
[Geef tekst op]

Organizational Patterns

for Multidisciplinary Development

of Mechatronic Systems
Master’s thesis. Computer Science

April 14. 2015

Mark den Hollander - 838099431

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

2

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

3

ORGANIZATIONAL PATTERNS FOR MULTIDISCPLINARY DEVELOPMENT OF MECHATRONIC SYSTEMS

Open Universiteit Nederland, faculteit Informatica

Masteropleiding Computer Science of Software Engineering

GRADUATION COMMITTEE

Prof. dr. A. Bijlsma
Chairman / Secretary, Open Universiteit Nederland
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands
e-mail: lex.bijlsma@ou.nl

Ir. P. Oord
Supervisor, Open Universiteit Nederland
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands
e-mail: paul.van.oord@ou.nl

COURSE

T76318: Afstudeeropdracht Computer Science

AUTHOR / STUDENT

Ing. M. den Hollander
e-mail: mark.den.hollander@gmail.com

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

4

Acknowledgement

At the start of this research, I was familiar with the design patterns of the Gang of Four (Gamma,

Helm, Johnson & Vlissides, 1994). By reading (Buschmann, Henney & Schmidt, 2007) I learned the

criteria to which patterns should comply, and I learned about organizational patterns, sequences,

and pattern languages. This book led me to the organizational patterns and pattern languages of

agile software development (Coplien & Harrison, 2005). This became my inspiration in creating new

patterns for the multidisciplinary development of mechatronic systems.

At the beginning of this research, I found many problems which I wanted to investigate. Thanks to

the guidance of Paul Oord and Lex Bijlsma, I was able to formulate a research question that would

have social and academic relevance, and also my strong personal interest. Throughout the research,

they kept me from wandering away from my chosen topic. One of my pitfalls was to continuously

seek in-depth knowledge on every subject that I encountered. Paul Oord and Lex Bijlsma also

provided constructive feedback on the deliverables produced during the research. I would like to

thank them for their support.

A fundamental part of my research is the field data that I received from an organization that

develops and produces mechatronic systems. They have conscientiously gathered and archived data

from their projects and teams for a long time. These data helped me greatly to create patterns

strongly related to the real world. I would like to thank this organization for making such valuable

data available.

The conclusion of this research could have been that it is not possible to create organizational

patterns. I am pleased to report that is possible. I am even more pleased with the feedback received

from the reviewers and authors of the book Organizational patterns of agile software development

(Coplien & Harrison, 2005), who granted me their time and provided good feedback. Such feedback

confirms the relevance of the patterns, and gives an indication of the quality of my work. I would like

to thank them for closing the loop between academic research and the working environment in

which problems have to be solved daily.

Studies at the Open University require an investment of time and money. I had the privilege of

having employers (ICT Automatisering N.V. and PROMEXX B.V) who were willing to pay the costs of

the modules and offered me days off when I had to write exams. I would like to thank them for

making the study of Computer Science accessible.

I would like to thank all my friends, students, teachers, and colleagues for their feedback and

inspiration.

Finally, I would like to thank my family for being the greatest supporters that I could ever wish for.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

5

Abstract

This thesis describes three new organizational patterns for developing a mechatronic system

concurrently with a multidisciplinary team. These patterns are mined from the literature and field

data of an organization that produces mechatronic systems. The patterns described in this work are

related to other patterns expressed in a pattern language.

The development of a mechatronic system requires an intense collaboration between disciplines.

This way of working introduces dependencies between disciplines, which introduces problems. These

problems can lead to system integration issues and project delays. This problem statement leads to

the following research question:

“Is it possible to formulate organizational patterns that can be used for the development

and integration of a mechatronic system in a multidisciplinary environment developed

concurrently?”

There are organizations that have encountered and addressed these problems. Their solution can be

seen as best or common practice. This research mines these practices in a literature study that

contains journal articles, proceedings, and books. Practices are also mined from field data made

available by an organization that develops and produces mechatronic systems. These field data

contain Failure Methods and Effects Analysis (FMEA) worksheets and retrospective reports. Only a

selection of all these practices that were mined are detailed in a pattern description. A practice is

selected when it specifically addresses the following subjects:

 Development of a mechatronic system

 Multidisciplinary development

 Concurrent engineering

The result of this research is three new patterns that are integrated into pattern languages. The

patterns are:

 Common Plan

 Hardware in the Loop

 Simulator in the Loop.

Individuals who work in the field of mechatronic systems and multidisciplinary projects reviewed the

patterns. The amount of problems from one organization that are covered by these patterns is also

determined.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

6

The conclusion of this research is that the research question is answered positively. This research has

addressed problems that are encountered during the concurrent development of a mechatronic

system by a multidisciplinary team. These problems are:

 Collaboration between disciplines

 Integration of deliverables

 Dependency between disciplines

These problems generally lead to project delays. The results of this research are new organizational

patterns that provide practical solutions to counter these problems. It is the first time that these

solutions are formalized and presented as an organizational pattern and integrated into the

organizational pattern language of (Coplien & Harrison, 2005). This result can benefit a

multidisciplinary team that develops a mechatronic system concurrently. It will make them aware of:

a solution to their problem, when to apply it, the forces and trade-offs of the solution, and how the

solution can be implemented. These patterns will empower a multidisciplinary team to solve the

stated problems.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

7

Samenvatting

Dit proefschrift beschrijft drie nieuwe organisatorische patronen voor de ontwikkeling van een

mechatronisch systeem door een multidisciplinair team. Deze patronen zijn gevonden in de literatuur

en in veldgegevens van een organisatie die mechatronische systemen produceert. De in dit werk

beschreven patronen zijn gerelateerd aan andere patronen die onderdeel zijn van een patroontaal.

De ontwikkeling van een mechatronisch systeem vereist een intensieve samenwerking tussen

disciplines. Deze manier van werken creëert afhankelijkheden tussen disciplines en dat introduceert

problemen. Deze problemen kunnen leiden tot systeem integratie problemen en vertragingen op het

project. Deze probleemstelling leidt tot de volgende onderzoeksvraag:

“Kan een organisatorisch pattern opgesteld en toegepast worden voor concurrent

engineering in een multidisciplinaire omgeving voor het ontwikkelen en integreren van

een mechatronisch systeem?”

Er zijn organisaties die deze problemen hebben ondervonden en deze hebben aangepakt. Hun

oplossing kan worden gezien als een gangbare praktijk. Dit onderzoek zoekt deze praktijken in een

literatuurstudie. Praktijken worden ook gezocht in veldgegevens die beschikbaar werden gemaakt

door een organisatie die mechatronische systemen ontwikkelt en produceert. Deze veldgegevens

bevatten Failure Methods and Effects Analysis (FMEA) werkbladen en retrospectieve rapporten.

Slechts een selectie van al de gevonden gangbare praktijken zijn uiteindelijk gedetailleerd

beschreven in een patroon. Een praktijk is geselecteerd wanneer het specifiek ingaat op de volgende

onderwerpen:

 Ontwikkeling van een mechatronisch systeem

 Multidisciplinaire ontwikkeling

 Parallel ontwikkelen (concurrent engineering)

Het resultaat van dit onderzoek zijn drie nieuwe patronen die zijn geïntegreerd in patroontalen. De

patronen zijn:

 Common Plan

 Hardware in the Loop

 Simulator in the Loop

De patronen worden beoordeeld door personen die werken in het gebied van mechatronische

systemen. Daarnaast wordt bepaald in welke mate deze patronen de problemen van één organisatie

afdekken.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

8

De conclusie van dit onderzoek is dat de onderzoeksvraag positief wordt beantwoord. Dit onderzoek

heeft problemen geadresseerd die worden ondervonden tijdens de parallelle ontwikkeling van

onderdelen van een mechatronisch systeem door een multidisciplinair team. Deze problemen zijn:

 Samenwerking tussen disciplines

 Integratie van de resultaten

 Afhankelijkheid tussen de disciplines

 Deze problemen leiden in het algemeen tot vertraging van een project. De resultaten van dit

onderzoek zijn nieuwe organisatorische patronen die praktische oplossingen bieden voor deze

problemen. Het is de eerste keer dat deze oplossingen worden geformaliseerd en gepresenteerd als

een organisatorische patroon en geïntegreerd in de organisatiestructuur patroon taal van (Coplien &

Harrison, 2005). Met dit resultaat kan een multidisciplinair team dat een mechatronisch systeem

gelijktijdig ontwikkelt profiteren. Het maakt hen bewust van: een oplossing voor hun probleem,

wanneer het toegepast kan worden, de krachten en de compromissen van de oplossing, en hoe de

oplossing kan worden geïmplementeerd. Deze patronen bieden multidisciplinaire teams de kans om

de genoemde problemen op te lossen.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

