Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate

S.M. Gomes Correia^a, V. de Zea Bermudez ^a , M.M. Silva^b, S. Barros^b, R.A. Sá Ferreira^c, L.D. Carlos^c, A.P. Passos de Almeida^a, M.J. Smith^b

^aDepartamento de Química, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, Quinta de Prados, 5001-911 Vila Real Codex, Portugal, ^bDepartamento de Química, Universidade do Minho, Gualtar, 4710-057 Braga, Portugal, ^cDepartamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal

Abstract

Sol/gel derived poly(oxyethylene)/siloxane hybrids doped with lithium triflate, LiCF₃SO₃, have been investigated. The host hybrid matrix of these materials, designated as diureasil and represented by U(600), is composed by a siliceous framework to which polyether chains containing 8.5 oxyethylene repeat units are covalently bonded through urea linkages. Xerogel samples U(600)n LiCF₃SO₃ with n (where n is the molar ratio of oxyethylene repeat unit per Li ion) between and 0.1 have been examined. X-ray diffraction and differential scanning calorimetry have provided conclusive evidence that the xerogels analyzed are completely amorphous. The salt-rich material with n=1 exhibits the highest conductivity over the whole range of temperature analyzed (e.g. 4.3x10⁻⁶ and 2.0 x10⁻⁴ Scm⁻¹, respectively, at 25 and 94°C).

Keywords: Di-ureasils; Li; X-ray diffraction; Differential scanning calorimetry; Ionic conductivity

Conclusions

Completely amorphous lithium triflate-based POE/siloxane ormolyte xerogels in which the organic oxyethylene segments are bonded to siloxane regions by urea bridges have been produced by means of the sol-gel method. Various electrolytes with a wide range of guest salt concentration have been characterized. Their attractive conduting, thermal and mechanical properties suggest that further studies of this organic-inorganic hybrid system are worth pursuing.