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During the last decades, science and food technology have contributed at an accelerated rate 

to the introduction of new products to satisfy nutritional, socio-economic and quality 

requirements. With the emergence of modern molecular genetics, the industrial importance of 

Saccharomyces cerevisiae, continuously extended. The demand for suitable genetically 

modified (GM) S. cerevisiae strains for the biofuel, bakery and beverage industries or for the 

production of biotechnological products (e.g. enzymes, pharmaceutical products) will be 

continuously growing in the future.  

Numerous specialized S. cerevisiae wine strains were obtained in the last years, possessing a 

wide range of optimized or novel oenological properties, capable to satisfy the demanding 

nature of modern winemaking practice. Unlocking the transcriptome, proteome and 

metabolome complexities contributes decisively to the knowledge about the genetic make-up 

of commercial yeast strains and will influence wine strain improvement by genetic 

engineering. 

The most relevant advances regarding the importance and implications of the use of 

genetically modified yeast strains in the wine industry are discussed in this Mini-Review, 

considering a variety of aspects such as the strategies used for the construction of the strains 

with respect to current legislation requirements, environmental risk evaluations concerning 

the deliberate release of genetically modified yeast strains, methods for the detection of 

recombinant DNA and protein that are currently under evaluation, and the reasons for the 

critical public perception towards the application of such strains. 
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The inoculation of selected pure yeast cultures into must is an oenological practice established 

since the seventies, in order to produce wine with desirable organoleptical characteristics and 

to guarantee the homogeneity of successive vintages. Nowadays, most of the European wine 

production relies on the use of such commercial starter yeasts that were selected mainly due 

to their good fermentation performance. Extensive biogeographical surveys over years and the 

evaluation of the fermentative flora of a given viticultural region of were the point of 

departure for further strain selection and improvement programs. However, the natural 

availability of yeast strains possessing an ideal combination of oenological characteristics is 

improbable. In the years following the publication of the S. cerevisiae genome sequence 

(Goffeau et al. 1996), new genetic tools turned the construction of genetically modified wine 

yeast (GMY) strains a great challenge. Currently, numerous research laboratories worldwide 

have obtained engineered strains, capable of improving for example processing efficiency, 

fermentation performance and wine’s sensory quality. Their performance under oenological 

conditions has also been extensively evaluated. A future introduction of genetically modified 

wine yeast (GMY) also requires, in agreement with current legislation, a detailed safety and 

environmental impact evaluation and strains obtained by self-cloning, based on the use of 

host-derived genetic material, are most likely to receive approval. However, the critical 

attitudes of consumers towards the use of genetically modified yeasts for wine production has 

not changed significantly during the last 10 years, and are the most relevant reason for the 

absence of recombinant strains in the wine industry.  

The present paper makes a global analysis of recent advances regarding the importance and 

implications of the use of genetically modified yeast strains in the wine industry, considering 

a variety of aspects such as the strategies used for the construction of the strains with respect 
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to current legislation requirements, environmental risk evaluations concerning the deliberate 

release of GMY strains, most relevant and sensitive methods for the detection of recombinant 

DNA and protein, and the reasons for the critical attitudes of consumers towards the 

application of such strains. 

 

Selection of commercial wine yeast strains  

Recent findings showed that residues inside one of the earliest known wine jars from Egypt 

contained ribosomal DNA from S. cerevisiae, indicating that this yeast was responsible for 

wine fermentation by at least 3150 B.C. (Cavalieri et al. 2003). Selection for millennia of 

wine-making may have created unique and interesting oenological traits, but they are not 

widely distributed, nor can be found in combination in one strain. Clonal selection of wild 

Saccharomyces strains isolated from natural environments belonging to the viticultural areas 

of interest is always the starting point for a wine yeast selection program. Selected yeast 

starters are nowadays widely used since they possess very good fermentative and oenological 

capabilities, contributing to both standardization of fermentation process and wine quality. 

Currently, about 150 different wine yeast strains, mainly S. cerevisiae, are commercially 

available. Considering the current trend towards the production of high quality wines with 

distinctive and very characteristic properties, the wine-makers demand “special yeasts for 

special traits” still remains to be satisfied (Mannazzu et al. 2002, Pretorius 2000, Romano et 

al. 2003b).  

Definition of the appropriate selection strategy should always depend on the traits that a wine 

strain is supposed to harbor and the number of strains to be screened. The numerous 

compounds synthesized can vary greatly between S. cerevisiae strains, in particular within 
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different yeast species. As summarized in Table 1, numerous oenological characteristics were 

proposed to be evaluated. Technologically relevant data can be obtained by monitoring the 

fermentation progress, and quantitative traits are determined by chemical analysis at the end 

of fermentation.  

