bridge permanent and variable loads, mechanical properties of

materials, geometry and member resistance to bending and shear, necessary for

assessment of precast concrete bridges, are discussed in further chapters.

Simplified probabilistic formats. Mean Load Method can be used to assess

the bridge safety when all the basic variables are statistically independent and

can be modelled by normal or lognormal probability distribution functions. The

general form of the checking equation is the same as previously (Equation 7.5).

However, in this case the reliability index can be computed analytically using one

of the known equations.

In case of normally distributed and statistically independent random variables

R and S the reliability index β can be calculated as follows:

β =
µR − µS√
σ2

R + σ2
S

(7.6)

where µR and µS are the mean values of the generalized resistance and the action

respectively. σR and σS are the standard deviations of the generalized resistance

and the action.

When the random variables R and S are lognormally distributed and statisti-

cally independent the reliability index β can be calculated as follows:

β =
ln

µR
µS√

V 2
R + V 2

S

(7.7)

where VR and VS are the coefficients of variation of the generalized resistance and

the generalized action, and remaining parameters are as in Equation 7.6.

Since in the discussed methods all the variables are assumed to follow normal

or lognormal distribution and are assumed to be statistically independent, lim-

ited statistical information is required to perform analysis (mean value, standard

deviation or coefficient of variation).
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7.3.3 Safety formats for system level assessment

All the safety formats presented in the previous section are applicable to the

safety assessment of the structural members. However, bridges consist of a sys-

tem of interconnected members where the failure of any single member may not

necessarily cause the collapse of the whole structure. Therefore, the reliability of

the member may not be representative of the reliability of the entire bridge.

The ability of a structural system, particularly a bridge system, to carry the

loads after the failure of one of its members is called redundancy. Using different

words the redundancy can be defined as the capability of the bridge to sustain

the damage of some of its members without collapsing.

Several factors affect the reliability of structural systems. The most important

is the composition type of the system, i.e. whether the system is formed by

components in series or in parallel or in some mixed form. Another important

factor is the level of ductility of the structural components. In addition, the

correlation between the member capacities and/or the correlation between loads

affects the reliability of the system as compared to the reliability of individual

members.

The behaviour of some systems can be easily predicted intuitively without per-

forming complicated analysis. This is usually the case of: some parallel systems,

systems in series (the weakest link systems) and very simple mixed systems. In

some cases the system behaviour can also be predictable based on some previous

knowledge (results of analysis performed for similar structures). In all those cases

the reliability assessment of the structure can be performed based just on the re-

sults of the member level analysis and the applicable safety formats are similar

to those described in the previous section. However in many cases the behaviour

of the bridge is unknown and difficult to predict, especially when dealing with

existing, deteriorated structures. In all those cases the reliability assessment of

the structure has to be performed based on the results of non-linear analysis.

7.3.3.1 System with known or predictable behaviour

Semi-probabilistic formats. Partial Safety Factor Method described previ-

ously (see Equation 7.4) could be adopted for the safety assessment of bridges at
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the system level. The American standards AASHTO LRFD (1994) and AASHTO

LRFR (2003) outline the format explaining how bridge redundancy and other sys-

tem response properties can be included in the design/assessment process using

load or resistance factors modifiers. The checking equations take one of the fol-

lowing forms:

φSφRRn ≥ γS1Sn1 + . . . + γSiSni + . . . + γSkSnk (7.8)

φRRn ≥ η(γS1Sn1 + . . . + γSiSni + . . . + γSkSnk) (7.9)

where φS is the resistance factor relating to the redundancy and ductility of

the system and η is the load factor modifier related also to the redundancy and

ductility of the system. Remaining symbols are the same as in Equation 7.4.

A system factor φS or η (where φS = 1/η) is defined to give a measure of the

level of redundancy of a bridge. If φS is less than 1.0, indicates that the bridge

has a low level of redundancy. A system factor greater than 1.0 indicates that

the level of redundancy is acceptable. Bridge superstructures that have a system

factor greater than 1.0 may be rewarded by allowing that their live load margin

be increased by a factor equal to φS.

AASHTO LRFD (1994) specification suggests to define system factors sub-

jectively as a function of ’operational importance’, the ’level of ductility’ and the

’level of redundancy’. To include ’importance, ductility and redundancy’ in the

design process, to each one of those effects is assigned a factor of 0.95, 1.0, or

1.05. The total system factor for load η or for the resistance φS is the product of

the individual factors.

Ghosn & Moses (1998) using reliability methods define the system redundancy

factors φS for most common types of highway bridge superstructures in United

States. Among all the others bridges constructed from AASHTO prestressed

concrete I-beams were analysed. Table 7.9 shows the calibrated system factors

for simple-span and continuous prestressed concrete I-beam bridges. Different

values are suggested for various number of beams in the deck and various beams

spacing. Also different values are suggested for ultimate limit state, functionality

(serviceability) limit state and for damaged condition (the damaged condition is

defined as the state after failure of one of the bridge main load carrying members).
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Despite that the factors were calibrated for American traffic load condition and

AASHTO I-beams, they can be adopted for other countries and other types of

prestressed I-girders assuring that the load and resistance variabilities not vary

significantly from that used in the calibration.

Table 7.9: System factors φS for prestressed concrete I-beam bridges (Ghosn &

Moses, 1998).

Spacing Limit 4 beams 6 beams 8 beams 10 beams

[m] state simp. cont. simp. cont. simp. cont. simp. cont.

1.2

ultim. 0.87 0.93 1.04 1.08 1.08 1.10 1.08 1.10

funct. 0.89 0.95 0.99 1.04 1.00 1.05 1.01 1.05

damage 1.11 1.20 1.36 1.35 1.36 1.35 1.33 1.35

1.8

ultim. 0.98 1.04 1.06 1.08 1.06 1.08 1.06 1.08

funct. 0.96 1.00 0.98 1.03 0.99 1.04 1.00 1.04

damage 1.21 1.05 1.25 1.10 1.26 1.10 1.26 1.10

2.4

ultim. 1.04 1.04 1.07 1.05 1.07 1.05 1.07 1.05

funct. 0.95 1.00 0.98 1.02 0.99 1.02 1.00 1.03

damage 1.13 0.92 1.18 0.95 1.18 0.95 1.18 0.95

3.1

ultim. 1.06 1.02 1.06 1.03 1.06 1.03 — —

funct. 0.95 1.00 0.98 1.02 0.98 1.02 — —

damage 1.05 0.80 1.07 0.80 1.07 0.80 — —

3.7

ultim. 1.01 1.00 1.02 1.01 — — — —

funct. 0.94 1.00 0.96 1.02 — — — —

damage 0.89 0.70 0.94 0.70 — — — —
Note: For each configuration, use the lowest value from the ultimate limit state, functionality
limit state and damaged condition. The values in table for the damaged condition shall be

increased by 0.10 for bridges provided with a distributed set of diaphragms. A minimum value
of 0.80 shall be used. A maximum value of 1.20 shall be used.

The system factors provided in Table 7.9 are intended for bending moment

checks. According to Moses (2001) the system factor for shear should be con-

sidered as uniform value of φS = 1.0. It is due to the fact that shear failures

in members are often brittle, and their presence in a system of parallel members

may not provide added shear capacity through redundancy. Bending failures are

usually ductile, so redundancy does add to system bending capacity.
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Fully probabilistic formats. The system reliability analysis methods may be

applied for the assessment of existing bridges at the system level when there is a

lack of calibrated partial safety factors including that accounting for redundancy

and system behaviour. The general form of the checking equation in the fully

probabilistic method for structural systems is equal to that defined previously

(see Equation 7.5). However in this case, the target reliability index βtarget has

to be taken as the value required for structural system, usually bigger than one

required for the member (see Section 7.2). Also, the calculated reliability index

β has to correspond to the system failure and not just to the failure of one of

its members. Unfortunately the calculation of the system reliability index is

difficult and sometimes even impossible without performing non-linear structural

analysis. Therefore, despite that exist analytical solution (Melchers, 1999; Thoft-

Christensen & Murotsu, 1986) for several exceptional cases (some types of series,

parallel and mixed systems) they are not really applicable for the assessment of

existing bridges.

Simplified probabilistic formats. In many cases when the reliability index

for the structural system can not be calculated analytically using methods de-

scribed in the previous paragraph the Bounds Method can be used as the first

estimation of the bridge system safety (Casas & Wísniewski, 2005; Wísniewski

& Casas, 2006; Wísniewski et al., 2006a). The Bounds Method does not require

complicated non-linear structural analysis. In this method the rough estimation

of the behaviour of the structure and the system safety is performed by defin-

ing the lower bound due to the elastic analysis (where no redistribution between

bridge elements is permitted), and the upper bound due to the plastic analy-

sis (where complete redistribution between bridge members is assumed). In the

practical application, the definition of the lower bound can be performed using

e.g Mean Load Method presented in Section 7.3.2. The upper bound can be esti-

mated by FORM, SORM or Monte Carlo analysis performed for the limit state

function g(X) assuming an ideal plastic behaviour.

For example, in a case of a continuous bridge and bending failures, in any

critical i-th section, the limit state function g(X) can be defined by the following
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expression:

g(X) = M i
R − λi

pl(M
e
G + (M e

Q) (7.10)

where M i
R is the ultimate resistance moment of the i-th section, M e

G is the maxi-

mum bending moment due to permanent loads calculated for the equivalent sim-

ply supported beam, M e
Q is the maximum bending moment due to traffic loads

calculated also for the equivalent simply supported beam and λi
pl is the plastic

moment redistribution factor for the analysed i-th section. The equivalent simply

supported beam is defined as the simply supported beam with the span-length

equal to the length of the analysed bridge span (see Figure 7.1).

Figure 7.1: Bending moments in the equivalent simple supported beam obtained

due to linear analysis.

In the plastic analysis, the assumption is that the redistribution of bend-

ing moments between critical sections (sections over the piers and the mid-span

section) is complete. Therefore, all three cross-sections (mid-span section and

sections over the piers) reach the ultimate bending moment (a plastic hinge is

formed). Considering this fact, the moment redistribution factor can be defined

as follows:

λi
pl =

M i
R

M1
R + M3

R
2 + M2

R

(7.11)
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where M1
R, M3

R and M2
R are the ultimate bending resistance of the sections over

the supports and at mid-span respectively, for the analysed span of the bridge,

and M i
R is the ultimate bending moment of the analysed section.

7.3.3.2 System that requires non-linear structural analysis

Semi-probabilistic formats. In the absence of calibrated system factors φS

for bridge redundancy (see Equation 7.8) an alternative approach developed by

Ghosn & Moses (1998) can be used in order to assess safety of existing bridges

(Casas & Wísniewski, 2005; Wísniewski et al., 2006b). This approach will be

named furthermore in this thesis as Redundancy Factor Method.

According to Ghosn & Moses (1998), a bridge may be considered safe from a

system point of view if it provides a reasonable safety level against first member

failure, it does not produce large deformations under regular traffic conditions

which would restrict the bridge’s functionality, it does not reach its ultimate sys-

tem capacity under extreme loading conditions and is able to carry some traffic

loads after the brittle damage or the loss of a main load-carrying member. Thus,

system safety is not only concerned with the ultimate system capacity, but also

the deformation, and the post-damage capacity of the bridge structure. Based

on this definition, four limit states should be checked to ensure adequate bridge

system safety, namely: member failure limit state (this is the traditional check

of individual member safety); functionality limit state (this is defined as a maxi-

mum live load displacement accounting for the non-linear behaviour of the bridge

system); ultimate limit state (this is the ultimate capacity of the bridge system

or the formation of a collapse mechanism) and damaged condition limit state

(this is defined as the ultimate capacity of the bridge system after the complete

removal of one main load carrying component from the structural model).

To be consistent with currently used structural assessment practice, the pro-

posed method requires that individual member safety checks be performed via an

appropriate available code using for example the partial safety factor method. In

a second step, the system effect has to be taken into account to verify the function-

ality, ultimate and damaged condition limit states. The incorporation of system

response into the safety assessment process is achieved using three redundancy
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ratios: rf , ru and rd (for the serviceability, ultimate and damaged condition limit

states respectively) which are actually the factors quantifying bridge robustness.

To assess the overall safety of any specific bridge at the system level, a re-

dundancy factor φred can be determined. The following steps summarize the

procedure required to define the redundancy factor to assess the overall safety of

an existing bridge:

Step 1. Identify bridge members whose failure might be critical to the struc-

tural integrity of the bridge.

Step 2. Calculate required member capacity (Rreq) using classical Partial

Safety Factor Method and appropriate code (for example, Eurocode).

Step 3. Assess the actual capacity of the member (R) using appropriate

strength models defined by the code (for example, Eurocode), considering actual

(existing) member geometry and using best estimates of material strengths.

Step 4. Develop a structural model of the bridge using a finite element pack-

age that allows a static non-linear analysis of the structure. Consider real (exist-

ing) bridge dimensions and use a best estimate for material properties (usually

mean values). Apply a best estimate of the unfactored permanent load (usually

characteristic values should be appropriate). Do not include impact factor.

Step 5. Identify the loading position and the most critical load patterns

(producing the most critical loading effect) for the critical member under consid-

eration.

Step 6. Calculate the member reserve ratio r1 defined by the following equa-

tion:

r1 =
LF1

LF1req

(7.12)

For this purpose the elastic linear structural analysis has to be performed with

the load pattern defined in the previous steps. The required member load factor

capacity LF1req and actual member load factor capacity LF1 are defined by the

following equations:

LF1req =
Rreq −D

LTRUCK

(7.13)

LF1 =
R−D

LTRUCK

(7.14)
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where R is member capacity, D is the effect of the permanent load and LTRUCK

is the effect of the considered unfactored traffic load (e.g. Eurocode traffic Load

Model 1 - TLM-1).

Step 7. Determine using non-linear analysis the load factor LFf (see Figure

7.2) by which the applied unfactored traffic load (e.g. Eurocode TLM-1) has

to be multiplied until a primary member reaches the functionality limit state .

The functionality limit state is defined as allowable vertical deflection of primary

member.

Figure 7.2: Load factor versus deflection curves obtained due to non-linear anal-

ysis for original structure and for the structure with some hypothetical damage.

Step 8. Calculate the system reserve ratio Rf (for the functionality limit

state) using the following equation:

Rf =
LFf

LF1

(7.15)

Step 9. Calculate the redundancy ratio rf (for the functionality limit state)

using the following equation:

rf =
Rf

Rf,target

(7.16)

where Rf,target, according to the results of reliability based calibration performed

(Ghosn & Moses, 1998), can be considered equal to 1.1.
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Step 10. Determine using non-linear analysis the load factor LFu (see Figure

7.2) by which the considered unfactored traffic load (e.g. Eurocode TLM-1) has

to be multiplied to reach the ultimate limit state.

Step 11. Calculate the system reserve ratio Ru (for the ultimate limit state)

using the following equation:

Ru =
LFu

LF1

(7.17)

Step 12. Calculate the redundancy ratio ru (for the ultimate limit state)

using the following equation:

ru =
Ru

Ru,target

(7.18)

where Ru,target, according to the results of reliability based calibration performed

(Ghosn & Moses, 1998), can be considered equal to 1.3.

Step 13. Determine using non-linear analysis the load factor LFd (see Figure

7.2) by which the considered unfactored traffic load (e.g. Eurocode TLM-1) has

to be multiplied to reach the damaged condition limit state (for this purpose, a

slightly different structural model has to be used, namely the model where one

of the critical members identified in the first point is removed).

Step 14. Calculate the system reserve ratio Rd (for the damaged condition

limit state) using the following equation:

Rd =
LFd

LF1

(7.19)

Step 15. Calculate the redundancy ratio rd (for the damaged condition limit

state) using the following equation:

rd =
Rd

Rd,target

(7.20)

where Rd,target, according to the results of reliability based calibration performed

(Ghosn & Moses, 1998), can be considered equal to 0.5.

Step 16. Repeat the last three steps for damaged limit state by reintroducing

the member previously removed and removing from the structural model another

member whose failure might be critical for the structural integrity of the bridge

until all members identified in step 1 have been removed one at a time. The final

value of rd will be the minimum for all critical members.
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Step 17. After repeating all the previous steps to cover all critical load

patterns, identify the minimum values of the redundancy ratios rf , ru and rd.

Step 18. Determine the redundancy factor φred according to the following

equation:

φred = min(r1ru; r1rf ; r1rd) (7.21)

where r1, rf , ru and rd are the values corresponding to the most critical loading

patterns.

Step 19. Determine overall bridge safety: if the value of φred is less than 1,

then the bridge may be considered as not safe; if φred is equal to or greater than

1, then the bridge may be considered as safe.

Fully probabilistic formats. Probabilistic non-linear analysis is the most con-

ceptually complete and accurate method of safety assessment of bridges in the

present state-of-the-art (Casas & Wísniewski, 2005). This technique allows the

assessment of the response at ultimate under given loading conditions considering

the random nature of the basic variables and accounting for bridge redundancy.

The general form of the checking equation in the fully probabilistic method for

structural systems is equal to that defined previously (see Equation 7.5). Never-

theless, as it was already stated, the target reliability index βtarget has to be taken

as the value required for structural system (see Section 7.2). Also, the reliability

index β has to correspond to the system failure and has to be calculated using

one of the appropriate computational algorithms that allow to couple non-linear

structural analysis using finite element methods and the reliability analysis. The

allowable algorithms are presented in more detail in Section 3.6.

Simplified probabilistic formats. The application of the advanced methods

of probabilistic non-linear analysis requires advanced knowledge of the structural

reliability theory as well as significant computational effort as the non-linear anal-

ysis must be performed many times and may need specialized software packages

which are not yet readily available. For these reasons, simplified probabilistic non-

linear analysis methods, which only require a single non-linear analysis performed

within common non-linear FEM packages can provide adequate alternatives when

evaluating the safety of common type of bridges. This paragraph describes two
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simplified probabilistic non-linear analysis methods that were found to be suffi-

ciently accurate for the purpose of assessing the safety of existing bridges.

Method of Ghosn and Moses. A simple way to take into account the

non-linear behaviour of bridges (treated as a system) was proposed by Ghosn

& Moses (1998) during the calibration of system factors φS (see Section 7.3.3.1)

and system reserve ratios Rf , Ru and Rd (see previous paragraphs) for the de-

sign of bridges. The method is based on assessing the safety of individual bridge

members while taking into consideration the structural system’s performance ex-

pressed in terms of bridge redundancy. Structural redundancy is assessed through

a non-linear structural analysis coupled with a simplified reliability analysis. Al-

though the method was originally developed for evaluating the redundancy of

highway bridges during the design process, the modifications proposed by Casas

& Wísniewski (2005) show that the method can be successfully applied to the

capacity assessment of existing bridges.

As it was already stated, according to Ghosn & Moses (1998), a bridge may

be considered safe from a system viewpoint if it provides a reasonable safety level

against first member failure, it does not produce large deformations under high

loads, it does not reach its ultimate system capacity under extreme loading con-

ditions and it is able to carry some traffic loads after damage or the loss of a main

load-carrying member. Thus, system safety is not only related to the ultimate

system capacity, but also to the deformation, and post-damage capacity. There-

fore, four limit sates should be checked to ensure adequate bridge system safety,

namely: member failure limit state (this is the traditional check of individual

member safety); functionality limit state (this is defined to limit maximum live

load displacements accounting for the non-linear behaviour of the bridge system

to ensure that the bridge remain functional after high load crossings); ultimate

limit state (this is the ultimate capacity of the bridge system or the formation of

a collapse mechanism) and damaged condition limit state (this is defined as the

ultimate capacity of the bridge system after the complete removal of one main

load carrying component from the structural model).

To be consistent with present assessment practices, the proposed method first

requires checking the safety of individual members. In a second step, the system
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effect has to be taken into account and the verification of the functionality, ulti-

mate and damaged condition limit states at the system level have to be carried

out.

The incorporation of system behaviour during the safety assessment is done

using the relative reliability indices ∆βi. For each of the three system limit states

defined above, ∆βi gives the difference between the safety indices for the system

and the safety index for the member. In order to guarantee bridge safety, each of

the relative reliability indices must be greater than an appropriate target value

while at the same time member safety has to be assured by requiring that the

member’s reliability index remains above an acceptable level.

This method was proposed for the design of the new structures where the

bridge members can be designed with appropriate level of safety. In existing

structures where in some cases individual members may not meet the safety re-

quirements, global system safety should be exclusively used as criteria as proposed

by Casas & Wísniewski (2005). In this case, the proposed safety format would

take the form of following three inequalities.

For ultimate limit state:

∆βult + βmemb = βult ≥ ∆βult,target + βmemb,target = βult,target (7.22)

For functionality limit state:

∆βfunc + βmemb = βfunc ≥ ∆βfunc,target + βmemb,target = βfunc,target (7.23)

For damaged condition limit state:

∆βdam + βmemb = βdam ≥ ∆βdam,target + βmemb,target = βdam,target (7.24)

The target values for the relative reliability indices and for member reliability

index are presented in Section 7.2.

In this simplified approach, the reliability indices for individual members as

well as the system can be calculated depending on the probability distribution

types of two random variables, namely the generalized resistance, R, and the

applied load, S. In Ghosn & Moses (1998) both variables were found to be rea-

sonably well represented by lognormal distributions and for the calculation of the
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reliability indices βi the lognormal format (see Equation 7.7) was found to be

sufficiently accurate. However, in this section and for the sake of simplicity, the

reliability indices βi are presented using the normal format (see Equation 7.6).

Assuming that all the variables are Gaussian, the member reliability index for

an existing bridge can be defined as:

βmemb =
LF1 − LLTRUCK√

σ2
LF + σ2

LL

(7.25)

where LF1 is the mean value of the load factor that will cause the first member

failure in the bridge assuming elastic analysis. LLTRUCK is the mean value of

the maximum expected lifetime traffic load (e.g. Eurocode traffic Load Model 1,

TLM-1) including dynamic allowance effect expressed as a function of the de-

sign train load. σLF is the standard deviation of LF1 while σLL is the standard

deviation of the maximum expected live load LLTRUCK .

The mean value of the load factor LF1 can be calculated using the following

expression:

LF1 =
R−D

LTRUCK

(7.26)

where R is the mean member capacity, D is the mean dead load effect and LTRUCK

is the effect of the design traffic load (e.g. Eurocode TLM-1) which is the original

load that is incremented during the non-linear analysis.

The standard deviation σLF of the load factor LF1 is expressed by:

σLF =

√
σ2

R + σ2
D

LTRUCK

(7.27)

where σR is the standard deviation of the member resistance, R, σD is the stan-

dard deviation of the mean dead load effects, D.

The system reliability index for the ultimate limit state is defined by:

βult =
LFu − LLTRUCK√

σ2
LF + σ2

LL

(7.28)

where LFu (see Figure 7.2) is the mean value of the load factor corresponding

to the ultimate limit state (the load factor by which the design load, has to
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be multiplied during the non-linear analysis for the ultimate limit state to be

reached). The remaining parameters are the same as in the previous case.

The system reliability index for the functionality limit state is defined by the

equation:

βfunc =
LFf − LLTRUCK√

σ2
LF + σ2

LL

(7.29)

where LFf (see Figure 7.2) is the mean value of the load factor corresponding to

the functionality limit state. This is the load factor by which the design load has

to be multiplied to reach the functionality limit state, normally represented by a

maximum deflection allowance.

Finally the system reliability index for the damaged condition limit state is

defined by the expression:

βdam =
LFd − LLtruck√

σ2
LF + σ2

LL

(7.30)

where LFd (see Figure 7.2) is the mean value of the load factor corresponding to

the damaged condition limit state. This is the load factor by which the design load

has to be multiplied to cause the collapse of the damaged bridge. For this purpose,

a slightly different structural model has to be used, namely the model where one

of the critical bridge members is removed simulating a condition of severe bridge

damage. LLtruck is the mean value of the maximum expected load (including

dynamic allowance effect) corresponding to a low return period usually selected

to correspond to the period of routine inspection. The remaining parameters are

the same as in the previous cases. The exposure period is made to coincide with

the routine inspection period to reflect the fact that severe damage to the bridge

would be detected during the inspection and necessary repairs are made at that

point.

