Synthesis and fluorescence properties of side-chain carboxylated 5,9-diaminobenzo[a]phenoxazinium salts

Vânia H. J. Frade, M. Sameiro T. Gonçalves* and João C.V.P. Moura Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

^{*}Corresponding author. Fax: +351 253 678 986; e-mail: msameiro@quimica.uminho.pt

Synthesis and fluorescence properties of side-chain carboxylated 5,9diaminobenzo[a]phenoxazinium salts

Vânia H. J. Frade, M. Sameiro T. Gonçalves* and João C.V.P. Moura

Centro de Química, Universidade do Minho, Gualtar, 4710-057 Braga, Portugal

Abstract – The efficient synthesis of a series of novel side-chain carboxylated 5,9-diaminobenzo[a]phenoxazinium salts is described. The ring system was prepared by the reaction of 5-alkylamino-2-nitrosophenol hydrochlorides with the appropriate *N*-alkylated-naphthylamine. Evaluation of the visible and fluorescence properties of the cationic dyes was carried out in ethanol and water at physiological pH. In both solvents they showed intense visible absorption maxima in the range 500-638 nm (ethanol) and 625-650 (water), and fluoresced strongly, with fluorescence maxima from 612 to 669 nm (ethanol) and from 654 to 685 nm (water). A wide variation in fluorescence quantum yields is observed, ranging from 0.051 to 0.50 and 0.065 to 0.32 in ethanol and water, respectively.

Keywords: Biomarkers; Benzo[*a*]phenoxazines; Long-wavelength fluorescence probes; Fluorescent dyes; Cationic dyes; Fluorophores.

Fluorescent chromophores have assumed increasing importance in life sciences, particularly for applications in detection, labelling, diagnosis and analysis.¹⁻⁵ Although there are many fluorescent dyes now commercially available, relatively few are long-wavelength light-emitting (600-1000 nm), which is an important requirement for many of these bio-applications, as in this region of the spectrum there is minimum interference from absorption scattering and from the natural auto fluorescence of biological molecules.⁶

Of the longer wavelength emitting dyes, oxazine derivatives such as benzophenoxazines and benzo[a]phenoxazines have seen a remarkable growth in research interest and technical importance. These cationic fluorophore systems have been used as biomarkers in histochemistry for nucleic acid detection, $^{7-9}$ for labelling proteins 10 and to study neuronal death in Parkinson's disease 11 and Alzheimer's

disease¹² or functional peroxisome deficiency, as encountered in Zelleweger syndrome.¹³

Other examples include neuronal detection after cerebral ischemia,¹⁴ determination of enzymatic activity in living cells,¹⁵ bacterial identification¹⁶ and erythroblast determination in blood by flow cytometry.¹⁷

Following our previous work with carboxylic acid derivative temporary markers in chemistry, 18-20 peptide we have now prepared new functionalised benzo[a]phenoxazininium salts. In order to explore eventual coupling of these fluorophores to biomolecules a carboxylic acid or ester (which can be hydrolysed) was chosen as the reactive functional group, and this was achieved by using the corresponding naphthyl carboxylic acid or ethyl ester precursor. We now report the efficient synthesis and characterisation of several side-chain carboxylated 5,9diaminobenzo[a]phenoxazinium dyes 1 which have the potential to provide longer wavelength emission. These compounds showed visible absorption in the 500-638 nm (ethanol) and 625-650 nm (water pH 7.4) region, and fluorescence with emission wavelength higher than 612 nm and 654 nm in ethanol and water, respectively.

