
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Multiscale Modeling: recent progress and open questions

Chopard, B.; Falcone, J.-L.; Kunzli, P.; Veen, L.; Hoekstra, A.G.
DOI
10.1007/s41939-017-0006-4
Publication date
2018
Document Version
Final published version
Published in
Multiscale and Multidisciplinary Modeling, Experiments and Design
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Chopard, B., Falcone, J-L., Kunzli, P., Veen, L., & Hoekstra, A. G. (2018). Multiscale
Modeling: recent progress and open questions. Multiscale and Multidisciplinary Modeling,
Experiments and Design, 1(1), 57–68. https://doi.org/10.1007/s41939-017-0006-4

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1007/s41939-017-0006-4
https://dare.uva.nl/personal/pure/en/publications/multiscale-modeling-recent-progress-and-open-questions(b0ba0538-6eb1-4548-86b7-27c33c2ca73d).html
https://doi.org/10.1007/s41939-017-0006-4

Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68
https://doi.org/10.1007/s41939-017-0006-4

ORIG INAL PAPER

Multiscale modeling: recent progress and open questions

Bastien Chopard1 · Jean-Luc Falcone1 · Pierre Kunzli1 · Lourens Veen2 · Alfons Hoekstra3,4

Received: 13 December 2017 / Accepted: 23 December 2017 / Published online: 26 January 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract
Many important scientific problems are inherently multi scale. This is, for instance, the case in models in material science or
environmental science. A big challenge is to formulate generic frameworks for multiscale modeling and simulation. Despite
its importance, the scientific community still lacks a well-accepted generic methodology to address multiscale computating.
We review a recent theoretical framework which aims at filling this gap. We also present new results and extension in relation
with scale bridging methods and execution multiscale simulation on HPC systems, and discuss open questions related to this
topic.

Keywords Mutiscale modeling · High Perfomance multiscale computing · Theoretical framework · Coupling middleware
(MUSCLE) · Scale bridging techniques

1 Introduction

Problems in science and engineering often contain several
interacting phenomena, and involve different temporal and
spatial scales. As an example among many, we can mention
biomedical applications (Evans et al. 2008; Tahir et al. 2011,
2013; Groen et al. 2013; Hoekstra et al. 2016), in which
slow biological processes are coupled to fast fluidmechanics.
Multiscale and multiscience problems are often very hard to
address even numerically, due to the difficulty to include a
very large range of scales in the same solver. An explicit
processing of all scales may be beyond the power of even the
fastest supercomputers.

Although one can find in the literature a lot of references
pertaining to “multiscale modeling”, only a fewmethodolog-
ical papers (Ingram et al. 2004;Dada andMendes 2011;Yang
and Marquardt 2009; Weinan et al. 2007) propose a con-
ceptual framework, based on solid and general theoretical
grounds. As a matter of fact, for many multiscale applica-

B Bastien Chopard
Bastien.Chopard@unige.ch

1 Computer Science Department, University of Geneva,
Geneva, Switzerland

2 Netherlands eScience Center, Amsterdam, The Netherlands

3 Computational Science Lab, University of Amsterdam,
Amsterdam, The Netherlands

4 ITMO University, Saint-Petersbourg, Russia

tions, methodology is entangled with the specificity of the
problem, preventing generalization to other problems. Fur-
thermore, similar multiscale strategies are often proposed
under different names. We refer the reader to Hoekstra et al.
(2014) for a more detailed discussion of the status of multi-
scale modeling in several scientific communities.

Solving interdisciplinary multiscale and multiscience
problems involve more and more frequently scientists with
different background and possibly working in different spa-
tial locations. Therefore, a well-established methodology is
essential to build and maintain a computer code solving
the problem. Proposing a framework including theoretical
concepts, a multiscale modeling language and an execution
environment will allow scientists to separate the problem-
specific components from the strategy to bridge the scales
and the processes.

There existmany computer solvers addressing given phys-
ical processes at chosen scales. Once coupled according to
a general strategy, these solvers can be the components of a
complex multiscale, multiscience applications, whose archi-
tecture is described at a high level of abstraction, allowing
incremental development and long-term sustainability.

A step towards the solution to the above identified require-
ments can be found in the so-called multiscale modeling and
simulation framework (MMSF) that some of us have been
developing over the last few years (Chopard et al. 2014;
Borgdorf et al. 2013b). This framework encouragemultiscale
modelers to express problems composed of a wide range of
scales as a set of separate “single scale” models, and to dis-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41939-017-0006-4&domain=pdf
http://orcid.org/0000-0002-6638-0945

58 Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68

tinguish these single scale models from the “scale bridging”
methods that need to be developed to couple them. Over the
past years, MMSF has been successfully applied and evalu-
ated on several different applications (Borgdorff et al. 2014).

In the present paper, wewill review theMMSF framework
and introduce new developments and examples. In particu-
lar, wewill present themuscleHPC programming library that
significantly enhance the performance of MMSF applica-
tions.Wewill discuss and evaluate a scale bridging technique
coined amplification in Hoekstra et al. (2010), which is well
adapted to combine slow biophysical phenomena with fast
haemodynamic processes. We also discuss a way to help
users partition and schedule MMSF applications, using a
discrete event simulator. Last but not least, we introduce the
new concept of “multiscale computational patterns”, reflect-
ing complexmultiscale couplings that are recurrently present
in many applications.