Finding wine yeast strains possessing an ideal combination of oenological characteristics is 

highly improbable and therefore strain selection was extended to non-Saccharomyces yeasts, 

e.g. Candida, Kloeckera, Debaryomyces, Hanseniaspora, Hansenula, Pichia, Metschnikowia, 

Schizosaccharomyces, Saccharomycodes or Rhodotorula. Although non-Saccharomyces 

species lack competitiveness in oenological conditions mainly because they are not 

vigorously fermenting and display a lower stress resistance when compared to S. cerevisiae, 

the use of mixed starter cultures or sequential fermentation (e.g. C. cantarellii/S. cerevisiae) 

for directing fermentations towards enhanced glycerol and reduced acetic acid production has 

been successfully used (Toro and Vazquez 2002). The yeasts Torulaspora delbrueckii and 

Candida stellata are considered to be positive contributors to the overall organoleptic wine 

characteristics, while apiculate yeasts such as Kloeckera apiculata have a negative influence 

on wine quality due to pronounced acetic acid and ethyl acetate formation associated with low 

ethanol production (Ciani and Maccarelli 1998). 

Countless references report the beneficial and detrimental influence of non-Saccharomyces 

yeasts on the volatile composition of musts from varying grape varieties (Ciani and 

Maccarelli 1998, Clemente-Jimenez et al. 2004, Granchi et al. 2002, Mingorance-Cazorla et 

al. 2003, Plata et al. 2003, Romano et al. 2003c), and considerable differences regarding these 

compounds were also found among commercial or autochthonous S. cerevisiae strains (Patel 

and Shibamoto 2003, Romano et al. 2003a, Steger and Lambrechts 2000). 
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Non-Saccharomyces strains produce and secrete several enzymes e.g. pectinase (increases 

juice extraction, improves clarification and facilitates wine filtration), ß-glycosidases 

(hydrolyse non-volatile glycosidic aromatic precursors from the grape) proteases (improve 

clarification process), esterases (contribute to aroma compound formation) or lipase (degrade 

lipids from grape or yeast autolytic reactions), interacting with grape-derived precursor 

compounds, contributing thus to reveal the varietal aroma and improve the winemaking 

process (Esteve-Zarzoso et al. 1998, Fernandez et al. 2000, Fleet and Heard 1993, Otero et al. 

2003). S. cerevisiae is not a significant producer of enzymes with relevance in wine 

production, being mainly ß-glycosidase production reported for this species (Restuccia et al. 

2002, Rodriguez et al. 2004). Non-Saccharomyces yeasts are commercially available, for 

example immobilized Schizosaccharomyces pombe cells (ProMalic, commercialized by 

PROENOL) for the deacidification of must by malic acid consumption (Silva et al. 2003). 
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Genetic engineering of S. cerevisiae wine yeast strains  

Due to the demanding nature of modern winemaking practice, there is a continuously growing 

quest for specialized S. cerevisiae strains possessing a wide range of optimized or novel 

oenological properties. Genetic improvement of industrial strains by classical genetics (e.g. 

mutagenesis or protoplast fusion) was followed in the last 20 years by the use of recombinant 

DNA technologies. The publication of the complete S. cerevisiae genome (Goffeau et al. 

1996), together with a growing arsenal of recombinant DNA technologies led to major 

advances in the fields of molecular genetics, physiology and biotechnology, and made the 

construction of specialized commercial strains possible, mainly by heterologous gene 

expression or by altered gene dosage (overexpression or deletion).  
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The most important targets for strain improvement relate to the improved production 

technology and quality, such as enhancement of fermentation performance, higher ethanol 

tolerance, better sugar utilization and nitrogen assimilation, enhanced organoleptical 

properties through altered sensorial characteristics as summarized by several reviewers 

(Blondin and Dequin 1998, Dequin 2001, Dequin et al. 2003, Pretorius 2000, Pretorius and 

Bauer 2002, Pretorius et al. 2003) and shown in table 2. 

In general, all genetic material used for the construction of microorganisms used for food 

fermentation should be derived from the host species (self-cloning) or GRAS (generally 

regarded as safe) organisms with a history of safe food use, while the use of DNA sequences 

from species taxonomically closely related to pathogenic species should be avoided. 

Heterologous gene expression was used in most cases, being the genes of interest isolated for 

example from Lactobacillus casei (LDH), Lactobacillus plantarum (pdc), Bacillus subtilis 

(padc), Pediococcus acidilactici (pedA), Schizosaccharomyces pombe (mae1 and mae2), 

hybrid poplar (4CL216), grapevine (vst1), Aspergillus sp. (egl1, abfB, xlnA, rhaA) or 

Fusarium solani (pelA), being others, such as ATF1, GPD1 or PGU1 derived from S. 

cerevisiae (Table 2). 

In most cases strong promoters and terminators were used, derived from glycolytic enzymes 

that are constitutively expressed under fermentative conditions (ADH1, ADH2, PGK) but also 

from the actin gene (ACT). Industrial yeasts usually do not have auxotrophic markers (LEU2, 

URA2), therefore the yeast-derived cycloheximide resistance gene CYH2 or heterologous 

drug-resistance markers were used such as ble (Tn5) or G418 (Tn903), conferring resistance 

to phleomycine and geneticine, respectively. Engineering industrial strains with multi-copy 

shuttle vectors bearing Escherichia coli ampiciline resistance and yeast drug-resistance 

markers is not recommended, since the possibility of DNA transfer to gut microflora is 
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considered remote but existent. Nevertheless, for wine yeast strains this should not be relevant 

since cells are removed at the end of fermentation. Plasmid-encoded genes should be 

preferably integrated, since the elements inserted have to be stable in the newly constructed 

organism, but such approaches were used in few cases (Lilly et al. 2000, Malherbe et al. 2003, 

Volschenk et al. 2001). One-step gene disruption with auxotrophic markers as performed for 

the GPD gene (Michnick et al. 1997) results in a self-cloning strain, as previously defined 

(ILSI 1999), a much less problematic approach in terms of acceptability evaluation. Secretion 

of extracellular proteins, for example the pedA - encoding pediocin or gox-encoding glucose 

oxidase, was usually directed by the mating pheromone α factor’s secretion signal (MFa1
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(Malherbe et al. 2003, Schoeman et al. 1999). 