Because of lack of data on the coefficients of variation associated with esti-

mating the capacity of bridge systems, it is herein assumed that the load factors

LFu, LFf and LFd have the same coefficient of variation VLF as that of the load

factor LF1 which can be expresses as:

VLF =
σLF

LF1

(7.31)
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where σLF is as in Equation 7.27 and LF1 is determined by Equation 7.26. Also

the bias factor which relates the mean values with the nominal values of LFu,

LFf and LFd is assumed to be equal to the bias calculated for LF1. The bias

factor λLF can be calculated according to the expression:

λLF =
LF1

LF1

(7.32)

The calculation of LF1, LFu, LFf and LFd requires the development of the

structural model of the bridge being assessed and the use of a finite element

package that can perform a static non-linear analysis of the structure. The input

used for defining the structural model includes the best estimates of material

properties, geometry and dead loads, identification of the bridge’s most critical

members and the identification of the loading positions and the most critical

loading patterns for the critical members under consideration.

Method of Sobrino and Casas. Another simplified procedure for the

reliability based assessment of existing bridges at the system level was proposed by

Sobrino & Casas (1994). The method was originally used for the safety assessment

of highway bridges and was subsequently adapted to railway bridges as shown by

Casas & Wísniewski (2005). The method takes into account the redundancy in

bending about the longitudinal direction. It is most appropriate for continuous

bridges. The general idea of the method is similar to the previous method in the

sense that it uses information from sectional probabilistic analysis of individual

members and combines it with the results of a deterministic non-linear analysis

of the structural system to assess the structure’s system reliability.

The proposed method requires the calculation of the probability of failure of

the system (or safety index) and the comparison of the calculated value with the

target value for the system. Therefore, the proposed safety format takes the form

as defined by Equation 7.5 considering that both reliability indices, β and βtarget,

corresponds to reliability of the structural system.

To compute the reliability index, the first order reliability method (FORM)

is recommended. However, any other reliability method such as SORM or Monte

Carlo simulations can be used as well.

202



7.3 Safety formats for assessment of bridges

According to Sobrino & Casas (1994), the Limit State function g(X) in bend-

ing for each critical section i situated over intermediate supports or at mid-span

can be defined by:

g(X) = M i
R − λi

nla(M e
G + (M e

Q) (7.33)

where M i
R is the ultimate resistance moment of the i-th section, M e

G is the max-

imum bending moment due to permanent loads calculated for the equivalent

simply supported beam, M e
Q is the maximum bending moment due to traffic

loads calculated also for the equivalent simply supported beam and λi
nla is the

non-linear moment redistribution factor for the analysed i-th section. The equiv-

alent simply supported beam is defined as the simply supported beam with the

span-length equal to the length of the analysed bridge span (see Figure 7.1).

In Equation 7.33, λi
nla is the so-called moment redistribution factor for the

i-th section defined as:

λi
nla =

M i
nla

M1
nla + M3

nla
2 + M2

nla

(7.34)

where M i
nla, M1

nla, M3
nla and M2

nla (see Figure 7.3) are the bending moments

at failure obtained in the non-linear analysis for the critical i-th section under

consideration and the sections over the supports and at mid-span respectively,

for the span where i-th section is located.

Figure 7.3: Bending moments at the failure state obtained due to non-linear

analysis.

Sobrino & Casas (1994) verified that the variability in the mechanical prop-

erties and geometrical uncertainties do not change the failure mode of common
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type continuous bridge structures. Also, the coefficient of variation (COV) of

the moment response for each section remains practically constant after yielding.

Therefore, because at failure the values of M i
nla, M1

nla, M3
nla and M2

nla will be close

to their ultimate values, it can be assumed that the COV of these variables is the

same as the COV of the corresponding ultimate member bending capacity. The

latter can be easily obtained for each section by simulation taking into consider-

ation the random nature of the basic variables that control the bending capacity

which are known to be the section’s dimensions, as well as the concrete and steel

strengths. The mean values of variables the M i
nla, M1

nla, M3
nla and M2

nla can be

approximated by executing a non-linear analysis of the bridge members using as

input the mean values of the basic variables.

As with the previous method, the procedure requires the development of a

structural model of the bridge and the use of a finite element package allowing

for the static non-linear analysis of structures. The best estimates of material

properties, geometry and dead loads are used as input. The analysis requires the

identification of the bridge critical sections and the identification of the loading

position and the most critical loading patterns for the critical section under con-

sideration. Only one non-linear analysis per failure mode or critical section is

required.
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Chapter 8

Practical comparison of various

safety formats

8.1 Introduction

In this chapter several safety formats presented previously are applied to the

reliability assessment of a reinforced concrete railway bridge in Brunna, Sweden.

At first, the assessment is carried out for the intact bridge using various methods

proposed. In the second stage, the significant damaged of the bridge is assumed

in such a way that the bridge does not fulfil the safety requirements of the legal

design code (EC-1, 2002; EC-1b, 2002; EC-2, 2004; EC-2b, 2003). However, the

more sophisticated safety formats allow to proof that the safety margin present

in the structure is higher than the required target value.

The evaluation of the bridge using the same basic material and geometrical

parameters but different safety formats shows clearly advantages of using more

sophisticated assessment methods in the process of bridge evaluation. Further-

more, it allows to compare practically safety formats proposed in the previous

chapter.

The following example was developed partially within ’Sustainable Bridges’

European Project and is also presented in Casas & Wísniewski (2005). Fur-

thermore, some parts of this study are discussed in Wísniewski et al. (2006a,b),

Wísniewski & Casas (2006) and Wísniewski et al. (2007).
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8.2 Structure description

The ’Brunna Bridge’ (see Figure 8.1) is a four-span continuous reinforced concrete

structure constructed in 1969. The spans are 13.5 m, 15.0 m, 13.0 m and 11.0 m

in length.

Figure 8.1: ’Brunna Bridge’ - photo.

The superstructure consists of a U shaped girder with a web spacing of ap-

proximately 4.0 m. The girder’s bottom flange is approximately 0.4 m thick and

supports a single rail track. The total depth of the girder is 1.5 m and the webs

are 0.8 m thick. Detailed dimensions of the cross-section are presented in Figure

8.2.

Figure 8.2: ’Brunna Bridge’ - cross-section.
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The ’Brunna Bridge’ is a frame bridge, where the intermediate reinforced

concrete circular columns (B, C and D in Figure 8.3) are rigidly connected to the

deck and to the footing foundation. The end columns (A and E in Figure 8.3)

are also circular in shape however they are designed as double pinned meant to

transfer only the vertical reactions. The bridge has a skew of about 50 degrees.

The connection of the superstructure to the abutment is designed by means of a

cantilever nose with teeth immersed in the embankment.

Figure 8.3: ’Brunna Bridge’ - outline of the longitudinal reinforcement (values in

parenthesis are vertical location of reinforcement measured from the bottom of

the girder).

According to the design specifications, the concrete’s characteristic compres-

sive strength is 28MPa. The characteristic yielding strength of the reinforcing

steel is 400MPa. The reinforcement of the main girders is composed of 25-mm

bars. Up to twenty bars are provided in the mid-span sections, and 24 bars are

placed over the piers. The outline of the longitudinal reinforcement is presented

in Figure 8.3.

8.3 Finite element model

Some simplifications are made in the phase of bridge modelling. In a first ap-

proximation, the girder is modelled as two equal and parallel longitudinal beams

coinciding with the webs. Only one of the beams is analysed assuming that no
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transverse redistribution of loads between the two webs is allowed and that the

effect of the skew is negligible. Thus, the load is equally distributed to each

beam, which ignores the random eccentricity in the transverse location of the

load. Furthermore, the long-term changes in concrete and steel properties due

to creep, shrinkage and ageing are neglected. This implies that the bending mo-

ment distribution due to dead loads is time invariant and the concrete behaviour

throughout the design or effective life of the bridge remains as that obtained for

the concrete at 28 days.

The special structural analysis software Plastd90 is used to modell the bridge.

The software accounts for material non-linearity of structural steel and concrete.

This program is based on the Finite Element Method (FEM) and uses the Tim-

oshenko three node beam elements layered along the longitudinal beam’s height.

The methodology used by the program to model the non-linearity of concrete and

steel, is described in Henriques (1998).

The non-linear FEM model consists of 67 beam elements. The elements rep-

resenting the longitudinal beam comprise 15 layers of concrete and 6 layers of

reinforcing steel. The piers are modelled by elements composed by 10 layers of

concrete and 8 layers of mild reinforcement.

The boundary conditions between the main girder and the end piers (A and

E of Figure 8.3) are assumed to be pinned supports since the connections were

designed to only transfer the vertical reactions. Due to the fact that the interior

reinforced concrete circular columns (B, C and D in Figure 8.3) were rigidly con-

nected to the superstructure and to the footing, the model assumes a rigid frame

connection between the columns and the longitudinal beams. The connections of

the columns to the foundation are considered as fixed.

8.4 Geometry, mechanical properties and loads

The values of the most important variables describing the geometry and mechan-

ical properties of the bridge considered during the analysis are presented in Table

8.1. In the table the inherent variability of the parameters is represented by

the Coefficient of Variation (COV), which is defined as the ratio of the standard

deviation to the mean value of each parameter. The COV’s given in Table 8.1
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were collected from the work of various researchers and presented in Chapters

4 and 5. Other material properties such as the elastic modulus of concrete and

the concrete tensile strength are considered to be functions of the compression

strength of concrete as defined in EC-2 (2004). All the other mechanical proper-

ties required as FEM input, which are not presented in the table, are also taken

as defined in EC-2 (2004).

Table 8.1: Random variables considered in the analysis.

Random variable Unit
Char. Mean

COV PDF
value value

Concrete compressive strength, fc MPa 28.00 34.00 0.15 normal

Reinforcement yield strength, fy MPa 400.00 454.00 0.10 normal

Height of the girder, hg m 1.50 1.50 0.02 normal

Height of the slab, hs m 0.40 0.40 0.07 normal

Top Reinforcement area, ASt m nomin. nomin. 0.02 normal

Bottom Reinforcement area, ASb m nomin. nomin. 0.02 normal

Self weight of the structure, GS kN/m 47.53 47.53 0.08 normal

Permanent loads (ballast), GAb kN/m 19.07 19.07 0.10 normal

Permanent loads (track), GAt kN/m 2.00 2.00 0.10 normal

Railway traffic load (conc.), Qc kN/m 78.13 64.69 0.10 normal

Railway traffic load (distr.), Qd kN/m 40.00 31.70 0.10 normal

Impact factor, I — 1.25 1.25 0.50 normal

The following loads were considered in the analysis (see Figure 8.4): Gs -

Self-weight of the structure; Ga - Additional permanent loads; Q - Live load on

the railway track (UIC train load model) as presented in Table 8.1 along with

the COV of each load.

The values of railway traffic loads are obtained from the UIC train load model

considering that the combined effect of the characteristic axle load (250kN) and

distributed load (80kN/m) corresponds to the 98-th percentile of the PDF of

the railway load assuming normal distribution. Considering this assumption, the

mean value for the axle loads and distributed load are calculated to be respec-

tively 207kN and 63.4kN/m. The values of the railway traffic load presented in
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Figure 8.4: ’Brunna Bridge’ - outline of loading configuration.

Table 8.1 are obtained by equally distributing the load to the two beam lines

and distributing the concentrated load from the axles through the ballast (the

distribution length was considered equal to 6.4m).

8.5 Loading scheme and condition states

To illustrate the analysis procedure, the analysis is performed for a single loading

scheme designated as (LS1) which causes the failure of the mid-span section of

the first span (see Figure 8.4).

Furthermore, to show the benefits of using the simplified probabilistic non-

linear analysis for the assessment of deteriorated structures, the analysis is per-

formed for two condition states of the bridge. The first analysis is carried out for

the original bridge where it is assumed that the structure is in perfect condition.

The second analysis is performed assuming a serious level of deterioration where

50% of the bottom reinforcement of the section in the middle of the first span is

assumed to be corroded and is removed from the model. The situation, where

only one section of the bridge is subjected to such high level of deterioration while

other sections remain intact is hypothetical and is only considered to illustrate

the benefits of the proposed method for the safety assessment of existing bridges

in case the standard member level assessment technique recommended by existing

codes fails.
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8.6 Structural analysis

8.6.1 Linear elastic analysis

The structural analysis of the bridge is performed at first considering the linear

behaviour of the structure in order to define the elastic distribution of internal

forces between the critical bridge sections. The bending moments for the middle

span section (Sect.2) and the sections over the piers (Sect.1, Sect.3) of the first

span, are listed in Table 8.2 for each of the loads obtained from the linear elastic

analysis. The results in the first two rows correspond to the bending moments

due to the permanent loads. Since the characteristic values of the permanent

loads are equal to their mean values the corresponding bending moments are also

equal. The last two rows correspond to the bending moments due to the mean

value and the characteristic value of the railway traffic load respectively. The

results were obtained for the load without impact.

Table 8.3 presents the results of the bending moments in the mid-span section

(Sect.2) obtained for the equivalent simply supported beam, which is defined as

the beam with a length equal to the length of the analysed span (13.5 m). The

results in the first two rows correspond to the bending moments due to the mean

values of the permanent loads. The last row corresponds to the bending moment

due to the mean value of the railway traffic load without impact.

Table 8.2: Bending moments in the critical sections of the first span (13.5 m).

Load Symbol Unit
Bending moment

Sect. 1 Sect. 2 Sect. 3

Self weight of the structure MGs kNm -481.19 415.60 -853.10

Additional permanent loads MGa kNm -213.35 184.24 -378.25

UIC railway traffic load (mean) MQ kNm 0 955.89 -579.91

UIC railway traffic load (char.) MQk kNm 0 1163.58 -705.72

8.6.2 Non-linear analysis for Ghosn and Moses methods

The load factors for the functionality, ultimate and damaged condition limit

states obtained from the non-linear analysis are presented in Table 8.4. The ta-
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Table 8.3: Bending moments in the equivalent simple supported beam (13.5 m).

Load Symbol Unit
Bending moment

Sect. 1 Sect. 2 Sect. 3

Self weight of the structure M e
Gs kNm 0 1082.75 0

Additional permanent loads M e
Ga kNm 0 480.04 0

UIC Railway traffic load (mean) M e
Q kNm 0 1245.85 0

ble presents the results for the ’original bridge’ and for the ’deteriorated bridge’,

where a significant percentage of the mid-span section reinforcement was removed

from the model. The load factors LFi are the factors by which the bridge traffic

loads (UIC characteristic train load) have to be multiplied to reach the failure

state. LFf is the load factor for which the bridge reaches the functionality con-

dition, which is defined as a maximum deflection equal to span length/500 which

in the case of the 13.5m span is equal to 0.027m. LFu is the load factor for which

the whole structure fails and finally LFd is the load factor for which the bridge

after sustaining major damage (bridge without one of its main members) fails.

Two major damage scenarios are assumed in this example. The first damage

scenario consists of the formation of a hinge in the mid-span section. The second

scenario assumes a hinge in the section over the pier B of the main girder (see

Figure 8.3).

Table 8.4: Load factors for functionality, ultimate and damaged cond. limit state.

Condition state
Load factors

LFf LFu LF
(a)
d LF

(b)
d

Original bridge (intact condition state) 3.93 5.80 1.66 2.00

Deteriorated bridge (reinforcement area ASb loss) 2.85 3.43 1.66 1.26

Note:(a) corresponds to the situation where a hinge is assumed in the mid-span section, (b)

corresponds to the situation where a hinge is assumed over pier B.

8.6.3 Non-linear analysis for Sobrino and Casas method

The bending moments prior to the failure of the middle span section (Sect.2) and

the sections over the piers (Sect.1, Sect.3) of the first span are obtained from a
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non-linear analysis and presented in Table 8.5. The results are obtained consid-

ering that all the variables describing structure geometry and material behaviour

take their mean values (see Table 8.1). The dead loads and the railway traffic

loads were also considered at their mean values. Table 8.5 presents the results for

the original bridge and for the deteriorated bridge, where a significant percentage

of the mid-span section reinforcement is removed from the model.

Table 8.5: Bending moments in the critical sections of the first span (13.5 m).

Bridge condition Symbol Unit
Bending moment

Sect. 1 Sect. 2 Sect. 3

Original bridge (intact cond.) Mnla kNm -639.76 5751.30 -8073.67

Deteriorated bridge (ASb loss) Mnla kNm -657.30 3010.65 -6321.26

8.7 Ultimate response of bridge sections

The bending resistance of each of the bridge’s critical sections is obtained from

the ultimate analysis of reinforced concrete sections subjected to a combination

of loads (bending, shear and axial forces). The two previously defined condition

states are considered, namely the original as built condition and the deteriorated

condition that assumes a reduction in reinforcement area. At first, the sectional

analyses are carried out for the characteristic values of the concrete compressive

strength and steel yielding strength as defined in Table 8.1. These results are

presented in Table 8.6 for the critical sections of the middle bridge span.

Table 8.6: Probabilistic ultimate response of critical sections.

Section Symbol Unit
Char. Mean

COV PDF
value value

Section over the pier A M1
R kNm — 2228 0.10 normal

Mid-span section (original) M2
R kNm 5164 5772 0.10 normal

Mid-span section (deterior.) M2
R kNm 2742 3063 0.10 normal

Section over the pier B M3
R kNm — 8606 0.10 normal
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Subsequently, simulations using the Latin Hypercube method (see Chapter

3) were performed to obtain the probabilistic resistance model of the sections

subjected to bending. The analyses were carried as follows:

• At first a set of values of random variables are generated, using Latin Hy-

percube sampling method, for each of the parameters listed in Table 8.1.

• Sectional analyses are performed for each combination of generated vari-

ables (100 simulations).

• A statistical analysis of the results is performed to obtain the mean value,

the standard deviation and the probability distribution type.

Figures 8.5 and 8.6 present the histograms of the calculated ultimate bend-

ing resistance of the mid-span section (Sec.2) for the original and deteriorated

condition respectively. The normal curves plotted on the diagrams were deter-

mined based on the mean values and standard deviations of the results obtained

from the simulation. The plots show a very good fit of the data using a normal

distribution. The applicability of using a Normal distribution for the section’s

bending resistance is also confirmed by the K-S (Kolmogorov Smirnoff type) Lil-

liefors goodness of fit test. The results of the simulations for the mid-span section

(Sec.2) and the sections over the piers (Sec.1 and Sec.3), for both the original and

deteriorated conditions are summarized in Table 8.6.

In the present study, the probabilistic model for each section’s resistance to

bending is obtained by the Latin Hypercube simulations using appropriate soft-

ware for sectional analysis. However, in practical applications, the probabilistic

model of the resistance of typical railway bridge sections can be retrieved from

the information presented in Chapter 6.

8.8 Safety assessment

8.8.1 Safety assessment at the member level

Semi-probabilistic format. In a first step, the safety of the main girder of

the ’Brunna Bridge’ in bending was checked using partial safety factor method
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Figure 8.5: Histogram of mid-span section resistance - original bridge.

Figure 8.6: Histogram of mid-span section resistance - deteriorated bridge.

and linear elastic analysis. The safety check was performed for the middle span

section of the first span considering the load scheme described in Section 8.5. The

assessment was performed for the original bridge as well as for the deteriorated
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bridge using the following checking equation:

φRMRk ≥ γGsMGsk + γGaMGak + γGIMQk (8.1)

where MRk is the characteristic moment capacity of the section; MGsk is the

bending moment due to the characteristic value of the structure’s self weight;

MGak is the bending moment due to the characteristic value of the additional

dead loads; MQk is the bending moment due to the characteristic value of the

railway traffic loads; φR is the resistance factor; γGs is the partial safety factor

for the structure’s self weight; γGa is the partial safety factor for the additional

dead loads; γQ is the partial safety factor for the railway traffic loads; and finally

I is the impact factor.

Using the partial safety factors defined in the Eurocode and an impact factor

equal to 1.25, the load effects as presented in Table 8.2 and the moment capacity

as presented in Table 8.6, the checking equations for the original bridge takes the

following form:

0.86 · 5164 R 1.35 · 415.6 + 1.35 · 184.24 + 1.45 · 1.25 · 1163.58

which after performing the calculations leads to the following inequality:

4441 ≥ 2919 [kNm]

As it can be seen, the safety is verified with a high margin. The high safety

margin observed is the result of the overdesign of the section, which may be due

to the application of different loads and/or the use of different safety codes during

the actual design of the bridge.

Performing the same calculation for the deteriorated bridge and assuming that

the ultimate capacity of the mid-span section is reduced down to 2742 kNm, the

following inequality is obtained:

0.86 · 2742 R 1.35 · 415.6 + 1.35 · 184.24 + 1.45 · 1.25 · 1163.58

which simplifies to:

2358 � 2919 [kNm]
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As it can be seen using the partial safety factor method with the safety factors

specified in the Eurocode, the mid-span section of the deteriorated bridge has an

ultimate bending moment lower than the design moment. Therefore, based on

the standard assessment method, the bridge should be declared as unsafe. The

difference between the required and available member capacity is quite significant

on the order of 25%.

Fully probabilistic format. The same section of the bridge as in the previous

case was analyzed using fully probabilistic method. The safety was evaluated

by means of the reliability index β. According to the procedure presented in

the previous chapter the limit state function g(X) was defined at first and then

the reliability index β for the defined limit state function was calculated using

FORM.

The limit sate function for the verification of the main girder section against

bending is as follows:

g(X) = MR − (MGs + MGa + I ·MQ) (8.2)

where MR is the resistance of the analysed section against bending; MGs is the

bending moment in the analysed section due to the self weight of the structure;

MGa is the bending moment in the analysed section due to additional dead loads;

MQ is the bending moment in the analysed section due to the railway traffic loads

and finally I is the impact factor.

Considering the information form Tables 8.1, 8.2 and 8.6, and assuming that

the distribution types and COV’s of load effects are equal to those of the corre-

sponding loads the calculations were performed.

For the defined limit state function the reliability indices obtained using

FORM are found to be β=6.61 and β=3.61 for original bridge and deteriorated

bridge respectively. The FORM analyses were performed assuming statistical

independence between all the variables. Comparing the obtained value of the

reliability index β with the target values presented in the previous chapter it can

be assumed that the bridge is sufficiently safe. However, the safety margin of the

deteriorated bridge is relatively low.
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Simplified probabilistic format. In order to compare results of the assess-

ment using various safety formats the Mean Load Method was also used (see

Equation 7.6). In the analysed case the generalized resistance R is the section

resistance against bending and the generalized action S is composed by several

components (bending moments in the section), hence Equation 7.6 takes a more

complicated form:

β =
µMR

− (µMGs
+ µMGa

+ µI·MQ
)√

σ2
MR

+ σ2
MGs

+ σ2
MGa

+ σ2
I·MQ

(8.3)

where µMR
is the mean value of the resistance of the analysed section against

bending; µMGs
is the mean value of the bending moment in the analysed section

due to the self weight of the structure; µMGa
is the mean value of the bending

moment in the analysed section due to additional dead loads; µI·MQ
is the mean

value of the bending moment due to the railway traffic loads including impact;

σMR
is the standard deviation of the resistance of the analysed section against

bending; σMGs
is the standard deviation of the bending moment in the analysed

section due to the self weight of the structure; σMGa
is the standard deviation of

the bending moment in the analysed section due to additional dead loads; σI·MQ

is the standard deviation of the bending moment in the analysed section due to

the railway traffic loads including impact.