2 TheMMSF framework

Themultiscalemodeling and simulation framework (MMSF)
is a theoretical and operational approach to describe and sim-
ulate multiscale, multiscience phenomena. By adhering to a
single framework, not tied to a specific discipline, groups
of researchers ensure that their respective contribution may
seamlessly integratewith others.MMSF is described in detail
in Borgdorf et al. (2013b) and references therein. Here, we
review the main ideas of the formalism.

Figure 1 presents the different steps of MMSF. First, the
relevant scales and the relevant processes to bemodeled need
to be identified. Each process (for instance, fluid flow) at the
desired scales is referred to as submodels, typically imple-
mented in a monolithic computer program.

In MMSF, we propose to interpret the submodels at an
abstract level with a generic time loop structure, as described
in Fig. 2. We claim that even though the implementation of
a submodel may not follow exactly this construction, the
operations that we identified are present in many scientific
solvers. They correspond to the initialization of the variables,
followed by a time loop. Within this time loop, there is an
operation S for solver which is repeated to advance the sim-
ulation to the next time point. To do so, boundary conditions
need to be specified at the limits of the domain. This is the
role of B to provide such data. In a multiscale system, the
boundaries are oftenprovidedby another submodel. For other
problems, itmay also be S that need information computedby
another submodel. Finally, we formally define operation Oi

(for intermediate observation and Of (for final observation).
They are placed in the execution loop where the physical
quantities of interest have been computed at the correspond-
ing time.

In a second step, one has to indicate how the submod-
els are coupled, by specifying when and what data must be
exchanged. The transformation of data from one submodel to
the other is often refereed to as scale bridging techniques. In
MMSF, coupling is implemented as components called filter

Fig. 1 Pipeline of actions needed to develop and run a multiscale application within MMSF

2ledombus1ledombus

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

2ledombus1ledombus

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

Fig. 2 Generic submodel execution loop and two examples of coupling templates

123

Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68 59

Table 1 Relation between coupling templates and position in the scale
separation map for two submodels X and Y sharing the same compu-
tational domain

Name Coupling Temporal scale relation

Interact OX
i → SY Overlap

Call OX
i → f Yinit X larger than Y

Release OY
f → SX Y smaller than X

Dispatch OX
f → f Yinit Any

ormapper. They transform the output of a submodel into the
input of another one, according to the need of the selected
scale bridging. For instance, a scale bridging technique could
transform the interaction between small-scale suspensions in
a fluid as an effective viscosity at a larger scale (Lorenz and
Hoekstra 2011).

Structurally, the coupling between submodel can be
described by the concept of coupling templates, or at a the
level of the entire application as computational patterns. Fig-
ure 2 shows an example of coupling between submodels. As
a result of the above generic structure of the time loop, only a
few coupling is possible. The sender of information is either
Oi or Of . In addition, the receiving operators can only be S,
B or finit .

An interesting observation is that coupling templates
reflect the type of scale separation between the intercon-
nected submodels. This is explained in Table 1.

The software specification of the submodels and their cou-
pling can be formulated with amultiscalemodeling language
(MML) (Falcone et al. 2010), which describes the archi-
tecture of a multiscale model. It describes the scales and
computational requirements of submodels and scale bridg-
ing components, eachwith pre-defined output and input ports
used for communicating data. These ports are associatedwith
a data type and a communication rate tied to the submodel
scales, and an output port can be coupled to an input port if
these data types and rates match.

The software MUSCLE 2 (Borgdorff et al. 2013b, c) pro-
vides a middleware to build such a multiscale application, by
connecting submodels together, in a data-driven way. Legacy
code, written in several standard programming language can
be coupled. It simply requires to add in each submodel, send,
and receive calls to local output and input ports. These ports,
as well as their connections, are defined in a configuration
file and reflect the desired coupling architecture.

MUSCLE 2 allows distributed multiscale computating,
namely, runs, where the different submodels can be exe-
cuted on remote machines, whether supercomputers or
not. As a consequence, data transfer is implemented in a
very generic way, and fast communication cannot be guar-
anteed. Recently, the muscleHCP C++ library has been
developed (Belgacem and Chopard 2016) to alleviate this
problem. This library assumes C++ code tightly complying

with the MMSF concepts and provides MPI interconnection
between submodels that partition the cores of a given parallel
machines.

3 Example: transport of volcanic ashes

The overview of the MMSF approach, its associated tools
and software given in the previous section, is a summary of
the full framework. We refer the reader to Chopard et al.
(2014), Borgdorff et al. (2013c, b), Borgdorff et al. (2014)
for in-depth descriptions. To illustrate the main concepts we
introduce an example of an application, we developed within
this formalism.We refer to amultiscalemodel to describe the
atmospheric transport of volcanic ashes (usually called tephra
transport in the community), from its source (the volcano
plume), to the local region dominated by sedimentation, to far
regions, where atmospheric particles can have severe effects
on commercial aviation.

The particle transport and deposition solver is called
TETRAS. This is a parallel, scalable code described in detail
in Künzli et al. (2016). The targeted global architecture of
the application, corresponding to a distributed computation
on several machines, is illustrated in Fig. 3, using the MML
description (Falcone et al. 2010). Boxes are the submodel and
the arrows indicate the type of coupling. The results obtained
with a simplified version of the application, namely, a two-
domain computation, in which the local one the volcanic
plume is resolved is computed with a high spatial and tem-
poral resolution, whereas on the regional scale, it has a coarse
resolution and contains no plume model. A meteorological
wind field is assumed to be known, which is used to compute
the advection of the volcanic ashes. On top of the TETRAS
transport model, an aggregation process can be turned on to
simulate the important fact that small tephra particles might
stick together to form bigger suspensions that will sediment
faster than the original smaller particles.