5,9-Diaminobenzo[a]phenoxazinium dyes 1 were prepared by the reaction of a 5-alkylamino-2-nitrosophenol hydrochloride 2 with the appropriate N-alkylated-naphthylamine 3 in acidic medium (Scheme 1). The required 5-alkylamino-2-nitrosophenol hydrochloride 2a-c was synthesised by usual procedure involving treatment of the 3-alkylaminophenol with sodium nitrite in acidic solution. N-Alkyl-naphthylamines 3a-b were prepared by alkylation of 1-naphthylamine with chloropropionic acid and 3-ethyl-3-bromopropionate, respectively. After purification by dry chromatography, these compounds were obtained as an off-white solid (3a, 48%) and as an oil (3b, 45%) and were characterised by high resolution mass spectrometry, IR and NMR (1 H and 13 C) spectroscopy. The presence of the carbonyl group was confirmed by IR, which showed a strong band at 1717 (3a) and 1727 (3b) cm $^{-1}$. In the 13 C NMR, signals at δ 164.4 (3a) and 172.5 (3b) ppm were assigned to the carbonyl carbon.

When compound 2a was heated with 3a in refluxing methanol, benzo[a]phenoxazinium chloride 1a was isolated by dry chromatography purification as the major product (77%). Although esterification occurred, the carboxylic acid derivative (1b) was also

obtained in 22%. Starting with 5-diethyl-2-nitrosophenol hydrochloride (**2b**) both dyes **1c** and **1d** were obtained in 64 and 7% yield, respectively. Reaction of compounds **2a** and **2c** with *N*-alkylated-naphthylamine **3b** in ethanol and under the same conditions described above led to benzo[*a*]phenoxazinium chlorides **1e** and **1f** in high yields (99%, **1e** and 90%, **1f**) (Table 1).

Scheme 1

All dyes were obtained as blue materials and were fully characterised by elemental analysis or high resolution mass spectrometry, IR, NMR (¹H and ¹³C) and visible spectroscopy.

The visible spectra of compounds **1a-f** in degassed absolute ethanol showed absorption peaks between 500 (**1a**) and 638 (**1c**) nm with ε values ranging from 12075 (**1b**) to 43030 (**1c**) (Table 1 and Figure 1).

Table 1

Figure 1

The fluorescence properties of the functionalised benzo[a]phenoxazinium salts **1a-f** measured in degassed absolute ethanol, using Oxazine 1 as standard are summarised in Table 2. All compounds exhibit fluorescence, although in the case of **1a**, **1c** and **1e**, the quantum efficiency was rather low. However the presence of the carboxylic acid (compounds **1b** and **1d**) instead of the ester function (**1a** and **1c**) increased in two (**1a/1b**) or near five times (**1c/1d**) the fluorescence intensity. When 4-methyl-5-N-ethylamino-2-nitrosophenol was used a large increase in the fluorescence yield of the corresponding dye (**1f**, $\phi = 0.50$) was detected. The dyes reported showed large Stokes' shift (the lowest being 53 nm for **1f** and the highest 122 nm for **1e**. These results showing that the nature of the substituent groups on the benzo[a]phenoxazine moiety influences the fluorescence quantum yields as well as the wavelength of maximum emission. Emission spectra of dyes **1b-d** and **1f** measured in ethanol are presented in Figure 2.

Table 2

Figure 2

Having these facts in mind and further biological applications of these compounds, we also investigated their behaviour in water at physiological pH (pH 7.4). The high polarity of the aqueous solution leads to a bathochromic shift in both absorption (except for **1f**) and emission maxima as the largest change was in case of compound **1a** shifted from 500 nm (in ethanol) to 640 nm (in water) (absorption) and from 612 nm to 682 nm (emission) (Table 1 and Table 2). All compounds exhibit fluorescence in water and the fluorescence quantum yield increased for compounds **1a**, **1c** and **1e**; **1f** was the most fluorescent moiety synthesised ($\phi = 0.32$) (Table 2).

Considering the high yields of the cyclisation reaction, the presence of a functional group which gives the additional possibility of coupling these fluorophores to biomolecules by a covalent bond and also their water solubility, in connection with their longer wavelength of maximum visible absorption and emission fluorescence even in water at physiologic pH, benzo[a]phenoxazines **1a-f** are expected to be good probes for biological applications.