β =
5772− 415.6− 184.24− 1.25 · 955.89√

(5772 · 0.1)2 + (415.6 · 0.08)2 + (184.24 · 0.1)2 + (1.25 · 955.89 · 0.14)2
=

=
3977

602
= 6.61

β =
3063− 415.6− 184.24− 1.25 · 955.89√

(3063 · 0.1)2 + (415.6 · 0.08)2 + (184.24 · 0.1)2 + (1.25 · 955.89 · 0.14)2
=

=
1268

351
= 3.61

Considering the information form Tables 8.1, 8.2 and 8.6, and assuming that

the distribution types and COV’s of load effects are equal to those of the corre-

sponding loads the calculations were performed. The mean value of the bending

moment due to the railway traffic load including impact was considered to be
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equal to the product of their mean values. The COV of railway traffic load in-

cluding impact was considered to be equal to 0.14. This value is the effect of

the multiplication of the railway load with a COV equal to 0.10 by the impact

factor with a COV equal to 0.50. The following equations show the performed

calculation for the original bridge and deteriorated bridge respectively:

The evaluation performed using probabilistic member level assessment shows

that the bridge is sufficiently safe even for the case of serious deterioration of the

mid-span section assumed.

8.8.2 Safety assessment at the system level

8.8.2.1 Assessment considering simplified structural behaviour

Simplified probabilistic formats. In order to estimate the safety of the

bridge at the system level the Bounds Method explained in previous chapter

was used in a first step. The lower bounds were considered as calculated in

the previous paragraph (β=6.61 and β=3.61 for original and deteriorated bridge

respectively). The upper bounds were calculated using appropriate FORM anal-

ysis software. Considering a full redistribution (plastic analysis), the limit state

function is defined by Equation 7.10 which in the cases under analysis can be

rewritten as follows:

g(X) = M2
R −

M2
R

M1
R + M3

R
2 + M2

R

(M e
Gs + M e

Ga + I ·M e
Q) (8.4)

where M1
R, M3

R and M2
R are the ultimate bending resistances of the sections

over the supports and at mid-span (analysed section) respectively, for the first

span of the bridge, M e
Gs is the bending moment due to self weight calculated

for the equivalent simply supported beam (span length equal to 13.5 m), M e
Ga is

the bending moment due to additional dead loads calculated for the equivalent

simply supported beam, M e
Q is the maximum bending moment due to traffic loads

calculated also for the equivalent simply supported beam and I is the impact

factor.

Considering probabilistic models of variables as presented in Tables 8.1, 8.3

and 8.6, and assuming that the distribution types and COV’s of load effects are
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equal to those of the corresponding loads the FORM analysis performed leads

to the reliability index β=10.00 and β=9.07 for original and deteriorated bridge

respectively. FORM analysis was carried out considering statistical independence

of all variables.

Analysing the results obtained with the elastic and plastic analysis it was

concluded that the system safety of the ’Brunna Bridge’ is very high. The actual

reliability index for the original bridge is located somewhere between β=6.61 and

β=10.00 and for the deteriorated bridge between β=3.61 and β=9.07.

8.8.2.2 Assessment considering non-linear structural behaviour

Semi-probabilistic formats. The reliability assessment of the ’Brunna Bridge’

was also performed using the Redundancy Factor Method presented in the pre-

vious chapter. Since the application of the method is quite complex, the analysis

was performed following the sequence of the step-by-step methodology proposed

(see Section 7.3.3.2).

Step 1. In the present example only the safety of the mid-span section of

the first span was decided to be analysed, hence the identification of the critical

members of the bridge was simplified to the choice of that section.

Step 2. Calculation of the required member capacity was performed ac-

cording to the Eurocode and the partial safety factor method. For bending the

required member capacity is expressed by the following equation:

MRk(req) =
γGsMGsk + γGaMGak + γQIMQk

ΦR

(8.5)

where MGsk, MGak and MQk are the bending moments in the analysed section

due to the characteristic values of the structure self weight, additional dead loads

and the railway traffic loads respectively (considered as presented in Table 8.2);

ΦR is the resistance factor for the analysed section (considered equal to 0.86);

γGs , γGa and γQ are the partial safety factor for the structure self weight, the

additional dead loads and the railway traffic loads respectively (considered equal

to 1.35; 1,35 and 1.50 ) and finally I is the impact factor (considered as showed

in Table 8.1).
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Performing the calculations the following value is obtained:

MRk(req) =
1.35 · 415.60 + 1.35 · 184.24 + 1.5 · 1.25 · 1163.58

0.86
=

2992

0.86
= 3478

Step 3. The actual member capacities for original and deteriorated condition

state are shown in Table 8.6 (5164 kNm and 2742 kNm respectively).

Step 4. The non-linear FEM model of the ’Brunna Bridge’ was developed as

described in Section 8.3 of this chapter. The best estimates of material properties,

structure geometry and loads were used (mostly mean values).

Step 5. In this example only the safety of the mid-span section of the first

span was analysed, hence the identification of the loading position and the most

critical load pattern was simplified to the longitudinal positioning of the railway

traffic load (UIC train load model) to cause the maximum bending moment in

the analysed section. The choice of the considered load position is explained in

Section 8.5 of this chapter.

Step 6. In order to define the member reserve ratio r1 the required mem-

ber load factor capacity LF1req and actual member load factor capacity LF1 are

determined according to the following equations:

LF1req =
MRk(req) −MGs −MGa

MQk

(8.6)

LF1 =
MRk −MGs −MGa

MQk

(8.7)

Considering the required and actual member bending resistance as defined in step

2 and 3, and considering the bending moments due to the mean dead loads and

characteristic railway traffic loads as defined in Table 8.2 the required member

load factor capacity is given as:

LF1req =
3478− 415.60− 184.24

1163.58
= 2.47

The actual member load factor capacity for original and deteriorated bridge are

calculated as:

LF1 =
5164− 415.60− 184.24

1163.58
= 3.92 ; LF1 =

2742− 415.60− 184.24

1163.58
= 1.84
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The member reserve ratios for original and deteriorated bridge, defined in

previous chapter by Equation 7.12, becomes:

r1 =
LF1

LF1req

=
3.92

2.47
= 1.59 ; r1 =

LF1

LF1req

=
1.84

2.47
= 0.75

Step 7. The load factors LFf (see Table 8.4), for which the bridge reaches

the functionality limit state defined as allowable deflection - L/500, were obtained

via the non-linear analysis described in Section 8.6.2 of this chapter.

Step 8. The system reserve ratios Rf (for the functionality limit state) for

original and deteriorated bridge are calculated using the Equation 7.15 as follows:

Rf =
LFf

LF1

=
3.93

3.92
= 1.00 ; Rf =

LFf

LF1

=
2.85

1.84
= 1.55

Step 9. The redundancy ratio rf for the functionality limit state are obtained

from the Equation 7.16. Considering Rf,target equal to 1.1 they become for the

original and deteriorated bridge as:

rf =
Rf

Rf,target

=
1.00

1.10
= 0.91 ; rf =

Rf

Rf,target

=
1.55

1.10
= 1.41

Step 10. The load factors LFu (see Table 8.4), for which the bridge reaches

the ultimate limit state, were obtained via the non-linear analysis described in

Section 8.6.2 of this chapter.

Step 11. The system reserve ratios Ru (for the ultimate limit state) for

original and deteriorated bridge are calculated using the Equation 7.17 as follows:

Ru =
LFu

LF1

=
5.80

3.92
= 1.48 ; Ru =

LFu

LF1

=
3.43

1.84
= 1.86

Step 12. The redundancy ratio ru for the ultimate limit state are obtained

from the Equation 7.18. Considering Ru,target equal to 1.3 they become for the

original and deteriorated bridge as:

ru =
Ru

Ru,target

=
1.48

1.30
= 1.13 ; ru =

Ru

Ru,target

=
1.86

1.30
= 1.43

Step 13. The load factors LFu (see Table 8.4), for which the bridge reaches

the damaged condition limit state, were obtained via the non-linear analysis de-

scribed in Section 8.6.2 of this chapter. The assumed damage in this case was

introduced in the model as the hinge in the main girder in the mid-span section.
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Step 14.The system reserve ratios Rd (for the damaged condition limit state)

for original and deteriorated bridge are calculated using the Equation 7.19 as

follows:

Rd =
LFd

LF1

=
1.66

3.92
= 0.42 ; Rd =

LFd

LF1

=
1.66

1.84
= 0.90

Step 15. The redundancy ratio rd for the damaged condition limit state are

obtained from the Equation 7.20. Considering Rd,target equal to 0.5 they become

for the original and deteriorated bridge as:

rd =
Rd

Rd,target

=
0.42

0.50
= 0.84 ; rd =

Rd

Rd,target

=
0.90

0.50
= 1.80

Step 16. Calculation of the system reserve ratio and the redundancy ratio for

the theoretical damaged condition is performed also assuming different damage

scenario. The assumed damage in this case is introduced in the model as the hinge

in the main girder in the section over pier B. The load factors LFd obtained in

the non-linear analysis for this case are presented in Table 8.4.

The following values of the system reserve ratio and the redundancy ratio are

obtained for original and deteriorated bridge condition state:

Rd =
LFd

LF1

=
2.00

3.92
= 0.51 ; Rd =

LFd

LF1

=
1.26

1.84
= 0.68

rd =
Rd

Rd,target

=
0.51

0.50
= 1.02 ; rd =

Rd

Rd,target

=
0.68

0.50
= 1.36

The obtained value of redundancy ratio for original bridge is higher than the

value obtained in step 15, therefore, the value previously calculated is considered

as relevant. In case of deteriorated bridge the situation is opposite and the

redundancy ration calculated in this step is considered relevant. The analysed

two scenarios of possible damages are likely to be the most significant and relevant

for the analysed case. Due to this fact the analysis are not repeated for any other

scenarios.

Step 17. The analyses of all possible load patterns are omitted in this ex-

ample due to the fact that just the safety of the mid-span section is analysed.
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Hence, the minimum values of the redundancy ratios rf , ru and rd are considered

as those obtained in the steps 9, 12, 15 and 16.

Step 18. The redundancy factors φred for original and deteriorated bridge

respectively are determined according to the Equation 7.21 as follows:

φred = min(1.59 · 0.91 ; 1.59 · 1.14 ; 1.59 · 0.84) = min(1.45 ; 1.81 ; 1.34) = 1.34

φred = min(0.75 · 1.41 ; 0.75 · 1.43 ; 0.75 · 1.36) = min(1.06 ; 1.07 ; 1.02) = 1.02

Step 19. Since the redundancy factor φred calculated in the previous step is

greater than 1, the bridge may be considered as safe from the system point of

view despite the fact, that in the case of deteriorated bridge the member check

fails and the member reserve ratio is significantly smaller than 1. The fact that

for original bridge condition state the redundancy factor is significantly higher

than 1 means that actual safety margin in this case is expected to be very high.

Fully probabilistic formats. The safety assessment of the bridge at the sys-

tem level is also performed using fully probabilistic methods. Two different al-

gorithms are used, the Latin Hypercube simulation method and the Response

Surface method, both described in more detail in Chapter 3. In the following

paragraphs the results of the analysis are presented.

Latin Hypercube method. In this paragraph, the statistics of the bridge

system capacity are evaluated using the Latin Hypercube Sampling (LHS) method.

In a first step, a set of sample values is generated for each of the 9 random variables

listed in Table 8.1 that control the bridge strength (i.e. without the live loads and

impact). A non-linear structural analysis is performed for each combination of

random variables for a total of 100 simulations. The loads applied correspond to

the mean live load augmented by the mean impact factor. The strength capacity

is thus expressed by the load factor by which the original mean load should be

multiplied to cause the failure of the system. The means and standard devia-

tions of the strength capacities of the original bridge system and the deteriorated

bridge system are calculated and the histograms from the simulation’s results are

compared to those of Normal distributions.
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Figures 8.7 and 8.8 present the histograms of the calculated load factors by

which the nominal railway traffic loads have to be multiplied to cause the bridge

failure, for the original and deteriorated bridges respectively.

Figure 8.7: Histogram of the load factor at failure - original bridge system.

Figure 8.8: Histogram of the load factor at failure - deteriorated bridge system.

The normal curves plotted on the diagrams were determined based on mean
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values and standard deviations of the results obtained from simulation. For this

example, the plots show a very good fit compared with the normal distribu-

tion, which is also confirmed using the K-S (Kolmogorov Smirnoff type) Lilliefors

goodness of fit test.

The reliability index β for both the original and deteriorated states are cal-

culated using the Mean Load Method. Due to the fact that both the system’s

structural resistance and the generalized applied loads follow normal distribu-

tions, the form of the Mean Load Method determined by Equation 7.6 is valid.

In Equation 7.6 µR and µS are the mean values of the generalized resistance and

the applied loads respectively. σR and σS are the standard deviations of the gen-

eralized resistance and loads. In this example, the resistance is modelled by the

load factor by which the applied mean loads should be multiplied to cause the

failure of the system. Thus, the mean value of the applied loads takes unit value.

The standard deviation of the generalized action was considered to be equal to

0.14. This value is the effect of the multiplication of the railway load with a

coefficient of variation equal to 10% by the impact factor with a coefficient of

variation equal to 50%. Table 8.7 summarizes the results of the reliability index

β for both condition states, namely original and deteriorated.

Table 8.7: Calculation of the reliability index.

Condition Resistance R Action S R− S Safety

state Mean St. dev. Mean St. dev. Mean St. dev. index β

Original 5.576 0.453 1 0.14 4.576 0.474 9.65

Deteriorated 3.286 0.324 1 0.14 2.286 0.353 6.48

Response Surface method. In order to verify the quality of the results

obtained by the Latin Hypercube method the reliability analysis is also performed

using another fully probabilistic non-linear approach, namely the Response Sur-

face method.

The following procedure is used during the analysis. In a first step, a sam-

ple set of input parameters for 19 analyses is initially prepared. The number

of analyses (19) in a set is a sum of 1 analysis performed considering the mean
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values of all the structure related independent random variables (9 variables),

and 18 analysis performed taking one of the 9 variables at its mean plus or minus

10% while the remaining variables are kept at their mean values. The results of

the 19 analyses are then fitted in a linear polynomial function using a regression

analysis. Subsequently, the reliability index β was calculated using FORM for

the limit state function defined as the response function obtained in the previous

step minus the live load, Q. The FORM algorithm also gives the coordinates of

the design point for the calculated reliability index. The next step follows the

same process, however, instead of the central (mean) values of the parameters,

the coordinates of the design point obtained are used to define the polynomial

fit. Also, the perturbation of the values is reduced to 5% for the second iteration

and to 2.5% in the following ones. Furthermore, adjustments to the algorithm are

made when the coordinates obtained in the FORM analysis are determined to be

unreasonable (e.g. when negative values are obtained for the coefficients associ-

ated with the yield stress of steel reinforcement or concrete strength) or leads to

unreasonable polynomial functions and consequently to doubtful reliability index

values (e.g. reliability index out of range or significantly different from previ-

ous approximations). In such cases, instead of performing the analysis around

the new design point obtained from the algorithm the analysis is performed for

the set of variables located in the middle of the distance between the previous

design point and the design point indicated by FORM. The process is repeated

until convergence, which occurs when the reliability index β from two consecutive

analyses is within 1%.

Equations 8.8 and 8.9 show the limit state functions obtained following the

iterative procedure for the original and deteriorated condition states respectively.

g(X) = 0.0000052326 · fc + 1.5205547862 · hg + 0.1484513209 · hs +

+ 0.0000092929 · fy + 0.7040553589 · ASb + 0.9844101575 · ASt +

− 0.0101214575 ·GS − 0.0092131489 ·GAb − 0.0098242475 ·GAt +

− 3.9718007335−Q (8.8)

g(X) = 0.0000057766 · fc + 1.1547095388 · hg − 1.3725490196 · hs +

+ 0.0000147243 · fy + 0.6819640565 · ASb + 1.2471336042 · ASt +
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− 0.0050335570 ·GS − 0.0101619433 ·GAb − 0.0100000000 ·GAt +

− 3.4776301070−Q (8.9)

The reliability indices calculated by FORM for the ultimate limit state func-

tions for the intact and deteriorated bridge defined by Equations 8.8 and 8.9 are

β=7.37 and β=6.17 respectively. The reliability indices were calculated assuming

all the parameters as defined in Table 8.1. However, due to the fact that during

the simulations the railway loads were applied as their mean value including im-

pact and later incremented (by multiplying the mean load by the load factor) to

reach the structure failure, the mean value of the generalized action Q is consid-

ered as unity. The standard deviation of the generalized action was considered

to be equal to 0.14. As stated earlier, this value is the effect of the multiplication

of the railway load with a coefficient of variation equal to 10% by the impact

factor with a coefficient of variation equal to 50%. Similarly, the variability in

the areas of the different reinforcement layers was considered to be fully depen-

dent on the two random variables Asb and Ast (for bottom and top reinforcement

respectively). Thus, the variability of the reinforcement areas was accounted for

by multiplying the characteristic area of each layer by a random variable with a

mean value equal to unity and a coefficient of variation of 2%.

Simplified probabilistic formats. In this paragraph the safety assessment of

the bridge at the system level is performed using simplified probabilistic formats.

Two different methods are used, the method of Ghosn and Moses and the method

of Sobrino and Casas, both described in more detail in the previous chapter. In

the following paragraphs the results of the analysis are presented.

Method of Ghosn and Moses. In this paragraph,the reliability assess-

ment of the ’Brunna Bridge’ for the original and deteriorated condition states is

performed using the simplified probabilistic method of Ghosn and Moses. The

analysis necessary to obtain the load factors for functionality LFf , ultimate LFu

and damaged condition LFd limit states (see Table 8.4) were performed accord-

ing to the methodology presented in previous chapter. After the determination

of the load factors LFi, the parameters necessary for the reliability analysis (bias
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factor and coefficient of variation) are determined by comparing the results of the

analysis performed at the mean values of the input parameters and the results

when the input parameters are taken at their nominal or characteristic values.

Thus, the nominal and mean load factors for first member failure are obtained

from:

LF1 =
MR −MGs −MGa

MQk

(8.10)

LF1 =
MR −MGs −MGa

MQk

(8.11)

where MR is the moment capacity of the section; MGs is the bending moment due

to the structure self weight; MGa is the bending moment due to the additional

dead loads and MQk is the bending moment due to the railway traffic load without

impact. The line over each symbol indicate that it is the mean value.

Considering the moment capacity of the section as defined in Table 8.6 and

considering the bending moments due to the dead loads and railway traffic load

as defined in Table 8.2, the following values are obtained for the original bridge:

LF1 =
5164− 415.60− 184.24

1163.58
= 3.92 ; LF1 =

5772− 415.60− 184.24

1163.58
= 4.45

nominal and mean load factors for the deteriorated bridge are:

LF1 =
2742− 415.60− 184.24

1163.58
= 1.84 ; LF1 =

3063− 415.60− 184.24

1163.58
= 2.12

The bias factors for member capacity (expressed in terms of the load factor

by which the characteristic value of the railway load has to be multiplied to reach

the relevant member capacity) are obtained from:

λLF =
LF1

LF1

(8.12)

Thus, the following bias values are obtained for the original bridge and deterio-

rated bridge respectively:

λLF =
4.45

3.92
= 1.135 ; λLF =

2.12

1.85
= 1.152

The coefficients of variation of the member capacity are obtained from:

VLF =

√
σ2

MR
+ σ2

MGs
+ σ2

MGa

MQk · LF1

(8.13)
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where MQk is the characteristic value of the bending moment due to the rail-

way traffic loads without impact; σMR
is the standard deviation of the bending

capacity of the analysed section; σMGs
is the standard deviation of the bending

moment due to the self weight of the structure; σMGa
is the standard deviation of

the bending moment due to additional dead loads and LF1 is mean value of the

member capacity.

Considering the statistics of member resistances listed in Table 8.6, as well as

the mean values of the self weigh and other dead load effects as defined in Table

8.2 and their corresponding coefficients of variation extracted from Table 8.1, the

coefficient of variation for the load capacity of the original bridge is given as:

VLF =

√
(5772 · 0.10)2 + (415.60 · 0.08)2 + (184.24 · 0.10)2

1163.56 · 4.45
= 0.112

and for the deteriorated bridge.

VLF =

√
(3063 · 0.10)2 + (415.60 · 0.08)2 + (184.24 · 0.10)2

1163.56 · 2.12
= 0.125

The member reliability index is calculated assuming the normal distribution

model from:

βmemb =
LF1 − LLTRAIN√

σ2
LF + σ2

LL

(8.14)

where LF1 is the mean value of the load factor that will cause the first member

failure in the bridge assuming elastic analysis. LLTRAIN is the mean value of the

load factor describing the maximum expected lifetime live load including dynamic

allowance effect. σLF is the standard deviation of LF1 while σLL is the standard

deviation of the maximum expected live load LLTRAIN .

The calculations are performed considering the mean value of the member

capacity defined by Equation 8.11, the coefficient of variation of the member

capacity as defined by Equation 8.13, the mean value of the maximum expected

lifetime live load as the product of the impact factor (see Table 8.1) and the

live load bias factor (the factor equal to 0.82 relating characteristic value of the

railway traffic load effects to the mean value of the railway traffic load effects as

presented in Table 8.2). The coefficient of variation for the live load with impact

is calculated to be equal to 0.14. This value is the effect of the multiplication of
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the railway load with a coefficient of variation equal to 10% by the impact factor

with a coefficient of variation equal to 50%. The following equations show the

results of the calculations for the original bridge:

βmemb =
4.45− 1 · 1.25 · 0.82√

(4.45 · 0.112)2 + (1 · 1.25 · 0.82 · 0.14)2
=

3.425

0.518
= 6.61

For the deteriorated bridge the member reliability index becomes:

βmemb =
2.12− 1 · 1.25 · 0.82√

(2.12 · 0.125)2 + (1 · 1.25 · 0.82 · 0.14)2
=

1.095

0.301
= 3.64

To perform the calculations of the system reliability index for the ultimate,

functionality and damaged condition limit state, the following assumptions are

made: 1) the mean value of the load factors for the ultimate LFu, functionality

LFf and damaged condition LFd limit states are assumed to have a bias factor

equal to that obtained for the load factor describing the member capacity LF1.

2) the coefficients of variation of the system’s load factors are also assumed to

be equal to the coefficient of variation obtained for the load factor describing

the member capacity. Thus, the system reliability index for the serviceability

limit state (defined as the allowable deformation equal to span lenght/500) is

calculated assuming normally distributed variables:

βfunc =
LFf − LLTRAIN√

σ2
LF + σ2

LL

(8.15)

where LFf is the mean value of the load factor corresponding to the load level

for which the deformation of the mid-span section reach the limit defined as

span lenght/500=0.027m. The remaining parameters are the same as those in

Equation 8.14. The reliability index for the functionality limit state obtained for

the original bridge is given as:

βfunc =
1.135 · 3.92− 1 · 1.25 · 0.82√

(1.135 · 3.92 · 0.112)2 + (1 · 1.25 · 0.82 · 0.14)2
=

3.424

0.519
= 6.60

The deteriorated bridge’s reliability index for the functionality limit state be-

comes:

βfunc =
1.152 · 2.85− 1 · 1.25 · 0.82√

(1.152 · 2.85 · 0.125)2 + (1 · 1.25 · 0.82 · 0.14)2
=

2.258

0.435
= 5.19
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The system reliability index for the ultimate limit state is calculated according

to the expression:

βult =
LFu − LLTRAIN√

σ2
LF + σ2

LL

(8.16)

where LFu is the mean value of the load factor corresponding to the ultimate limit

state. Considering the characteristic value of the load factor LFu from Table 8.4,

the reliability indices for the ultimate limit state are calculated for the original

and deteriorated bridge as:

βult =
1.135 · 5.80− 1 · 1.25 · 0.82√

(1.135 · 5.80 · 0.112)2 + (1 · 1.25 · 0.82 · 0.14)2
=

5.558

0.751
= 7.40

βult =
1.152 · 3.43− 1 · 1.25 · 0.82√

(1.152 · 3.43 · 0.125)2 + (1 · 1.25 · 0.82 · 0.14)2
=

2.926

0.514
= 5.69

The system reliability index for the damage condition limit state is calculated

using the equation:

βdam =
LFd − LLTRAIN√

σ2
LF + σ2

LL

(8.17)

where LFd is the mean value of the load factor corresponding to the damage

condition limit state. Considering the characteristic value of the load factor LFd

given in Table 8.4, the reliability indices for the damage condition limit state were

determined as follows for the original and deteriorated bridges:

βdam =
1.135 · 1.66− 1 · 1.25 · 0.82√

(1.135 · 1.66 · 0.112)2 + (1 · 1.25 · 0.82 · 0.14)2
=

0.859

0.225
= 3.37

βdam =
1.152 · 1.26− 1 · 1.25 · 0.82√

(1.152 · 1.26 · 0.125)2 + (1 · 1.25 · 0.82 · 0.14)2
=

0.427

0.231
= 1.85

All the calculated reliability indices are higher than the target values defined

in previous chapter. Thus, the structure can be considered to be safe.