9

Table of contents

Acknowledgement ... 4

Abstract ... 5

Samenvatting ... 7

1 Introduction ... 14

1.1 Thesis ... 14

1.2 Mechatronic system development.. 14

1.3 Problem statement and research question ... 15

1.4 Benefits and relevance .. 15

1.5 Document layout ... 16

2 Background .. 17

2.1 Mechatronic system development.. 17

2.2 Existing solutions ... 18

2.3 Practice, patterns, and pattern language .. 18

3 Research description ... 20

3.1 Introduction ... 20

3.2 Purpose .. 20

3.3 Literature study ... 23

3.3.1 Introduction ... 23

3.3.2 Purpose .. 24

3.3.3 Sources .. 24

3.3.4 Practice mining .. 25

3.3.5 Result ... 25

3.4 FMEA worksheets analysis .. 26

3.4.1 Introduction ... 26

3.4.2 Purpose .. 28

3.4.3 Sources .. 30

3.4.4 Practice mining .. 31

3.4.5 Result ... 31

3.5 Retrospective report analysis .. 33

3.5.1 Introduction ... 33

3.5.2 Purpose .. 33

3.5.3 Sources .. 34

3.5.4 Practice mining .. 35

3.5.5 Result ... 35

3.6 Writing patterns .. 37

3.6.1 Introduction ... 37

3.6.2 Purpose .. 37

3.6.3 Sources .. 38

3.6.4 Result ... 39

3.7 Pattern evaluation ... 40

3.7.1 Introduction ... 40

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

10

3.7.2 Purpose .. 40

3.7.3 Result ... 41

3.8 Result ... 44

4 Results ... 45

4.1 Introduction ... 45

4.2 Patterns ... 45

4.2.1 Introduction ... 45

4.2.2 Pattern language ... 45

4.2.3 Pattern: Common Plan .. 48

4.2.4 Pattern: Hardware in the Loop .. 52

4.2.5 Pattern: Simulator in the Loop .. 56

4.2.6 Conclusion ... 59

4.3 Pattern evaluation ... 59

4.3.1 Introduction ... 59

4.3.2 Review feedback on the patterns .. 59

4.3.3 Coverage of failure categories ... 62

4.3.4 Conclusion ... 63

4.4 Conclusion ... 63

5 Discussion .. 65

5.1 Patterns ... 65

5.1.1 Commonalities between patterns ... 65

5.1.2 General pattern applicability ... 65

5.1.3 Pattern language ... 65

5.2 Evaluation .. 66

5.2.1 Coverage .. 66

5.2.2 Review ... 66

5.3 Research approach .. 66

5.3.1 Influence of personal knowledge .. 66

5.4 Recommendations and future work ... 67

5.4.1 Pattern description .. 67

5.4.2 Pattern language ... 67

5.4.3 Solution for top most failure categories ... 68

5.4.4 Mining different sources ... 68

5.4.5 Relationship between standards and language .. 68

6 Conclusion ... 69

7 Reference .. 71

Appendix A Acronyms ... 75

Appendix B Glossary ... 76

Appendix C Confidential sources .. 78

Appendix D Literature study: practices ... 79

Appendix E FMEA: Worksheet layout ... 83

Appendix F FMEA: process for creating failure category ... 84

Appendix G Result of FMEA worksheet analysis ... 90

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

11

Appendix H Failure category statistics (based on FMEA and Retrospective reports)....................... 95

Appendix I Positive formulation of failure category .. 97

Appendix J Result of retrospective report analysis ... 98

Appendix K Practices with context and forces ... 104

Appendix L Pattern sequences ... 105

Appendix M Pattern feedback ... 107

Appendix N Mapping literature practices to failure categories .. 110

Appendix O Referenced patterns .. 111

Appendix P Pattern Language... 113

Appendix Q Examples of form layout .. 115

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

12

Table of figures

Figure 3.2-1: Form layout for writing a pattern (based on (OrgPatterns, 2001)) 21

Figure 3.2-2: Research setup ... 22

Figure 3.4-1: Types of FMEA (Haapanen & Helminen, 2002) .. 28

Figure 4.2-1: Pattern sequences as part of two pattern languages .. 46

Figure 4.3-1: Review feedback: Is pattern description clear? ... 60

Figure 4.3-2: Standard deviation for pattern rating .. 61

Figure 4.3-3: Standard deviation for Simulator in the Loop .. 61

Figure E-1: FMEA worksheet example... 83

Figure F-1: Process description for the classification of potential failure modes 84

Figure F-2: Process description for creating failure categories ... 86

Figure P-1: Integration of patterns (gray squares) in people and code pattern language 113

Figure P-2: Integration of patterns (gray squares) in project management pattern language 114

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

13

Table of tables

Table 3.2-1: Relationship of sources to pattern description ... 21

Table 3.3-1: Keywords used to find literature ... 24

Table 3.3-2: List of publications ... 25

Table 3.3-3: Mining practices in publications .. 26

Table 3.3-4: Practices mined from publications .. 26

Table 3.4-1: FMEA severity ranking ... 29

Table 3.4-2: Examples of failure category overview ... 32

Table 3.4-3: Practices mined during FMEA worksheet analysis .. 32

Table 3.5-1: Examples of remarks mapped onto failure category .. 36

Table 3.5-2: Most important failure categories in reports.. 36

Table 3.5-3: Practices mined during retrospective report analysis ... 36

Table 3.6-1: Practices found in the research ... 38

Table 3.6-2: Practice with problem statement: “How can…” ... 39

Table 3.6-3: Creating a pattern sequence based on unresolved forces .. 40

Table 3.7-1: Feedback form used for pattern review .. 43

Table 3.7-2: Failure categories related to the new patterns ... 44

Table 4.3-1: Coverage of failure categories by the new patterns ... 62

Table 5.4-1: Existing patterns referred in new patterns ... 68

Table D-1: Practices mined from literature ... 79

Table F-1: Process description for classification of potential failure modes (Figure F-1) 85

Table F-2: Examples of classification of the potential failure modes .. 85

Table F-3: Process description for creating failure category ... 87

Table G-1: Failure category overview based on FMEA worksheets .. 90

Table G-2: Mapping of practice name to solution .. 94

Table H-1: Failure category statistics .. 96

Table I-1: Translation of failure category to success category .. 97

Table J-1: Failure category overview based on retrospective reports .. 98

Table J-2 Mapping of practice name to solution ... 102

Table K-1: Pattern description with context, problem, and forces ... 104

Table L-1: Pattern sequences based on unresolved forces ... 105

Table N-1: Mapping practices to failure category ... 110

Table O-1: Patlets of referred patterns ... 111

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

14

1 Introduction

1.1 Thesis
This thesis considers the problems encountered when developing a mechatronic system. The

objective of this thesis is to write the existing solutions to these problems in the format of

organizational patterns.

The terms relevant for understanding this chapter are briefly introduced here (see also Appendix B

for the Glossary):

 Concurrent engineering. A methodology used in product development based on the concept

of tasks executed simultaneously. Some examples include the parallel development of a

system, subsystem, or module.

 Failure Methods and Effects Analysis (FMEA). This is a process whose objective is to prevent

or reduce the impact of a potential failure.

 Mining. The process of analyzing data and summarizing such data into useful information.

Within the context of this thesis, such useful information (practice) contains a problem

description and the description of the solution that solves the problem.

 Pattern language. A network of interrelated patterns that define a process for resolving

development problems systematically.

 Practice. A way to solve a problem. A practice describes the problem and its solution, and

has a descriptive name based on the solution.

 Retrospective. A retrospective is a team activity in which the team reflects on the past

period of development. The objective is to learn from the past period and use this knowledge

to increase the quality of the product and work life of team members.

Section 1.2 introduces the development of a mechatronic system. Section 1.3 presents the problem

statement and research questions. This is followed by the benefits and relevance of this research in

section 1.4. The last section (section 1.5), describes an outline of this document.

1.2 Mechatronic system development
This section describes mechatronic systems and how they are developed. More information on this
subject appears in section 2.1.

The term mechatronic was introduced in 1969. Over the past 40 years, many definitions were
presented (Colorado State University, 2012). Thus, defining a mechatronic system precisely becomes
even more difficult. For this document, the definition of a mechatronic system is:

“A computer-controlled mechanical system [that includes] both an electronic
computer and electromechanical components” (Wikipedia - Mechatronics, 2015)

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

15

In the literature, other names are used for this definition as well:

 Automatic machinery

 Complex manufacturing systems

 High-tech system

 High-end system

The development of a mechatronic system is traditionally done sequentially. First, a mechanical
design is made, followed by an electronic design, and then software is developed to control the
system (Boucher & Houlihan, 2008; Alvarez Cabrera et al., 2010). Because there is a demanding need
for earlier introduction of these systems into the market, another strategy is chosen by
manufactures. In this strategy, system development is done in parallel (concurrent engineering) by
the disciplines. All disciplines work on their part of the system simultaneously. These parts are then
integrated to become one system. This strategy can accelerate the process of developing a system
with half a year (Teich, 2012). Another advantage of this strategy is that a multidisciplinary technical
solution can be considered because no design is “frozen”. This can lead to better overall system
behavior because the interaction among mechanical, electronics, and control behavior can be
addressed (Alvarez Cabrera et al., 2010).

1.3 Problem statement and research question
Development of a mechatronic system, subsystems, and even modules of these subsystems can be

done in parallel by different disciplines. Through an integration process, these modules and

subsystems are joined to become one system. To accomplish this, intense collaboration between

disciplines is required. This way of working introduces dependencies between disciplines that can

introduce problems. Such problems can then lead to integration issues and project delays (Schafer &

Wehrheim, 2007; Bradley, 2010).

This problem statement leads to the following research question:

“Is it possible to formulate organizational patterns that can be used for the development

and integration of a mechatronic system in a multidisciplinary environment developed

concurrently?”

1.4 Benefits and relevance
The result of this research can be an addition to the current set of patterns and expansion of the

existing pattern languages (Coplien & Harrison, 2005). Once the patterns are published, the

organizations that develop mechatronic systems can benefit from the proven solutions. Such

organizations will know how to apply the solution and what the resulting context will be. An

opportunity for publication is to submit these patterns to the ScrumPLoP community (ScrumPLoP,

2015), an active community with the mission of building a body of pattern literature around Scrum

and Agile that can be shared easily.

This research also leads to new questions that will become recommendations for future research

work. Other students or researchers can use these questions as research topics.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

16

1.5 Document layout
After the introduction of Chapter 1, Chapter 2 (“Background”) provides some background

information on developing a mechatronic system in a multidisciplinary team, and the problems that

are encountered.

Chapter 3 (“Research description“) describes the research setup and presents the intermediate

results. The research is divided in five steps. Each section describes the expected result, used

sources, and results achieved. The last section provides a summary of this research.

Chapter 4 (“Results”) presents the three new organizational patterns and their related pattern

languages. It also presents the results from the evaluation of the reviewers, and how many of the

problems of one organization are covered by the new patterns.

Chapter 5 (“Discussion”) discusses the research, results, and evaluation. It also proposes topics for

future research.

Chapter 6 (“Conclusion”) answers the research questions and the problem statement.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

17

2 Background

2.1 Mechatronic system development
Mechatronic system development (see also section 1.2) requires a multidisciplinary approach. The

disciplines that have to work together are electronics, mechanics, and software. The increasing

complexity of the systems and integration of different technologies makes it essential for disciplines

to work in close collaboration. This requires intense communication during development. This human

interaction is an important aspect that should be considered (Boucher & Houlihan, 2008; Bradley,

2010; Bonnema, Borches & Houten, 2010).