Acknowledgments

We thank Foundation for Science and Technology (Portugal) for financial support to the Centro de Química (University of Minho).

References and notes

- 1. Lin, Y.; Chiu, T.; Chang, H. J. Chromatogr. B 2003, 793, 37-48.
- 2. Mittoo, S.; Sundstrom, L.E.; Bradley, M. Anal. Biochem. 2003, 319, 234-238.
- 3. Gatti, R.; Gioia, M.G.; Andreatta, P.; Pentassuglia, G. J. Pharm. Biomed. Anal. 2004, 35, 339-348.
- 4. Yang, J.Z.; Bastian, K.C.; Moore, R.D.; Stobaugh, J.F.; Borchardt, R.T. *J. Chromatogr. B* **2002**, 780, 269-281.
- 5. Gatti, R.; Gioia, M.G.; Di Pietra, A.M. Anal. Chim. Acta 2002, 474, 11-20.
- 6. Haugland, R.P.; *Handbook of Fluorescent Probes and Research Products*; 9th ed., Molecular Probes, Eugene, OR, **2002**.

- 7. Kang, J.S.; Lakowicz, J.R.; Piszczek, G. Arch. Pharmacal. Res. 2002, 25(2), 143-150.
- 8. Chen, Q.; Li, D.; Yang, H.; Zhu, Q.; Xu, J.; Zhao, Y. *Analyst (Cambridge)* **1999**, *124*(6), 901-906.
- 9. Yan, X.; Miragila, S.; Yuan, P.M. U.S. Pat. 6140500, 2000.
- 10. Abu-Absi, S.F.; Friend, J.R.; Hansen, L.K.; Hu, W. Exp. Cell Res., 2002, 274(1), 56-67.
- 11. Loopuijt, L.D. J. Neural Transm. 2002, 109(10), 1275-1294.
- 12. Bobinski, M.; de Leon, M.J.; Wegiel, J.; DeSanti, S.; Convit, A.; Saint Louis, L.A.; Rusinek, H.; Wisniewski, H.M. *Neuroscience (Oxford)* **1999**, *95*(*3*), 721-725.
- 13. Janssen, A.; Gressens, P.; Grabenbauer, M.; Baumgart, E.; Schad, A.; Vanhorebeek,
- I.; Brouwers, A.; Declercq, P.E.; Fahimi, D.; Evrard, P.; Schoonjans, L.; Collen, D.; Carmeliet, P.; Mannaerts, G.; Van Veldhoven, P.; Baes, M. *J. Neurosci.* **2003**, *23*(*30*), 9732-9741.
- 14. Boche, D.; Cunningham, C.; Gualdie, J.; Perry, V.H. *J. Cereb. Blood Flow Metab.* **2003**, *23(10)*, 1174-1182.
- 15. Bailey, C.D.C.; Brien, J.F.; Reynolds, J.N. *Neurotoxicology and Teratology* **2004**, 26(1), 59-63.
- 16. Soto, C.Y.; Andreu, N.; Gibert, I.; Luquin, M. J. Clin. Microbiol. **2002**, 40(8), 3021-3024.
- 17. Tsuji, T.; Sakata, T.; Ikeuchi, Y.; Oguni, S. E.P. 1004880 A2, **2000**.
- 18. Gonçalves, M.S.T.; Maia, H.L.S. Tetrahedron Lett. 2001, 42, 7775-7777.
- 19. Gonçalves, M.S.T.; Maia, H.L.S. Org. Biomol. Chem. 2003, 1, 1480-1485.
- 20. Fraga, S.M.B.; Gonçalves, M.S.T.; Moura, J.C.V.P.; Rani, K., *Eur. J. Org. Chem.* **2004**, 1750-1760.
- 21. Typical procedure for the syntheses of **1a-f** (described for **1f**): To a cold solution (ice bath) of 4-methyl-5-*N*-ethylamino-2-nitrosophenol hydrochloride (144 mg; 8.23×10^{-4} mol) in ethanol (6 mL), ethyl-3-*N*-anthranylaminopropanoate (200 mg; 8.23×10^{-4} mol) and concentrated hydrochloride acid (5.0×10^{-2} mL) were added. The mixture was refluxed for 6 hours and 30 minutes and monitored by TLC (silica: chloroform-methanol, 5.9:0.1). The solvent was removed under reduced pressure and the crude mixture was purified by dry chromatography (silica: chloroform and chloroform: methanol, 5.8:0.2). Compound **1f** was obtained as a blue solid (297 mg; 90%). Mp 195.2-197.0°C. R_f 0.48 (silica: chloroform-methanol, 6:1). UV-vis (EtOH):