To check the level of inherent redundancy of the bridge, the relative reliability

indices are calculated as:

∆βfunc = βfunc − βmemb (8.18)

∆βult = βult − βmemb (8.19)

∆βdam = βdam − βmemb (8.20)
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The values obtained in the calculations for the ’intact bridge’ and for the ’dam-

aged bridge’ respectively are:

∆βfunc = 6.60− 6.61 = −0.01

∆βult = 7.40− 6.61 = 0.79

∆βdam = 3.37− 6.61 = −3.24

∆βfunc = 5.19− 3.64 = 1.55

∆βult = 5.69− 3.64 = 2.05

∆βdam = 1.85− 3.64 = −1.79

Comparing the relative reliability indices with the target values presented in

previous chapter it is concluded, that the bridge in its original condition is not

sufficiently redundant. However it is considered to be safe due to the fact that the

member safety is high. For the deteriorated condition the redundancy is already

sufficiently high allowing to consider the bridge safe even though the member

safety is violated.

Method of Sobrino and Casas. The reliability assessment of the ’Brunna

Bridge’ for both condition states (original and deteriorated) is also performed us-

ing the simplified probabilistic non-linear analysis method of Sobrino and Casas.

The safety of the bridge’s continuous main girder is evaluated by means of the

reliability index β. According to the procedure presented in previous chapter in

this method the limit state function is defined by Equation 7.33 which in the

cases under analysis can be rewritten as follows:

g(X) = M2
R −

M2
nla

M1
nla + M3

nla
2 + M2

nla

(M e
Gs + M e

Ga + I ·M e
Q) (8.21)

where M1
nla, M3

nla and M2
nla are the bending moments at failure obtained due

to the non-linear analysis for the sections over the supports and at mid-span

(analysed section) respectively, for the first span of the bridge, M e
Gs is the bending

moment due to self weight calculated for the equivalent simply supported beam

(span length equal to 13.5 m), M e
Ga is the bending moment due to additional dead
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loads calculated for the equivalent simply supported beam, M e
Q is the maximum

bending moment due to traffic loads calculated also for the equivalent simply

supported beam and I is the impact factor.

The reliability analysis is executed using FORM, which requires the complete

statistical information about all the random variables. In this case the distri-

bution types and statistical parameters of the impact factor are considered as

defined in Table 8.1. The mean value of the load effect in the equivalent simply

supported beam is obtained from Table 8.3. The distribution types and coefficient

of variations of the load effects are considered equal to those of the corresponding

loads (see Table 8.1). The statistical definition of the member capacity is consid-

ered as defined in Table 8.6. The mean values of the bending moments at failure

for the section over the piers and in the mid-span are considered as presented in

Table 8.5. The distribution types for the bending moments at failure are assumed

to be normal and the coefficient of variation are taken equal to the coefficient of

variation of the moment capacity of the corresponding sections presented in Table

8.6.

For the defined limit state function the reliability indices obtained using

FORM are found to be β=6.61 and β=4.67 for original bridge and deteriorated

bridge respectively. The FORM analysis was performed assuming statistical in-

dependence between all the variables. When the correlation between the bend-

ing moment at failure in the mid-span section M2
nla and moment capacity of

the mid-span section M2
R was assumed, the reliability index increases to β=7.16

and β=9.21 for the correlation coefficients C=0.5 and C=0.99 respectively when

analysing the original bridge. When analysing the deteriorated bridge, the re-

liability index increases to the values β=5.28 and β=6.84 for the correlation

coefficient C=0.5 and C=0.99 respectively. The effect of the statistical corre-

lation between these two variables was studied due to the significant likelihood

of their mutual dependency since they essentially represent the moments at the

same section.

Due to the fact that the calculated values of the reliability index β are higher

than the target values defined in previous chapter, the structure can be rated as

safe. Comparing the calculated reliability indices with the values obtained from

the Latin Hypercube Method (β=9.65 and β=6.48 for the original bridge and
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deteriorated bridge) or from the Response Surface Method (β=7.37 and β=6.17)

it can be concluded that this method is also sufficiently accurate.

8.9 Analysis of results

The safety assessment of this bridge performed using several member level and

system level assessment methods shows that the ’Brunna Bridge’ is sufficiently

safe (see Table 8.8). This is found to be true for both the original (as constructed)

and the deteriorated conditions. The latter assumes that 50% of the mid-span

reinforcement has corroded which would have meant that the bridge would have

failed the standard safety check using code-specified partial safety factors and

linear elastic analysis.

Table 8.8: Results of the assessment of the ’Brunna Bridge’.

Safety format
Result of the safety assessment

Original bridge Deterior. bridge

Member

Partial safety factor method safe unsafe

Fully probabilistic method β=6.61 β=3.64

Mean load method β=6.61 β=3.64

System

Bounds method 6.61≤ β ≤10.00 3.61≤ β ≤9.07

Redundancy factor method safe safe

Latin Hypercube method β=9.65 β=6.48

Response Surface method β=7.37 β=6.17

Ghosn and Moses method β=7.40 β=5.69

Sobrino and Casas method
β=6.61 β=4.67

(7.16(a);9.21(b)) (5.28(a);6.84(b))

Note:(a),(b) for correlations between M2
nla and M2

R C=0.5 and C=0.99 respectively.

As presented in Table 8.8 the fully probabilistic analysis at the member level

leads to the reliability indices β=6.61 and β=3.64 for original and deteriorated

bridge respectively. Comparing that values with the target values defined in legal

codes and guidelines and presented in previous chapter it may be concluded that

the bridge could be considered as safe. However, the safety index β obtained
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for deteriorated bridge is close to the limits defined by some more liberal recom-

mendations and even below the limits defined by more conservative codes. The

fact that the reliability index obtained using FORM is close to the target value

and at the same time the member safety check using partial safety factor method

fails significantly, shows that the partial safety factors in the Eurocode are rather

calibrated for highway than for railway bridges. The coefficient of variation of the

traffic load is significantly smaller for railway traffic than for highway traffic, this

leads to the higher safety of railway bridges when considering the same partial

safety factor in the checking equation.

Comparing the results, showed in Table 8.8, of the simplified probabilistic

assessment performed using Mean Load method with results obtained using fully

probabilistic format it can be observed that the reliability indices found by both

methods are exactly the same. This happens due to the fact that all the variables

describing limit state function are considered to be normally distributed and the

limit state function is linear. In other situation, when some of the variables are

not normal or/and the limit state function is non-linear the reliability indices

would be different and those obtained by fully probabilistic method would be

more rigorous.

Regarding the results of the assessment of the bridge at the system level, re-

sumed also in Table 8.8, the upper bound estimates of the reliability indices β

obtained for the bridge system due to a plastic probabilistic analysis using Bounds

Method are found to be equal to 10.0 and 9.07 for the original and deteriorated

bridge respectively. The reliability indices calculated for the member considering

elastic analysis (the lower bound estimates) are equal to 6.61 and 3.64. The differ-

ence between the reliability indices from plastic analysis compared to those from

elastic analysis demonstrate the large reserve strength provided by the system

even for the case when large levels of deterioration are observed in critical bridge

members. Observe that despite the very large decrease in the member reliabil-

ity index due to member deterioration, the corresponding decrease in the upper

bound estimate of the system reliability index is much less pronounced. This is

due to the ability of the system to redistribute the load from the deteriorated

member to the other intact members.
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Similar observations can be made analysing results of the assessment per-

formed using Redundancy Factor method. The values of the redundancy factors

obtained are equal to 1,34 and 1,02 for the original and deteriorated bridge re-

spectively. For both condition states, the redundancy factor is greater than 1,

which means that the structure is safe from the system point of view even though

the member check fails for the case of the deteriorated bridge.

Regarding fully probabilistic formats for system level assessment, the results

in Table 8.8 show that the reliability index values obtained from the Response

Surface Method (RSM) and the Latin Hypercube Simulation (LHS) are somewhat

different. This lack of conformity can be explained by the fact, that the Latin

Hypercube Method is not sufficiently accurate for such high reliability levels. In

the case of LHM the reliability index is calculated based on the results of sampling

performed in the region relatively close to the mean values of all the variables.

However, for high reliability levels such as those observed in this analysis, the

design point (failure region) is located far away from the region of mean values

and the sampling performed there may not describe the failure region appropri-

ately. In the case of the Response Surface Method used in this study, sampling

is performed iteratively close to the design point (failure region). Due to the it-

erative procedure, the polynomial function determined by the regression analysis

gives a fairly accurate representation of the tangent to the failure surface near

the most likely failure point and the reliability index obtained by means of this

method is more exact. It is noted however, that the analysis performed using the

RSM was designed to concentrate on the ultimate moment capacity and ignore

other numerically possible failure modes. Specifically, in certain cases of the nu-

merical analysis (certain iterations), it was found that the cracking capacity may

be higher than the ultimate capacity (capacity prior to failure). But, in order to

guarantee convergence to the same mode observed in the other methods (both

approximate and the LHS) the results of the non-linear analysis corresponding to

ultimate capacity were considered for definition of the Response Surface rather

than at results corresponding to the maximum capacity (which in some cases

would be cracking capacity). On the other hand, the cracking capacity of the re-

inforced concrete bridge is normally not critical as it is usually reached in service

condition states without necessarily affecting the bridge’s overall safety and when
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analysing ultimate states the bridge should be assumed to have already cracked.

It is also noted that during the RSM analysis, all the variables are considered

to follow Normal distributions including those related to the concrete strength

and yielding stress of steel. This assumption probably led to smaller values of the

design point coordinates corresponding to steel yielding and concrete compressive

strengths that would have been obtained if Lognormal distributions are assumed

as usually recommended. Normal distributions for all the variables were assumed

in order to compare results of analysis with the simplified methods. The consid-

eration of normal distribution for resistance of steel and concrete does not affect

significantly the results of LHM due to the fact that sampling is performed near

the mean value, where both distribution functions are nearly the same. However,

in the case of the RSM, the iterative algorithm is executed at the coordinates of

the design point where for very high reliability levels the difference between the

Normal and Lognormal results may be significant.

In the case of the deteriorated bridge, the reliability level is significantly lower

compared to the original bridge and the reliability index obtained by the LHM

and RSM are closer than those of the intact bridge.

The reliability index values calculated using the simplified method of Ghosn

and Moses is generally lower than that obtained from the more advanced methods

(except for the results obtained by RSM for the original bridge where the results

are very close). This occurs because the simplified method of Ghosn and Moses

implicitly assumes full correlation between all the members’ strengths and that

the COV’s of the system is equal to the COV of the most critical member. On the

other hand, although the fully probabilistic non-linear analysis approaches (RSM

and LHS) lead to some level of correlation between the member strengths since

the basic parameters that control each member’s strength are the same (see Table

8.1), the various sizes, shapes and reinforcing details of each member would lead

to slightly lower correlations in the member strengths, leading to slightly higher

overall system reliability levels. Furthermore, the simplified reliability analysis

of Ghosn and Moses assumes that the overall COV is the same as that of the

most critical member. This assumption would lead to a higher overall COV than

the one obtained from the fully-probabilistic non-linear system analysis. The

justification for using the higher COV in the Ghosn and Moses method is that
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the uncertainties in the modelling of the non-linear system effects must be at

least as high as those for the modelling of the individual member effects. It

is well known that the non-linear finite element analysis of structural systems

is not exactly accurate due to difficulties in modelling the material behaviour

at high loads as well as the variations in the bridge boundary conditions and

secondary member effects. Thus, the method of Ghosn and Moses is generally

more conservative than the more exact simulation methods when the latter do

not explicitly consider the modelling uncertainties associated with the reliability

analysis of the structural system.

In the case of the Sobrino and Casas method, the reliability index calculated

assuming no correlation between the bending moment at failure in the mid-span

section M2
nla and moment capacity of the mid-span section M2

R, is significantly

lower than that obtained from the more advanced methods. When assuming

partial correlation between these two parameters the reliability index obtained

is closer to the exact values. It is herein recommended to include, a partial cor-

relation between the bending moment at failure in the mid-span section M2
nla

and the moment capacity of the mid-span section M2
R since the response of the

same section at ultimate and the response very close to ultimate are expected to

be correlated. Notwithstanding the above-mentioned observations, the results of

Table 8.8 show that the reliability indices for both the original and deteriorated

condition states obtained applying the simplified probabilistic non-linear meth-

ods are sufficiently high and very similar to those calculated by means of the

full probabilistic non-linear analysis. Due to the fact that the simplified proba-

bilistic non-linear analyses require considerably lower computational effort than

the fully probabilistic methods while providing sufficient accuracy, they seem to

be adequate methods for wider use in bridge assessment practice when bridge

redundancy and structural system reserve strengths are important factors that

contribute to overall bridge safety.

8.10 Conclusions drawn from the analysis

The detailed safety analysis, performed using several safety formats discussed

previously, shows how a bridge that would have been rated as deficient using
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traditional semi-probabilistic member safety analysis methods may in actuality

have extremely high system reliability levels thus eliminating the need for its

replacement or rehabilitation. This is due to the ability of the bridge system

to redistribute the load from the weak member to the other stronger members.

This is a significant structural property that should reinforce the importance of

performing the safety assessment of bridges at the system level in order to take

full advantage of the redundancy of the bridge. Furthermore, even neglecting

bridge redundancy but performing probabilistic analysis and thus considering

real variabilities of all the parameters affecting bridge member capacity may be

sufficient to proof required bridge safety.

The various approaches illustrated in previous sections vary in the level of

complexity. However, the example shows how the simplified probabilistic methods

for the safety assessment at the member level (Mean Load method), and the

system level (method of Ghosn and Moses and method of Sobrino and Casas) are

sufficiently accurate while only requiring a basic level of knowledge of structural

reliability techniques. Furthermore, the Redundancy Factor method also seems

to be an adequate and efficient technique for the safety assessment of existing

bridges especially when the evaluator is not familiar with the reliability theory.
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Chapter 9

Case studies

9.1 Introduction

In this chapter two examples that demonstrate how practically perform the as-

sessment of existing concrete bridges are presented. The first example shows

how to assess a bridge using the ’step-level’ methodology proposed in Section

2.4. During this ’step-level’ assessment several relatively simple safety formats,

discussed in Chapters 7 and 8, are applied. Some models of bridge traffic loads

and models of shear and bending resistance, presented respectively in Chapters 5

and 6, are also used. Furthermore, the effects of applying more adequate model

of bridge traffic loads in the assessment are analysed. The bridge analysed in

this example is a one span simply supported precast prestressed concrete I girder

bridge.

The second example illustrates how to perform the assessment of a bridge us-

ing the most advanced assessment methodology based on probabilistic non-linear

analysis. In this analysis the probabilistic models of loads, material properties

and bridge geometry, presented in Chapters 4 and 5, are applied. Besides the as-

sessment of the ultimate limit states, the assessment of serviceability limit states

is performed. The serviceability assessment is not the subject of this thesis,

however, it is performed to show the potentials of the probabilistic methods in

the assessment of other limit states than ultimate. The bridge analysed in this

example is a continuous two span concrete overpass constructed from precast

prestressed U shape girders.
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9.2 Assessment of the ’Barrela Bridge’

9.2.1 General information

The ’Barrela Bridge’ is a 14 m long bridge located in ’Santa Maria da Feira’,

north of Portugal. The bridge deck is nearly 10 m wide and is supporting two

traffic lines, 3.5 m each, and two 1.49 m wide sidewalks. The bridge is located

within the local road and is carrying the two directions traffic characteristic for

the suburbs of the mid-size town.

The bridge has been constructed in 2003 and it has been designed accord-

ing to Portuguese codes RSA (1983) and REBAP (1985) for the ’vehicle class

I’. Generally, the bridge is in a very good condition and does not require any

intervention. However, it has been selected for this study to check if it can carry

the traffic loads defined in EC-1b (2002). The verification is performed just for

the critical sections of the main girders.

9.2.2 Geometry and material data

The ’Barrela Bridge’ is a simple supported structure with a span of 13.3 m. The

cross-section of the deck comprises five precast prestressed I shape 0.75 m deep

beams spaced by 2.28 m and cast-in-place 0.20 m thick reinforced concrete slab

supported during concreting by 0.05 m thick precast concrete panels. The basic

dimensions of the bridge are presented in Figures 9.1 and 9.2.

Figure 9.1: Side view of the ’Barrela Bridge’.
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Figure 9.2: Cross-section of the ’Barrela Bridge’.

The materials used for girders fabrication and construction of cast-in-place

element are as follows: concrete of precast girders - C45/55, concrete of cast-in-

place elements - C25/30, reinforcing steel - S500, prestressing steel - S1680/1860.

The prestressing of the precast girders is composed of 10 strands 0.6” at the

bottom flange of the girder. The longitudinal mild reinforcement of the girders

comprises of 14 bars φ10 and has just constructional character. The transverse

reinforcement comprises of closed stirrups with diameters varying along the girder

length (φ16 - 0.7 m, φ12 - 2.0 m, φ10 - 2.2 m and φ8 on remaining length). The

stirrups are spaced by 0.20 m besides the girders ends (0.70 m lenght) where they

are spaced by 0.05 m to help in transferring prestressing force. The reinforcement

of the concrete slab in the longitudinal direction, parallel to the girders axes,

is composed of φ8 bars spaced by 0.25m. In transverse direction, the slab is

reinforced with φ16 bars spaced by 0.20 m.

9.2.3 Safety assessment

The safety assessment of the bridge is performed according to the ’step-level’

procedure proposed in Section 2.4. The critical sections of the bridge most loaded

girder, selected for the evaluation, are the mid-span section in bending and the
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section near the support (1.0 m from the axis of the support) in shear.

Loads considered in the assessment. The bridge permanent loads have

been determined based on the bridge geometry and the characteristic densities of

the construction materials. The bridge geometry has been assumed according to

the construction drawings. The values of the permanent loads considered in the

assessment are listed bellow:

• Self weight of the beam - 6.295 kN/m

• Self weight of the slab - 6.250 kN/m2

• Asphalt wearing surface - 1.6 kN/m2

• Parapet, railing, sidewalk - 7.5 kN/m2

From bridge variable loads, just that due to vehicular traffic are considered

in the assessment. The traffic load are assumed according to EC-1b (2002). The

characteristic values of the load intensities are as follows (for details see Section

5.4.3):

• Lane 1 - 9 kN/m2 and two axles 300 kN each

• Lane 2 - 2.5 kN/m2 and two axles 200 kN each

1-st level assessment. In the first step the assessment of the bridge is per-

formed using strength and load models as defined in codes EC-1b (2002), EC-2

(2004) and EC-2b (2003). Simplified calculation models are used and the safety

is checked using partial safety factors method and the partial factors as defined

in EC-0 (2002), EC-2 (2004) and EC-2b (2003).

Performing simple calculation it can be determined that the maximum bend-

ing moment in the most loaded girder (the second girder from the bridge edge)

due to permanent loads is equal to 535 kNm. The maximum shear force in the

critical section (1.0 m from the axis of the support) of the same girder is 149 kN.

These values has been obtained considering that the girder carry just the loads

directly applied on it (2.28 m wide area of the top flange).
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The maximum bending moment in the analysed girder due to traffic loads

is equal to 1537 kNm. The maximum shear force in the critical section of this

girder is 436 kN. These values has been obtained considering that all traffic load is

distributed just to three girders directly supporting carriageway in the proportion

40%, 30% and 30%.

The characteristic resistance of the mid-span section in bending, determined

using the simplest model (strands capacity times lever arm) is 2125 kNm. The

characteristic shear resistance of the critical section determined according to EC-

2 (2004) formula is 846 kN. The shear resistance has been calculated assuming

the inclination of concrete struts equal to 30 degree (this inclination is usual for

prestressed elements). If the effect of prestress was neglected (the inclination of

struts 45 degree) the characteristic resistance of the section would be 488 kN.

Both values of the section capacity has been obtained using simplified models of

steel and concrete behaviour (elasto-plastic).

The assessment is performed using the checking Equation 7.4 defined in Sec-

tion 7.3.2. Using the partial safety factors defined in the Annex A2 (for bridges)

of EC-1b (2002) and the load effects and the section capacities as presented above,

the checking equations for the bending verification takes the following form:

2125

1.15
R 1.35 · 535 + 1.35 · 1537

which after performing the calculations leads to the following inequality:

1848 � 2797 [kNm]

Performing the same calculation for shear, the following inequality is obtained:

846

1.15
R 1.35 · 149 + 1.35 · 436

which simplifies to:

736 � 790 [kN]

As it can be seen, using the simplest models for the determination of load effects

and the resistance, and using partial safety factors specified in the Eurocode, the

bridge fails the evaluation. Therefore, the bridge has to be reassessed using more

refined methods. The partial factor for the resistance has been considered equal

to 1.15 due to the fact that the steel is the parameter governing the capacity (for

both cases, shear and bending).
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2-nd level assessment. In the second step more accurate models are used to

calculate section resistances. The redistribution of load to the girders is obtained

from the finite element model. The material parameters, load model and the

assessment methodology remain the same.

Performing structural analysis using finite element method and the grillage

type model of the bridge, the following values of the internal forces in the critical

sections have been obtained: the maximum bending moment in the most loaded

girder (the second girder from the bridge edge) due to permanent loads - 572

kNm; the maximum shear force in the critical section (1.0 m from the axis of

the support) of the same girder - 147 kN; the maximum bending moment due to

traffic loads - 1347 kNm; the maximum shear force in the critical section of this

girder - 439 kN.

The characteristic resistance of the mid-span section in bending calculated

using non-linear sectional analysis software ’Seccao’ (Henriques, 2002) is 2438

kNm. The characteristic shear resistance of the critical section determined using

Modified Compression Field Theory (Vecchio & Collins, 1986) and the software

’Response 2000’ (Bentz, 2000) is 1027 kN. These values of ultimate capacity are

obtained considering stress-strain relationships for steel and concrete similar to

these presented in Figures 6.7 and 6.8.

Performing assessment using the same methodology as previously, the follow-

ing form of the checking equations for the bending verification can be obtained:

2438

1.15
R 1.35 · 572 + 1.35 · 1347

which after performing the calculations leads to the following inequality:

2120 � 2591 [kNm]

Performing calculation for shear, the following inequality is obtained:

1027

1.15
R 1.35 · 147 + 1.35 · 439

which simplifies to:

893 > 791 [kN]
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As it can be seen, using more advanced resistance models and more accurate

structural analysis method it can be proved that the shear capacity of the girder

is sufficient to carry current traffic loads (Eurocode LM1 model) which are higher

than those for which the bridge has been designed (RSA vehicle). Nevertheless,

the bridge still fails the bending assessment. Therefore, the next level assessment

has to be performed.

3-rd level assessment. In the third level of assessment, the material properties

and loads can be updated on the basis of tests and observations. In the analysed

case, due to the lack of test data, the material properties are considered as in

previous steps. However, based on the observation, the traffic loads are considered

to have lower intensity than previously assumed. The calculation models and

assessment methodology remain the same as in the second level of assessment.