The introduced modifications should not change essential characteristics of the host in the 

fermentation process. For most genetic modifications it could be shown that apart from the 

introduced metabolic change, no significant differences were found between wines produced 

with commercial strain and the corresponding modified strain regarding their oenological 

characteristics. Contrarily, enhanced glycerol production due to modulated GPD expression 

led to a decreased ethanol yield (1%, v/v) and by-product accumulation such as pyruvate, 

acetate, acetoin and 2,3-butanediol in consequence of carbon flux redirection (Michnick et al. 

1997). Deletion of ALD6 led to reduced acetic acid production (-40-70%) and re-routed the 

carbon flux towards glycerol, succinate and butanediol (Remize et al. 2000). It was also 

shown that grape must acidification due to enhanced LDH expression and consequent L(+) 

lactic acid production depends on the S. cerevisiae genetic background and also on the grape 

variety used for must preparation (Dequin et al. 1999). Wines containing 1.8-2.0% less 

alcohol were obtained from glucose-oxidase overexpressing strains, since this enzyme 

produced also D-glucono-δ-lactone and gluconic acid from glucose (Malherbe et al. 2003).  
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Recently, a sake yeast strain was approved as self-cloning yeast by the Japanese Government 

and does not need to be treated as GMY (Akada 2002). A two-step gene replacement was 

used for the construction of a strain free of bacterial and drug-resistant marker sequences. A 

point mutation (Gly1250Ser) in the yeast fatty acid synthetase FAS2 confers cerulenin 

resistance and is associated with a higher production of the apple-like flavor component ethyl 

caproate in Japanese sake. A novel counter-selection marker was used, that consisted of a 

galactose-inducible overexpression promoter and the GIN11 growth inhibitory sequence 

(GALp-GIN11). Cells that retain the marker do not grow on galactose because of the growth 

inhibitory effect mediated by GIN11 overexpression. A plasmid containing the mutated FAS2 

gene, a drug resistance marker and the counter-selectable marker was integrated into the wild-

type FAS2 locus, and the loss of plasmid sequences from the integrants was done by growth 

on galactose, which is permissive for the loss of GALp-GIN11. Counter-selected strains 

contained either the wild type or the mutated FAS2 allele, but not the plasmid sequences, and 

the resulting difference between the described mutant and the corresponding wild type strain 

is a single base (Akada et al. 1999, Aritomi et al. 2004). The mentioned type of counter-

selections can also be used for multiple chromosomal gene introductions, as required for 

engineering of metabolic pathways. Other strategies, for example site-directed mutagenesis of 

the sulfite-reductase MET10 gene were used to develop wine yeast with lowered ability to 

produce hydrogen sufide (Sutherland et al. 2003). The allele LEU4-1 confers resistance to 

5,5,5-trifluoro-DL-leucine and the corresponding strains produce twice the amount of 

isoamyl-alcohol in laboratory-scale fermentations as the respective parental strains (Bendoni 

et al. 1999).  

S. cerevisiae was the first eukaryotic genome sequenced, and will probably become the first 

organism whose transcriptome, proteome and metabolome complexities will be unlocked. 

9 



208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

Since many physiological traits are consequences of complicated multigene regulation, 

understanding the way genes are expressed during wine fermentation will contribute to the 

knowledge about the genetic make-up of commercial yeast strains and influence wine strain 

improvement by genetic engineering. The same approaches are the most appropriate to show 

that the introduced changes are not associated with adverse or unexpected side-effects such as 

the production of toxic substances.  

Specific strains may serve in future as a natural gene pool for yeast improvement programs, 

since linking observed phenotypes with global-expression analysis provides further 

information that might be useful for the construction of self-cloning yeast strains. Genes could 

be uncoupled from their regulatory controls and induced only under fermentation-specific 

conditions. Such S. cerevisiae strains could be for example strains possessing ß-glycosidase 

activity (Rodriguez et al. 2004) or the capability to reduce copper content in the must by 

excessive intracellular accumulation (Brandolini et al. 2002), strains with absent sulphite 

reductase activity (Mendes-Ferreira et al. 2002, Spiropoulos et al. 2000), or strains producing 

low amounts of acetic acid (Romano et al. 2003a).  