To increase the time to market of mechatronic systems, they are developed with concurrent

engineering, which is the parallel development of a system, subsystem, or module. With such

concurrent engineering, mechatronic systems can be available in the market up to six months earlier

than the classical design flow in which the system is developed sequentially (Teich, 2012). This

acceleration occurs partly because the integration of the components delivered by the disciplines

(e.g. software module and hardware components) starts early in the development cycle. This helps

to:

 Start testing the parts (e.g., hardware and software) together in an early stage. This makes

any integration issues apparent. For example, when a root cause is a hardware problem, and

it is discovered late in the development cycle, it might not be possible to solve such problem

in the hardware because of the long hardware lead times. This long lead time might cause

the project to miss its delivery deadline. In order to meet the deadline, a solution is then

created in the software because it has no long lead time. The early insight of integration

issues has the advantage that problems can still be solved at the root cause. This can prevent

implementation of software solutions for underlying hardware problems, thus making the

software less complex and more maintainable.

 Determine how the subsystem is to be integrated in the system.

 Determine the user experience of the subsystem behavior. This has the advantage that new

or changed user requirements can be included relatively easy, thus preventing "under” or

"over design."

To allow concurrent engineering, the design from the various disciplines should be shareable

between such disciplines at an early stage. In addition, each discipline should have the ability to test

its functionality independently as much as possible. The project team should then integrate all the

functionality pieces efficiently.

The system stakeholders are customers, production department, service department, and marketing.

Other stakeholders that might be involved are suppliers and authorities (e.g., the U.S. Food and Drug

Administration (FDA)) (Graaf, Lormans & Toetenel, 2003).

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

18

2.2 Existing solutions
Design patterns are available for the development of mechatronic systems. Some examples are

safety patterns (Armoush, Salewski & Kowalewski, 2008; Wagner, Schatz, Puchner & Kock, 2010),

patterns to improve the model quality (Kim, Kim & Hong, 2009), system control patterns (Pont &

Banner, 2004; Fantuzzi, Bonfe, Secchi, e Reggio & Emilia, 2009; Garro, Ordinez & Alimenti, 2011), and

patterns for parallel processes (Keutzer, Massingill, Mattson & Sanders, 2010). These patterns are

mainly mono-disciplinary and do not consider concurrent engineering.

Various methods and frameworks are defined to support the development of mechatronic systems.

Some examples are a framework for multidisciplinary teams (Alvarez Cabrera et al., 2010), a

framework for designing architecture (Chen & Torngren, 2001), and a model for the creation of

system architecture (Heemels, van de Waal & Muller, 2006). The frameworks provide solutions for

certain aspects of concurrent engineering and collaboration between different disciplines. The

frameworks consist of an integrated solution with tools, processes, and methodologies. Its

introduction requires an investment from the organization. The organization in which developers are

doing their job will not always have access to such a framework. A reason can be that the

organization does not have the resources to do such an investment. Another reason might be that

the organization has defined their own specific way of working to develop mechatronic systems (see

also 2.3).

The problems that continue to exist with the existing solutions are:

 No good coordination between the various disciplines, which can lead to wrong solutions for

system problems, or to the system not meeting technical requirements. For example, a

particular hardware engineer might decide to reduce the amount of sensors on a system

because of costs or lack of physical space. However, without these sensors, it might be

difficult for the software to determine the system status. Consequently, the software has to

implement derivative logic to determine the system state, thus causing the software to

become complex and introduce the risk of bugs and maintenance burden. Another problem

can be that the software cannot guarantee the real system status.

 No early testing and verification, which can cause inconsistent behavior at the system level,

or to the end result not meeting user needs and/or technical requirements.

2.3 Practice, patterns, and pattern language
There are organizations that have encountered and addressed the issues described in section 2.2.

Their solution most likely considers the organization, current processes, and the product. Such

solution can be a best or common practice that might not resolve the same problems within other

organizations because it might not be generally applicable. For a practice to become a pattern, it

should first solve all its conflicting interests (forces). Next, the solution should improve the situation

and not make it comparable or worse. Finally, the solution should have a proven track record.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

19

A definition of the term pattern used commonly is:

“Each pattern describes a problem that occurs [repeatedly] in our environment, and

then describes the core of the solution to that problem, in such a way that you can use

this solution a million times over, without ever doing it the same way

twice.”(Christopher, Ishikawa & Silverstein, 1977).

A pattern describes its solution generically. This makes it possible to customize the use of the pattern

to the environment in which it is to be implemented. Such flexibility results in many different

applications of the same pattern. Almost every software engineer knows the design patterns of the

Gang of Four (Gamma, Helm, Johnson & Vlissides, 1994). Non-design patterns, such as organizational

and pedagogical patterns, are also commonly used (Buschmann, Henney & Schmidt, 2007), but are

less known.

A pattern should be able to describe the following items (Coplien & Harrison, 2005):

 Pattern name (Title)

 Context in which the problem is found

 Pattern forces or tradeoffs

 Solution

 Explanation of why the pattern works

Patterns can be viewed as standalone solutions or as a collection of solutions. Different types of

collections exist. Examples include pattern complements, compounds, sequences, and languages

(Buschmann, Henney & Schmidt, 2007).

A pattern language can be seen as a roadmap. The exact path that an organization should take

depends on circumstances and on the progress such organization makes to mature its development

process. A pattern language is a language that comprises patterns and rules to combine patterns in

meaningful ways and in a particular sequence. It describes how to create an integrated system

(Coplien & Harrison, 2005). For additional information about this topic, refer to (Buschmann, Henney

& Schmidt, 2007).

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

20

3 Research description

3.1 Introduction
This chapter describes the research that was conducted to obtain an answer for the research

question (section 1.3).

This research mines practices by executing a literature study and analyzing field data. The literature

study searches for journal articles, proceedings, and books. Within these publications, practices are

mined. Practices are also mined in field data made available by an organization that develops and

produces mechatronic systems. Only a selection of these practices is detailed in a pattern description

and integrated into a pattern language. These patterns are then evaluated to determine whether

they can answer the research question positively.

The terms relevant for understanding this chapter are briefly introduced here (see also Appendix B

for the Glossary):

 Failure category. A generalization of failures that can potentially occur during the

development, deployment, or use of a mechatronic system. These failure categories are

based on potential failures from the FMEA worksheets, and they are used to allow for the

processing of the great diversity of information available in such worksheets, as well as to

obtain an insight on the size and severity of the field problems.

 FMEA worksheet. This is a recording of FMEA activity. An example of such a worksheet can

be found in Appendix E.

 Potential failure mode (also known as Failure mode). This term is used within FMEA

worksheets (section 3.4), and it is a description of a specific failure that may occur within the

project or with the system and its functions (NASA Academy of Aerospace Quality, 2014,

DFMEA continued).

 Retrospective report. This is a recording of a retrospective. This report usually contains

positive, negative, and improvement remarks.

Section 3.2 provides a description of the purpose of this research and the expected results. The

following five sections (sections 3.3 to 3.7) describe each research step in detail. Each section

describes the expected result, the sources used, and results achieved. Sections 3.3 to 3.5 also

describe the process for mining the practices. The final section (section 3.8) provides a summary of

the results.

3.2 Purpose
This section describes the expected result from this research, which is to answer the research

question (section 1.3) positively. This means that this research should produce those patterns that

can be used for the development and integration of a mechatronic system in a multidisciplinary

environment developed concurrently.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

21

This result can be achieved when the following activities are executed:

 Description of the patterns according to the form layout of Figure 3.2-1

 Description of the patterns based on verifiable sources

 Integration of the patterns into a pattern language

 Evaluation of the patterns

The patterns are described according to the form presented in Figure 3.2-1. This form is chosen

because the new patterns will become part of the pattern language of (Coplien & Harrison, 2005).

Two examples of pattern descriptions are provided in Appendix P.

Title (can be descriptive and sometimes evocative)

A picture (should underscore the human dimension and should help make the

pattern memorable)

Prologue that describes the context in which the problem is found

Problem statement

Discussion on the pattern forces or tradeoffs

Solution presentation (sentence should start with “Therefore:”)

Discussion of why the pattern works

Optionally, a description of:

- Related patterns

- Examples

- Sample situation

- Principles involved

- Related reading
Figure 3.2-1: Form layout for writing a pattern (based on (OrgPatterns, 2001))

The pattern description should be based on the information gathered during this research. Verifiable

sources should be used to convincingly prove that the solution is used for real problems. The

relationship between the patterns, practices, and sources used is expressed in Table 3.2-1.

Table 3.2-1: Relationship of sources to pattern description

Pattern Practice Literature FMEA worksheet Retrospective report

Title Name

Problem statement Problem Problem
Failure category
and examples of potential failure mode(s)

Failure category
and examples of negative remarks

Solution presentation Solution Solution
Examples of current design control or
recommended action.

Examples of positive or
improvement remarks

The first column describes the information required for the pattern description (Figure 3.2-1). The

form layout shows that more information is required for a pattern description. For the clarity of this

view, this is not included in Table 3.2-1. The second column shows the information required to

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

22

describe a practice. Such best or common practice describes the solution to a problem, but it might

not resolve the same problems within other organizations because it is not generally applicable. The

next three columns relate to the sources used in the research “step 1,” “step 2,” and “step 3” (Figure

3.2-2). These three steps produce practices as input for writing patterns in “step 4.” The examples

given in these columns are retrieved from the sources. Details on this information can be found in

the sections that describe that step.

Step 1:

Literature study

Step 2:

FMEA analysis

publications

practices

Step 3:

Retrospective

analysis

practices

Step 4:

Write patterns

practices

practices
practices,

failure categories

Step 5:

Evaluation

patterns

integrated into

pattern languages

Source:

Digital libraries,

Google Scholar

Source:

Field data from an organization

Source:

Network of

people

publications

reviewers

FMEA worksheets retrospective reports

indication of the quality of the patterns

improvement suggestions for each pattern

patterns coverage calculation of failure categories

occurence of

failure catgegories
occurence of

failure categories

Figure 3.2-2: Research setup

In “step 1,” the practices are mined from publications. In “steps 2” and “3,” the practices are mined

from field data. In “step 2,” the same is done on FMEA worksheets, and in “step 3,” on retrospective

reports. The practices mined from these steps are given a practice name, which is inspired by the

solution described for the practice. To prevent unnecessary name variation, the practice names

already defined in a previous step can be used (indicated by the lines between “steps 1, “2,” and

“3”).