In the previous levels of assessment the traffic load intensity has been assumed

according to EC-1b (2002) without taking into account the characteristics of real

traffic in the bridge location. As it has been already discussed in Section 5.4.3, the

traffic load model LM1 defined in EC-1b (2002) allows for using the adjustment

factors α that take into account traffic characteristics in the specific countries

and should be specified on the national level. Unfortunately, the national fac-

tors are so far not defined in Portugal. Nevertheless, EC-1b (2002) recommends

the minimum value of this factor as 0.8. Furthermore, EC-1b (2002) says that

the basic intensity of load in the traffic load model LM1 corresponds to heavy

industrial traffic. For more common traffic on usual highways and motorways it

recommends a moderate reduction (10 to 20%) of α factors applied to tandem

system and the uniformly distributed loads on Lane 1. Considering the fact that

the ’Barrela Bridge’ is located within the local road, characterized by rather lim-

ited traffic of heavy vehicles, the reduction of 20% of load intensity on the Lane

1 seems to be reasonable.

Performing structural analysis using finite element method and the grillage

type model of the bridge, and considering reduced intensity of traffic loads as

explained above, the following values of the internal forces in the critical sections

have been obtained: the maximum bending moment in the most loaded girder
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(the second girder from the bridge edge) due to traffic loads - 1076 kNm; the

maximum shear force in the critical section of this girder - 341 kN.

Performing assessment using the same safety format as in previous step, the

following form of the checking equations for the bending verification can be ob-

tained:
2438

1.15
R 1.35 · 572 + 1.35 · 1076

which simplifies to:

2120 � 2225 [kNm]

As it can be seen, the reduction of the traffic load intensity do not change

the assessment results sufficiently and the bridge still fails the bending capacity

evaluation. Thus, the next level assessment has to be performed.

Considering the fact, that the shear capacity of the bridge girders, in the

previous assessment step, has been proved to be sufficient, the shear verification

in this assessment level is already unnecessary. However, it is also performed to

show the differences in the evaluation on different levels of assessment.

1027

1.15
R 1.35 · 147 + 1.35 · 341

893 > 659 [kN]

4-th level assessment. In this assessment level the modified partial safety

factors are used. The modified factors take into account bridge redundancy and

the fact that the main girders of the bridge (precast prestressed I beams) are

executed with enhanced quality (factory made members). The strength, the load

and the calculation models remain the same as in the previous assessment level.

Furthermore, the general assessment methodology remains also the same (just

the partial factors are adjusted).

According to information presented in Table 7.8, the partial safety factors for

permanent loads of factory made members executed with enhanced quality can

be considered as 1.22 (in the analysed case reduced factor applies just to the part

of permanent load corresponding to the self weight of I beam). Furthermore,

according to the information presented in Table 7.9 and using linear interpola-

tion, the redundancy factor (see Equation 7.8) for bending verification of bridge
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member at the ultimate limit state can be considered equal to 1.05 (for shear

the redundancy factor is 1.0). This value corresponds to simple supported bridge

deck composed of 5 I girders spaced by 2.28 m.

Performing assessment using above discussed adjustment in the safety format,

the following form of the checking equations for the bending verification can be

obtained:

1.05 · 2438

1.15
R 1.22 · 139 + 1.35 · 433 + 1.35 · 1076

which after performing the calculations leads to the following inequality:

2226 > 2207 [kNm]

As it can be seen, the adjustment in the safety factor for permanent load (due

to self weight of the factory made members) and the consideration of the bridge

redundancy factor allow to prove that the bridge is safe for considered level of

traffic loads. The factored bending moments applied to the member are smaller

than the factored bending capacity of the member.

The shear safety has already been proved in the second level of assessment.

However, the calculations are also presented for this level in order to show the

differences in the results that may come from using different safety factors.

1.00 · 1027

1.15
R 1.22 · 39 + 1.35 · 108 + 1.35 · 341

893 > 654 [kN]

5-th level assessment. Besides the fact that the bridge ’Ponte de Berrela’

has already proved to be sufficiently safe to carry the actual traffic loads, in this

section it is evaluated using most advanced assessment method in order to show

its advantages.

In this level of assessment the safety of the bridge is checked using probabilistic

methods. From several available probabilistic methods of assessment, described

in Section 7.3, the Mean Load Method is selected to be used in this case as the

simplest and sufficiently accurate for practical applications. In the Mean Load

Method the checking equation is defined by the inequality 7.5. Assuming that all
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the variables are normally distributed and statistically independent, the reliability

index β may be computed using Equation 7.6.

In order to perform analysis using probabilistic methods, all load and resis-

tances variables have to be defined by their probability distribution functions.

Table 9.1 resumes the parameters of the distributions for loads and resistances

used in the analysed case. The mean value and the coefficient of variation for

shear and bending resistance are assumed according to Tables 6.13 and 6.20. The

parameters of the distribution corresponding to the effects of permanent loads are

assumed according to the information presented in Section 5.3. For the purpose

of simplicity, all permanent loads are considered to have the same distribution

parameters and the selected relatively high coefficient of variation aims to cover

also the model uncertainty. The parameters of the distribution corresponding to

the effects of highway traffic loads are calculated assuming that the characteristic

load intensities in the load model LM1 defined in EC-1b (2002) correspond to

95-th percentile of the PDF of the traffic load, which is presumed to be normally

distributed random variable with coefficient of variation of 15%. This relatively

high coefficient of variation for traffic loads aims to cover the variability not just

due to load itself but also due to dynamic amplification, girder distribution and

load modelling.

Table 9.1: Random variables considered in the analysis.

Random variable Unit
Char. Mean

COV PDF
value value

Bending resistance, mid-span, MR kNm 2438 2560 0.07 normal

Shear resistance, support, VR kN 1027 1212 0.11 normal

Moment - permanent loads, MG kNm 572 572 0.10 normal

Shear - permanent loads, VG kN 147 147 0.10 normal

Moment - traffic loads, MQ kNm 1076 861 0.15 normal

Shear - traffic loads, VQ kN 341 273 0.15 normal

Using Equation 7.6 and data from the Table 9.1 the reliability index corre-

sponding to bending failure is obtained as follows:

β =
2560− 572− 861√

(2560 · 0.07)2 + (572 · 0.10)2 + (861 · 0.15)2
=

1127

228
= 4.9
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For shear, the following reliability index is obtained:

β =
1212− 147− 273√

(1212 · 0.11)2 + (147 · 0.10)2 + (273 · 0.15)2
=

792

140
= 5.7

Comparing the obtained values of the reliability indices with the target values

for the member level assessment presented in Section 7.2.5.1 it can be concluded

that the safety is verified with considerable high safety margin. It has to be

mentioned that the reliability indices obtained correspond to the reference period

of 100 years (the reference period characteristic for the LM1 load model from

Eurocode) and to the traffic load with reduced intensity on the Lane 1. When the

standard load intensity is considered for tandem and uniformly distributed load on

the Lane 1, the reliability indices calculated are 3.7 and 5.0 for bending and shear.

These values are also sufficiently high to considered the bridge safe. Therefore,

even when the bridge would be localized within a highway characterized by high

volume of very heavy traffic, in this level of assessment it could be rated as safe

regardless the fact that it would fail the assessment on the lower levels.

9.2.4 Real bridge loads and their effects on the assessment

In previous section the assessment of the bridge has been performed considering

the traffic load model according to EC-1b (2002) and assuming somehow arbi-

trary the scatter of the distribution of the load effects produced by this model as

15%. As it has already been discussed, the traffic load model in EC-1b (2002) is

representative for the heavy traffic characteristic for busy highways close to the

industrial regions and may not be appropriate for the assessment of bridges local-

ized on the roads of minor importance. Even the reduction of the load intensity

of the tandem and the distributed load on the Lane 1 by 20% (as suggested in

the Eurocode for normal roads) may not be sufficient and will lead to the higher

calculated load effects than the actual one. Furthermore, the traffic load model

in EC-1b (2002) is expected to produce the load effects that the bridge is going to

experience during its lifetime, assumed for the new bridges as 100 years. When

assessing the existing bridge the reference period (or projection period) can be

significantly reduced for example to 5 or 10 years after which the bridge is going

to be inspected and again reassessed.
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In this section the load effects in the bridge main members, produced by the

traffic loads, are calculated according to one of the models presented in Section

5.4.6. The model of Flint and Neill Partnership (FNP) is selected due to the fact

that does not require any additional data about traffic besides traffic intensity and

the projection period. The model of Moses and Ghosn, presented also in Section

5.4.6, requires data from Weigh-in-Motion (WIM) measurements, regarding gross

vehicle weight and the geometry of the most common truck which may produce

the maximum load effects (in this case would be 3 or 4 axles rigid truck). The

WIM data are not available for the location of the bridge ’Ponte de Barella’. In

such situation, the model of Moses and Ghosn could be used with data presented

in Section 5.4.6, which are representative for United States condition. Neverthe-

less, the results obtained assuming these data might be incorrect basically due to

different truck characteristics in United States (comparing to Europe). Therefore,

the model of Flint and Neill Partnership is assumed to be a better alternative

in the analysed case, even though it is not exactly representative for Portuguese

traffic. In the case where WIM data are available for a specific bridge site the

model of Moses and Ghosn might be more adequate.

According to the FNP model presented in Section 5.4.6, the load effects in

critical sections of bridge main girders, produced by the traffic load moving over

the bridge, can be modelled by the probability distribution function which is a

product of three variables: MQdet or VQdet, Gdist and I.

The first variable, MQdet or VQdet, is a deterministic variable describing the

load effect in the bridge member in question. It can be bending moment or shear

obtained due to structural analysis of the bridge (e.g. using FEM) considering

the load model similar to that defined in EC-1b (2002) (for details see Section

5.4.6). In the analysed case of the maximum bending moment in the mid-span

section of the most loaded girder produced by this load model is equal to 1251

kNm. The maximum shear in the section near the support of the same girder

produced by this load model is equal to 424 kN.

The second variable, Gdist, is a random variable described by the type I ex-

treme value distribution (Gumbel distribution), defined by Equations 5.8 and 5.9,

with the distribution parameters defined in Tables 5.11 and 5.12. In the anal-

ysed case of the bridge with 13.3 m span, the distribution parameters have been
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defined according to Table 5.12 (characteristic for bridges with more than one

traffic lane) using linear interpolation and considering the traffic intensity 2000

trucks per day per direction (characteristic for minor roads). The parameters

U and α defined for bending are 0.296 and 55 respectively. However, for shear

U and α are 0.296 and 57. Above defined parameters U correspond to annual

maxima. The distribution parameters U calculated using Equation 5.11 for 100

years projection period are 0.380 and 0.377 for bending and shear respectively.

The third variable, I, is a normally distributed random variable describing the

dynamic amplification of the static loads. The distribution parameters for this

variable are defined in Table 5.13. In the analysed case, assuming medium/poor

quality of the pavement, the mean value of the dynamic amplification factor is

equal to 1.13 and the corresponding standard deviation is 0.10.

Performing the reliability analysis using FORM (see Section 3.4) for the below

defined limit state functions:

g(X) = MR −MG −MQdetGdistI (9.1)

g(X) = VR − VG − VQdetGdistI (9.2)

and assuming the probabilistic models of the variables as defined above (see also

Table 9.1), the following results are obtained. For one year reference period, the

reliability index β for bending is equal to 7.71 and for shear is 6.80. For the

reference period of 100 years the reliability indices β are 7.11 and 6.50. In both

cases the reliability indices are higher than the required values defined in Section

7.2.5.1.

Comparing the β values obtained using FNP load model, for the reference

period of 100 years, with the results obtained in previous section (5-th level of

assessment) it can be concluded that the FNP load model is generally less con-

servative and gives significantly higher β. Furthermore, due to the fact that the

FNP load model assumes higher variability for shear than for bending the index

β for shear is lower than for bending. In the analysis performed in the previous

section the situation is opposite. Comparing the results obtained in previous

section with the results obtained in this section, one have to keep in mind that

the results have been obtained considering different distributions for traffic loads
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(Normal vs. product of Gumbel and Normal) which makes impossible quantita-

tive comparison of reliability indices β. However, the qualitative comparison is

possible.

9.2.5 Conclusions drawn from the assessment

Results presented in the previous sections show that the structure satisfies the

ultimate limit states of bending and shear in the critical sections of the main

bridge girder. The ultimate limit states are satisfied even though the traffic loads

considered in the assessment are significantly higher than the one used to design

the bridge. The initial assessment performed using traditional methods gives

somehow different results (structure fails the assessment). Nevertheless, more

refined analyses applied according to the ’step-level’ assessment methodology al-

low to prove that the structure is able to carry higher loads. The probabilistic

assessment performed using specific traffic load model, which is probably more

representative for the location of the ’Barrela Bridge’ than the EC-1b (2002) load

model, shows very high safety margin for both analysed failure scenarios.

9.3 Assessment of the overpass ’PS12’

9.3.1 General information

The ’PS12’ is a 50 m long overpass over highway A11 connecting Guimarães and

Braga, north of Portugal. The bridge deck is 7.6 m wide and is supporting two

traffic lines, 2.5 m each, and two 1.30 m wide sidewalks. The bridge is located

within the low importance local road and is carrying mostly light traffic.

The bridge has been constructed in 2002 and it has been designed according

to Portuguese codes RSA (1983) and REBAP (1985) for the ’vehicle class I’.

Generally, the bridge is in a very good condition and it has been selected for

this study just to show the applicability of one of the fully probabilistic safety

assessment methods presented in this thesis, namely Monte Carlo simulation

technique (see Section 3.4).

The verification is performed for one of the Ultimate Limit State (ULS) and

for the Serviceability Limit States (SLS). The Serviceability Limit States are not
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a subject of this thesis, however, they are assessed in this example to show the

potentials of the probabilistic methods in the assessment of other limit states

than ultimate. From the Ultimate Limit States just the limit state of bending is

selected to be checked in two critical sections of the bridge, mid-span and over-

pier. The results showed in the following sections are also presented in Wísniewski

et al. (2004d,e,f,g) and Henriques et al. (2004).

9.3.2 Geometry and material data

The bridge is composed of two 25 m long spans supported by cast-in-place rein-

forced concrete pier in the middle of the total length and by elastomer bearings

at the abutments. The structure is designed in the final stage as continuous and

integral with the pier. The cross-section of the deck is comprised of one precast U

shape beam and the slab composed by precast concrete panels and cast-in place

topping. The basic dimensions of the described overpass are presented in Figures

9.3 and 9.4.

Figure 9.3: Side view of the overpass ’PS12’.

The materials used for girders fabrication and construction of cast-in-place

elements are: concrete of precast girders - C60/70, concrete of cast-in-place el-

ements - C30/37, reinforcing steel - S500, prestressing steel - S1680/1860 and

S950/1050.

The prestressing of the precast girders is composed of two layers of strands at

the bottom slab of the girder and one layer of strands at the top of the girder.

The continuity prestress consists of post-tensioning bars between the girders faces

over the pier and straight cables at the cast-in-place slab over the pier.

255



9. Case studies

Figure 9.4: Cross-section of the overpass ’PS12’.

The structure was designed as erected in several constructional phases. Since

the evolution of the structure has significant influence for the development of

stresses in the sections of the structural elements, the construction sequence is

described below:

• 3 days - application of prestress to the precast girders;

• 28 days - erection of the girders and precast panels, concreting of the joint

girders-pier;

• 29 days - prestressing of the cast joint;

• 30 days - concreting of part of the cast-in-place slab;

• 33 days - application of prestress to the executed slab;

• 34 days - concreting of the remaining part of the cast-in-place slab;

• 42 days - application of additional dead loads (equipment, pavement, etc.).

9.3.3 Numerical model of the structure

The special numerical code ’Plastd90’ (Henriques, 1998) is used to model the anal-

ysed bridge. The software allows to model constructional phases and considers
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non-linearity of steel and concrete. Also influence of time dependency of mate-

rial properties (creep, shrinkage, ageing of concrete and relaxation of prestressing

steel) can be taken into account.

The non-linear FEM model consists of 50 beam elements. The elements mod-

elling girder are comprised of 15 layers of concrete and 5 layers of reinforcing

steel. The pier is modelled by elements composed by 8 layers of concrete and 2

layers of mild reinforcement. The system of prestress is represented by 9 cable

elements. Six of them are modelling three layers of prestressing strands in the

precast girders (three cables for each precast girder). Additional three cable el-

ements are representing the continuity post-tensioning bars between the faces of

the girders over the pier and the layer of post-tensioning cables in the deck slab

over the pier (16 meters).

The boundary conditions are modelled as follows: the connection of the pier

with the foundation is considered as fixed, the connection between the girders and

the abutments is assumed to be free for rotations and horizontal displacements.

The numerical model described above has been verified against the measured

data obtained due to diagnostic load test of the bridge performed by the Struc-

tural Division of the University of Minho (Cruz et al., 2003; Wísniewski et al.,

2004b,c). After minor calibration the model gives the results matching very well

the values measured on the bridge.

9.3.4 Loads and load combinations

The following loads are considered in the analysis:

• G - self weight of the structure (modelled separately for precast and cast-

in-place elements);

• P - prestressing (modelled separately for each layer of strands, bars and

cables);

• GA - additional permanent loads (modelled separately for precast elements,

cast-in-place elements and for asphalt wearing surface;

• Q1/2 - vehicular traffic load on the notional lines (considered as specified in

RSA (1983));
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• QS - pedestrian traffic load on the sidewalk (considered as specified in RSA

(1983));

• TS/W - non-linear gradient of temperature along the height of the deck

(considered separately for winter and summer);

The simulations are carried out for several loads combinations, presented in

Table 9.2, and for different load configurations. Two diverse traffic load mod-

els , ’Vehicle’ and ’Knife’ (RSA, 1983), are used to assess the stresses in the

middle-span section and in the section over the pier. Also two configurations of

differential temperature are used, namely for winter and summer.

Table 9.2: Load combinations.
Combination Identification Combination factors

ULS - basic B1S/W ; B2S/W G + P + κQ1/2 + 0.6QS + 0.6TS/W

SLS - quasi perm. QP1S/W ; QP2S/W G + P + 0.2Q1/2 + 0.2QS + 0.3TS/W

SLS - frequent F1S/W ; F2S/W G + P + 0.4Q1/2 + 0.2QS + 0.3TS/W

SLS - rare R1S/W ; R2S/W G + P + Q1/2 + 0.4QS + 0.5TS/W

Due to huge importance of construction sequence for development of stresses in

the structural elements, the loading up to 42-nd day is modelled according to the

chronology described in Section 9.3.2. After all constructional stages (equal for

all cases) four different load histories are considered. For quasi permanent (QP)

combination the QP values of live loads are applied at 70-th day and maintain

up to 1000-th day. For frequent (F) combination the QP values of live loads are

applied at 70-th day, at 100-th day the live load rise to the F value and it remains

constant till 1000-th day. For rare (R) combination the sequence up to 100-th

day is equal to F combination. Later in 190-th day the live load rises to rare (R)

value and that load level maintain also up to 1000-th day.

For basic (B) combination the sequence is equal up to 1000-th day as for rare

combination. Later the live and temperature loads rise to the values defined in

Table 9.2 considering κ equal to 1.0. After that the traffic load is increased up

to the structure failure (κ factor rise up to the ultimate value). It is assumed

that influence of creep and shrinkage after 1000 days is negligible. The κ factor

is defined as a safety margin.
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9.3.5 Variability of parameters

Trying to reduce the necessary time of simulations the pre-selection of the vari-

ables is performed by using the ’so called’ screening procedure. The influence

of each variable is assessed by comparing the numerical results obtained con-

sidering all variables with their mean value, with the results when the value of

’tested’ variable is changed (mean +/- standard deviation). The remaining vari-

ables continued to be as previously. Performing such analysis for each variable

the importance of each one of them is accessed in terms of percentage change.

In the analysed example the screening procedure allows to eliminate all the

variables that describe the geometry and material properties of the pier. Also the

variability of such parameters as elasticity modulus and ultimate strain of pre-

stressing and reinforcing steel are found to be insignificant. Other variables, like

position and area of the passive girder reinforcement, concrete elasticity modu-

lus, have a low importance, however they are considered as random in the further

simulations. The distribution types and coefficients of variation of parameters

considered random in the analysis are presented in Table 9.3. The remaining pa-

rameters (which are not presented in the table) are assumed to be deterministic.

The parameters for concrete compressive strength are obtained by analysis

of data provided by precasters and the general contractor of the bridge. The

parameters for remaining concrete properties are established according to results

presented in Section 4.2. The statistical parameters of time dependent character-

istics of concrete are adopted from Tsubaki (1988). The probabilistic models of

the area and the mechanical properties of the reinforcing and prestressing steel

are considered according to the information presented in Sections 4.3 and 4.4.

The models of variability for the dimensions of concrete members are generally

assumed as presented in Section 4.5. The models of permanent loads used in the

analysis are considered as discussed in Section 5.3. The variable load models are

taken from the code RSA (1983) and their distribution parameters are assumed

as presented in Henriques (1998). The variability in prestressing force of precast

elements has been obtained by statistical evaluation of the results provided by

the girders fabricator.
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Table 9.3: Basic random variables.
Random Distr. Bias Coef. of variation

variable type factor or deviation

Concrete compressive strength Normal 0.81 (0.81)* 8% (6%)

Concrete tensile strength Normal (A) 15% (15%)

Concrete elasticity modulus Normal (B) 8% (8%)

Creep coefficient Normal 1.0 20%

Shrinkage strain Normal 1.0 30%

Steel yield limit Normal 1.2 (1.04) 8% (2.5%)

Area of bars strands and cables Normal 1.0 (1.0) 2.5% (1.5%)

Section height Normal 1.0 (1.01) 3.5% (0.5%)

Tendons coordinates Uniform 1. 0 (1.0) ± 20 (5) mm

Reinforcement coordinates Uniform 1. 0 (1.0) ± 20 (20) mm

Prestressing force Normal 1.0 (1.0) 6% (1.5%)

Self weight Normal 1.05 (1.03) 10% (8%)

Self weight of the pavement Normal 1.0 25%

Traffic loads Gumbel 1.0 11%

Temperature Gumbel 1.0 8%
Note: values in brackets apply for precast girders; in case of steel parameters the values in
brackets apply for prestressing steel; (A) correlated with compression strength of concrete,

correl. coef. = 0.7; (B) correlated with compression strength of concrete, correl. coef. = 0.9;
(*) 0.81=0.95x0.85 bias factor times the factor taking in the consideration different behaviour

of concrete in the specimens and real constructional element.

9.3.6 Assessment of the ultimate limit state of bending

Prior to the probabilistic failure assessment of the studied bridge some determin-

istic analyses are performed using all variables as their mean or nominal values.

The objectives of these analyses is to choose the most appropriate loading ap-

proach and to compare behaviour of the structure due to different load models.

Deterministic non-linear failure analysis. Some results of the deterministic

failure analysis of the bridge are presented bellow. Figure 9.5 shows the loading

scheme LS1 (scheme chosen to obtain the maximum moment in the middle of the

span - the traffic loads applied just on the one span) and the load-displacement
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9.3 Assessment of the overpass ’PS12’

curves. The two curves on the diagram represent two diverse situations of dif-

ferential temperature namely for summer and winter. Figure 9.6 shows the load

scheme LS2 (scheme chosen to obtain the maximum moment over the pier - the

traffic loads applied on both spans) and load-deformation curves also for summer

and winter.
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Figure 9.5: Load-displacement curve - loading scheme LS1.
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Figure 9.6: Load-displacement curve - loading scheme LS2.
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Probabilistic non-linear failure analysis. The safety assessment of the bridge

is performed according to the following methodology: the random variables are

generated according to the parameters presented in Table 9.3 using Monte Carlo

sampling; the structural analyses are performed for each combination of gen-

erated variables (≈1000 simulations); the results of the analyses are evaluated

statistically and the probability of failure is calculated for load schemes LS1 and

LS2.