This example illustrates what in MMSF is called a
multidomain coupling between the so-called “plume” and
“region” submodels. It also corresponds to a time-scale
overlap, hence Oi to B coupling. On the other hand, the
aggregation submodel has a “single-domain” relation with
“plume”. In addition, we assumed here a time-scale sepa-
ration reflecting the hypotheses that aggregation is a faster
process that advection–diffusion, considering the spatial res-
olution we used near the volcano. Therefore, we see here an
example of a Oi → finit coupling template.

4 DES approach to scheduling

As suggested in the previous section, an important step to
execute a MMSF application is to schedule each of its sub-

123

60 Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68

Fig. 3 Deployment of the tephra transport application, according to the MMSF approach, on several super-computer

models on available computing resources. Indeed, finding an
optimal scheduling and placement for any given configura-
tion is a difficult task.

Let us consider two tightly coupled submodels with
overlapping temporal scales (corresponding to the interact
coupling template). Each iteration of the first submodel will
require the completion of the corresponding iteration of the
second submodel (and vice versa). If one model is faster than
the other one in terms of computation, then it will have to
wait on the other one to start the next iteration. However, if
both submodels are parallelizable, we can assign an appro-
priate number of computing cores to each submodel such
as to match their respective execution times and avoid idle
CPUs.

Another opportunity for scheduling optimization appears
with the call-release coupling template, where the tempo-
ral scales are separated. The execution of an iteration of the
model with the coarser time scale will depend on a complete
execution of the model with the finer time scale. The execu-
tion of the coarser model will, therefore, be suspended, while
the finer model runs. To maximize resource usage, both sub
models could run on the same computing cores, because they
will never be active on the same time.

The above examples could be optimized analytically, if
performance models are available for both submodels. How-
ever, finding an optimal scheduling becomes difficult for
applications with more than two submodels, like the trans-
port application presented in Figs. 3 and 4. The difficulty also
increases when submodels are deployed on several machines
and the communication times become significant.

To optimize such placements, we have designed a dis-
crete event simulator (DES) able to evaluate the effect of a
given scheduling without the need to run the full application.
The goal is to allow the user to quickly explore different
scheduling options and have a feedback of its expected qual-
ity. Moreover, the DES can be combined with multiscale
computing patterns introduced in Sect. 6, to facilitate auto-
mated placements.

In our approach, every submodel is simply represented as a
state machine, whose current state models the progression of
each simulation. To match the MMSF, this state is expressed
in terms of position inside the generic time loop, as shown in
Fig. 2. In other words, we only track the current interaction
and the current operation.We can predict the time to advance
to the next operation using a performance model depend-
ing on the model resolution (spatial and temporal scales)
and the number cores assigned to each submodel. Of course,
performance models must be established and experimentally
validated for each submodel, but such studies are routinely
performed on HPC architectures and most submodel imple-
mentations are published with speed-up curves. To include
the delays caused by the communications, we also use a
performance model to estimate the amount of information
to transmit. The hardware itself is modeled using a relative
speed for the CPU cores and the communication speed of the
interconnection network. Again, those values are routinely
measured for most HPC infrastructure.

With the above hypotheses, we can define the discrete
events modeled in our system: submodel started,
submodel stopped, computation done, commu-
nication received. These events represent the out-

123

Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68 61

Fig. 4 Results of a simplified, two-domain multiscale tephra transport code for the eruption of volcano Ruapehu, 1996 NZ (upper panel) and
corresponding MML representation (lower panels)

come of actions and lead to state transitions. For instance, let
us consider the multiscale coupling, as shown in Fig. 2, left.
When the event submodel 1 started occurs, we know
that the operators finit will be performed before observing the
state and sending the necessary information to submodel 2.
Using performancemodels and hardware description, we can
predict the time to perform these operations and we can add
the event communication received in the future for
submodel2. This event in turn will yield a full execution of
submodel 2 which again could be estimated, as well as the
time needed to send back the results to submodel 1. Then, we
can issue a communication received event for sub-
model 1. This new action will allow submodel 1 to continue
its computation and thus finish the iteration. This will pro-
duce a new event computation done that will represent
the end of the current iteration, and so on.

We illustrate an application of our MMSF discrete event
simulator for the simplified tephra transport application, as
detailed in Fig. 4. In this example, thePlume submodel sends
its particle field to the Aggregation submodel and to the
Region submodel at each iteration.Toproceed, itmust receive
the new particle distribution from theAggregation submodel.
There is a tight coupling betweenAggregation andPlume, but
not betweenPlume andRegion. However,Region cannot pro-
ceed without receiving data from Plume, and thus, it depends
indirectly on Aggregation. Moreover, Plume will exchange

particles distribution across all its domain with Aggregation,
while Plume only sends to Region the particles leaving its
domain (advected by the wind). Therefore, communication
between Plume and Aggregation is more demanding than
between Plume and Region. Figure 5 shows two different
placements of the application simulated by the DES. In the
left panel, we show a setting, where the Plume submodel
was executed on a 50-core machine, while both Aggregation
and Region/submodels, were executed on a different simi-
lar machine. In the right panel, the Plume and Aggregation
submodels were executed on the same machine, while the
Region model was executed alone. As expected, because of
the importance of communications, the second configuration
will compute the solution faster. Such setting also rationally
saves shared computing resources by avoiding idle CPU dur-
ing the reservation (dark red vs. dark green). For example,
we can see that increasing the number of cores assigned to
the Region submodel will not reduce the time to solution,
because the rest of the application will be the limiting factor.