In “steps 2,” failure categories are defined. These are failure generalizations that can potentially

occur during the development, deployment, or use of a product. These categories are used as the

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

23

problem description of a practice, and they are made to allow the processing of the great diversity of

information retrieved from the FMEA worksheets, which cover all aspects from project initiation to

system maintenance. These failure categories are also used in “step 3” to find solutions that solve

the problem.

The failure categories can also provide insight on the size and severity of field problems. In “steps 2”

and “3,” the field data are categorized into the failure categories. This information is then used in the

pattern evaluation (“step 5”).

 “Step 4” receives the practices from the previous steps. These data consist of the practice name and

problem and solution description. Only some of these practices are detailed according to the form as

used by (Coplien & Harrison, 2005) (see Figure 3.2-1). In this “step 4,” references are added to the

pattern description when they contribute to pattern readability and clarity. These references can be

journal articles, books, or websites. These patterns are then integrated into the pattern language,

which requires knowledge of all the patterns (Coplien & Harrison, 2005). Such integration should be

based on the unresolved force(s) of the solution provided for a pattern. The problem statement of

the other pattern should address the unresolved force(s). This integration places the patterns into

the context of other problems and solutions. This way, patterns can be more easily understood and

successfully applied.

The patterns are evaluated in “step 5.” Individuals with experience developing mechatronic systems

in a multidisciplinary environment conduct this evaluation. This evaluation is performed to

determine whether a multidisciplinary team that develops a mechatronic system can use the

patterns, and whether such patterns solve the problem they describe. It is also determined, by the

obtained occurrences of the failure categories, how many of the problems of one organization are

covered by these patterns. The result indicates the significance of the patterns in relationship to the

failure categories.

3.3 Literature study

3.3.1 Introduction

In this literature study, publications (journal articles, proceedings, and books) are searched for the

following subjects:

 Development and integration of mechatronic systems

 Development by a multidisciplinary project

 Concurrent engineering

These publications are analyzed and summarized into practices (problem/solution description).

The following sections describe the expected results, sources used, process for mining the practices,

and results achieved.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

24

3.3.2 Purpose

This section describes the expected result of the literature study, which is that the selected

publications can be used as a source of information when the patterns are to be written. Another

expected result is to have sufficient information to start writing patterns.

This result can be achieved when the following data is produced:

 List of publications

 List of practices mined from the literature

The practices are presented in an overview of the solutions to given problems. Each

problem/solution pair should have a unique name (practice name) based on the solution description.

Information from these practices is used for writing patterns (Table 3.2-1):

 The practice name is used for the Title

 The problem is used for the Problem statement

 The solution is used for the Solution presentation

To prevent unnecessary variation of practice names, one name can be assigned multiple times when

the solutions appear to be equal. No name is created when a solution is already mentioned as a

pattern (Coplien & Harrison, 2005) in order to prevent rewriting existing patterns.

3.3.3 Sources

This section describes the sources used for the literature study.

A search on journal articles, proceedings, and books is conducted with the scientific publishing sites

Springer, ACM Digital Library, IEEE Digital Library, and ScienceDirect (Elsevier). Google Scholar is also

used to search for books. The keywords used for searching are listed in Table 3.3-1.

Table 3.3-1: Keywords used to find literature

Keywords

Automatic machinery Embedded systems Interdisciplinary Patterns

Collaboration Engineering disciplines Manufacturing systems Process

Complex systems Hardware Mechanical System Product development

Concurrent High-end system Mechatronic Project

Cross-functional High-tech system Multidisciplinary Software

Development Innovation teams Multi-domain System engineering

Domains Integration Organization Teams

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

25

3.3.4 Practice mining

This section describes the process for mining practices from the publications, which is done in several

steps. First, a summary is made of each publication (Table 3.3-2), and this consists of the abstract,

problems, and solutions. The result of this summarization is a total of 147 solutions and 158

problems. The relationship between the problem and its solution is not always clear in the

publication; therefore, only those solutions that could be related to a problem are selected, which

results in problem/solution pairs. Then, these pairs are combined when they describe the same type

of solution. For each pair, a practice name is created that is inspired by the described solution.

Practice names that relate strongly to each other are reviewed. After the review, the names can be

made more distinguishable, or the practices can be merged.

3.3.5 Result

This section describes the result of the search for valuable publications and the mining of the

practices.

The result of the literature study is that the expected results (section 3.3.2) are achieved, as follows:

 List of publications. The result is presented in Table 3.3-2.

 List of practices mined from the literature. The result is presented in Table 3.3-3 and Table

3.3-4. The full overview is provided in Table D-1.

The publications that can possibly answer the research questions are searched as described in 3.3.3.

The results of the search are:

 15 journal articles/proceedings published between 2003 and 2013

 four books published between 1998 and 2013

The 19 publications found can provide insight on the problems that occur during development and

integration of mechatronic systems, and the development by a multidisciplinary project. That makes

these publications valuable sources of information when the patterns are to be written.

Table 3.3-2: List of publications

List of publications (books, journal articles, and proceedings)

(Michalski, 1998) (Heemels, van de Waal & Muller, 2006)
(Boucher & Houlihan, 2008)

(Alvarez Cabrera et al., 2010)

(Parker, 2003) (Schafer & Wehrheim, 2007) (Ratcheva, 2009) (Nakata & Im, 2010)

(Graaf, Lormans &
Toetenel, 2003)

(Vijaykumar & Chakrabarti, 2007)
(Moneva, Hamberg, Punter &
Vissers, 2010)

(Zheng, le Duigou, Bricogne &
Eynard, 2013)

(Muller, 2005)
(National Aeronautics and Space
Administration, 2007)

(Kleinsmann, Buijs &
Valkenburg, 2010)

(Jurgens-Kowal, 2013)

(Northrup &
Northup, 2006)

(Beckers, Muller, Heemels & Bukkens,
2007)

(Bradley, 2010)

Another result of this literature study is 39 practices. For each practice, one or more problems are

described, along with one or more similar solutions, and each practice is given a unique practice

name. Several examples can be found in Table 3.3-3. The full overview is provided in Table D-1. This

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

26

information is sufficient to start writing a pattern. An overview of all the practice names is provided

in Table 3.3-4.

Table 3.3-3: Mining practices in publications

Problem Solution Practice name

Many integration problems at the end of project.
(Alvarez Cabrera et al., 2010), (David Bradley, 2010)
Fault detection and diagnoses can only be executed
when final system is available. (Boucher & Houlihan,
2008)

Create setup that involves only critical hardware
parts and software to be integrated. (Boucher &
Houlihan, 2008), (David Bradley, 2010), (Alvarez
Cabrera et al., 2010)

Hardware in the
Loop

System level issues discovered late in design process.
Consequently, design options are reduced because
critical decisions are already made. (Boucher &
Houlihan, 2008)

Simulate behavior at system level. With this
simulation, virtual tests can be executed early in
design cycle. This allows early identification of
problems at system level. (Boucher & Houlihan,
2008)

Simulator in the
Loop

Table 3.3-4: Practices mined from publications

Practice names

Abstract design Define dependencies Involve key stakeholders Only design critical parts

Alert design change Define roles in team Keep the schedule Provide an incentive

Brainstorm on Design Design walk through Keep track of requirements Shared leadership

Budget design Empower the team Key master Simulator in the Loop

Build commitment Encourage risk taking Knowledge integration Single point of contact

Central power Establish a scoreboard Learn by interaction Small team

Clear priorities
Hardware in the Loop /
Iron Bird

Learning community Splitter

Clear tasks Incorporate goals Lessons learned Team of experts

Common ground Information flow
Manage team member
expectations

Work in parallel

Common plan Integrator Mutual accountability

The results of this literature study are used in the next sections. The publications are used to write

the patterns (section 3.6). The practices are used to write the patterns (section 3.6).The practices are

also used to prevent practice duplication during the retrospective analysis (section 3.4).

3.4 FMEA worksheets analysis

3.4.1 Introduction

To allow practice mining in a real organization that develops mechatronic systems, FMEA worksheet

analysis is performed. Creating an overview of the failures that can occur during the development

and use of a mechatronic system, as mentioned in the worksheets, allows practices to be mined.

FMEA is a process with the objective of preventing or reducing the impact of a potential failure mode

(see terms below) identified by participants (e.g., project members, suppliers, or customers) during

brainstorm sessions. The activity identifies the potential failure modes of a product

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

27

(Functional/Design FMEA) being developed, or that can occur during the development process

(Process FMEA). For each potential failure mode, the following items are determined:

 potential failure effects

 potential cause(s)

 probability

 detection

 severity

An FMEA worksheet (Figure E-1) is the result of an FMEA activity.

The terms relevant for understanding FMEA worksheets are (see Appendix B for Glossary):

 Potential failure mode (also known as Failure mode). The failure mode is a description of a

specific failure that may occur within the project, or with the system and its functions (NASA

Academy of Aerospace Quality, 2014, DFMEA continued).

 Potential failure effect(s) (also known as Failure effect). Description of the immediate

consequence of a specific failure (NASA Academy of Aerospace Quality, 2014, DFMEA

continued).

 Severity. Evaluation of the severity of the failure effect on the next system or the

internal/external customer. Sometimes, large severity values can be reduced through design

reviews that compensate or mitigate the resulting severity (NASA Academy of Aerospace

Quality, 2014, DFMEA continued).

 Current design control. List the verification/validation design activities, or other related

activities (NASA Academy of Aerospace Quality, 2014, DFMEA continued).

 Recommended action. Description of an action that can be taken to prevent the failure from

happening, or eliminate/reduce the immediate consequences of the failure (NASA Academy

of Aerospace Quality, 2014, DFMEA continued).

Corrective measures need to be taken in order to prevent or reduce the impact of a potential failure

mode with high severity ranking. Such measures are called current design controls or recommended

actions (Department of defense, 1980).

In this analysis, the term failure category is used as a generalization of potential failure modes. As

part of this FMEA worksheet analysis, failure categories are defined. This categorization is made to

allow the processing of the great diversity of information retrieved from the FMEA worksheets. It is

not possible to use standardized failure categories because “there is no single list of failure modes

that apply to all products. Some companies try to develop such lists for their specific products”1.