 

Regulations concerning genetically modified organisms for food use 

In May 1997 the European Regulation EC258/97 on novel foods and novel food ingredients 

(EC 1997) came into force and includes within its scope foods and food ingredients 

containing or consisting of genetically modified organisms (GMO) or produced by genetically 

modified organisms, whereas these are not present in the food. The safety of a food derived 

from a genetically modified organism had to be evaluated by comparing it with the most 

similar food which has a history of safe use. This means that, if a food derived from a GMO is 

substantially equivalent, it is “as safe as” the corresponding conventional food item and 
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should be treated as such, whereas identified differences are the subject for further 

toxicological, analytical and nutritional investigations. Detailed knowledge of both the overall 

characteristics and genetic background of the organisms, the source of the transferred gene(s) 

and the function of the modified genes is essential for this evaluation. Considering that the 

final outcome of a genetic modification is based on processes that are controlled by numerous 

different genes, whereas the function of many genes is still poorly understood, powerful 

methods for the identification and characterization of unintended effects on a genomic, 

proteomic and metabolomic scale are currently evaluated for their routine use (Corpillo et al. 

2004, Kuiper and Kleter 2003, Kuiper et al. 2002). 

The Novel Food Regulation has been recently amended by three new regulations concerning 

genetically modified organisms including derived foods and feeds: EC1829/2003 (EC 2003a), 

1830/2003 (EC 2003b) and 65/2004 (EC 2004), which define the procedures for 

authorization, labeling and traceability. Regulation 1829/2003 describes the information to be 

provided by an applicant seeking authorization to place a product on the market. The 

applicant has to show that the referred food must not (i) have adverse effects on human and 

animal health and the environment, (ii) mislead the consumer and (iii) differ from the food 

which it is intended to replace to such an extent that its normal consumption would be 

nutritionally disadvantageous for the consumer. Such products must undergo a safety 

assessment before being placed on the market, including a technical dossier with detailed 

information concerning results obtained from research and developmental releases in order to 

evaluate the GMOs impact on human health and environment. This is defined in Annex III of 

Directive 2001/18/EC (EC 2001) on the deliberate release into the environment of genetically 

modified organisms for placing on the market or for any other purpose, that repealed the 

former Council Directive 90/220/EC (EC 1990). Since placing on the market includes 
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deliberate release into the environment, an environmental risk assessment in accordance with 

Annex II of Directive 2001/18/EC has to be carried out (EC 2002). The product then goes 

through the approval procedure between the European Food Safety Agency (EFSA) in 

Brussels, the European Commission and member states. Labeling is mandatory, even if the 

recombinant DNA or the corresponding protein cannot be detected in the final product. Foods 

containing GMOs have to be labeled “genetically modified” or “produced from genetically 

modified (name of the ingredient)”. Labeling is not required for foods containing traces of 

GMOs, which are adventitious and technically unavoidable, in a proportion lower than the 

threshold of 0.9% of the food ingredients (relation between recombinant and non-recombinant 

ingredient). Whereas the Novel Food Regulation was based on the principle of evidence, in 

the sense of mandatory labeling for food products containing more than 1% GMOs, 

Regulation EC1829/2003 is supported by the principle of application, making the declaration 

of GMO use during the production of food compulsory, but declaration does not rely on the 

detection of recombinant DNA or protein in the final product. According to Regulations Nº 

1830/2003 (EC 2003b) and 65/2004 (EC 2004), GMOs and products derived from GMOs 

must be traceable during all stages of their placing on the market through the production and 

distribution chain, in order to facilitate withdrawal of products when necessary and to 

facilitate the implementation of risk management measures.  

USA regulations do not require mandatory labeling and segregation of genetically modified 

products. No special labeling is required for “bioengineered foods” the term used by FDA for 

those derived by GM technology, “as they are not considered to differ from other foods in any 

meaningful or uniform way or, as a class, to present any different or greater safety concern 

than foods developed by traditional plant breeding” (Federal Register of May 29, 1992 57 FR 

22984). Evaluation and approval before marketing is only required when the introduced gene 
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encodes a product that had never been a component of any other food, such as a new 

sweetening agent for example. The labeling requirements that apply to foods in general 

therefore also apply to foods using biotechnology. A label must “reveal all material facts” 

about a food, for example if a bioengineered food is significantly different from its traditional 

counterpart, has a significantly different nutritional property or if a potential allergen is 

present.  

Wines produced by GMY should be, in general, considered as substantially equivalent to 

“traditional” wines. Compounds like glycerol, acetate ester, malic or lactic acid are natural 

wine substances, and their content would be merely adjusted or optimized in the sense of 

enhanced organoleptical characteristics. The expected concentration is very likely to lie 

within the range that can be found in different wine styles. Besides, facilitated and more 

economic technological process such as the use of a S. cerevisiae strain expressing pectolytic 

enzymes will have no impact on the composition or properties of the final product since the 

addition of commercial enzymes is a habitual oenological practice. Anyway, a careful 

evaluation based on a case-by-case study is indispensable.  

 

Assessing environmental risks associated with the use of genetically modified yeasts  

The future use of genetically modified yeasts will be dependent on the ability to assess 

potential or theoretical risks associated with their introduction into natural ecosystems.  