Figure 9.7 presents the histogram of the calculated load factor κ defined in

Table 9.2 for the load scheme LS1. The normal curve plotted on the diagram is

determined based on mean values and standard deviations of the results obtained

from simulation.
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Figure 9.7: Histogram of calculated load factor κ for the load scheme LS1.

In the presented example the plot shows a significant deviation of the ob-

tained results from the normal distribution. It is because of two different failure

patterns which take place. Most common failure is by yielding of bottom layer of

prestressing strands in the middle-span section. However, some failures are due

to crushing of bottom layer of concrete in the section over the pier. Dividing the

results for two groups corresponding to different failures, the normal curves are

obtained as presented in Figures 9.8 and 9.9.
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Figure 9.8: Histogram of κ for the load scheme LS1 - failure by steel.
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Figure 9.9: Histogram of κ for the load scheme LS1 - failure by concrete.

The probability of failure of the structure corresponding to the load scheme

LS1 and LS2 is calculated using Equation 9.3. The safety index β corresponding

to this probability of failure is calculated according to Equation 3.48.
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Pf = max
{

P
(A)
f ; P

(B)
f

}
= max

{
z(A) · φ

(
1− µ(A)

σ(A)

)
; z(B) · φ

(
1− µ(B)

σ(B)

)}
(9.3)

The results of this calculation as well as the results for remaining loading

schemes are presented in Table 9.4. In case of loading scheme LS2 it is necessary

to split the results for three failure modes corresponding to steel failure and

concrete failures in two different zones.

Table 9.4: Statistical parameters of load factor κ.

Load Failure Freq. of Mean Stand. Distr. Index Global

scheme mode occurence value dev. type β β

LS1+T

Ductile 0.76 8.06 0.840 Normal 8.41
6.04

Fragile 0.24 6.33 0.916 Normal 5.81

LS1+T

Ductile 0.74 8.13 0.835 Normal 8.51
5.50

Fragile 0.26 6.27 1.000 Normal 5.27

LS1+T

Ductile 0.04 9.66 0.680 Normal 12.74

7.28Fragile 1 0.11 6.67 0.814 Normal 6.97

Fragile 2 0.85 9.65 0.971 Normal 8.91

LS1+T

Ductile 0.04 9.63 0.769 Normal 11.21

7.87Fragile 1 0.11 6.29 0.697 Normal 7.58

Fragile 2 0.85 9.64 0.845 Normal 10.23

9.3.7 Assessment of the serviceability limit states

The serviceability assessment of the bridge is performed according to the following

methodology: the random variables are generated according to the parameters

presented in Table 9.3 using Monte Carlo sampling; the structural analyses are

performed for each combination of generated variables; the results of the analyses

are evaluated statistically and the characteristic value of the response and the

safety index are calculated.
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9.3 Assessment of the overpass ’PS12’

Limit state of deformation. The limit state of deformation defined by Eu-

rocode for bridges is expressed as follows:

y =
L + 40

2000
=

25 + 40

2000
= 0.0325m = 3.25cm (9.4)

The comparison of allowable value of deformation with the characteristic value

and with the value associated to probability considered as adequate for SLS veri-

fication, presented in Table 9.5, leads to conclusions that the limit state is verified

with huge reserve. The existing safety margin, described by β index, in this case

is equal to 8.8.

Table 9.5: Statistical parameters of structure deformation.

Combin. Mean Standard Distrib. Characteristic Value corresp.

of loads value deviation type value 95% to pf=10−2

QP1S 0.18 cm 0.35 cm Normal 0.75 cm 1.00 cm
Note: Characteristic value 95% (β ≈ 1.64); (W) Value Associated to pf=10−2 (β ≈ 2.33).

Limit state of cracking. In Table 9.6 the results for the girder bottom fibres of

middle span section are presented. The section over the pier is less decompressed

and the results for that section are omitted. As it is easy to see the results

in the last two columns are significantly far from the limit equal to 3.19 MPa.

The limit is fixed in this case as the 5-th percentile of concrete tensile strength

defined by statistical parameters presented in Table 9.3. The mean value is

calculated according to CEB-FIP (1991) as a function of compressive strength.

The parameters assumed for girders concrete tensile strength are the following:

Mean = 4.32 MPa and St.Dev. = 0.69 MPa. The β index calculated for this case

is equal to 6.0.

Table 9.6: Statistical parameters of stresses for cracking assessment.

Combin. Mean Standard Distrib. Characteristic Value corresp.

of loads value deviation type value 95% to pf=10−2

F1S -1.47 MPa 0.67 MPa Normal -0.37 MPa 0.09 MPa
Note: Characteristic value 95% (β ≈ 1.64); (W) Value Associated to pf=10−2 (β ≈ 2.33).
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Limit state of decompression. Results presented in Table 9.7 correspond

to the bottom fibres of the section at the middle span. This section has been

chosen as more relevant despite the fact that initially (on the 70-th day) the

decompression at the section over the pier was found more probable. However the

analysis in time shows that, due to redistribution caused by creep and shrinkage,

stresses at the middle span section are more important. The analysis of results

shows again that the limit state is verified with huge reserve. The safety margin

assessed in terms of β index is equal to 4.27.

Table 9.7: Statistical parameters of stresses for decompression assessment.

Combin. Mean Standard Distrib. Characteristic Value corresp.

of loads value deviation type value 95% to pf=10−2

QP1S -2.65 MPa 0.62 MPa Normal -1.63 MPa -1.20 MPa
Note: Characteristic value 95% (β ≈ 1.64); (W) Value Associated to pf=10−2 (β ≈ 2.33).

Limit state of tensile stresses in prestressing-steel. The limitations of

tensile stresses in prestressing steel is defined differently in CEB-FIP (1991), EC-

2b (2003) and in REBAP (1985). In first case the limit is defined as 0.75fpk

for rare combination and in second case the limit is defined as 0.65fpk for quasi

permanent combination. Due to this fact two rows in Table 9.8 are found corre-

sponding to different load combinations. The verification presented is made for

the bottom layer of the strands at the middle span section. This section again

has been found more exposed to the limit state violation. Since the mechani-

cal properties of steel used in analysis are considered deterministic with values

adopted from codes, the comparison is made with deterministically defined al-

lowable limits fixed as 1395 MPa and 1209 MPa for the first and the second case

respectively. As it could be seen, the values presented in last two columns of the

table are reasonably higher than the limit for QP combination and slightly higher

than the limit for R combination. The significant exceeding of the limit in the

first case could be explained by the fact that this limit does not exist in REBAP

(1985). However the slight surpassing of the limit in the second case probably

would not happened if real properties of prestressing steel were considered.
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Table 9.8: Statistical parameters of maximum tensile stresses in prestressing steel.

Combin. Mean Standard Distrib. Characteristic Value corresp.

of loads value deviation type value 95% to pf=10−2

QP1S 1348 MPa 25 MPa Normal 1389 MPa 1406 MPa

R1S 1371 MPa 25 MPa Normal 1412 MPa 1429 MPa
Note: Characteristic value 95% (β ≈ 1.64); (W) Value Associated to pf=10−2 (β ≈ 2.33).

Limit state of compression in concrete. The limit values of compression in

concrete defined in EC-2 (2004) and EC-2b (2003) are the following: 0.45fck(t)

for quasi permanent combination of loads and 0.60fck for rare combination. The

values proposed in REBAP (1985) are quite similar. Table 9.9 presents the results

of maximum compression in concrete obtained during simulations. In the first

row the results for girder top fibres at the middle span for QP combination are

presented and in the second row the results for slab top fibres also at the middle

span section are showed. It is important to notice, that results for verification of

the first limit are taken for age of concrete equal to 70 days. This is due to the

fact that this verification is to ensure validity of assumption of linear creep. The

second limit is verified for age of concrete equal to 1000 days.

Table 9.9: Statistical parameters of maximum compressive stresses in concrete.

Combin. Mean Standard Distrib. Characteristic Value corresp.

of loads value deviation type value 95% to pf=10−2

QP1S -9.19 MPa 0.71 MPa Normal -10.35 MPa -10.84 MPa

R1S -4.49 MPa 0.36 MPa Normal -5.08 MPa -5.33 MPa
Note: Characteristic value 95% (β ≈ 1.64); (W) Value Associated to pf=10−2 (β ≈ 2.33).

In this case the limit values is fixed as a percentage of characteristic value (5-

th percentile) of concrete compressive strength, defined by statistical parameters

presented in Table 9.3. The limit for first case is equal to -20.09 MPa and for

second is -16.32 MPa which is significantly far from the obtained results. The

β index calculated is equal to 4.73 and 10.0 for the first and the second case

respectively.
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9.3.8 Conclusions drawn from the assessment

Results presented in the previous sections show that the structure satisfies the

ultimate limit state of bending and the serviceability limits except in one case:

the limit of tensile stresses in prestressing tendons. The safety margin, assessed

in terms of β index, is significantly large for most of the situations. Keeping

in mind that the bridge has been designed and assessed considering the same

permanent and variable loads, and assuming that it has been appropriately de-

signed (without excessive strength reserves), it can be concluded that the applied

fully probabilistic non-linear assessment method shows the potentials of ’extract-

ing’ strength reserves present in the structure which can not be evaluated using

traditional methods. Therefore, this method, as well as other fully probabilis-

tic non-linear assessment methods, can be successfully used in the assessment of

existing bridges which fails traditional evaluation of the ultimate limit states as

well as the serviceability limit states.
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Chapter 10

Conclusions

10.1 Summary and general conclusions

This thesis deals with different topics related to the load capacity evaluation of

existing concrete bridges. At first, the currently recommended procedures and

methodologies for the assessment of existing bridges are presented and discussed.

Then, several probabilistic models of bridge geometry and mechanical properties

of materials, used in the construction of concrete bridges, are demonstrated.

Some new models, developed within the program of this thesis, are also shown.

Subsequently, the problem of bridge loading is discussed. Several probabilistic

models of bridge permanent loads are presented. However, the major focus is

placed on bridge traffic loads. Afterwards, several probabilistic models of bending

and shear resistance of concrete bridge elements are demonstrated. Also, some

new models developed within the program of this thesis are shown. After the load

and the resistance models, the safety requirements and safety formats applicable

to bridge assessment are presented and compared.

The information presented in this thesis form a solid framework that can

be practically used in the process of assessment of existing concrete bridges in

Portugal. This has been verified by applying the selected assessment procedure,

several proposed safety formats, developed resistance models and presented load

models in the assessment of three concrete bridges, one reinforced concrete railway

bridge and two precast prestressed concrete highway bridges.
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The detailed safety analysis of the reinforced concrete continuous railway

bridge ’Brunna Bridge’, performed using several safety formats discussed in this

thesis, shows how the bridge that would have been rated as deficient using tradi-

tional semi-probabilistic member safety analysis methods may in actuality have

extremely high system reliability levels, thus eliminating the need for its replace-

ment or rehabilitation. This is due to the ability of the bridge system to redis-

tribute the load from weak members to other stronger members. This is a signif-

icant structural property that should reinforce the importance of performing the

safety assessment of bridges at the system level in order to take full advantage of

the redundancy of the bridge. Furthermore, even neglecting bridge redundancy

but performing probabilistic analysis, and thus considering real variabilities of

all the parameters affecting bridge member capacity, may be sufficient to prove

required bridge safety.

The assessment of the precast prestressed concrete I girder bridge ’Barrela

Bridge’, curried out using ’step-level’ assessment procedure proposed in this thesis

for assessment of bridges in Portugal, shows that the structure can be considered

safe even though the traffic loads used in the assessment are significantly higher

than those applied to design the bridge. The initial assessment performed using

traditional methods gives somewhat different results (structure fails the assess-

ment). Nevertheless, more refined analyses applied according to the ’step-level’

assessment methodology proves that the structure is able to carry higher loads.

The further evaluation of ’Barrela Bridge’ performed using selected simplified

probabilistic traffic load model, which is assumed to be more representative in

this case than the EC-1b (2002) load model, shows significant increase in the

safety margin when comparing to lower level assessment. The main conclusion

drawn from this analysis is that the appropriate modelling of traffic loads in the

process of assessment of existing bridges may save many bridges from unnecessary

rehabilitation, strengthening or replacement.

The reliability evaluation of the precast prestressed concrete overpass ’PS12’,

performed using fully probabilistic non-linear analysis, shows that the structure

satisfies the analysed ultimate and serviceability limit states with a significant

safety margin (except the limit of tensile stresses in prestressing tendons). The

general conclusions drawn from this example are similar to those obtained in
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the analysis of the ’Brunna Bridge’, namely that the probabilistic non-linear

assessment methods show the potentials of ’extracting’ strength reserves present

in the structure which can not be evaluated using traditional methods. Therefore,

these methods can be successfully used in the assessment of existing bridges which

fails the traditional evaluation of the ultimate limit states. Furthermore, as it

has been proved in this example, they also can be used in the assessment of the

serviceability limit states.

10.2 Conclusions regarding some specific topics

presented in the thesis

Besides the general conclusions regarding presented framework for the assessment

of existing concrete bridges in Portugal and its applications to the real structures,

some conclusions related to specific topics discussed in selected chapters of this

thesis are also drawn.

Conclusions regarding assessment procedures. The main conclusion drawn

from the review of the assessment procedures, presented in Chapter 2, is that effi-

cient structural assessment strategies have to be based on the application of new

and increasingly sophisticated analysis levels, where the highest level combines

load redistribution analysis (non-linear analysis) with a probabilistic analysis.

Therefore, the procedure, which is selected in this thesis for using in load ca-

pacity evaluation of bridges in Portugal, is comprised of five levels of assessment

with increasing levels of complexity. The recommendation to go forward to the

next level is made only if the bridge fails to pass the previous assessment level.

The procedure systematize the use of several load capacity evaluation methods,

starting with the simplest deterministic evaluation, based on the current design

code, and finishing with fully probabilistic assessment, based on the reliability

theory.

Conclusions regarding models of material properties and geometry.

The main observation from the review of the existing models and the models
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developed based on Portuguese data, performed in Chapter 4, is that the vari-

ability of mechanical properties of materials used in bridge construction and the

geometry of bridge members is similar in most of the countries and is more de-

pendent on the production or execution quality rather than other factors. Also,

due to increase of the quality of production of concretes and reinforcing steels,

the variability of strength properties of these materials is currently lower than

some years or decades ago. This has to be considered when assessing existing

bridges. Furthermore, due to the higher execution quality, the precast elements

are generally characterized by lower variability in element geometry and in the

mechanical properties of concrete than elements cast in-situ.

Conclusions regarding bridge load models. The load models used in the

process of assessment of existing bridges should reflect the actual loads acting

on the bridge and the loads that the bridge may experience during its remaining

life. The conclusion drawn from the Chapter 5, regarding bridge loads, is that

the bridge traffic load models defined in RSA (1983) and EC-1b (2002) are, due

to different reasons, not the most adequate models for the assessment of existing

bridges in Portugal. The load models from RSA (1983) are quite obsolete and do

not reflect the actual heavy traffic. However, the load model from EC-1b (2002) is

very conservative and overestimate the loads that existing bridges may experience

during their remaining life. Therefore, some alternative models should be used in

the assessment of existing bridges in Portugal. The simplified probabilistic load

models presented in this thesis might be recommended where there is a lack of

better models. Nevertheless, the use of proposed models should be preceded by

measurements of real traffic using Weigh-in-Motion systems and by the calibration

of some of the parameters of the models.

Conclusions regarding bending and shear resistance models. The re-

view of existing bending resistance models and the models developed within the

program of this, which are presented in Chapter 5, leads to the general conclusion

that the statistics of the bending capacity of typical concrete bridge members are

very similar to the statistics of the steel strength governing the capacity of the

member (e.g. reinforcing or prestressing steel). Therefore, when assessing the
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existing bridge the information regarding the properties of steel used for the con-

struction of this bridge is very much appreciated. Quite similar conclusions to

this above made for bending can be drawn for the shear resistance of the members

with sufficient amount of reinforcement. However, the shear failure mechanism

is much more complicated than the mechanism of bending failure. Thus, due to

several possible failure modes this general observation may not be true, especially

when there is not enough longitudinal reinforcement, the member is prestressed,

or there is too much shear reinforcement leading to failure by compression of

concrete struts. From analysis of the models of shear capacity of the reinforced

concrete members without shear reinforcement, it may be concluded that the

governing variable is the tensile strength of concrete. Therefore, when assessing

the existing bridge where the main members do not have shear reinforcement the

information regarding the actual condition of concrete in the structure and its

tensile strength capacity is very welcome.

Conclusions regarding safety formats for assessment. The main conclu-

sion that comes from the review of several safety formats and assessment meth-

ods, presented in Chapter 7 and compared in Chapter 8, is that the probabilistic

methods are likely to show the safety reserves in the structure which might not

be evident when performing deterministic assessment. Therefore, they should

be used in the assessment of existing bridges that fails traditional deterministic

evaluation. Comparing several presented probabilistic methods, characterized by

different level of complexity and accuracy, it can be concluded that the simpli-

fied probabilistic methods for the member level evaluation (Mean Load method),

and at the system level evaluation (method of Ghosn and Moses and method

of Sobrino and Casas) are sufficiently accurate while only requiring a basic level

of knowledge of structural reliability techniques. The combination of accuracy

and simplicity would make these methods more likely to be used by engineering

practitioners for the safety assessment of existing bridges. Furthermore, the Re-

dundancy Factor method also seems to be an adequate and efficient technique

for the safety assessment of existing bridges especially when the bridge evaluator

is not familiar with the reliability theory. A more accurate method, as Response

Surface method or Latin Hypercube simulation method, due to their complexity,
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might be used just as a last resort to save a bridge from unnecessary rehabilita-

tion, strengthening or replacement.

10.3 Suggestions for further research

Whilst performing the several assessments and analysis presented in this disser-

tation, and also during the writing of the literature review for some chapters of

this thesis, several areas that require further research have been identified.

The first area that evidently need investigation in Portugal is the area of

bridge traffic loads. The bridge load model defined in RSA (1983), which is used

presently to design and assess the bridges in Portugal, is rather obsolete. However,

the bridge load model defined in EC-1b (2002) is very conservative which might

be good in the design of new bridges but evidently is disqualifying it from the

assessment of existing bridges. Therefore, there is a need to perform a campaign

of the measurements of real traffic and to perform the calibration of bridge load

model from EC-1b (2002) for the purpose of the design of new bridges and the

assessment of existing bridges in Portugal.

The second area that need further investigation is the area related to the

definition of modelling uncertainties. In the assessment of existing bridges by

means of probabilistic methods, in order to obtain quantitatively accurate results,

the difference between the prediction of the bridge response, obtained from the

analysis, and the actual response of the structure, have to be considered in the

assessment by introducing modelling variable. Some models proposed for this

variable can be found in the available literature. Nevertheless, these models are

questionable and generally correspond to simplified models of analysis rather

than to currently common global non-linear structural analysis, where advanced

response models and constitutive relationships are used. Therefore, there is a

need to define the modelling uncertainty for different levels of structural analysis

and different constitutive relationships.

The third area that evidently need further development is the area of system-

atization and unification of the methods of probabilistic analysis and the input

parameters used for these analysis. Generally, the probabilistic methods are very

sensitive to the parameters used in the analysis. It is commonly known that
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adjusting the parameters used for the probabilistic analysis one may get almost

any required results, which evidently may not be correct. Also, when performing

more and more refined reliability analysis (e.g. considering system behaviour,

load redistribution, etc.) almost any required level of reliability, expressed by

the reliability index β, can be obtained. Therefore, there is a need to establish

general rules for the probabilistic modelling of the input parameters. Some rules

are already defined in JCSS (2001), and also in this thesis, however, they are

not exhaustive. Furthermore, there is a need to establish rules for the use of

different level of the reliability analysis and to define the corresponding required

reliability level for each of the analysis level. In this field there is also some work

done (Ghosn & Moses, 1998) that is reported in this thesis, however, it is not

sufficient.

Of course there is also a possibility to research further into the variation in

the properties of materials used in bridge construction and to develop models of

shear and bending resistance for other bridge types. Nevertheless, it probably

will not lead to any significant progress or improvements of the existing models.

Therefore, as soon as the uncertainties in the mechanical properties of materials

or in bridge geometry and the uncertainties in the prediction of section capacities

will not change significantly, the models developed and presented in this thesis

are rather sufficient.
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Appendix A

Variability of the properties of

ready-mixed concretes

A.1 Introduction

In this appendix the results of statistical analysis of data of basic concrete prop-

erties are presented. The analysed data was collected and made available for this

study by the concrete quality control laboratories of the two biggest precast con-

crete companies in Portugal - Civibral and Maprel, and one of the biggest civil

engineering contractor - Mota-Engil. The data provided by Civibral corresponds

to the company production of plant-cast concrete bridge girders manufactured

during the years 2000 and 2001. The data provided by Maprel corresponds to

the company production of plant-cast concrete elements manufactured during the

years 2000 and 2001. However, data provided by Mota-Engil corresponds to the

production of ready-mixed site-cast concrete used on the construction of bridges

and culverts on the A11 highway connecting Braga and Guimarães on the north

of Portugal. All the collected data regarding compressive strength of concrete

at different ages (16 hours, 1 day, 3 days, 7 days and 28 days) and the volume

weight of concrete were obtained during the ordinary tests performed for confor-

mity purpose. The tests were realized on the concrete cube specimens with the

dimensions, 15cm x 15cm x 15cm, according to the current standard (EN 206

Concrete: Specification, performance, production and conformity).
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A. Variability of the properties of ready-mixed concretes

A.2 Experimental data

The following section resumes the results of statistical evaluation of data. In

Tables A.1, A.3 and A.5 the minimum value Xmin, maximum value Xmax, mean

value Xmean, and coefficient of variation CV of concrete compressive strength at

different ages corresponding to concrete of different classes are presented. Fur-

thermore, the numbers of samples Nsampl used in the analysis are showed.

The skewness and kurtosis of the distribution of analysed data are presented

in Tables A.2, A.4 and A.6. Skewness characterizes the degree of asymmetry of

a distribution around its mean (positive/negative skewness - distribution with

an asymmetric tail extending toward more positive/negative values). Kurtosis

characterizes the relative peakedness or flatness of a distribution compared with

the normal distribution (positive/negative kurtosis - relatively peaked/flat dis-

tribution). Moreover, in Tables A.2, A.4 and A.6 the results of K-S Lilliefors

goodness-of-fit test are showed. The parameters presented in tables are the sig-

nificance interval for accepting or rejecting the null hypothesis saying that the

observed distribution is not significantly different from a theoretical, normal or

lognormal distribution (significance interval bigger than 0.05 means that the null

hypothesis can not be rejected). In the last column of Tables A.2, A.4 and A.6

the correlation coefficient between the concrete compressive strength at different

age and that at 28 days is also showed. The correlation coefficient is a dimension-

less index, ranging from -1 to 1, that reflects the extent of a linear relationship

between two parameters ( -1/1 represent perfect negative/positive correlation, 0

represents lack of correlation).

Besides the K-S Lilliefors goodness-of-fit test the choice of the appropriate

probability distribution function describing the best the concrete compressive

strength was also confirmed by the histograms and P-P plots presented also in

this section in Figures A.1 to A.16. Histograms show the frequency of occurrence

of the results in specified intervals. P-P plots show the correspondence of the

experimental results to the theoretical distribution function.

The basic statistics and characteristics of distribution described above for the

case of concrete compressive strength were also obtained for concrete volume

weight. The results are resumed in Tables A.7, A.8 and Figures A.17, A.18.
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A.2 Experimental data

Compressive strength of concrete. Plant-cast concrete - Civibral.

Table A.1: Basic statistics of the concrete compressive strength.