Another reason is that the standardized failure categories (Chandler, Denson, Rossi & Wanner, 1991)

1
 This statement was made by Carl Carlson (author of (Carslon, 2012)) in an email conversation that I had with him (30-August-2014).A

similar statement was made by Michael Herman (FMEA-FMECA.com, 2013) in an email conversation that I had with him (3-September-

2014).

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

28

and (Flores & Malin, 2013, Appendix A) are not supportive in finding multidisciplinary problems for

causes that include the following:

1. The standardized failure categories lists are very exhaustive. This makes it difficult to

generalize the failure.

2. The standardized failure categories focuses on specific elements (fluid, sensor, I/O, etc.) and

not on the product (mechatronic module or system).

3. The potential failure modes from the received FMEA worksheets have great diversity. The

worksheets cover all aspects from project initiation to system maintenance, which means

that the potential failure mode can relate to the product or the process (see Figure 3.4-1).

Types of FMEA

Product Process

Hardware Software Timing/

Sequence

Production Maintenance Use

- Electrical

- Mechanical

- Interface

- Program/

 Task

- Hardware interfaces

- Software interfaces

- Assembly

- Chemical

- Machining

- Software

- Configuration

 control

- Maintenance

 operations

- Documentation

- Training

- Modes

- Human interface

- Overstress

- User profiles

- Documentation

- Training

Figure 3.4-1: Types of FMEA (Haapanen & Helminen, 2002)

The following sections describe the expected results, sources used, process for mining the practices,

and results achieved.

3.4.2 Purpose

This section describes the expected results of the FMEA worksheet analysis, which are to have

sufficient information to start writing patterns, allow practice mining in retrospective reports, and

determine how many of the problems of one organization are covered by these patterns. These

results indicate the significance of the patterns to the failure categories.

These results can be achieved when the following information is produced:

 List of failure categories, sorted by average severity

 List of occurrences of failure categories in the FMEA worksheets

 List of practices mined from the FMEA worksheets

The failure categories should be defined based on the FMEA worksheets, and all potential failure

modes need to be assigned to a failure category.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

29

One failure category should describe the following items:

 Name of the failure category. This name should be descriptive of a problem. This helps when

potential failure modes need to be assigned to the failure category.

 Average severity ranking. The organization that made the worksheets available customized

the severity ranking standard SAE J1739 FMEA (Society of Automotive Engineers, 2000) to fit

their needs. This is presented in Table 3.4-1. The ranking of the average severity can give an

indication on the impact of the failure category on the project and mechatronic system.

 Occurrences in worksheets. For each set (failure category), the number of elements

(potential failure modes) is counted. The amount of occurrences can provide an indication as

to which failures are of biggest concern to the projects.

 Examples of potential failure mode(s). Examples of potential failure modes assigned to the

failure category. These can be used as failure category examples (examples of the problem).

A maximum of four potential failure mode(s) are defined in order to maintain the description

generic.

 Examples of potential failure effect(s). Generic examples of the potential failure effect(s).

The purpose of these examples is to provide more context to the failure categories. A

maximum of four potential failure effect(s) are defined in order to maintain the description

generic.

 Examples of current design control and/or recommended action. Generic examples of the

current design controls and recommended actions, which can be used to define practices. A

maximum of four current design control and/or recommended action are defined in order to

maintain the description generic.

Table 3.4-1: FMEA severity ranking

Effect Severity of Effect Ranking

Hazardous without
warning

Human safety issues 10

High
Production material damage or destruction
Major tool/equipment damage

8

Medium
Minor tool/equipment damage
system specifications compromised

5

Low
Brief production interruption
non-critical specifications compromised

2

None No measurable effect 0

Practice names should be given to a failure category when the solution solves the problem. To

prevent unnecessary variation of practice names, one name can be assigned multiple times when the

solutions appear to be the same. No name is created when a solution is already mentioned as a

pattern (Coplien & Harrison, 2005) in order to prevent rewriting existing patterns. Another way to

prevent unnecessary name variation is the use of the practice names already defined in the literature

study (section 3.3). The practice names should only be used when the solutions matches.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

30

Information from these failure categories are used for writing patterns (Table 3.2-1):

 The practice name is used for the Title

 The failure category and examples are used for the Problem statement

 The current design control or recommended action is used for the Solution.

The list of failure categories is limited to 30 categories in order to maintain the description generic.

This list should also be able to indicate those failure categories that are covered by the new patterns.

3.4.3 Sources

This section describes the sources used for the FMEA analysis. The objective is to create an overview

of all potential failure modes from the FMEA worksheets. With this overview, failure categories can

be determined.

The FMEA worksheets (Figure E-1) used for this research were made available by an organization that

develops mechatronic systems (Appendix C). This organization operates globally and has its own

research and development department that is responsible for creating the worksheets. In particular,

the project teams with the responsibility to deliver a module to the mechatronic system perform

such creation. The project teams consist of several disciplines that in most cases include software,

mechanics, electronics, product quality, factory integration, and service. During brainstorming

sessions, the project team identifies the risks of potential module or development process failure.

The risks are expressed by potential failure mode in a worksheet. The FMEA activity is executed

several times during module development, and such modules can be new or replacements of existing

modules.

The organization made 20 FMEA worksheets available that were created between 2006 and 2014.

For each worksheet, a determination is made as to whether it can contribute to the research

question. The selection criteria are:

 The project involves multidisciplinary activities

 The worksheet is written according to a formal layout. Examples are MIL-P-1629 by the US

Armed Forces Military (Department of defense, 1980) and ARP4761 by the Society of

Automotive Engineers (Society of Automotive Engineers, 1996)

 Duplicate worksheets are not used

The result is a selection of 17 worksheets that contain 1,185 potential failure modes.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

31

3.4.4 Practice mining

This section describes the process for mining patterns from the FMEA worksheets, which is

conducted in several steps. In the first step, failure categories are defined (Appendix F). This process

starts with a classification of all the potential failure modes (see Figure F-1) based on the definitions

of Figure 3.4-1. Next, the list of failure categories is defined based on the classification list (see Figure

F-2).

In the second step, all the current design controls and recommended actions of each failure category

are analyzed. First, an overview is created of all current design controls and recommended actions

that belong to the same failure category. Relationships and overlapping descriptions can be

rephrased in a generalized description. The descriptions also need to be rephrased to a more

abstract description, which should remove the specific technical context that makes it more

applicable for mechatronic systems in general. For each failure category, a maximum of four current

design controls and recommended actions are defined in order to maintain the description generic.

The generic examples of current design control and recommended action can be seen as a solution to

the problem (failure category). The solutions are given a practice name inspired by the solution

description.

3.4.5 Result

This section describes the result of the FMEA worksheet analysis, which is that the expected result

(section 3.4.2) has been achieved. The results are:

 List of failure categories sorted by average severity. The result is presented in Table 3.4-2,

first and second column. A full overview is given in Table G-1.

 List of occurrences of failure categories in the FMEA worksheets. The result is presented in

Table 3.4-2, third column. A full overview is given in Table G-1.

 List of practices mined from the FMEA worksheets. The result is presented in Table 3.4-3. A

full overview is given in Table G-1.

Table 3.4-2 (a full overview is given in Table G-1) contains sufficient information to start writing

patterns. The first row relates to the information available in the worksheets. The second row relates

to the information required to define a practice (relation is also expressed in Table 3.2-1). In the first

and fourth column, the practice problem is described. The fifth column contains examples to provide

more context to the failure category. The sixth column contains the solution. The practice name

(seventh column) is provided during the mining process (section 3.4.4). The relationship between the

solution (sixth column) and the practices name (seventh column) is provided in Table G-2.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

32

Table 3.4-2: Examples of failure category overview

Failure category
(The risk is that …)

A
ve

ra
ge

se

ve
ri

ty
 r

an
ki

n
g

O
cc

u
rr

en
ce

s
in

w

o
rk

sh
e

e
ts

Examples of
Potential Failure Mode(s)

Examples of
Potential Failure

Effect(s)

Examples of current
design control and/or
recommended action

Problem

Example of problem

Solution Practice name

Integrated system
behavior is not
considered

6.2 153 Collision between components
Pre-conditions for operation are
not met
Disturbances (e.g., vibration,
temperature variation)
influence performance

Reduced system
performance
Component or
system becomes
damaged

Improve design
3D design check
Bench testing

Mock-up
Hardware in the
Loop

System
deteriorates over
time

5.8 107 System becomes contaminated
Parts wear out
Corrosion on components
Parts become loose (e.g.,
because of aging glue, cracked
solder joints)

System becomes
unreliable
Component or
system becomes
damaged
Safety issues may
arise

Reduce load on
component (e.g.,
restrict number of
retries)
Execute lifetime tests
of component at
supplier

Module Testing

Table 3.4-2 (columns two and three) contains information on the average severity of the practices

and the amount of occurrences of the failure categories in the FMEA worksheets. The table shows

the relationship between the failure categories (first column) and the practice (seventh column).

When a given practice becomes a pattern, the coverage of that pattern can be determined. The

failure category is a generalization of the potential failure modes. This means that a pattern only

cover aspects of the failure category. An example of such is the practice Hardware in the Loop that

becomes a pattern. This relates to the failure category, Integrated system behavior is not considered,

which has 153 occurrences. From a total of 1,185 potential failure modes, this represents coverage of

12.9% of all potential failure modes. Depending on the pattern description, not all mentioned

problems will be solved.

Table 3.4-3 shows the 11 practices mined during the FMEA worksheet analysis. Each practice is given

a unique and descriptive name.

Table 3.4-3: Practices mined during FMEA worksheet analysis

Practice names

Clear plan Factory acceptance test Review deliverables

Define up/downgrade strategy Hardware in the Loop System integration testing

Drop-In replacement Mock-up Test with dummies

Embed knowledge in system Module Testing

The result of this FMEA worksheet analysis is used in the next sections. The list of failure categories is

used to assign retrospective remarks (section 3.5). The practices are used for writing patterns

(section 3.6). The practices are also used to prevent practice duplication during the retrospective

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

33

analysis (section 3.5). The list of occurrences of potential failure modes is used to determine the

failure category coverage of the new patterns (section 4.3.3).

3.5 Retrospective report analysis

3.5.1 Introduction

In order to allow practice mining in a real organization that develops mechatronic systems, a

retrospective report analysis is conducted. This mining is allowed by creating an overview of

retrospective remarks related to failure categories (section 3.4). The practices are mined based on

this overview.