Tracking the spreading of industrial yeast strains in vineyards close to the wineries where 

these strains were used during the last 5-10 years was used as an experimental model to assess 

the fate of genetically modified yeast strains in natural environments. These large-scale 

studies, carried out over a 3-years period in vineyards located in North Portugal and South 
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France, revealed that dissemination of commercial yeast in the vineyard is limited to short 

distances and periods of times and is largely favoured by the presence of water runoff. In 

samples taken at distances from wineries higher than 100 m, less than 2% of the fermentative 

microflora had a genetic profile identical to that of commercial yeast. In samples taken at very 

close proximity to the winery and to water rills, the proportion of commercial yeasts increased 

to 10-43%. The vast majority (94%) of commercial yeasts were found at a distance of 

between 10 and 200 m from the winery. Commercial strains, despite their intensive annual 

utilization, do not seem to implant in vineyards, and do not predominate over the indigenous 

flora, being their presence characterized by natural fluctuations of periodical 

appearance/dissappearance as autochthonous strains (Valero, personal communication) 

The behavior of genetically modified yeast strains (GMY) within microbial populations of a 

confined wine cellar and greenhouse vineyard has also been evaluated. From the commercial 

strain VIN13 different genetically modified strains were constructed, containing heterologous 

genes expressing α-amylase (LKA1), endo-β-1,4-glucanase (end1), xylanase (XYN4) or 

pectate lyase (peh1) under the control of strong promoters and terminators and using the 

kanMX or SMR-410 resistance markers. After initial characterization of the autochthonous 

yeast flora of a newly established greenhouse vineyard, the vines of four blocks (each 

consisting of 20 vines) were sprayed with yeast suspensions containing 2.5 x 106 CFU/ml 

according to a previously defined scheme. Despite of the high initial cellular concentrations, 

only few S. cerevisiae strains were isolated during the weekly monitoring of yeast populations 

on grapes, leaves, stems and soil. Results showed that (i) no significant difference between 

the occurrence of the modified strains compared to the parental commercial strains was 

evident, even for GM strains that were supposed to have a selective advantage over the 

parental strains (secreting glucanases and pectinases) showing that the mentioned 
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modifications did not confer any fitness advantage (ii) the overall yeast populations on the 

sprayed blocks were very similar to the untreated control vines, leading to the conclusion that 

neither commercial strains nor GMY affect the ecological balance of vineyard-associated 

flora in a confined system, (iii) no significant differences among the strains were detected 

concerning their fermentation performance during spontaneous micro-vinifications (Bauer et 

al. 2003).  

Horizontal DNA transfer can occur between yeast species belonging to the sensu stricto 

complex, generating viable hybrids with both parental chromosomal sets (Marinoni et al. 

1999). Natural transformation of baker’s yeast with plasmid DNA was observed under non-

artificial starvation conditions when non-growing cells metabolize sugars without additional 

nutrients. This was proposed to be an evolutionary mechanism contributing to genetic 

diversity, being a plausible scenario in natural environments (Nevoigt et al. 2000). At present, 

studies are underway to evaluate the likelihood of both horizontal and vertical gene transfer 

among modified commercial wine yeast strains under wine production conditions (Bauer et 

al. 2003).  

Another issue, equally important for the safety assessment of GMY use in wine production, is 

the evaluation of the potential release and stability of recombinant DNA and the 

corresponding protein(s) during alcoholic fermentation and wine aging on yeast lees. 

Autolysis of yeast cells is characterized by a loss of membrane permeability, hydrolysis of 

cellular macromolecules such as DNA and proteins, followed by leakage of the breakdown 

products in the extracellular environment and occurs after yeast cells have completed their life 

cycle and entered the death phase. Autolysis experiments were performed in laboratory 

culture media and showed that incubation at 40ºC during 10-14 days at pH 4.0-7.0 led to 
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degradation of 55% of total DNA, associated with leakage of mainly deoxyriboncleotides and 

a fewer amount of polynucleotides into the extracellular environment (Zhao and Fleet 2003).  

 

Methods for the detection of genetically modified DNA or protein  

In “experimental” wines produced by genetically modified yeast (GMY), no data are so far 

available about the occurrence and concentration of recombinant cells, DNA and protein. It 

can be estimated that the number of recombinant cells per bottle would be rather low (1-10 

cells), since they are removed by filtration or inactivated by thermal treatment. This implies 

the use of highly sensitive techniques for tracing recombinant DNA during the wine 

production chain and in final products. Taking into account the recent European Regulations 

Nº 1829/2003 and 1830/2003, it is clear that reliable and accurate analytical methods are 

necessary for food  containing GMO or produced from GMO. During the past years, both 

protein- and DNA-based methods have been developed and applied mostly for detection of 

transgenic soy and maize and their derivatives. 