Concrete Concr. Numb. Min. val. Max. val. Mean val. Var. coef.

class age Nsampl Xmin Xmax Xmean CV

C35/45

16 hours 349 21.5 38.0 27.3 8.6

3 days 390 28.0 47.6 35.8 9.1

28 days 412 44.9 58.9 48.6 4.7

C40/50

16 hours 58 26.5 39.1 32.8 7.8

3 days 126 36.5 47.3 41.3 5.3

28 days 158 49.2 60.6 54.1 4.5

C45/55

16 hours 63 26.5 41.7 33.8 10.8

3 days 99 33.6 45.1 41.3 5.7

28 days 108 50.2 59.1 54.9 3.9
Note: In the table values of Xmin, Xmax and Xmean are in [MPa]; values of CV are in [%]

Table A.2: Distribution characteristics, goodness-of-fit test and correlations

Concrete Concrete Skew- Kurto- K-S test of K-S test of Correlation

class age ness sis normal. log-norm. with fc28

C35/45

16 hours 1.33 3.47 0.0000 0.0027 0.2269

3 days 0.43 0.56 0.6703 0.7755 0.6338

28 days 1.22 2.35 0.0096 0.0359 1.0000

C40/50

16 hours 0.47 0.24 0.1500 0.2293 0.3580

3 days 0.42 0.07 0.6109 0.7915 0.4507

28 days 0.37 -0.20 0.8173 0.8998 1.0000

C45/55

16 hours 0.37 -0.54 0.5436 0.7655 -0.1284

3 days -1.25 1.73 0.1294 0.0634 0.5177

28 days -0.63 -0.56 0.0012 0.0000 1.0000
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A. Variability of the properties of ready-mixed concretes

Compressive strength at 28 days. Concrete C35/45 - Civibral.

Figure A.1: Histogram of experimental data and Normal PDF.

Figure A.2: Normal P-P plot (experimental vs. theoretical CDF).
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A.2 Experimental data

Compressive strength at 28 days. Concrete C40/50 - Civibral.

Figure A.3: Histogram of experimental data and Normal PDF.

Figure A.4: Normal P-P plot (experimental vs. theoretical CDF).
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A. Variability of the properties of ready-mixed concretes

Compressive strength at 28 days. Concrete C45/55 - Civibral.

Figure A.5: Histogram of experimental data and Normal PDF.

Figure A.6: Normal P-P plot (experimental vs. theoretical CDF).
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A.2 Experimental data

Compressive strength of concrete. Plant-cast concrete - Maprel.

Table A.3: Basic statistics of the concrete compressive strength.

Concrete Concr. Numb. Min. val. Max. val. Mean val. Var. coef.

class age Nsampl Xmin Xmax Xmean CV

C30/37

1 day 615 1.2 50.3 16.0 47.7

3 days 130 19.2 45.9 31.1 13.5

7 days 647 25.6 50.7 39.3 10.7

28 days 1337 37.1 58.4 45.4 8.8

C45/55

1 day 385 13.1 49.8 37.4 13.1

3 days 262 31.1 53.6 42.7 11.1

7 days 209 38.4 63.0 49.4 8.1

28 days 478 50.2 66.5 56.3 5.2
Note: In the table values of Xmin, Xmax and Xmean are in [MPa]; values of CV are in [%]

Table A.4: Distribution characteristics, goodness-of-fit test and correlations

Concrete Concrete Skew- Kurto- K-S test of K-S test of Correlation

class age ness sis normal. log-norm. with fc28

C30/37

1 day 2.03 4.65 0.0000 0.0000 0.2077

3 days 0.53 1.49 0.9752 0.9971 0.4513

7 days 0.25 -0.33 0.0612 0.5407 0.8232

28 days 0.57 -0.21 0.0000 0.0029 1.0000

C45/55

1 day -1.00 3.28 0.1459 0.0014 0.2339

3 days 0.18 -0.56 0.7507 0.9268 0.3063

7 days 0.38 0.40 0.5021 0.8696 0.6460

28 days 0.63 0.86 0.0412 0.1330 1.0000
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A. Variability of the properties of ready-mixed concretes

Compressive strength at 28 days. Concrete C30/37 - Maprel.

Figure A.7: Histogram of experimental data and Normal PDF.

Figure A.8: Normal P-P plot (experimental vs. theoretical CDF).
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A.2 Experimental data

Compressive strength at 28 days. Concrete C45/55 - Maprel.

Figure A.9: Histogram of experimental data and Normal PDF.

Figure A.10: Normal P-P plot (experimental vs. theoretical CDF).
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A. Variability of the properties of ready-mixed concretes

Compressive strength of concrete. Site-cast concrete - Mota-Engil.

Table A.5: Basic statistics of the concrete compressive strength.

Concrete Concr. Numb. Min. val. Max. val. Mean val. Var. coef.

class age Nsampl Xmin Xmax Xmean CV

C25/30
7 days 243 24.2 38.3 29.7 9.3

28 days 486 32.1 45.6 37.8 7.7

C30/37
7 days 444 32.1 46.7 36.6 5.9

28 days 892 37.4 58.8 43.8 7.5

C40/50
7 days 265 39.2 61.4 51.0 7.6

28 days 534 52.2 68.4 59.2 5.8
Note: In the table values of Xmin, Xmax and Xmean are in [MPa]; values of CV are in [%]

Table A.6: Distribution characteristics, goodness-of-fit test and correlations

Concrete Concrete Skew- Kurto- K-S test of K-S test of Correlation

class age ness sis normal. log-norm. with fc28

C25/30
7 days 0.59 -0.39 0.1201 0.2062 0.5966

28 days 0.30 -0.60 0.0773 0.2634 1.0000

C30/37
7 days 0.68 1.38 0.2835 0.6469 0.7943

28 days 0.89 1.12 0.0000 0.0022 1.0000

C40/50
7 days 0.37 -0.15 0.6073 0.5779 0.7256

28 days 0.41 -0.35 0.1561 0.3660 1.0000
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A.2 Experimental data

Compressive strength at 28 days. Concrete C25/30 - Mota-Engil.

Figure A.11: Histogram of experimental data and Normal PDF.

Figure A.12: Normal P-P plot (experimental vs. theoretical CDF).

301



A. Variability of the properties of ready-mixed concretes

Compressive strength at 28 days. Concrete C30/37 - Mota-Engil.

Figure A.13: Histogram of experimental data and Normal PDF.

Figure A.14: Normal P-P plot (experimental vs. theoretical CDF).
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A.2 Experimental data

Compressive strength at 28 days. Concrete C40/45 - Mota-Engil.

Figure A.15: Histogram of experimental data and Normal PDF.

Figure A.16: Normal P-P plot (experimental vs. theoretical CDF).
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A. Variability of the properties of ready-mixed concretes

Volume weight of concrete. Ready-mixed plant-cats and site-cast concretes.

Table A.7: Basic statistics of the concrete volume weight.

Concrete Concr. Numb. Min. val. Max. val. Mean val. Var. coef.

producer class Nsampl Xmin Xmax Xmean CV

Civibral

C35/45 1166 2367 2507 2434 1.0

C40/50 354 2381 2504 2428 0.9

C45/55 282 2356 2462 2399 0.8

Maprel
C30/37 2729 2289 2485 2388 0.9

C45/55 1430 2356 2483 2424 0.8

Engil

C25/30 729 2323 2486 2413 1.1

C30/37 1368 2308 2519 2422 1.1

C40/50 904 2370 2521 2464 0.9

All prod. All clas. 8962 2289 2521 2417 1.3
Note: In the table values of Xmin, Xmax and Xmean are in [kg/m3]; values of CV are in [%]

Table A.8: Distribution characteristics, goodness-of-fit test and correlations

Concrete Concrete Skew- Kurto- K-S test of K-S test of Correlation

producer class ness sis normal. log-norm. with fc28

Civibral

C35/45 -0.24 -0.16 0.0023 0.0017 0.1788

C40/50 0.40 -0.45 0.0171 0.0176 0.1243

C45/55 0.43 -0.02 0.0581 0.0627 0.1593

Maprel
C30/37 0.21 1.31 0.0000 0.0000 0.3810

C45/55 0.16 -0.01 0.0050 0.0076 0.1450

Engil

C25/30 -0.56 0.65 0.0000 0.0000 0.3771

C30/37 -0.45 1.14 0.0000 0.0000 0.2695

C40/50 -0.34 0.54 0.0041 0.0029 0.2765

All prod. All clas. 0.16 -0.24 0.0000 0.0000 0.4842
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A.2 Experimental data

Volume weight of concrete. Ready-mixed plant-cats and site-cast concretes.

Figure A.17: Histogram of experimental data and Normal PDF.

Figure A.18: Normal P-P plot (experimental vs. theoretical CDF).
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A. Variability of the properties of ready-mixed concretes

A.3 Conclusions

The analysis of results of statistical evaluation of data regarding concrete com-

pressive strength at various ages and concrete volume weight, presented in previ-

ous section, leads to the following conclusions:

• The mean value of concrete compressive strength at 28 days is close to

expected for all concrete classes. However, for concrete C45/55 the mean

compressive concrete strength is a bit smaller than expected. This is proba-

bly due to the lack of correspondence between concrete class C45/55 defined

by the Eurocode and the class B50 defined in Portuguese code.

• The variation of results obtained during the compression tests for each con-

crete class is very small. The coefficient of variation of concrete compressive

strength at 28 days is always smaller than 10% and usually oscillates around

5-7%.

• The variability of concrete compressive strength is smaller for concretes of

higher classes.

• Easy to notice is the expected bigger variability of strength properties of

younger concretes.

• The coefficient of variation of concrete compression strength at certain con-

crete age for younger concretes depends probably more on curing conditions

and/or concrete composition than on concrete class.

• The variability of compressive strength of plant-cast concrete is usually

slightly smaller than that of site-cast concrete.

• The lognormal distribution function usually better approximate the ob-

served distribution of concrete compressive strength. However the normal

distribution function was also found appropriate for modelling the distribu-

tion of that concrete property.

• The correlation between concretes in different ages is easier to notice for

concretes at 3 days (or 7 days) and 28 days. The correlation between

concrete at 16 hours (or 1 day) and 28 days is negligible.
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A.3 Conclusions

• The mean value of concrete volume weight obtained in the analysis of all

the data is equal to 2417 kg/m3.

• The variation of results of concrete volume weight measured by coefficient

of variation is equal to 1.3%.

• The mean value and the coefficient of variation of concrete volume weight

depend probably more on the concrete aggregate composition than on other

factors (class, age or producer).

• The normal distribution function seems appropriate to model the probabil-

ity distribution of concrete volume weight.

• The correlation between the concrete volume weight and the concrete com-

pressive strength at 28 days is negligible.
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Appendix B

Variability of the properties of

reinforcing steel bars

B.1 Introduction

In this appendix the results of statistical evaluation of data from standard quality

test of steel reinforcing bars are presented. The data used in the statistical anal-

ysis was collected by the Department of Civil Engineering of the University of

Coimbra during several years on some bridge construction sites in the neighbour-

hood of Coimbra. The collected data represents the properties of ordinary steel

reinforcing bars of several batches and several bars from the same batch. Most

probably it corresponds also to different producers and producing units. The tests

were performed in the Laboratory of Testing of Materials and Structures of Uni-

versity of Coimbra according to the current standards (E450-1998 Varões de aço

A500 NR para armaduras de betão armado, caracterist̀ıcas, ensaios e marcação;

E460-2002 Varões de aço A500 NR de ductilidade especial para armaduras de

betão armado, caracterist̀ıcas, ensaios e marcação).

B.2 Experimental data

The following section resumes results of statistical evaluation of data performed

regarding mechanical parameters of reinforcing bars of normal (NR) and spe-
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B. Variability of the properties of reinforcing steel bars

cial (NRSD) ductility S500 grade steel. The data corresponds to bars of various

diameters starting from 10 mm up to 32 mm. The analysed characteristic param-

eters are: yield strength fsy, ultimate tensile strength fsu, ratio fsy/fsu, modulus

of elasticity Es, strain at ultimate load εsu, cross-sectional area As and ratio

As,real/As,nominal.

In Tables B.1 and B.2 mean values and standard deviations of most of the

above-mentioned characteristic parameters are presented, respectively for differ-

ent steel ductility types and different bar diameters. As it can be seen the bar

diameter does not show any influence on the basic statistics of steel properties.

Therefore, in further statistical analysis the data corresponding to different bar

diameters are evaluated together. Despite the fact that the steel ductility type

does not also show clear influence on the steel properties, the data corresponding

to steels of normal and special ductility are evaluated separately.

In Tables B.3 and B.5 the minimum value Xmin, maximum value Xmax, mean

value Xmean, and coefficient of variation CV of characteristic parameters of steels

S500 NR and S500 NRSD are presented. Furthermore, the numbers of samples

Nsampl used in the statistical analysis are showed.

The skewness and kurtosis of the distribution of analysed data are presented

in Tables B.4 and B.6. Skewness characterizes the degree of asymmetry of a

distribution around its mean (positive/negative skewness - distribution with an

asymmetric tail extending toward more positive/negative values). Kurtosis char-

acterizes the relative peakedness or flatness of a distribution compared with the

normal distribution (positive/negative kurtosis - relatively peaked/flat distribu-

tion). Moreover, in Tables B.4 and B.6 the results of K-S Lilliefors goodness-of-fit

test are showed. The parameters presented in tables are the significance interval

for accepting or rejecting the null hypothesis saying that the observed distribution

is not significantly different from a theoretical, normal or lognormal distribution

(significance interval bigger than 0.05 means that the null hypothesis can not be

rejected). In the last column of Tables B.4 and B.6 the correlation coefficient be-

tween several properties of steel reinforcing bars and theirs yield strength is also

showed. The correlation coefficient is a dimensionless index, ranging from -1 to

1, that reflects the extent of a linear relationship between two parameters ( -1/1

represent perfect negative/positive correlation, 0 represents lack of correlation).
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B.2 Experimental data

Besides the K-S Lilliefors goodness-of-fit test the choice of the appropriate

probability distribution function describing the best the reinforcing steel proper-

ties was also confirmed by the histograms and P-P plots presented also in this

section in Figures B.1–B.12 and B.14–B.25. Histograms show the frequency of

occurrence of the results in specified intervals. P-P plots show the correspondence

of the experimental results to the theoretical distribution function.

The correlation plots showing correlations between various steel properties

and steel yielding strength are presented in Figures B.13 and B.26
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B. Variability of the properties of reinforcing steel bars

Properties of reinforcing bars. Grade S500 NR - All diameters.

Table B.1: Basic statistics of the properties of reinforcing bars.

Steel Distr. Bar diameter

Property param. 10 12 16 20 25 32

Yield strength fsy [MPa]
Mean 592 606 601 594 610 620

St. dev. 38 37 35 31 37 30

Ultimate strength fsu [MPa]
Mean 676 698 704 697 711 751

St. dev. 46 42 41 31 36 26

Elasticity modulus Es [GPa]
Mean 200 206 207 203 204 200

St. dev. 7 11 12 7 9 2

Ultimate strain εs [%]
Mean 13.2 13.0 12.8 14.8 14.0 15.0

St. dev. 2.0 3.1 3.1 3.8 3.4 4.0

Area As [mm2]
Mean 70 103 183 296 464 726

St. dev. 2 4 8 9 14 31

Properties of reinforcing bars. Grade S500 NR SD - All diameters.

Table B.2: Basic statistics of the properties of reinforcing bars.

Steel Distr. Bar diameter

Property param. 10 12 16 20 25 32

Yield strength fsy [MPa]
Mean — 562 589 592 568 586

St. dev. — 32 40 23 22 27

Ultimate strength fsu [MPa]
Mean — 674 699 691 685 712

St. dev. — 26 51 14 21 27

Elasticity modulus Es [GPa]
Mean — 201 201 201 200 200

St. dev. — 2 1 3 2 2

Ultimate strain εs [%]
Mean — 15.1 11.6 10.9 14.6 11.2

St. dev. — 1.7 0.9 1.0 2.8 1.1

Area As [mm2]
Mean — 103 184 302 475 774

St. dev. — 3 11 5 7 20
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B.2 Experimental data

Properties of reinforcing bars. Grade S500 NR - All diameters.

Table B.3: Basic statistics of the properties of reinforcing bars.

Steel Numb. Min. val. Max. val. Mean val. COV

Property Nsampl Xmin Xmax Xmean CV

Yield strength fsy 398 507 MPa 723 MPa 603 MPa 6.0 %

Ultimate strength fsu 398 573 MPa 822 MPa 703 MPa 5.9 %

Ratio fsu/fsy 398 1.00 1.32 1.17 3.3 %

Elasticity modulus Es 290 179 GPa 237 GPa 205 GPa 4.9 %

Ultimate strain εs 380 6.2 % 26.0 % 13.5 % 24.5 %

Ratio As,real/As,nominal 398 0.82 1.00 0.92 4.3 %

Table B.4: Distribution characteristics, goodness-of-fit test and correlations

Steel Skew- Kur- K-S test of K-S test of Correlation

Property ness tosis normal. log-norm. with fsy

Yield strength fsy 0.25 -0.02 0.4653 0.8222 1.0000

Ultimate strength fsu 0.10 -0.23 0.3006 0.2410 0.8504

Ratio fsu/fsy 0.61 1.98 0.0557 0.1069 -0.2884

Elasticity modulus Es 1.50 2.03 0.0000 0.0000 0.0703

Ultimate strain εs 0.83 0.96 0.0767 0.9698 0.0761

Ratio As,real/As,nominal -0.18 -0.68 0.5368 0.4311 -0.4076
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B. Variability of the properties of reinforcing steel bars

Steel grade S500 NR - All bar diameters. Yield strength.

Figure B.1: Histogram of experimental data and Normal PDF.

Figure B.2: Normal P-P plot (experimental vs. theoretical CDF).
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B.2 Experimental data

Steel grade S500 NR - All bar diameters. Ultimate strength.

Figure B.3: Histogram of experimental data and Normal PDF.

Figure B.4: Normal P-P plot (experimental vs. theoretical CDF).
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B. Variability of the properties of reinforcing steel bars

Steel grade S500 NR - All bar diameters. Ratio ultimate/yield strengths.

Figure B.5: Histogram of experimental data and Normal PDF.

Figure B.6: Normal P-P plot (experimental vs. theoretical CDF).
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B.2 Experimental data

Steel grade S500 NR - All bar diameters. Elasticity modulus.

Figure B.7: Histogram of experimental data and Normal PDF.

Figure B.8: Normal P-P plot (experimental vs. theoretical CDF).
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B. Variability of the properties of reinforcing steel bars

Steel grade S500 NR - All bar diameters. Strain at ultimate load.

Figure B.9: Histogram of experimental data and Normal PDF.

Figure B.10: Normal P-P plot (experimental vs. theoretical CDF).
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B.2 Experimental data

Steel grade S500 NR - All bar diameters. Real/nominal area.

Figure B.11: Histogram of experimental data and Normal PDF.

Figure B.12: Normal P-P plot (experimental vs. theoretical CDF).
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B. Variability of the properties of reinforcing steel bars

Steel grade S500 NR - All bar diameters. Correlations.
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Figure B.13: Correlation matrix.
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B.2 Experimental data

Properties of reinforcing bars. Grade S500 NR SD - All diameters.

Table B.5: Basic statistics of the properties of reinforcing bars.

Steel Numb. Min. val. Max. val. Mean val. COV

Property Nsampl Xmin Xmax Xmean CV

Yield strength fsy 70 507 MPa 667 MPa 578 MPa 5.5 %

Ultimate strength fsu 70 622 MPa 795 MPa 691 MPa 4.9 %

Ratio fsu/fsy 70 1.13 1.28 1.20 2.8 %

Elasticity modulus Es 62 195 GPa 208 GPa 201 GPa 1.0 %

Ultimate strain εs 66 9.6 % 19.9 % 13.1 % 19.2 %

Ratio As,real/As,nominal 70 0.83 0.99 0.94 4.4 %

Table B.6: Distribution characteristics, goodness-of-fit test and correlations

Steel Skew- Kur- K-S test of K-S test of Correlation

Property ness tosis normal. log-norm. with fsy

Yield strength fsy 0.11 0.18 0.9496 0.9640 1.0000

Ultimate strength fsu 0.45 0.67 0.6618 0.7786 0.8638

Ratio fsu/fsy 0.37 -0.05 0.1622 0.2005 -0.4906

Elasticity modulus Es 0.75 4.12 0.0045 0.0043 0.2724

Ultimate strain εs 0.77 -0.37 0.0454 0.1228 -0.4240

Ratio As,real/As,nominal -0.85 -0.18 0.0906 0.0848 -0.4035
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B. Variability of the properties of reinforcing steel bars

Steel grade S500 NR SD - All bar diameters. Yield strength.

Figure B.14: Histogram of experimental data and Normal PDF.

Figure B.15: Normal P-P plot (experimental vs. theoretical CDF).
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B.2 Experimental data

Steel grade S500 NR SD - All bar diameters. Ultimate strength.

Figure B.16: Histogram of experimental data and Normal PDF.

Figure B.17: Normal P-P plot (experimental vs. theoretical CDF).
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B. Variability of the properties of reinforcing steel bars

Steel grade S500 NR SD - All bar diameters. Ratio ultimate/yield strengths.

Figure B.18: Histogram of experimental data and Normal PDF.

Figure B.19: Normal P-P plot (experimental vs. theoretical CDF).

324



B.2 Experimental data

Steel grade S500 NR SD - All bar diameters. Elasticity modulus.

Figure B.20: Histogram of experimental data and Normal PDF.

Figure B.21: Normal P-P plot (experimental vs. theoretical CDF).
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B. Variability of the properties of reinforcing steel bars

Steel grade S500 NR SD - All bar diameters. Strain at ultimate load.

Figure B.22: Histogram of experimental data and Normal PDF.

Figure B.23: Normal P-P plot (experimental vs. theoretical CDF).
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B.2 Experimental data

Steel grade S500 NR SD - All bar diameters. Real/nominal area.

Figure B.24: Histogram of experimental data and Normal PDF.

Figure B.25: Normal P-P plot (experimental vs. theoretical CDF).
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B. Variability of the properties of reinforcing steel bars

Steel grade S500 NR SD - All bar diameters. Correlations.
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Figure B.26: Correlation matrix.
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B.3 Conclusions

B.3 Conclusions

The analysis of results of statistical evaluation of data regarding properties of

reinforcing steel bars, presented in previous section, leads to the following con-

clusions:

• The mean value of the yield strength of tested reinforcing steels is signif-

icantly higher than the expected value defining the steel grade. The bias

factor relating the mean with the characteristic value of this steel property

is oscillating between 1.16–1.21. The characteristic value is defined as a

quantile of 5%.

• The variation of results obtained during the tensile test for each steel grade

is quite small. The coefficient of variation of steel yield strength oscillates

between 5.5–6.0%.

• The mean value of the ultimate strength is also higher than the expected

value. The bias factor relating the mean with the characteristic value of

this steel property is equal to 1.28 and 1.20 for steel of normal and special

ductility respectively. The characteristic value is defined as a quantile of

5% and 10% for steels of normal and special ductility respectively.

• The observed variability of ultimate tensile strength is slightly smaller than

the variability of yield strength. The coefficient of variation of this steel

property oscillates between 4.9–5.9%.

• The mean value of the ratio ultimate/yield strength for normal and special

ductility steel bars is 1.17 and 1.20 respectively.

• The corresponding coefficients of variation are 3.3% and 2.8% respectively

for steels of normal and special ductility.

• The mean value of the elasticity modulus of tested reinforcing bars is higher

than the expected value and takes values between 201 GPa and 205 GPa.

• The variation of results regarding elasticity modulus obtained during the

tests is relatively small. The corresponding coefficient of variation lays

between 1.0–4.9%.
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B. Variability of the properties of reinforcing steel bars

• The mean value of strain at the ultimate load takes values 13.5% and 13.1%

for steels of normal and special ductility respectively.

• The coefficient of variation, describing variability of the ultimate strain of

tested reinforcing bars is relatively high and takes values between 19.2–

24.5%.