A retrospective is a meeting in which a team reflects on the past period of development. A

retrospective report is the minutes of such meeting. The objective of the retrospective is to increase

product quality and the work life of team members. This is accomplished by incorporating the

successes and improvements in the next period. Retrospective can be performed in many different

ways (Derby & Larsen, 2006).

The terms that are relevant for understanding retrospective reports are (see also Appendix B):

 Positive remarks. Remarks on product development of which an individual or team is proud,

and that the individual or team want to continue doing. These remarks are reported as:

proud, positive, ‘+’, continue to do, etc.

 Negative remarks. Remarks on product development of which the individual or team is

dissatisfied. These remarks are reported as: negative, sorry, ‘-‘, sad, needs improvement, etc.

 Improvement remarks. Action assigned in order to improve a negative remark. These

remarks are reported as: action point, agreement on what should be changed, etc. Such

remarks are differentiated from the positive/negative remarks category because actions are

assigned to them; furthermore, these actions are to be executed in the upcoming period to

improve the current situation. Most of the remarks found in the reports describe an action

on how to improve.

The following sections describe the expected results, sources used, process for mining the practices,

and results achieved.

3.5.2 Purpose

This section describes the expected results of the retrospective report analysis, which are to have

sufficient information to start writing patterns, and be able to determine the coverage of failure

categories by the new patterns.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

34

These results can be achieved when the following information is produced:

 List of occurrences of failure categories in the retrospective reports

 List of practices mined from the retrospective reports

The information is retrieved from the retrospective reports. Only the relevant remarks should be

assigned to a failure category.

Practice names can be given to a failure category when the solution solves the problem. Unnecessary

variation of practice names should be prevented (see 3.4.2).

One failure category should describe the following items:

 Name of the failure category. These are defined in section 3.4, see Table G-1.

 Example of positive/negative/improvement remarks. Generic examples of the remarks

assigned to the failure category. The purpose of these examples is to provide more context

to the failure categories. A maximum of four remarks each are defined in order to maintain

the description generic.

Information from these failure categories can be used for writing patterns (Table 3.2-1):

 The practice name is used for the Title.

 The failure category and negative remarks are used for the Problem Statement.

 The positive and improvement remarks are used for the Solution presentation.

It should be possible to determine which failure categories are covered by the new patterns.

3.5.3 Sources

This section describes the sources used for the retrospective analysis. The objective is to create a

categorized (positive/negative/improvement remarks) overview of all retrospective remarks for all

reports.

The reports used for this research were made available by an organization that develops mechatronic

systems (see Appendix C). This organization operates globally and has its own research and

development department that is responsible for creating the reports. In particular, the department

teams have the responsibility to deliver features to the system, and they have to maintain their

software component(s). The organization made 59 reports available, which were created between

2008 and 2012.

A selection is made on the available reports. For each report, it is determined whether it can

contribute to the research question. The selection criteria are:

 The project involves multidisciplinary activities.

 The report contains retrospective remarks (positive, negative, and improvements).

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

35

The result of this step is a selection of 58 reports. The content (1,229 remarks) of the reports can be

categorized into the three retrospective categories (647 negative, 492 positive, 90 improvement

remarks).

3.5.4 Practice mining

This section describes the process for practice mining from the retrospective reports, which starts

with assigning relevant remarks to failure categories (section 3.4), and interpreting each remark.

Based on such interpretation, the remark can be assigned to a failure category. In order to assign the

positive remarks to the failure categories, a translation is made of the failure categories to the

success category (Table I-1). Using the success category, all positive remarks do not need to be

translated into the negative context of the failure category. This makes it easier to assign a positive

remark to a failure category.

This assignment results in an overview where a failure category has the description of a problem

(negative remarks) and a solution (positive or improvement remarks). The solutions are given a

practice name inspired by the solution description. Duplication of practice names should be

prevented.

3.5.5 Result

This section describes the result of the retrospective report analysis, which is that the expected result

(section 3.5.2) has been achieved. The results are:

 List of occurrences of failure categories in the retrospective reports. The result is presented

in Table 3.5-2. A full overview is given in Table H-1.

 List of practices mined from the retrospective reports. The result is presented in Table 3.5-3.

A full overview is given in Table J-1.

For the analysis, 58 reports are selected. These reports were created in the years 2008 to 2012

(section 3.5.3). The content of the selected reports are categorized into three retrospective

categories: positive, negative, and improvement remarks. This results in 1,229 remarks found in all

the selected reports. A total of 852 remarks could be assigned to a failure category. Because the

failure categories are based on FMEA’s and they relate to product (Functional/Design FMEA) or

process (Process FMEA) remarks, a total of 204 remarks related to organization could not be

assigned.

This retrospective analysis provides insight on the problems that software development teams

encounter during the development and maintenance of a mechatronic system. The reports are

valuable for mining practices. Several remarks are summarized in Table 3.5-1 (a full overview is

available in Table J-1). The first row relates to the information available in the retrospective reports.

The second row relates to the information required to define a practice (relation is also expressed in

Table 3.2-1). This table provides an overview of the remarks related to the failure categories, and it is

used to mine practices. The negative remarks can be seen as examples of problems that did occur.

The positive and improvement remarks can be seen as examples of solutions proven to be successful.

The practices are given a name inspired by their solution description. One practice can be assigned to

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

36

multiple failure categories, and one failure category can have multiple unique practices assigned to

it. The relationship between the solution and its practices name is provided in Table J-2.

Table 3.5-1: Examples of remarks mapped onto failure category

Failure
category

Negative remarks Positive remarks Improvement remarks

Problem Example of problem Solution Solution Practice name

Project plan is
not managed

Focus is only on solving
issues
Roadmap is not clear
Project is poorly
planned

Create roadmap (define features and
milestones)
Create planning/work breakdown and
track plan
Communicate project status

Organize regular meetings
with stakeholder to discuss
feature priorities and
requirements

Clear plan
Common plan
Prioritize for focus

Test coverage is
too low

Not all high risk issues
were verified
No testing is performed
on a real system
No test plan available

Create unit tests
Execute automated tests (e.g.,
weekend runs, nightly runs, smoke
tests)
Remote testing when specific
hardware is on another location

Write unit tests
Use simulation for (offline)
testing
Test deliverables
Improve facilities for local
testing

Duration runs
Hardware in the
Loop
Simulator in the
Loop
Tester in team

All the remarks assigned to a failure category are counted and ranked. Those failure categories

mentioned most frequently are listed in Table 3.5-2. The columns with the remarks contain the

amount of occurrences and their ratio, which is calculated based on all the remarks of the same set

of remarks (positive/negative/improvement). This ratio provides insight on the relevance of the

failure category within the retrospective reports. A full overview is provided in Table H-1.

Table 3.5-2: Most important failure categories in reports

Failure categories Positive remarks Negative remarks Improvements

Production is not efficient 108 29.3% 151 26.8% 25 27.8%

Project plan is not managed 50 13.6% 79 14.0% 18 20.0%

Requirement is not met 32 8.7% 21 3.7% 4 4.4%

Test coverage is too low 29 7.9% 54 9.6% 8 8.9%

Table 3.5-3 lists the 30 practices mined during the retrospective report analysis. Each practice has a

unique and descriptive name.

Table 3.5-3: Practices mined during retrospective report analysis

Practice names

Automate repetitive work Debt management Increase system knowledge Short lines

Boundary involvement Deliver or Delay Incremental architecture Simulator in the Loop

Clear plan Design by team Incremental improvement System monitor

Clear specification Document overview / interface Keep it simple Tester in team

Common plan Duration runs Knowledge transfer Unit testing

Constructive disagreement Early confrontation Prioritize for focus Work in parallel

Co-ownership Empower the team Product owner

Customer centric development Hardware in the Loop Review deliverables

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

37

The result of this retrospective report analysis is used in the next sections. The list of occurrences of

remarks is used to determine the failure category coverage of the new patterns (section 4.3.3). The

practices are used for writing patterns (section 3.6).

3.6 Writing patterns

3.6.1 Introduction

To answer the research question, organizational patterns need to be written. Such patterns will be

integrated into existing pattern languages.

Patterns can be used as stand-alone solutions in order to solve small and local problem. When a

pattern is applied, it usually relates to other patterns, and this can be expressed in a pattern

language. Such language combines the patterns based on context, and places them in a certain

sequence. Those organizations that want to improve their development process can choose their

own path through the language. This way, the organization can establish its growth by considering its

circumstances and progress.

The following sections describe the expected results, sources used, and results achieved.

3.6.2 Purpose

This section describes the expected results of writing the patterns, which is that several patterns are

written according to the form layout of Figure 3.2-1. Another expectation is that these patterns are

integrated into the pattern languages of (Coplien & Harrison, 2005).

To answer the research question (section 1.3), a pattern should specifically address the following

subjects:

 Development of a mechatronic system

 Multidisciplinary development

 Concurrent engineering

A pattern should be able to describe the following items (Figure 3.2-1):

 Pattern name (Title)

 Context in which the problem is found

 Pattern forces or tradeoffs

 Solution

 Explanation of why the pattern works

The pattern should be based on one of the practices (Table D-1, Table G-1, and Table J-1). All the

information retrieved in the previous steps (publications, FMEA worksheets, and retrospective

reports) can be used as input for writing the patterns. Additional references can be added when they

contribute to the pattern readability and clarity. Such references can be journal articles, proceedings,

books, or websites. The book (Coplien & Harrison, 2005) should be used because the patterns need

to be integrated in their pattern language. The pattern description should refer to their patterns

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

38

when applicable. Two examples on how a pattern description should appear are provided in

Appendix P.

The pattern should be integrated into the pattern language (Coplien & Harrison, 2005), which should

put the patterns into the context of other problems and solutions. This way, patterns can be more

easily understood and successfully applied.

3.6.3 Sources

This section describes the sources used to write the patterns.

In the previous steps, the practices were mined, and these can be found in the following tables:

 Table D-1: Practices mined from literature

 Table G-1: Failure category overview based on FMEA worksheets

 Table J-1: Failure category overview based on retrospective reports

These tables are merged together, which results in an overview of 73 unique practices. These

practices will be used for selecting practices.