For protein-based detection, specific monoclonal and polyclonal antibodies have been 

developed mainly for immunochemical detection, Western blot analysis and ELISA (enzyme-

linked immunosorbent assays). The immunochromatographic assays, also known as lateral 

flow strip tests, Reveal®CP4 and Reveal®Cry9C detect EPSPS (5-enol-pyruvyl-shikimate-3-

phosphate synthase) derived from Agrobacterium sp. strain CP4 which confers resistance to 

the herbicide glyphosate in soybeans and corn, and Bacillus thuringiensis Cry proteins that 

confers protection against insects in corn plants, seeds and grains, respectively. Both kits are 

commercialized by Neogen (www.neogen.com) and detect GMO presence in 5-20 minutes at 

a low price, with high sensitivity (< 0.125% mass fraction of GMO) being a reliable field test 
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for controlling the distribution of biotechnology-derived products (Ahmed 2002, Auer 2003, 

Brett et al. 1999, Rogan et al. 1999, Stave 1999, van Duijn et al. 1999, van Duijn et al. 2002).  

PCR-based methods are also applied for detection of GMOs by amplification of genetic 

elements present in most currently available GMOs in Europe. Detection limits range between 

20 pg and 10 ng target DNA, which can correspond to 0.0001 – 1% mass fraction of GMO. 

(Ahmed 2002, Auer 2003, ILSI 1998, ILSI 2001, Meyer 1999, van Duijn et al. 1999, van 

Duijn et al. 2002). Quantitative-competitive PCR (QC-PCR) relies on parallel amplification 

of the transgene and of an endogenous reference gene that provides a control for both the lack 

of inhibition and amplificability of the target DNA in the sample. Quantification is possible 

by comparing PCR product concentrations from amplifications with varying proportions of 

target DNA:standard DNA. This approach was successfully tested in collaborative studies 

involving 12 European control laboratories, and allowed the detection of 0.1% GMO DNA 

(Hübner et al. 1999, Lüthy 1999). A hybrid method consisting of multiplex quantitative PCR 

coupled to subsequent DNA array technology (MQDA-PCR) was able to test a variety of food 

and feed products for seven different maize constructs simultaneously at levels as low as 

0.1% GM (Rudi et al. 2003). Real-time PCR technologies are highly sensitive and suitable for 

precise DNA quantification at low thresholds, measuring the production of DNA amplicons 

during the log-linear phase of PCR amplification. (Ronning et al. 2003, Vaitilingom et al. 

1999). PCR products quantitation by means of enzyme linked immunoabsorbent assays (PCR-

ELISA) were recently described as a highly sensitive and cheap alternative to real-time PCR 

(Liu et al. 2004, Petit et al. 2003).  

While raw foods can readily be identified as GMOs, detection is more difficult when they are 

processed: complex processed foodstuffs contain degraded DNA and substances that interfere 

even with the PCR reaction. Inter-laboratory assessment of procedures was essential and gave 
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rise to international standards development (e.g. DIN, ISO, EN) concerning sampling (DIN 

2003), DNA extraction (DIN 2002b), DNA-based GMO detection (DIN 2002a) and protein-

based GMO detection (DIN 2002c).  

Technological evolution in GMO design, modifications of government regulations and 

adoption of risk-assessment guidelines will continue to drive the development of analytical 

techniques that will be in the future applied to genetically modified organisms. New profiling 

methods using transcriptomics, proteomics and metabolomics were proposed as the most 

adequate non-targeted approaches to detect secondary effects (Kuiper and Kleter 2003) and 

proteome analysis demonstrated “substantial equivalence” between a genetically modified 

virus-resistant tomato and the unmodified hybrids (Corpillo et al. 2004).  

 

Consumer’s perceptions and attitudes  

In 1988, Gist-Brocade obtained a baker’s strain where the genes coding for maltose permease 

and maltase were substituted with a more efficient set of genes from another strain. Since no 

non-Saccharomyces DNA was present, the UK authorities granted consent in 1989. A few 

years later, a recombinant brewer’s strain, obtained in 1993 by Brewing Research 

International was equally approved. This S. cerevisiae strain contained an amylase gene from 

Saccharomyces diastaticus together with a gene for copper resistance. Because of the 

unwillingness of the industries to face a negative consumer reaction none of the strains has 

gone into commercial production (Moseley 1999). For the same reasons, no application for 

the industrial use of genetically modified wine strains has been submitted in the last few 

years, although many strains were developed, as previously shown in Table 2, in consequence 

of the increased demand for diversity and innovation within the fermented beverage industry.  
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One of the most extensive (in terms of the number of people surveyed) public opinion 

analysis conducted in Europe is the Eurobarometer survey, that has been monitoring changes 

in attitude towards biotechnology in different European member states since the early 1990s. 

The last survey conducted in 2001 (Anonymous 2001) questioning 16 000 Europeans showed 

a generalized positive view of science and technology, but scientific advance is not regarded 

as an universal panacea for all problems. Almost all (95%) respondents indicated the 

consumer’s lack of choice about consuming genetically modified food (GMF) as main reason 

for their negative attitude and 60% expressed the view that GMOs had the potential to have 

negative effects on the environment. In view of the fact that many scientific concepts are 

unknown to the public, the consumer’s risk perception and attitudes to risk differ significantly 

from those defended by scientific risk experts, turning discussions about transgenic 

technologies complex, increasing at the same time distrust and negativity towards 

biotechnology in general, and GMO in particular. The fears by the critics of GM technology 

include alterations in nutritional quality of foods, potential toxicity, possible antibiotic 

resistance, potential allergenicity and carcinogenicity from consuming GM foods, 

environmental pollution, unintentional gene transfer, possible creation of new viruses and 

toxins, religious, cultural and ethical concerns, as well as fear from the unknown (Uzogara 

2000).  