Currently, we have implemented all the basic components
of such simulator and we have performed several qualitative
analyses to validate its meaningfulness. In the future, we
plan to validate our approach quantitatively and integrate the
current simulator with the rest of the MMSF tool chain.

123

62 Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68

150100500
time [s]

MACHINE B (50 CPUs)

REGION

AGGREG

MACHINE A (50 CPUs)

PLUME

806040200
time [s]

MACHINE B (50 CPUs)

REGION

MACHINE A (50 CPUs)

AGGREG

PLUME

Fig. 5 Discrete event simulation of the processing activity of two differ-
ent placements of the tephra transport submodels. The submodel activity
is shown with light colors: light green for computation and light red for
waiting. The machine activity is shown with similar dark colors: dark

green for CPU activity and dark red for waiting. Time is represented on
the horizontal axis, and the scale is different for both examples, since
the left case is twice slower

5 Scale bridging technique: time splitting
and amplification

This section illustrates one example of a scale bridging tech-
nique coined “amplification” in Hoekstra et al. (2010), and
compares it with the more classical “time-splitting” tech-
nique.

A situation which often appears in multiscale modeling is
the coupling between a fast and a slow process, with a large
time-scale separation.

As an example, consider the problem of coral growth
described in Merks et al. (2003), where the geometry of the
coral changes by a small amount in 1 year, while the fluid
flow,which delivers the nutrients, adapts almost immediately
to the new boundary condition given by the coral shape. In
terms of modeling, it is of course useless to simulate the
fluid for 1 year, for each of the growing steps of the coral. It
is much better to split the two process, and deal with them at
their own time scale. In practice, this means to compute the
flow until a steady state is reached, with a fixed coral struc-
ture. Then, using this fixed fluid state, the flow of nutrients
can computed, leading to the growth of the coral. This pro-
cess can be iterated as many times as needed, to be obtained
the coral structure after the desired number of years. Using
the MMSF formalism, this coupling of the two submodels
(fluid and growth) is expressed as

O(growth)
i → F (fluid)

init O(fluid)
f → S(growth).

This time separation scale bridging technique is often call
time-splitting. Its accuracy as a function of the scale separa-
tion has been studied in Caiazzo et al. (2009).

Although time-splitting is very simple andnatural, it is less
appropriate when the fast process does not converge to a con-
stant value, but keeps varying in time. We are, for instance,
thinking of thrombus formation in a cerebral aneurysm. The
growth of the thrombus is driven by a pulsatile blood flow that

Fig. 6 Left simulated thrombus growth (light blue) in a patient specific
geometry. Right the corresponding clinical observation (light red). The
amplification scale bridging technique was used to coupled the blood
flow time scale with that of the thrombus growth (color figure online)

continuously varies over a cardiac cycle, while the thrombus
needs many heart beats to substantially grow. To avoid sim-
ulating the actual number of cardiac cycles (each of which
may require a large amount of CPU time, even on a large
parallel computer), the idea is to amplify the growth rate,
so that, in one cardiac cycle, the growth of the thrombus is
already noticeable. Such a scale bridging technique is called
amplification or acceleration. It has been used, for instance,
in Malaspinas et al. (2016) to produce the thrombus illus-
trated in Fig. 6 in only 2000 cardiac cycles.

This technique, when formulated as a coupling template
in MMSF, corresponds to

O(blood)
i → S(thrombus) O(thrombus)

i → B(fluid)

which means, according to Table 1, that the time separation
has been absorbed by the amplification.

123

Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68 63

5.1 A simple example

In this section, we will analyze quantitatively, using a simple
dynamical problem, the accuracy of the amplification scale
bridging and compare it to time-splitting.

The following system can be seen as an overly simplified
version of the thrombus formation problem:

{
ḣ = α(umax − u)

u̇ = −γ u + F(t) + βh
(1)

where α, β, γ , and umax are parameters and F(t) is a given
function of time. The link with our motivation problem is the
following: h(t) is the thickness of the clot that forms on the
vessel wall. It starts with h(t = 0) = 0. Clot grows if thewall
shear rate is abnormally small, and stops when a threshold
value, h∞ is reached. Here, we simply abstract this process
by saying that the growth is proportional to the distance to this
threshold. Above the threshold, we can imagine an erosion
process takes place, thus reducing h.

The quantity u represents the speed of the blood. There is
a friction parameter γ and an external force F(t), mimicking
the role of the heart. As the clot grows, the lumen decreases
and the speed u increases to keep the same flow. Here, this
is abstracted by adding h as a pseudo force term.

5.2 Constant driving force

Wefirst assume that F = F0 is constant over time. The steady
state of this system is easily obtained by setting ḣ = u̇ = 0.
We then obtain

u∞ = umax h∞ = γ umax

β
− F0

β
.

It is interesting to note that the steady state does not depend
on α, and in a numerical solver, we can use a large value to
quickly reach the final solution. This is the essence of the
amplification method.

Let us assume that the growth of h is slow and that we
are interested to know its evolution at time intervalsΔt large
compared to the time needed for u to reach a steady state.
For a given value of h0 assumed to be constant over Δt , the
steady-state value u0 that u will reach is

u0 = β

γ
h0 + F0

γ
.