• The mean value of the ratio real/nominal cross-sectional area of tested bars

oscillates between 0.92–0.94.

• The coefficient of variation of the ratio real/nominal area of tested bars is

oscillating between 4.3–4.4%

• All the analysed properties of reinforcing steel bars fits well to the normal or

lognormal distribution functions. The exception is the ultimate strain, elas-

ticity modulus and in some cases real/nominal bar area. However they also

can be reasonably well approximated by normal or lognormal distribution.

• The correlations between the steel properties are visible only for the yield

strength and the ultimate strength. This allows to define close form relation

between these properties.

• The correlations between other steel properties are negleglible.
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Appendix C

Variability of the properties of

prestressing strands

C.1 Introduction

In this appendix the results of statistical evaluation of data from standard quality

test of prestressing steel strands are presented. The data used in the statistical

analysis was collected by the Department of Civil Engineering of the University

of Coimbra during several years (2000–2006) corresponding mostly to the con-

struction of The Europe Bridge but also to some other bridges in the neighbour-

hood of Coimbra. The collected data represents the properties of prestressing

strands of several producers and producing units, several batches and several

rolls from the same batch. The tests were performed in the Laboratory of Test-

ing of Materials and Structures of University of Coimbra according to the current

standards (ASTM A416/A416m-99 Standard specification for Steel Strand, Un-

coated Seven-Wire for Prestressed Concrete; EN10138-3 Prestressing Steels, Part

3, Strand; E453-2002 Cordões de aço para pré-esforço, caracterist̀ıcas e ensaios.)

C.2 Experimental data

The following section resumes results of statistical evaluation of data performed

regarding prestressing strands of 1770 and 1860 grade and diameters of 16 mm and
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C. Variability of the properties of prestressing strands

15.2 mm. The analysed characteristic parameters are: stress at 0.1% offset, fp0.1,

stress corresponding to total strain of 1%, ultimate tensile strength fpu, modulus

of elasticity Ep, ultimate strain εpu and cross-sectional area Ap. In Tables C.1,

C.3 and C.5 the minimum value Xmin, maximum value Xmax, mean value Xmean,

and coefficient of variation CV of above mentioned characteristic parameters are

presented. Furthermore, the numbers of samples Nsampl used in the statistical

analysis are showed.

The skewness and kurtosis of the distribution of analysed data are presented

in Tables C.2, C.4 and C.6. Skewness characterizes the degree of asymmetry of

a distribution around its mean (positive/negative skewness - distribution with

an asymmetric tail extending toward more positive/negative values). Kurtosis

characterizes the relative peakedness or flatness of a distribution compared with

the normal distribution (positive/negative kurtosis - relatively peaked/flat dis-

tribution). Moreover, in Tables C.2, C.4 and C.6 the results of K-S Lilliefors

goodness-of-fit test are showed. The parameters presented in tables are the sig-

nificance interval for accepting or rejecting the null hypothesis saying that the

observed distribution is not significantly different from a theoretical, normal or

lognormal distribution (significance interval bigger than 0.05 means that the null

hypothesis can not be rejected). In the last column of Tables C.2, C.4 and C.6

the correlation coefficient between several properties of prestressing strands and

theirs ultimate tensile strength is also showed. The correlation coefficient is a

dimensionless index, ranging from -1 to 1, that reflects the extent of a linear

relationship between two parameters ( -1/1 represent perfect negative/positive

correlation, 0 represents lack of correlation).

Besides the K-S Lilliefors goodness-of-fit test the choice of the appropriate

probability distribution function describing the best the strands properties was

also confirmed by the histograms and P-P plots presented also in this section in

Figures C.1–C.12, C.14–C.25 and C.27–C.38. Histograms show the frequency of

occurrence of the results in specified intervals. P-P plots show the correspondence

of the experimental results to the theoretical distribution function. The correla-

tion plots showing correlations between various strands properties are showed in

Figures C.13, C.26 and C.39
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C.2 Experimental data

Properties of prestressing strands. Grade 1770 - Diameter 16.0 mm.

Table C.1: Basic statistics of the properties of prestressing strands.

Steel Numb. Min. val. Max. val. Mean val. COV

Property Nsampl Xmin Xmax Xmean CV

0.1% proof stress fp0.1 90 1499 MPa 1628 MPa 1556 MPa 1.7 %

1% proof stress fpy 90 1508 MPa 1650 MPa 1592 MPa 1.7 %

Ultimate strength fpu 90 1738 MPa 1842 MPa 1800 MPa 1.2 %

Elasticity modulus Ep 90 180 GPa 202 GPa 195 GPa 2.0 %

Ultimate strain εp 90 3.07 % 5.20 % 4.15 % 8.7 %

Area Ap 90 149 mm2 153 mm2 151 mm2 0.4 %
Note: All the stresses were calculated from forces registered by the testing machine
considering the real area of strand determined based on measured specimen weight

Table C.2: Distribution characteristics, goodness-of-fit test and correlations

Steel Skew- Kur- K-S test of K-S test of Correlation

Property ness tosis normal. log-norm. with fpu

0.1% proof stress fp0.1 0.42 -0.19 0.5953 0.6188 0.5681

1% proof stress fpy -0.24 0.11 0.9392 0.9631 0.6389

Ultimate strength fpu -0.57 0.19 0.7397 0.7153 1.0000

Elasticity modulus Ep -0.89 1.57 0.3326 0.2884 0.1522

Ultimate strain εp 0.45 1.20 0.0064 0.0191 0.0334

Area Ap 1.07 2.79 0.0377 0.0393 -0.1177
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C. Variability of the properties of prestressing strands

Steel grade 1770 - Strands diameter 16.0 mm. 0.1% proof stress.

Figure C.1: Histogram of experimental data and Normal PDF.

Figure C.2: Normal P-P plot (experimental vs. theoretical CDF).
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C.2 Experimental data

Steel grade 1770 - Strands diameter 16.0 mm. 1% proof stress.

Figure C.3: Histogram of experimental data and Normal PDF.

Figure C.4: Normal P-P plot (experimental vs. theoretical CDF).
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C. Variability of the properties of prestressing strands

Steel grade 1770 - Strands diameter 16.0 mm. Ultimate strength.

Figure C.5: Histogram of experimental data and Normal PDF.

Figure C.6: Normal P-P plot (experimental vs. theoretical CDF).
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C.2 Experimental data

Steel grade 1770 - Strands diameter 16.0 mm. Elasticity modulus.

Figure C.7: Histogram of experimental data and Normal PDF.

Figure C.8: Normal P-P plot (experimental vs. theoretical CDF).
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C. Variability of the properties of prestressing strands

Steel grade 1770 - Strands diameter 16.0 mm. Ultimate strain.

Figure C.9: Histogram of experimental data and Normal PDF.

Figure C.10: Normal P-P plot (experimental vs. theoretical CDF).
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C.2 Experimental data

Steel grade 1770 - Strands diameter 16.0 mm. Cross-sectional area.

Figure C.11: Histogram of experimental data and Normal PDF.

Figure C.12: Normal P-P plot (experimental vs. theoretical CDF).
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C. Variability of the properties of prestressing strands

Steel grade 1770 - Strands diameter 16.0 mm. Correlations.
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Figure C.13: Correlation matrix.

340



C.2 Experimental data

Properties of prestressing strands. Grade 1860 - Diameter 15.2 mm.

Table C.3: Basic statistics of the properties of prestressing strands.

Steel Numb. Min. val. Max. val. Mean val. COV

Property Nsampl Xmin Xmax Xmean CV

0.1% proof stress fp0.1 35 1634 MPa 1800 MPa 1718 MPa 2.3 %

1% proof stress fpy 140 1590 MPa 1902 MPa 1741 MPa 2.9 %

Ultimate strength fpu 140 1849 MPa 2045 MPa 1934 MPa 2.2 %

Elasticity modulus Ep 140 186 GPa 214 GPa 199 GPa 2.1 %

Ultimate strain εp 140 2.85 % 6.41 % 3.99 % 13.8 %

Area Ap 140 135 mm2 144 mm2 140 mm2 1.3 %
Note: All the stresses were calculated from forces registered by the testing machine
considering the real area of strand determined based on measured specimen weight

Table C.4: Distribution characteristics, goodness-of-fit test and correlations

Steel Skew- Kur- K-S test of K-S test of Correlation

Property ness tosis normal. log-norm. with fpu

0.1% proof stress fp0.1 0.05 -0.18 1.0000 1.0000 0.7692

1% proof stress fpy 0.19 0.53 0.9896 0.9778 0.7306

Ultimate strength fpu 0.35 -0.54 0.2543 0.2741 1.0000

Elasticity modulus Ep 0.42 1.58 0.0658 0.0861 -0.0843

Ultimate strain εp 0.86 2.32 0.1000 0.3293 -0.1338

Area Ap -0.62 0.57 0.0194 0.0161 -0.5408
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C. Variability of the properties of prestressing strands

Steel grade 1860 - Strands diameter 15.2 mm. 0.1% proof stress.

Figure C.14: Histogram of experimental data and Normal PDF.

Figure C.15: Normal P-P plot (experimental vs. theoretical CDF).
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C.2 Experimental data

Steel grade 1860 - Strands diameter 15.2 mm. 1% proof stress.

Figure C.16: Histogram of experimental data and Normal PDF.

Figure C.17: Normal P-P plot (experimental vs. theoretical CDF).
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C. Variability of the properties of prestressing strands

Steel grade 1860 - Strands diameter 15.2 mm. Ultimate strength.

Figure C.18: Histogram of experimental data and Normal PDF.

Figure C.19: Normal P-P plot (experimental vs. theoretical CDF).
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C.2 Experimental data

Steel grade 1860 - Strands diameter 15.2 mm. Elasticity modulus.

Figure C.20: Histogram of experimental data and Normal PDF.

Figure C.21: Normal P-P plot (experimental vs. theoretical CDF).
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C. Variability of the properties of prestressing strands

Steel grade 1860 - Strands diameter 15.2 mm. Ultimate strain.

Figure C.22: Histogram of experimental data and Normal PDF.

Figure C.23: Normal P-P plot (experimental vs. theoretical CDF).
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C.2 Experimental data

Steel grade 1860 - Strands diameter 15.2 mm. Cross-sectional area.

Figure C.24: Histogram of experimental data and Normal PDF.

Figure C.25: Normal P-P plot (experimental vs. theoretical CDF).
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C. Variability of the properties of prestressing strands

Steel grade 1860 - Strands diameter 15.2 mm. Correlations.
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Figure C.26: Correlation matrix.
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C.2 Experimental data

Properties of prestressing strands. Grade 1860 - Diameter 16.0 mm.

Table C.5: Basic statistics of the properties of prestressing strands.

Steel Numb. Min. val. Max. val. Mean val. COV

Property Nsampl Xmin Xmax Xmean CV

0.1% proof stress fp0.1 21 1601 MPa 1790 MPa 1697 MPa 3.1 %

1% proof stress fpy 178 1617 MPa 1853 MPa 1728 MPa 2.6 %

Ultimate strength fpu 178 1803 MPa 2051 MPa 1925 MPa 2.3 %

Elasticity modulus Ep 178 186 GPa 206 GPa 198 GPa 1.7 %

Ultimate strain εp 178 2.73 % 5.38 % 3.84 % 10.5 %

Area Ap 178 144 mm2 155 mm2 150 mm2 1.3 %
Note: All the stresses were calculated from forces registered by the testing machine
considering the real area of strand determined based on measured specimen weight

Table C.6: Distribution characteristics, goodness-of-fit test and correlations

Steel Skew- Kur- K-S test of K-S test of Correlation

Property ness tosis normal. log-norm. with fpu

0.1% proof stress fp0.1 0.12 -0.77 0.9773 0.9847 0.8103

1% proof stress fpy 0.12 0.16 0.7800 0.7713 0.7780

Ultimate strength fpu 0.14 -0.15 0.8617 0.8402 1.0000

Elasticity modulus Ep -0.63 0.78 0.0332 0.0240 0.2412

Ultimate strain εp -0.07 2.59 0.0000 0.0000 0.2233

Area Ap -0.22 0.35 0.8724 0.8251 -0.5681
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C. Variability of the properties of prestressing strands

Steel grade 1860 - Strands diameter 16.0 mm. 0.1% proof stress.

Figure C.27: Histogram of experimental data and Normal PDF.

Figure C.28: Normal P-P plot (experimental vs. theoretical CDF).
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C.2 Experimental data

Steel grade 1860 - Strands diameter 16.0 mm. 1% proof stress.

Figure C.29: Histogram of experimental data and Normal PDF.

Figure C.30: Normal P-P plot (experimental vs. theoretical CDF).
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C. Variability of the properties of prestressing strands

Steel grade 1860 - Strands diameter 16.0 mm. Ultimate strength.

Figure C.31: Histogram of experimental data and Normal PDF.

Figure C.32: Normal P-P plot (experimental vs. theoretical CDF).
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C.2 Experimental data

Steel grade 1860 - Strands diameter 16.0 mm. Elasticity modulus.

Figure C.33: Histogram of experimental data and Normal PDF.

Figure C.34: Normal P-P plot (experimental vs. theoretical CDF).
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C. Variability of the properties of prestressing strands

Steel grade 1860 - Strands diameter 16.0 mm. Ultimate strain.

Figure C.35: Histogram of experimental data and Normal PDF.

Figure C.36: Normal P-P plot (experimental vs. theoretical CDF).
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C.2 Experimental data

Steel grade 1860 - Strands diameter 16.0 mm. Cross-sectional area.

Figure C.37: Histogram of experimental data and Normal PDF.

Figure C.38: Normal P-P plot (experimental vs. theoretical CDF).
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C. Variability of the properties of prestressing strands

Steel grade 1860 - Strands diameter 16.0 mm. Correlations.
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Figure C.39: Correlation matrix.
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C.3 Conclusions

C.3 Conclusions

The analysis of results of statistical evaluation of data regarding properties of

common types prestressins strands, presented in previous section, leads to the

following conclusions:

• The mean value of the ultimate tensile strength of tested prestressing steels

is slightly higher than the expected value defining the steel grade. The bias

factor relating the mean with the nominal value of this steel property is

oscillating between 1.02–1.04.

• The variation of results obtained during the tensile test for each steel grade

is very small. The coefficient of variation of ultimate tensile strength is

always smaller than 2.5% and for the analysed data it oscilates between

1.2–2.3%.

• The mean value of the theoretical yielding limit defined as proof stress at

0.1% offset or stress corresponding to 1% total strain is also sligthly higher

than the expeceted value.

• The observed variability of 0.1% and 1% proof stresses is also very small,

however, it is bigger than the variability of ultimate tensile strength. The

coefficients of variation of those steel properties oscilate between 1.7–3.1%.

• The mean value of the elasticity modulus of tested strands is higher than

the expected value and depending on steel grade and diameter takes values

between 195 GPa and 199 GPa.

• The variation of results regarding elasticity modulus obtained during the

tests is very small. The corresponding coefficient of variation lays between

1.7–2.1%.

• The mean value of the ultimate strain takes values around 4%, more specif-

ically 3.84–4.15%.

• The coefficient of variation, describing variability of the ultimate strain of

tested prestressing strands is relatively high and takes values between 8.7–

13.8%.
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C. Variability of the properties of prestressing strands

• The mean value of the cross-sectional area of tested strands is equal or

almost equal to the expected.

• The coefficient of variation of the area of tested strands is oscillating between

0.4–1.3%

• All the analysed properties of prestressing strands fits well into the normal

or lognormal distribution functions. The exception is the ultimate strain

and in some cases the elasticity modulus and strand area. However they can

also be reasonably well approximated by normal or lognormal distribution.

• The correlations between the steel properties are visible only for the stress

parameters like 0.1% proof stress, 1% proof stress and ultimate tensile

stress. This allows to define close form relation between those properties.

• The correlations between other steel properties are negleglible.
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Appendix D

Tolerances in precast concrete

bridge elements

D.1 Introduction

In this appendix the results of statistical analysis of data regarding dimensions

of common precast prestressed bridge girders are presented. Some of the anal-

ysed data weas collected and made available for this study by the quality control

division of one of the biggest precast concrete company in Portugal - Maprel.

Other data was collected during the campaign of measurements performed at the

starting period of this thesis on the casting plant of other Portuguese precast

bridge girder producer - Civibral. The data provided by Maprel corresponds to

all the company production of precast prestressed concrete U-shape bridge girders

manufactured between November 2002 and September 2003. They were obtained

during measurements performed for conformity purposes. For each manufactured

beam just one section was measured. The data collected in Civibral corresponds

to the randomly chosen precast prestressed concrete I-shape bridge girders ele-

ments manufactured during the spring of 2003. They were collected especially

for the purpose of this study. The main objective was to check the variations in

dimensions of the girder cross-section along girder’s length and between several

girders of the same type. Also the variation comparing to the nominal (pro-

jected) dimensions was studied. In this case several sections along the length of

ten randomly selected beams were measured.
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D. Tolerances in precast concrete bridge elements

D.2 Experimental data

The following section resumes results of statistical evaluation of data performed.

In Tables D.1–D.4, D.6 and D.7 the minimum value Xmin, maximum value Xmax,

mean value Xmean, and standard deviations σX of dimensions of various types

of precast bridge girders (see Figures D.1 and D.2) are presented. Furthermore,

the numbers of samples Nsampl are showed. In Tables D.6 and D.7 for each

girder dimension two set of measurements can be found. First corresponds to

the measurements performed on several cross-section of selected beam, second

corresponds to all measurements performed on all the beams. Moreover, in Tables

D.5 and D.8 the results corresponding to all girders height are resumed. In order

to be comparable Xmin, Xmax and Xmean, are presented as dimensionless factors

of measured to nominal value. CVλ is the coefficient of variation.

Dimensions of precast bridge girders. U-shape - Maprel.

Figure D.1: Cross-section of the girder.

Table D.1: Basic statistics of the dimensions of precast girders U90.

Girder Numb. Nom. val Min. val. Max. val. Mean val. St. dev.

dimen. Nsampl Xnom Xmin Xmax Xmean σX

H 7 900 890 910 915 6.9

W 7 2820 2820 2830 2826 5.3

T 7 200 200 210 206 5.3
All parameters except Nsampl are in [mm].
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D.2 Experimental data

Table D.2: Basic statistics of the dimensions of precast girders U120.

Girder Numb. Nom. val Min. val. Max. val. Mean val. St. dev.

dimen. Nsampl Xnom Xmin Xmax Xmean σX

H 8 1200 1210 1220 1214 5.2

W 8 3058 3057 3058 3057 0.5

T 8 200 200 220 211 6.4
All parameters except Nsampl are in [mm].

Table D.3: Basic statistics of the dimensions of precast girders U160.

Girder Numb. Nom. val Min. val. Max. val. Mean val. St. dev.

dimen. Nsampl Xnom Xmin Xmax Xmean σX

H 14 1600 1610 1620 1618 4.3

W 14 3320 3320 3320 3320 0.0

T 14 200 200 230 217 9.1
All parameters except Nsampl are in [mm].

Table D.4: Basic statistics of the dimensions of precast girders U190.

Girder Numb. Nom. val Min. val. Max. val. Mean val. St. dev.

dimen. Nsampl Xnom Xmin Xmax Xmean σX

H 8 1900 1910 1920 1914 5.0

W 8 3530 3510 3530 3520 8.0

T 8 200 200 250 222 14.1
All parameters except Nsampl are in [mm].

Table D.5: Basic statistics of the dimensions of precast U-shape girders.

Girder Numb. Nom. range Min. val. Max. val. Mean val. Var. coef.

dimen. Nsampl Xnom [mm] λmin λmax λmean CVλ [%]

H 55 900-1900 0.989 1.017 1.008 0.55

W 55 2800-3500 0.994 1.003 0.999 0.20

T 55 200 1.000 1.250 1.061 4.69
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D. Tolerances in precast concrete bridge elements

Dimensions of precast bridge girders. I-shape - Civibral.

Figure D.2: Cross-section of the girder.

Table D.6: Basic statistics of the dimensions of precast girders I60.

Girder Numb. Nom. val Min. val. Max. val. Mean val. St. dev.

dimen. Nsampl Xnom Xmin Xmax Xmean σX

A
15(a) 450 445 455 451.1 2.6

75(b) 450 445 459 451.3 2.5

B
10(a) 350 350 360 355.5 2.8

50(b) 350 350 360 354.6 3.3

C
10(a) 100 100 105 101.5 2.4

50(b) 100 95 105 100.6 2.2

D
9(a) 110 100 105 102.2 2.6

45(b) 110 100 105 101.7 2.4

E
9(a) 260 240 245 243.9 2.2

45(b) 260 240 250 244.9 2.0

F
9(a) 139 145 145 145.0 0.0

45(b) 139 140 145 143.6 2.3

G
11(a) 100 100 105 101.4 2.1

55(b) 100 95 105 99.5 2.0

H
15(a) 600 587 603 598.2 5.3

75(b) 600 583 608 599.0 4.2

Dimensions in [mm]; (a) corresponds to selected beam; (b) corresponds to all the beams.
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D.2 Experimental data

Table D.7: Basic statistics of the dimensions of precast girders I120.

Girder Numb. Nom. val Min. val. Max. val. Mean val. St. dev.

dimen. Nsampl Xnom Xmin Xmax Xmean σX

A
15(a) 800 798 802 800.0 1.3

105(b) 800 796 804 800.4 1.6

B
15(a) 440 440 450 442.6 3.1

78(b) 440 430 450 441.0 4.4

C
15(a) 150 155 160 157.9 2.5

85(b) 150 155 160 158.0 2.4

D
15(a) 160 158 160 159.9 0.5

75(b) 160 155 165 160.0 0.9

E
15(a) 725 715 720 719.3 1.8

75(b) 725 715 725 719.0 2.3

F
15(a) 335 330 335 332.0 2.5

75(b) 335 330 335 331.7 2.4

G
15(a) 75 74 82 77.4 2.0

105(b) 75 70 82 76.3 2.0

H
15(a) 1200 1206 1221 1211.2 4.2

105(b) 1200 1206 1226 1211.9 3.4

Dimensions in [mm]; (a) corresponds to selected beam; (b) corresponds to all the beams.

Table D.8: Basic statistics of the dimensions of precast I-shape girders.

Girder Numb. Nom. range Min. val. Max. val. Mean val. Var. coef.

dimen. Nsampl Xnom [mm] λmin λmax λmean CVλ [%]

A 180 450-800 0.989 1.020 1.002 0.56

B 128 350-440 0.977 1.029 1.007 0.95

C 135 100-150 0.950 1.067 1.036 2.10

D 120 110-160 0.909 1.031 0.972 2.23

E 120 260-725 0.923 1.000 0.973 0.79

F 120 139-335 0.985 1.043 1.006 1.64

G 160 75-100 0.933 1.093 1.009 1.98

H 180 600-1200 0.971 1.021 1.005 0.69

363



D. Tolerances in precast concrete bridge elements

D.3 Conclusions

The analysis of results of statistical evaluation of data regarding dimensions of

precast concrete bridge girders, presented in previous section, leads to the follow-

ing conclusions:

• The mean values of the dimensions of precast bridge girders are usually

slightly bigger than the expected. However, the observed difference is usu-

ally lower than 1% except the case of the thickness of U-shape girder’s

bottom slab, where the observed diference is around 6% and some dimmen-

sions of I beams, where the difference is around 3%.

• The girder depth, the most important dimension from the point of view

of the girder’s capacity, is usually 0.5–0.8% bigger than expected. This

correspond to 15–22 mm for the range of dimmensions considered.

• The coefficient of variation of precast concrete bridge girders’ dimensions

is on the level of 2% or lower which corresponds to the standard deviation

lower than 2.5 mm. The exception is the case of the thickness of U-shape

girders bottom slab, where it is on order of 5% which coressponds to 5–15

mm.

• The coefficient of variation of the girder’s depth is lower than 1%. This

correspond to the standard deviation of 3.5–5.0 mm for the range of dim-

mensions considered.
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