As shown in Figure 1, consumer’s concern about genetic modification depended on many 

factors, being minor modifications to food products associated with minor concern, whereas 

the need for them and the advantages they offer were also rated low. For GM applications in 

food, benefits were perceived to be marginal, abstract or only on the producer’s side. This was 

verified especially for genetically modified beer, followed by tomatoes, strawberries and 

salmon. Being beer a traditional lifestyle and convenience beverage like wine, it can be 
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estimated that wine produced by gene technology use would share a comparable consumer 

opinion. Any modification involving humans and animals was associated with high levels of 

ethical concern, whereas medical applications such as pharmaceuticals and applications 

relevant to hereditary disease were perceived to be the most important and necessary (Frewer 

2003, Frewer et al. 1997).  

In conclusion, the recent availability of clear legal regulations defining requirements for 

construction and safety evaluation of genetically modified organisms as well as the labeling 

of products obtained by their use can be considered as a crucial step to assist the consumer in 

making an informed choice, and the next future will show whether this strategy was 

appropriate to contribute towards a less negative consumer attitude. The construction of 

genetically modified wine yeast strains should be obtained by strategies based on self-cloning. 

In this context, the exploration of specific strains in winemaking environments, harboring 

desirable oenological traits, may serve in future as a natural gene pool for the construction of 

such strains, conferring the exploration of strain diversity a new dimension. 
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Table 1  

Oenological characteristics considered in the selection of Saccharomyces cerevisiae wine 

strains (Brandolini et al. 2002, Caridi et al. 2002, Esteve-Zarzoso et al. 2000, Guerra et al. 

1999, Maifreni et al. 1999, Mannazzu et al. 2002, Martinez-Rodriguez et al. 2001, Mendes-

Ferreira et al. 2002, Perez-Coello et al. 1999, Rainieri and Pretorius 2000, Regodon et al. 

1997, Romano et al. 1998, Steger and Lambrechts 2000).  

 

Table 2 

Targets for S. cerevisiae strain improvement (adapted from (Pretorius 2000, Pretorius et al. 

2003)), indicating, whenever possible, examples of the strategies used for genetic 

modifications. 

 

Figure 1  

Public perceptions of risk versus benefit of genetically modified foods (adapted from (Frewer 

2003)). 
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Table 1 
 
 

Oenological 

characteristics 
Comment 

Fermentation vigor  Maximum amount of ethanol (%, v/v) produced at the end of the fermentation 

Desirable: good ethanol production 

Fermentation rate  Grams of CO2 produced during the first 48 hours of fermentation  

Desirable: prompt fermentation initiation 

Mode of growth in liquid medium  Dispersed or flocculent growth, sedimentation speed 

Desirable: dispersed yeast growth during, but sedimentation at the end of fermentation 

Foam production Height of foam produced during fermentation  

Undesirable: increased foam production 

Optimum fermentation temperature Thermotolerance and cryotolerance is related to oenological properties  

Optimum fermentation temperature ranges between 18 and 28ºC 
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Table 1 (cont.) 
 
Volatile acidity, acetic acid 

production  

Selected strains should not release more than 100 – 400 mg l-1 during fermentation  

Undesirable : increased volatile acidity/acetic acid production 

Malic acid degradation or 

production 

Whether degradation of production is desirable depends on the characteristics of the must. Malic acid 

degradation varies between 0-20% depending on the S. cerevisiae strain  

Glycerol production Desirable major fermentation by-product (5-8 g l-1) contributing to wine sweetness, body and fullness 

Acetaldehyde production  Desirable metabolite in sherry, dessert and port wines being an important character for selection of strains 

to be applied in wine ageing 

Esters, higher alcohols and 

volatile compounds 

Desirable metabolites, markedly influence wine flavor and depend on the presence of precursors related to 

both grape cultivar and grape maturity. Limited amounts contribute positively to global sensorial 

characteristics 

SO2 tolerance and production Antioxidant and antimicrobial agent 

Desirable: high fermentation vigor and rate in the presence of SO2 concentrations usually applied in 

winemaking; Undesirable: excessive SO2 production 
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Table 1 (cont.) 
 
H2S production  

 

Determined as the strains colony color on a bismuth containing indicator medium, e.g. BIGGY Agar  

H2S is detrimental to wine quality, considered as off-flavor with very low threshold value (50-80 µg/l) 

Stress resistance Tolerance to combined acid/osmotic stress  

Copper resistance High copper concentrations may cause stuck fermentations 

Desirable: high copper resistance and the ability to reduce the copper content  
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Table 2 
 

Construction  ReferenceImprovement    

    

Metabolism / protein(s) Gene(s) Source

P T Pla M Chr  

Endoglucanase   egl1     Trichoderma longibrachiatum ACT - 2µ CYH2 - (Pérez-González et al. 1993) 

Arabinofuranosidase abfB     Aspergillus  niger ACT - 2µ CYH2 - (Sanchez-Torres et al. 1996) 