 λ_{max} 630 (29798) nm. FTIR (KBr, 1%): v_{max} 3216, 2953, 1731, 1644, 1592, 1564, 1520, 1504, 1449, 1318, 1261, 1186, 1163, 1137, 1015, 801 cm⁻¹. ¹H NMR (CD₃OD, 300 MHz) δ 1.34 (6H, t J 7.2 Hz, OCH₂CH₃ and NHCH₂CH₃), 2.13 (3H, s, CH₃), 2.91 (1H, t J 6.6 Hz, NHCH₂CH₂), 3.30 - 3.40 (3H, m, NHCH₂CH₃) and NH), 3.78 (2H, t J 6.6 Hz, NHCH₂CH₂), 4.26 (1H, q J 7.2 Hz, OCH₂CH₃), 6.35 (1H, s, 8-H), 6.50 (1H, s, 6-H), 7.10 (1H, s, 11-H), 7.52 - 7.70 (2H, m, 2-H and 3-H), 8.05 (1H, d J 8.1 Hz, 1-H), 8.31 (1H, d J 7.2 Hz, 4-H) ppm. ¹³C NMR (CD₃OD, 75 MHz): δ 14.2 (NHCH₂CH₃), 14.6 (OCH₂CH₃), 17.8 (CH₃), 34.0 (NHCH₂CH₂), 39.8 (NHCH₂CH₃), 41.7 (NHCH₂CH₂), 62.1 (OCH₂CH₃), 93.9 (6-C), 94.4 (8-C), 123.7 (1-C), 124.6 (2xAr-C), 124.9 (4-C), 128.3 (10-C), 130.4 (3-C), 131.4 (Ar-C), 131.6 (2-C), 132.3 (11-C), 133.7 (Ar-C), 148.4 (Ar-C), 151.5 (Ar-C), 156.1 (9-C), 157.8 (5-C), 172.9 (CO₂CH₂CH₃); The assignments were supported by HMBC and HMQC techniques. Anal. calcd for C₂₄H₂₆N₃O₃.3.5HCl: C, 54.17; H, 5.59; N, 7.89. Found: C, 53.78; H, 5.44; N, 7.70.