We can now advance h assuming that u = u0 duringΔt , and
we get

h1 = h0 + α(umax − u0)Δt .

This procedure can be repeated to give the iterative system

{
ui = β

γ
hi + F0

γ

hi+1 = hi + α(umax − ui)Δt
(2)

with ui = u(iΔt) and hi = h(iΔt). This can also be written
as

{
ui = β

γ
hi + F0

γ

hi+1 = hi + α
(
umax − β

γ
hi − F0

γ

)
Δt

(3)

whose solution at time t = ∞ is, as before

umax − β

γ
h∞ − F0

γ
= 0.

Figure 7 (left) shows the solution of Eq. (1) using a standard
Euler scheme (continuous lines). The final value of u = umax

and h = h∞ is indicatedwith the horizontal dashed lines. The
figure also shows the quality of the time-splitting solution that
consists of reaching a steady state for u, assuming h constant,
then advancing h for a time Δt using the value of u, and so
on. We can see that if h grows slowly compare to the speed
at which u reaches a steady state, the approximation is very
good. In addition, if one compares the time steps used for
the accurate Euler scheme, namely, δt = 0.1 and Δt = 20,
there is a speedup of 200 when using such an approximation.
We also observe (not shown here) that if the time separation
decreases (largerα), the approximation becomes less and less
good for small times, but reaches anyway the correct solution
in the long-time regime.

Alternative to the above time-splitting approach, we can
consider an approximation based on the idea of amplification.
In this case, one artificially increases the growth rate α of
the slow process. Figure 7 (right) shows the quality of this
approximation for an amplification by a factor μ = 10. In
this case, we solve Eq. (1) with α → μα, and for a time
interval s ∈ [0, tmax/μ]:
⎧⎨
⎩

dH
ds = μα(umax −U)

dU
ds = −γU + F + βH

s ∈ [0, tmax/μ]. (4)

Here, we used the same time steps δt = 0.1 for both the
accurate Euler scheme and the amplified Euler scheme. In
Fig. 7 (right), the rescaled quantities U (μs) ≈ u(t) and
H(μs) ≈ h(t) are shown.A good approximation is obtained.
In terms of speedup, one gets a gain of a factor μ = 10,
because the computation has to be performed only to a shorter
time interval, of length tmax/μ.

123

64 Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68

δt=0.1

Δt=20

α=0.01 β=1 γ=1

u_max

h_infty

5000 t
0

10

u(
t)

0

4

h(t)

δt=0.1

u_max

h_infty

μ∗α=0.1 β=1 γ=1 F0=2
Amplifiction by μ=10

H(μ∗s) U(μ∗s)

5000 t
0

10

u(
t)

0

4

h(t)

Fig. 7 Left panel: Accurate numerical solution of Eq. (1), displayed with the continuous lines. Approximation given by Eq. (3): black and gray
dots. Right panel: solution using amplification

δt=0.01

u_max

μ∗α=0.1 β=1 γ=1 ω=0.005 F0=2
Amplifiction by μ=10

U(μ∗s)

5000 t
0

8

u(
t)

δt=0.01

h_infty

μ∗α=0.1 β=1 γ=1 ω=0.005 F0=2
Amplifiction by μ=10

H(μ∗s)

5000 t
0

4

h(
t)

Fig. 8 Accurate numerical solution of Eq. (1), displayed with the continuous black lines. Solutions with amplification given by increasing the
growth rate α by a factor μ are shown with the gray curves. The left panel shows the values of the velocity and the right panel the values of the
growth

5.3 Time-dependent driving force

When the driving force F in Eq. (1) keeps varying in time, as
is the case for plusatile flows, the time-splitting approach is
not as easily applied as u does not quickly reach a quasi con-
stant value. On the other hand, the amplification technique is
obvious.

Here, we consider the case, where

F(t) = sinωt + F0.

As in the previous section, we consider an amplification fac-
tor ofμ = 10 when solving Eq. (1), meaning that we replace

α by μα. We also focus on the accelerated fields H and U ,
as defined in the previous section, leading to Eq. (4).

Figure 8 shows the result of the accurate Euler solution
without amplification (black continuous lines), as well as
the result of the amplification case (gray lines), with again
μ = 10. We can observe a satisfactory agreement with the
accurate solution. We see a slight phase delay for u(t) and
h(t), which, however, looks of little importance at a large
time scale. The average time values of h and u are not affected
by the amplification. However, the amplitude of u is signif-
icantly under-estimated. Although this is not critical if one
is interested in the growth process, further investigations of
this feature would be desirable. An intuitive explanation is

123

Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68 65

that the faster growth adds more resistance to the flow, pre-
venting it to reach its peak values. If we were interested in
the correct value of u, we could rescale the friction of the
force amplitude but this would require further investigation.

From the results presented in the previous two sections,
we observe that time-splitting offers a very high potential to
save CPU time when the problem amounts to coupling a pro-
cess that quickly reaches a steady state with a slow process
that mostly depends on this steady state only. Amplification
requires no software modification and is straightforwardly
implemented. It is also applicable when the fast process is
time dependent. The examples shown here suggests that the
amplification factor (and the speedup of the computation)
should not be taken too big, at the risk of reducing too much
the accuracy in the earlier regime. However, if one is inter-
ested in the long-time regime, the early time inaccuracy is
corrected as time progresses. It is also interesting to note that
the time at which the growth process reaches a given fraction,
close to its final value is correctly captured by the accelerated
field U .