Table 3.6-1: Practices found in the research

Practice names

Abstract design Co-ownership Encourage risk taking Key master Shared leadership

Alert design change
Customer centric
development

Establish a scoreboard Knowledge integration Short lines

Automate repetitive
work

Debt management Factory acceptance test Knowledge transfer Simulator in the Loop

Boundary involvement Define dependencies Hardware in the Loop Learn by interaction Single point of contact

Brainstorm on Design Define roles in team
Hardware in the Loop / Iron
Bird

Learning community Small team

Budget design
Define up/downgrade
strategy

Incorporate goals Lessons learned Splitter

Build commitment Deliver or Delay Increase system knowledge
Manage team member
expectations

System integration
testing

Central power Design by team Incremental architecture Mock-up System monitor

Clear plan Design walk through Incremental improvement Module Testing Team of experts

Clear priorities
Document overview /
interface

Information flow Mutual accountability Test with dummies

Clear specification Drop-In replacement Integrator
Only design critical
parts

Tester in team

Clear tasks Duration runs Involve key stakeholders Prioritize for focus Unit testing

Common ground Early confrontation Keep it simple Product owner Work in parallel

Common plan
Embed knowledge in
system

Keep the schedule Provide an incentive

Constructive
disagreement

Empower the team Keep track of requirements Review deliverables

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

39

3.6.4 Result

This section describes the result of writing patterns, which is that the expected result (section 3.6.2)

has been achieved. The results are:

 Three patterns are written according to the form layout of Figure 3.2-1. The result is

presented in section 4.2.

 Patterns are integrated into a pattern language. The result is presented in section 4.2.2.

This result is achieved by selecting three practices out of the 73 practices (Table 3.6-1). These three

practices specifically address the concurrent development of a mechatronic system in a

multidisciplinary environment.

The context and forces are described based on the information retrieved in previous research steps.

An example is provided in Table 3.6-2. A full overview of this table is available in Table K-1.

Table 3.6-2: Practice with problem statement: “How can…”

Practice Context Problem Forces

Hardware in
the Loop

Get as close to actual operation concept as possible
to support verification and validation when
operational environment is difficult or expensive to
recreate (NASA, 2007, p. 96)
Development of mechatronic systems requires
collaboration among experts from different design
domains (Alvarez Cabrera et al, 2010)

How can integration
problems during end-of-
project be prevented?

Fault detection and diagnoses can only
be executed when final system is
available (Boucher & Houlihan, 2008)
Models and simulations do not exactly
represent real system. Therefore,
system verification cannot be executed
(Alvarez Cabrera et al, 2010)

Simulator in
the Loop

Provide insight into trends and tendencies of system
and subsystem performance that might not
otherwise be possible because of hardware
limitations (NASA, 2007, p. 96)
Early testing to identify problems at system level
(Boucher & Houlihan, 2008)

How can integration start
when not all disciplines
have delivered their
product part?

Resources (hardware) are scarce
(Retrospective Analysis, section 3.5)

The description of Table K-1 (subset is shown in Table 3.6-2) is provided in detail according to the

form layout of Figure 3.2-1. This results in the following three pattern descriptions:

 Common Plan (section 4.2.3)

 Hardware in the Loop (section 4.2.4)

 Simulator in the Loop (section 4.2.5)

The pattern descriptions contain sidebars on the left side that relate to the template subjects

presented in Figure 3.2-1. This addition is to increase readability for individuals not familiar with

organizational patterns. Pattern descriptions strongly relate to other patterns, and their names

appear in italic font. A short description of all such patterns is available in Appendix O.

These patterns are integrated into the pattern language based on the unresolved forces of the

solution provided to a pattern. The problem statement of the other patterns should address such

unresolved force(s). In Table 3.6-3, two patterns are combined, thus forming a pattern sequence. The

Hardware in the Loop pattern addresses the unresolved forces of the Incremental Integration

pattern. See Table L-1 for all other sequences.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

40

Table 3.6-3: Creating a pattern sequence based on unresolved forces

Hardware in the Loop

Incremental Integration Hardware in the Loop

Solution “Provide a mechanism to allow developers to build all of the current software periodically. Developers should be

discouraged from maintaining long intervals between check-ins. Developers should at any time also be able to build

against any of the Named Stable Bases or the newest check-in software.”

Unresolved forces

When developing a mechatronic system, the Named Stable Basis can be seen as a mechatronic system (hardware

and software). This is only available at the end of the project because hardware is still under development. That

means that frequent integration is not possible.

Problem statement “It is important to identify multidisciplinary integration problems early in the development cycle.”

The result is that all three patterns are integrated into a pattern language. The new pattern sequence

is presented in Figure 4.2-1. The pattern languages in which they are integrated are presented in

Appendix P.

The result of this pattern writing is used in the next sections. The three patterns are evaluated in

section 3.7. The integration of the patterns into pattern languages is used to place the patterns into

context, which will be supportive during the pattern review (section 3.7).

3.7 Pattern evaluation

3.7.1 Introduction

Evaluation feedback on the patterns (section 4.2) is received from practitioners who work in the field

of mechatronic systems and multidisciplinary projects. The feedback is used to determine how the

patterns are received, and whether they are applicable in their organization. It is also used for

suggestions on future research. The feedback of all reviewers is summarized and added as an

Appendix. The extent to which the patterns cover the failure categories is also evaluated.

The following sections describe the expected and achieved results.

3.7.2 Purpose

This section describes the expected result of the evaluation, which is that feedback is received on the

patterns by at least eight people. With this feedback, the quality of the pattern description can be

determined and improvements can be considered. Another expected result is that the coverage of

the failure categories can be determined. Such result should indicate the significance of the patterns

to the failure categories.

This result can be achieved when the following data are produced:

 An overview (e.g., bar graph) that indicates the quality of each pattern description (given by

reviewers)

 Improvement suggestions for each pattern (given by reviewers)

 A table that indicates how much (expressed in percentage) the patterns cover the failure

categories mentioned in the publications, FMEA worksheets, and retrospective reports.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

41

The reviewer evaluation consists of the three patterns (section 4.2), and the reviewer should comply

with the following criteria:

 Familiar with concurrent development of mechatronic systems in a multidisciplinary project.

 Not a colleague within the current project (of the author) in order to prevent feedback from

being influenced by project relationships, and to prevent a single perspective on the

patterns.

The group of reviewers should represent a wide variety of roles. This way, feedback can be provided

from different perspectives, which in turn, can make the feedback complementary to each other. The

review is conducted anonymously, and the name of the reviewers should not be mentioned in this or

any resulting documents in order to encourage straight feedback.

The patterns can be reviewed separately because they are stand-alone solutions. The assumption

that the reviewers are familiar with the organizational patterns and the pattern language of (Coplien

& Harrison, 2005) cannot be made. Therefore, additional information should be given to the

reviewer. For this reason, the reviewer is not asked to review pattern integration into the pattern

language. For the reviewers to provide good feedback, they need to thoroughly understand all the

patterns and the language, which cannot be expected from this group of reviewers.

The reviewers should judge the quality of all the aspects of the pattern description, which are:

 Context (Prologue)

 Problem

 Forces/Trade-offs

 Solution

 Discussion on why pattern works

The reviewer should also be asked for additional comments on the patterns. This feedback can be

used to improve the patterns in the future. The result should be presented in an accessible manner.

The significance of the patterns for solving failure categories should be determined.

3.7.3 Result

This section describes the result of the evaluation, which is that the expected result (section 3.7.2)

has been achieved. The results are:

 An overview (e.g., bar graph) that indicates the quality of each pattern description (provided

by reviewers). The result is presented in section 4.3.2.

 Improvement suggestions for each pattern (provided by reviewers). The result is presented

in Appendix M.

 A table that indicates how much (expressed in percentage) the patterns cover the failure

categories mentioned in the FMEA worksheets and retrospective reports. The result is

presented in section 4.3.3.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

42

This result is achieved by inviting people to review the patterns. Nine people provided feedback on

the three patterns, all of whom work in different companies. Most reviewers have experience with

multidisciplinary development of mechatronic systems and concurrent engineering. The experienced

varied between eight to 30 years. One reviewer has no experience with mechatronic systems, but

has over eight years of experience in multidisciplinary development of hardware and software. This

experience is also recognized as relevant for reviewing the patterns. The experience of the reviewers

was obtained in the disciplines of software, electronics, optics, and mechanics. The current

occupations/roles they have are:

 Electronics engineer

 Hardware engineer

 Company owner (for software contractors)

 Software architect

 Software engineer

 Software project leader

 Teacher Software Engineering

 Test engineer

Almost none of the reviewers are familiar with organizational patterns. Approximately half of the
reviewer group is familiar with pattern languages.

To support the reviewers in executing their task, two documents are created. The first document
contains the patterns, pattern languages, and a description of what is expected from the reviewer.
For those reviewers not familiar with organizational patterns and pattern language, some context is
provided. The second document contains the three feedback forms (Table 3.7-1) used to obtain
feedback on the patterns (one form per pattern).

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

43

Table 3.7-1: Feedback form used for pattern review

<Pattern Name>
Review feedback on pattern Reviewer’s feedback

How long did the review take? (e.g., 15 min)

Is the pattern description clear?

Rating 1...10 (1 is bad; 10 is excellent)

Context (Prologue)

Problem

Forces/Trade-offs

Solution

Discussion on why pattern works

Pattern used

Are there other forces/trade-offs? (Yes/No)

(Please explain your reasoning and rational for your view)

Do you think that the proposed solution will solve the

problem? (Yes / No)

(Please explain your reasoning and rational for your view)

Reviewer comments

Do you know another pattern name (alias) that also covers

the pattern description?

Additional feedback (if applicable)

All feedback is summarized (Appendix M). The pattern quality is based on average ratings shown in a

bar graph (Figure 4.3-1).