Endoxylanase xlnA     Aspergillus nidulans ACT - 2µ CYH2 - (Ganga et al. 1999) 

Aroma-liberating 

enzymes 

Rhamnosidase rhaA     Aspergillus aculeatus GPD PGK TRP - (Manzanares et al. 2003) 

Malate permease mae1 

Malic enzyme mae2 
Schizosaccharomyces pombe PGK1 PGK1 2µ 

SMR1-

140 
+ (Volschenk et al. 2001) 

Malolactic enzyme mleS    Lactococcus lactis PGK1 PGK1 2µ URA3  (Volschenk et al. 1997) 

Acetaldehyde 

dehydrogenase 

ALD6 

(deletion)
Saccharomyces cerevisiae    kanMX4  (Remize et al. 2000) 

Acidity adjustment  

Lactate 

dehydrogenase 
LDH  Lactobacillus casei ADH1 ADH1 2µ 

G418 

(Tn903)
- (Dequin et al. 1999) 

Sensory quality  

 

 

 

Background flavor 

complexity and 

intensity 

Glycerol production 
Glycerol-3-phosphate

dehydrogenase 
GPD1 Saccharomyces cerevisiae ADH1 ADH1 2µ 

ble 

(Tn5) 
- 

(Michnick et al. 1997,  

Remize et al. 1999) 
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Table 2 (cont.) 
 

Volatile phenol 

formation 

Phenolic acid 

decarboxylase 

pdc 

padc 

Lactobacillus plantarum 

Bacillus subtilis 
PGK1 PGK1 2µ URA3  (Smit et al. 2003) 

Acetate ester production Alcohol 

acetyltransferase 
ATF1   Saccharomyces cerevisiae PGK1 PGK1 2µ LEU2 + (Lilly et al. 2000) 

 

Hydrogen sulphide 

production 
Sulphite reductase MET10      Saccharomyces cerevisiae  (Sutherland et al. 2003) 

ß-glucosidase bglN    Candida molischiana ACT ACT 2µ CYH2 - (Gonzalez-Candelas et al. 2000) 

Resveratrol synthase 4CL216 Hybrid poplar ADH2 ADH2 2µ URA3 - Resveratrol production 

Coenzyme-A ligase vst1 Grapevine ENO2 ENO2 2µ LEU2 - 
(Becker et al. 2003) Safety and health 

aspects 
Ethyl carbamate 

elimination 

Blocking urea 

secretion 

CAR1 

(deletion) 
Saccharomyces cerevisiae      (Pretorius et al. 2003) 

Pediocin pedA Pediococcus acidilactici ADH1 ADH1 2µ URA3 - (Schoeman et al. 1999) 

Chitinase CTS1-2     Saccharomyces cerevisiae PGK1 PGK1 2µ - (Carstens et al. 2003) 

Leucocin lcaB Leuconostoc carnosum ADH1 ADH1 2µ URA3 - (du Toit and Pretorius 2000) 

Spoilage 

microorganism 

control 

Production of 

antimicrobial enzymes 

Glucose oxidase gox   Aspergillus niger PGH1 PGK1 URA3 + (Malherbe et al. 2003) 

 

47 



Table 2 (cont.) 
 

Trehalose TPS1,TPS2, 

ATH1 

     

Glycogen GSY1, GSY2      
Stress tolerance 

Sterols SUT1, SUT2 

Saccharomyces cerevisiae 

     

(Pretorius et al. 2003) 

Hexose transporters HXT1-18      Sugar uptake and 

assimilation Hexose kinases  HXK1, HXK2
Saccharomyces cerevisiae 

     
(Pretorius et al. 2003) 

Proline oxidase PUT1      

Pyrroline-5-

carboxylate 

dehydrogenase 

PUT2 
Saccharomyces cerevisiae 

     
(Pretorius et al. 2003) 

Nitrogen assimilation 

PUT1 and PUT2 

repressor 
ure2      Saccharomyces cerevisiae  (Salmon and Barre 1998) 

Sterol accumulation  SUT1, SUT2,      

Ethanol tolerance Membrane ATPase 

activity 

PMA1, PMA2
Saccharomyces cerevisiae 

     
(Pretorius et al. 2003) 

Fermentation 

performance  

 

 

Achieving a 

complete conversion 

of sugar to alcohol 

and CO2 without the 

development of off-

flavors 

Agrochemicals resistance Copper chelatin CUP1      Saccharomyces cerevisiae  (Pretorius et al. 2003) 
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Table 2 (cont.) 
 
 

Endopolygalacturonase PGU1   Saccharomyces cerevisiae PGK1 PGK1 LEU2 - (Vilanova et al. 2000) Removal of filter-

clogging 

polysaccharides 
Pectate Lyase pelA     Fusarium solani ACT - CYH 2µ - (Gonzalez-Candelas et al. 1995) 

Processing 

efficiency 

Fining and 

clarification Flocculation timing Flocculin 
FLO1, 

FLO11 
Saccharomyces cerevisiae HSP30     (Pretorius et al. 2003) 

 

P: promoter; T: terminator; Pla: Plasmid; M: Marker; Chr: Chromosomal integration 
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