Of course, the present example is very simple and its
behavior cannot be generalized to other processes without
proper investigations. However, our main goal here is to
illustrate the principle of amplification as simple bridging
techniques that we intend to further investigate.

6 Multiscale high-performance computing
patterns

We expect that multiscale simulations will be one of the
main workloads on high-performance computing systems.
As individual clock speeds are no longer increasing, HPC
systems can only achieve larger computational speeds by
deploying more processors. The parallelism in a model is
usually achieved by spatial domain decomposition. In aweak
scaling sense, adding more processors results in simulating
increasingly large systems. Yet, we are usually also inter-
ested in simulating larger time scales, and as the system
becomes larger, we typically need to longer integrate the
dynamical variables, to see the phenomena of interest. This
means that it will become increasinglymore difficult to study
large space and long-time behavior with monolithic codes.
Multiscale computing is able to circumvent this problem by
deploying single scale components on HPC architectures, to
produce optimal performance and to bridge both time and
space scales.

In the spirit of the MMSF, we have developed multiscale
computing patterns (MCP) Alowayyed et al. (2017) as a
generic vehicle to realize optimized, that is load balanced,
fault tolerant, and energy aware high-performance multi-
scale computing. MCPs should lead to further separation
of concerns. The application developers compose multiscale

models and execute multiscale simulations in the MMSF.
Pattern software, maybe employing the discrete event sim-
ulations presented in Sect. 4, then realizes optimized, fault
tolerant, and energy aware multiscale computing.

The first step is to identify generic computing patterns that
allow the development of algorithms for common multiscale
computing scenarios. We define multiscale computing pat-
terns as high-level call sequences that exploit the functional
decomposition of multiscale models in terms of single scale
models. We have identified three MCPs (Alowayyed et al.
2017):

1. Extreme scaling, where one (or a few) single scale mod-
els require HPC, which are coupled to other, less costly
single scale models.

2. Heterogeneous multiscale computing, where a very large
number ofmicroscalemodels are coupled to amacroscale
model.

3. Replica computing, where a large number copies (repli-
cas) are executed, that may or may not exchange infor-
mation.

MCPs can be expressed at the level of the task graph,
which is the directed acyclic graph used to determine
the execution order of submodels, to schedule submodel
dependencies, and to estimate runtime and communication
cost (Borgdorf et al. 2013b). We formulate generic task
graphs for each MCP and use them to obtain an optimized
mapping of themultiscale simulation onHPC resources. Fig-
ure 9 summarizes the approach. An MCP is a generic task
graph combined with data on the performance of single scale
models, a specification of a given multiscale application in
terms of the MMSF and a set of algorithms and heuristics
that combine this into detailed input/configuration files for
the execution environment in which the multiscale simula-
tion will be executed.

In Alowayyed et al. (2017), we discuss a few examples
of MCPs, for the case of an extreme scaling scenario, where
cell-resolved blood flow simulations are coupled to continu-
ous flow simulation that serve as inlet and outlet regions. We
have recently implemented pattern software, where all func-
tionality shown in Fig. 9 has been realized for the extreme
scaling and the replica computing patterns, and applied to
a range of multiscale models, from multiscale modeling of
fusion in the ITER reactor to multiscale modeling of binding
affinities between drugs and target molecules (Alowayyed
et al. 2017).

7 Outlook and open questions

The MMSF was conceived almost a decade ago and its theo-
retical underpinning is described in detail by Borgdorf et al.

123

66 Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68

Fig. 9 Multiscale computing patterns implemented as generic task graphs and algorithms to generate sufficient information for the execution
engines

(2013b). Since then a growing number of multiscale models
have been designed and implemented using the MMSF (Bel-
gacem et al. 2013a; Borgdorff et al. 2013b, 2014. Most of
them relied on MUSCLE as an API and execution envi-
ronment to couple together single scale codes and execute
the overall simulation. However, recently, also other exam-
ples implementing MMSF have been demonstrated, relying
on MuscleHPC (Belgacem and Chopard 2016) or FAB-
SIM (Groen et al. 2016).

The theoretical foundation of theMMSFseemswell estab-
lished. Amajor open issue is a classification of scale bridging
methods. The amplification, as discussed in this paper, seems
to be one important generic class, but in our opinion a deeper
understanding of scale bridging methods would be an impor-
tant and needed addition to the MMSF.

Another very relevant issue in relation with multiscale
modeling and simulation is that of sensitivity analysis and
uncertainty quantification. In our view, we can formulate
multiscale uncertainty quantification in terms of the MMSF,
relying on the replica computing pattern. We have recently
proposed a generic family of semi-intrusive uncertainty
quantification algorithms for time-scale separated multiscale
model (Nikishovay and Hoekstra 2017). The embedding of
such multiscale uncertainty quantification in the MMSF, and
algorithms for the different classes of multiscale models in
the MMSF is currently under active investigation, as well as
mapping of such algorithms to HPC, using MCP software.

Over the years the MMSF has been used to realize
distributed multiscale computing (Belgacem et al. 2013a;
Borgdorff et al. 2013c) and high-performance multiscale
computing (Borgdorff et al. 2014; Belgacem and Chopard
2016) relying on a plethora of middleware and runtime sup-
port systems (Blegacem et al. 2015). The lesson learned form
this experience shows that a multiscale simulation requires a
planning phase, in which a user specifieswhat is needed (sin-
gle scale codes and related tools), how to execute (providing
performance information and using patterns to produce exe-
cutionplans), andwhere to execute [finding the best resources
available to a user, using, e.g., the QCG middleware Piontek
et al. (2016)].