22. Typical procedure for the synthesis of **3b**: To a solution of 1-naphthylamine (2 g; 14.0 mmol) in ethanol (5 mL), 3-ethyl-3-bromopropionate (1.88 mL, 14.7 mmol) was added and the resulting mixture was refluxed for 11 hours and monitored by TLC (silica: chloroform). The solvent was removed under reduced pressure and the crude mixture was purified by dry chromatography (silica: chloroform). Compound 3b was obtained as a colourless oil (45%, 1.51 g). R_f 0.76 (silica: chloroform-methanol, 5.9: 0.1). FTIR (neat): v_{max} 3434, 3052, 2981, 2937, 2905, 2871, 1727, 1625, 1583, 1530, 1483, 1444, 1410, 1374, 1347, 1315, 1284, 1252, 1214, 1188, 1120, 1094, 1049 cm⁻¹ ¹. ¹H NMR (CD₃Cl₃, 300 MHz) δ1.31 (3H, t J 7.2 Hz, OCH₂CH₃), 2.78 (2H, t J 6.3 Hz, NCH₂CH₂), 3.64 (2H, t J 6.3 Hz, NCH₂CH₂), 4.19 (2H, q J 7.2 Hz, OCH₂CH₃), 4.91 (1H, br s, NH), 6.66 (1H, d J 7.5 Hz, 4-H), 7.29 (1H, d J 8.4 Hz, 2-H), 7.39 (1H, t J 7.5 Hz, 3-H), 7.42-7.52 (2H, m, 6-H and 7-H), 7.80-7.89 (2H, m, 8-H and 5-H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ 14.1 (OCH₂CH₃), 33.5 (NCH₂CH₂), 39.6 (NCH₂CH₂), 60.6 (OCH₂CH₃), 104.4 (4-C), 117.7 (2-C), 119.9 (5-C), 123.6 (4a-C), 124.7 (7-C), 125.7 (6-C), 126.4 (3-C), 128.5 (8-C), 134.3 (8a-C), 142.8 (1-C), 172.5 (CO₂CH₂CH₃); The assignments were supported by HMBC and HMQC techniques. HRMS: m/z (FAB): calcd. for $C_{15}H_{17}NO_2[M^+]$ 243.1255; found 243.1259.

CAPTIONS

- Table 1 Yields and visible data for compounds 1a-f.
- Table 2 Fluorescence data for compounds 1a-f.
- Figure 1- Absorbance spectra of compounds 1b-d and 1f measured in ethanol.
- Figure 2- Fluorescence spectra of compounds 1b-d and 1f measured in ethanol.

TABLES

Table 1

Compound	Yield/%	Vis ^a	Vis ^b	
		$\lambda_{max}[nm]$ (ϵ)	$\lambda_{max}[nm]$ (ϵ)	
1a	77	500 (24667)	640 (20942)	
1 b	22	625 (12075)	635 (14063)	
1c	64	638 (43030)	650 (34109)	
1 d	7	635 (22458)	645 (24219)	
1e	99	633 (22615)	640 (18391)	
1f	90	630 (29798)	625 (57895)	

^aSpectra were measured in absolute ethanol. ^bSpectra were measured in water (pH 7.4).

Table 2

Compd	Fluore	scence		Fluorescence ^b				Stokes'
	λ_{exc}	λ_{em}		Stokes'	λ_{exc}	λ_{em}		shift [nm]
	[nm]	[nm]	ϕ	shift [nm]	[nm]	[nm]	ϕ	
1a	497	612	0.051	115	600	682	0.10	82
1b	588	669	0.110	81	600	682	0.094	82
1c	510	618	0.049	108	600	685	0.065	85
1d	588	666	0.225	78	600	684	0.080	84
1e	498	620	0.053	122	590	678	0.080	88
1f	590	643	0.50	53	600	654	0.32	54

^aSpectra were measured in absolute ethanol. ^bSpectra were measured in water (pH 7.4).

SCHEMES

Scheme 1

FIGURES

Figure 1

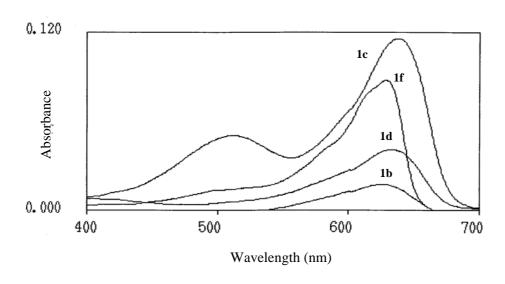
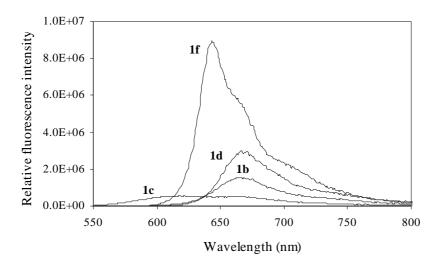



Figure 2