Themultiscale computing job can then be launched by the
chosen middleware. A Coordinator will be launched first,
which in turn starts up the submodels and mappers that per-
form theComputation (relying on, e.g., information from the
MCPs), and facilitates their Communication by propagating
information about which component runs where. The Coor-
dinator is different depending of the ‘glue’ software that is
used (e.g. Muscle, MuscleHPC, …), but in all cases, its role
in the multiscale computing is comparable, and from the per-
spective of MMSF based multiscale computing, is a generic
component. We intend to formalize this generic architecture,
so that it becomes possible to create MMSF compliant soft-
ware, which in the end may even lead to a well-established
API for multiscale computing.

123

Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68 67

Although the MMSF is in our view now well established,
one important aspect seems to be still missing in both the
MML and in implementations such as MUSCLE or Mus-
cleHPC. And that is the notion of a dynamic number of
instantiations of single scale models. Borgdorf et al. (2013b)
already identified coupling templates where the number of
instantiations of a single scale model can be dynamic and
unknown at compile time. Important classes of mutliscale
models that fall under this category are heterogeneous mul-
tiscale.

dynamics, a varying number of microscale simulations
have to be started in order to simulate unknown properties
at the macroscale. In addition, in replica computing applica-
tions, such dynamic features are required.We are currently in
the process of updating the Multiscale Modeling Language
to be able to express this in a natural way. Moreover, we are
also in the process of upgrading MUSCLE2 to MUSCLE3,
where these dynamic instantiations of single scale models
during runtime will be available.

Another aspect of multiscale computing that has not yet
received sufficient attention is that of data handling, that is
optimizing the transport of data between submodels. Cer-
tainly in HPC environments, and if single scale models need
to exchange large volumes of data, dedicated data pattern
software would be needed.

The currently running EU funded project COMPAT
(www.compat-project.eu) is implementing the MCP soft-
ware, and benchmarking high-performance multiscale com-
puting applications. The MCP software should automate as
much as possible load balancing of multiscale simulations,
and should also help in choosing execution plans that are
optimal in terms of energy usage.

Acknowledgements The authors acknowledge financial support from
the Swiss Initiative PASC, from CADMOS, and from the COMPAT EU
Project. BC, JLF, and PK thank Constanza Bonadonna for the collabo-
ration on the model for volcanic ashes. BC thanks Alireza Yasdani for
stimulating discussions on the amplification scale bridging techniques.
On behalf of all authors, the corresponding author states that there is no
conflict of interest.

References

Alowayyed S, Groen D, Coveney PV, Hoekstra A (2017) Multiscale
computing in the exascale era. J Comput Sci 22:15–25. https://
doi.org/10.1016/j.jocs.2017.07.004

Alowayyed S, Piontek T, Suter JL, Hoenen O, Groen D, LukOO, Bosak
B, Kopta P, Kurowski K, Perks O, Brabazon K, Jancauskas V,
Coster D, Coveney PV, Hoekstra AG (2017) Patterns for high per-
formance multiscale computing. Future Gener Comput Syst

Blegacem MB, Chopard B (2015) A hybrid HPC/cloud distributed
infrastructure: coupling EC2 cloud resources with HPC clusters
to run large tightly coupled multiscale applications. Future Gener
Comput Syst. https://doi.org/10.1016/j.future.2014.08.003

BelgacemMB, Chopard B (2016)Muscle-hpc: a new high performance
api to couple multiscale parallel applications. Future Gener Com-
put Syst 67:72–82. https://doi.org/10.1016/j.future.2016.08.009

Belgacem M Ben, Chopard B, Borgdorff J, Mamonski M, Rycerz K,
Harezlak D (2013a) Distributed multiscale computations using
the MAPPER framework. Procedia Comput Sci 18:1106–1115.
https://doi.org/10.1016/j.procs.2013.05.276

Borgdorf J, Falcone JL, Lorenz E, Bona-Casas C, Chopard B, Hoekstra
AG (2013b) Foundations of distributed multiscale computing: for-
malization, specification, analysis and execution. J Parallel Distrib
Comput 73:465–483

Borgdorff J,MamonskiM,BosakB,GroenD,BelgacemMB,Kurowski
K,HoekstraAG(2013c)Distributedmultiscale computingwith the
multiscale modeling library and runtime environment. Procedia
Comput Sci 18:1097–1105

Borgdorff J, Mamonski M, Bosak B, Groen D, Belgacem
MB, Kurowski K, Hoekstra AG (2013) Multiscale comput-
ing with the multiscale modeling library and runtime envi-
ronment. Procedia Comput Sci 18(0):1097–1105. https://doi.
org/10.1016/j.procs.2013.05.275. http://www.sciencedirect.com/
science/article/pii/S1877050913004183

Borgdorff J, Belgacem MB, Bona-Casas C, Fazendeiro L, Groen D,
Hoenen O, Mizeranschi A, Suter JL, Coster D, Coveney PV,
Dubitzky W, Hoekstra AG, Strand P, Chopard B (2014) Per-
formance of distributed multiscale simulations. Philos Trans A
372(2021):20130407

Caiazzo A, Falcone JL, Chopard B, Hoekstra AG (2009) Asymptotic
analysis of complex automata models for reaction-diffusion sys-
tems. Appl Numer Math 59(8):2023–2034

Chopard B, Borgdorff J, Hoekstra AG (2014) A framework for multi-
scale modeling. Philos Trans A 372:20130,376

Dada JO, Mendes P (2011) Multi-scale modelling and simulation in
systems biology. Integr Biol 3(2):86–96

Evans D, Lawford PV, Gunn J, Walker D, Hose DR, Smallwood R,
Chopard B, Krafczyk M, Bernsdorf J, Hoekstra A (2008) The
application ofmulti-scalemodelling to the process of development
and prevention of stenosis in a stented coronary artery. Philos Trans
R Soc 366:3343–3360

Falcone JL, Chopard B, Hoekstra A (2010) MML: towards a multiscale
modeling language. Procedia Comput Sci 1(11):819–826

Groen D, Borgdorff J, Bona-Casas C, Hetherington J, Nash RW, Zasada
SJ, Saverchenko I, Mamonski M, Kurowski K, Bernabeu MO,
Hoekstra AG, Coveney PV (2013) Flexible composition and exe-
cution of high performance, high fidelity multiscale biomedical
simulations. Interface Focus 3(2):20120087

Groen D, nad James Suter APB, Hetherington J, Zasada SJ, Coveney
PV (2016) Fabsim: facilitating computational research through
automation on large-scale and distributed e-infrastructures. Com-
put Phys Commun. https://doi.org/10.1016/j.cpc.2016.05.020

Hoekstra AG et al (2016) Towards the virtual artery: a multiscale model
for vascular physiology at the pcb interface. Philos Trans R Soc A
374(0160):146. https://doi.org/10.1098/rsta.2016.0146

HoekstraAG,CaiazzoA,LorenzE, Falcone JL,ChopardB (2010)Mod-
elling complex systems by cellular automata, chap. 3. Springer,
Berlin

Hoekstra AG, Coveney P, Chopard B (2014) Position a paper on mul-
tiscale modeling and computing. Philos Trans A 372:20130377

Ingram G, Cameron I, Hangos K (2004) Classification and analysis of
integrating frameworks in multiscale modelling. Chem Eng Sci
59:2171–2187

Künzli P, Tsunematsu K, Albuquerque P, Falcone JL, Chopard B,
Bonadonna C (2016) Parallel simulation of particle transport in
an advection field applied to tephra dispersal. Comput GeoSci
89:174–185

Lorenz E, Hoekstra A (2011) Heterogeneous multiscale simulations of
suspension flow. Multiscale Model Simul 9:1301–1326

123

http://www.compat-project.eu
https://doi.org/10.1016/j.jocs.2017.07.004
https://doi.org/10.1016/j.jocs.2017.07.004
https://doi.org/10.1016/j.future.2014.08.003
https://doi.org/10.1016/j.future.2016.08.009
https://doi.org/10.1016/j.procs.2013.05.276
https://doi.org/10.1016/j.procs.2013.05.275
https://doi.org/10.1016/j.procs.2013.05.275
http://www.sciencedirect.com/science/article/pii/S1877050913004183
http://www.sciencedirect.com/science/article/pii/S1877050913004183
https://doi.org/10.1016/j.cpc.2016.05.020
https://doi.org/10.1098/rsta.2016.0146

68 Multiscale and Multidisciplinary Modeling, Experiments and Design (2018) 1:57–68

Malaspinas O, Turjman A, de Souza DR, Garcia-Cardena G, Raes M,
Nguyen PTT, Zhang Y, Courbebaisse G, Lelubre C, Boudjelti
KZ, Chopard B (2016) A spatio-temporal model for spontaneous
thrombus formation in cerebral aneurysms. J Theor Biol 394:68–
76

Merks RMH, Hoekstra AG, Kaandorp JA, Sloot PMA (2003) Models
of coral growth: spontaneous branching, compactification and the
laplacian growth assumption. J Theor Biol 224:153–166

Nikishovay A, Hoekstra A (2017) Semi-intrusive uncertainty quantifi-
cation for multiscale models. SIAM J. Uncertain Quantif

Piontek T, Bosak B, Cinicki M, Grabowski P, Kopta P, Kulczewski M,
Szejnfeld D, Kurowski K (2016) Development of science gate-
ways using qcglessons learned from the deployment on large scale
distributed and hpc infrastructures. J Grid Comput 14:559–573

Tahir H, Hoekstra A, Lorenz E, Lawford P, Hose D, Gunn J, Evans
D (2011) Multiscale simulations of the dynamics of in-stent
restenosis: impact of stent deployment and design. Interface Focus
1:365–367

Tahir H, Casas CB, Hoekstra A (2013) Modelling the effect of a func-
tional endotheliumon the development of in-stent restenosis. PLoS
ONE 8(e66):138

Weinan E, Li X, RenW, Vanden-Eijnden E (2007) Heterogeneous mul-
tiscale methods. A review. Commun Comput Phys 2:367–450

Yang A, Marquardt W (2009) An ontological conceptualizatin of mul-
tiscale models. Comput. Chem. Eng. 33:822–837

123

	Multiscale modeling: recent progress and open questions
	Abstract
	1 Introduction
	2 The MMSF framework
	3 Example: transport of volcanic ashes
	4 DES approach to scheduling
	5 Scale bridging technique: time splitting and amplification
	5.1 A simple example
	5.2 Constant driving force
	5.3 Time-dependent driving force

	6 Multiscale high-performance computing patterns
	7 Outlook and open questions
	Acknowledgements
	References