An investigation is conducted to determine which failure categories are actually covered by the

patterns. Table G-1 and Table J-1 demonstrate the relationship between the failure categories and

practices. The practices mined during the literature study (Table D-1) are not related to the failure

categories. To obtain a complete overview of the coverage of the failure categories by the new

patterns, a mapping is made (see Appendix N). The relationship between the failure categories and

patterns found in the sources is presented in Table 3.7-2. One source letter expresses such

relationship. For example, the failure category “Resource (hardware) are scarce” is covered by the

patterns Hardware in the Loop and Simulation in the Loop found in the FMEA worksheets (F) and

retrospective reports (R). The table is sorted by failure category.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

44

Table 3.7-2: Failure categories related to the new patterns

Failure category
Common

Plan

Hardware
in the
Loop

Simulator
in the
Loop

Legend:
P = Publications
F = FMEA worksheets
R = Retrospective
 reports

Integrated system behavior is not considered PF P

Production is not efficient P

Project intake is not managed R

Project plan is not managed R

Resources (hardware) are scarce FR R

Responsibility is not assigned P

Test coverage is too low R R

The coverage calculation overview is presented in Table 4.3-1. This result indicates the significance of

the patterns to the failure categories.

The result of this evaluation is used in the next sections. The bar graph, textual/verbal feedback, and

the coverage calculation are used to determine whether the research question was answered

(section 4.3.3, Chapter 6). The review feedback can also be used to improve pattern descriptions

(section 5.4.1).

3.8 Result
This section describes the result of the research, which is that the expected result (section 3.2) is

achieved. The results are:

 Pattern description according to the form layout of Figure 3.2-1. The result is presented in

section 4.2.

 Description of the patterns based on verifiable sources. These are publications (section

3.3.3), FMEA worksheets (section 3.4.3), and retrospective reports (section 3.5.3).

 Integration of the patterns into a pattern language. The result is presented in section 4.2.

 Pattern evaluation. The result is presented in section 4.3.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

45

4 Results

4.1 Introduction
This chapter describes the results of the research described in chapter 3.

First, the pattern languages in which the patterns are integrated are presented (section 4.2.2). This

integration is expressed with pattern sequences. Next, the three pattern descriptions are presented

(sections 4.2.3 to 4.2.5). The patterns are written according to the template shown in Figure 3.2-1.

Finally, the pattern evaluation is presented (section 4.3). Such evaluation describes the pattern’s

coverage on the failure categories, and the feedback from the reviewers. This result provides insight

on the description quality and possible pattern applicability. Conclusions are presented in 4.2.6 and

4.3.4. A general conclusion on the patterns is available in section 4.4.

4.2 Patterns

4.2.1 Introduction

This section presents the patterns and how they are integrated into the pattern languages (Coplien &

Harrison, 2005).

The pattern descriptions are the result of the writing process described in section 3.6. The three

patterns are:

 Common Plan

 Hardware in the Loop

 Simulator in the Loop

To understand the relationship between the patterns, refer to section 4.2.2. The new patterns can be

identified by gray squares (refer to Figure 4.2-1). The next sections contain the pattern descriptions.

The last section concludes with the added value of the new patterns to the existing pattern language.

A short description of the referenced patterns can be found in Appendix O.

4.2.2 Pattern language

This section describes the pattern sequences constructed with the new patterns, and are integrated

into two pattern languages.

A pattern language is a network of interrelated patterns that define a process for resolving problem

development systematically. The language comprises the patterns and rules required to combine

such patterns in meaningful ways and in a particular sequence. From the perspective of a pattern

language, a pattern sequence represents a particular path through the language, and it describes

how to create an integrated system (Buschmann, Henney & Schmidt, 2007).

The integration of the new patterns into the pattern language is based on the unresolved force(s) of

the solution provided by a pattern. The problem statement of the other patterns should address the

unresolved force(s). This integration places the patterns into the context of other problems and

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

46

solutions. This way, the new patterns can be more easily understood and applied successfully in the

correct order.

The new pattern sequences are presented in Figure 4.2-1. This figure is a subset of the people and

code (Figure P-1) and project management pattern languages (Figure P-2). The gray squares

represent the new patterns. The patterns with the dashed line belong to the people and code

pattern language. The pattern sequences are described below Figure 4.2-1. A detailed explanation on

the integration of the new patterns into the language is provided in Appendix L.

Community

of Trust

Size

the

Schedule

Incremental

Integration

Named

Stable

Bases

Get on With It

Private

World

Hardware

in

the

Loop
Simulation

in

the

Loop

Common

Plan

Architect

controls

Product

Owner

per

Deliverable

Figure 4.2-1: Pattern sequences as part of two pattern languages

The pattern sequence Community of Trust with Common Plan is constructed because deliverable

orchestration is required in order to manage the schedule. The deliverables expected between the

disciplines and their responsibilities need to be clear. Trust alone is insufficient for managing a

project because agreements can be influenced by external (e.g., third-party deliverables) and internal

factors (e.g., resources allocation). These factors can be triggered from outside the Community of

Trust.

The pattern sequence Common Plan with Size the Schedule is constructed because overly ambitious

and generous schedules are cumbersome for either the developers or the customers. A plan that

considers all the deliverables between disciplines might result in an unrealistic schedule.

The pattern sequence Incremental Integration with Hardware in the Loop is constructed because

identifying multidisciplinary integration problems early in the development cycle is important. The

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

47

pattern sequence Incremental integration with Simulator in the Loop is constructed because the

ability to verify system behavior before integration on a real system begins is important. When

developing a mechatronic system, the Named Stable Bases can be seen as a mechatronic system

(hardware and software). This might only be available at the end of the project because hardware is

still under development, which means that frequent integration is not possible as proposed in the

solution for Incremental Integration. Another reason could be that it is too expensive to have a

mechatronic system available for Incremental Integration.

The pattern sequence Get On With It with Hardware in the Loop is constructed because identifying

multidisciplinary integration problems early in the development cycle is important. When developing

a mechatronic system, high confidence on the software direction might exist. This software

development is blocked when hardware that still has a low confidence is required. For example, the

third-party Application Programming Interface (API) that needs to be integrated might be clear, but

the hardware requirements for that third-party product might still be unclear.

The pattern sequence Get On With It with Simulator in the Loop is constructed because the ability to

verify system behavior before integration on a real system begins is important. When developing a

mechatronic system, high confidence on the software direction might exist. This software

development is blocked when hardware that still has a low confidence is required. For example, the

behavior that modules should have might be clear, but building a hardware setup might be too

expensive.

The pattern sequence Hardware in the Loop with Simulator in the Loop is constructed because the

ability to verify system behavior before integration on a real system begins is important. Multiple

teams can develop a mechatronic system, and such teams can be on different locations and time

zone; consequently, supporting these teams with hardware setups can become expensive.

The pattern sequence Hardware in the Loop / Simulator in the Loop with Private World is constructed

because there is the desire for preventing developers from experiencing undue grief by having

development dependencies change from underneath them. The unresolved force(s) of the solution

provided by a pattern is:

 Hardware in the Loop: When developing with a multidisciplinary team, each discipline can

have its own preferences on the setup. For example, the software discipline might want to

test their latest features and fixes, whereas service engineering might want to verify

features against a previous configuration (that can include other hardware).

 Simulator in the Loop: During development of a simulator, its behavior might change over

time. For example, when a simulator is implemented incrementally, the initial behavior

might only support happy flow. As the simulator matures, it can verify parameters,

autonomously send events, or have a completely different start-up procedure.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

48

4.2.3 Pattern: Common Plan

Ti
tl

e
(c

a
n

 b
e

d
es

cr
ip

ti
ve

 a
n

d

so
m

et
im

es
 e

vo
ca

ti
ve

)

Common Plan
alias: Integration Plan

A
 p

ic
tu

re
 (

sh
o

u
ld

 u
n

d
er

sc
o

re
 t

h
e

h
u

m
an

 d
im

en
si

o
n

an
d

 s
h

o
u

ld
 h

el
p

 t
o

 m
ak

e
th

e
p

at
te

rn
 m

em
o

ra
b

le
)

(Texan businessman WC bellow looking over schematics /

Dimitri Kessel / Getty Images)

P
ro

lo
gu

e
th

at
 d

e
sc

ri
b

es

th
e

co
n

te
xt

 in
 w

h
ic

h

th
e

p
ro

b
le

m
 is

 f
o

u
n

d

The initial architecture is defined by the Architecture Team. During the concurrent

development of the multidisciplinary project, there will be dependencies between

disciplines. Each discipline might have its own strategy concerning how its deliverables are

developed and released.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

49

P
ro

b
le

m

st
at

em
en

t

Orchestration of deliverables is required to manage the schedule.

D
is

cu
ss

io
n

 o
f

th
e

fo
rc

es
 o

r

tr
ad

eo
ff

s
o

f
th

e
p

at
te

rn

The disciplines are strongly dependent on each other because their joint efforts will

result in the final deliverable. If they are not coordinated, then good cross-disciplinary

design decisions cannot be made because these decisions cannot be evaluated effectively

(Graaf, Lormans & Toetenel, 2003; Heemels, van de Waal & Muller, 2006; Alvarez Cabrera

et al., 2010). As a consequence, software is sometimes used for last-minute fixes to solve

hardware problems due to the shorter lead time of these solutions (Graaf, Lormans &

Toetenel, 2003; Alvarez Cabrera et al., 2010). However, this approach often leads to delays

and errors (Bradley, 2010).

Each discipline can have its own development model (Schafer & Wehrheim, 2007). For

instance, the Vee-model (Forsberg & Mooz, 1991) can be selected for development that

involves long lead times. A methodology like Agile (Schwaber & Beedle, 2002) can be

chosen when developers want to have short feedback loops. The use of different

methodologies in a project can lead to conflicting interests.

Multidisciplinary development is sometimes characterized as the “throw it over the

wall” approach (Schafer & Wehrheim, 2007). When a deadline is not met, the response of

an individual team member is often: “Well, I got my work done on time” (Parker, 2003).

When a discipline makes a delivery, it needs to be clear about what the status is. As an

example, the deliverable could be a proof of concept, partial delivery of a feature, or even

an official release. The status of the delivery is of great importance to the other disciplines.

They need to determine what the impact might be on their component of the delivery.

Conflicts among team members can arise when the responsibilities of delivery, intake

and verification are not clearly defined (Nakata & Im, 2010).

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

50

P
re

se
n

ta
ti

o
n

 o
f

th
e

so
lu

ti
o

n

(s
en

te
n

ce
 s

ta
rt

s
w

it
h

 “
Th

er
ef

o
re

:”
)

Therefore:

Create a common plan of the deliverables that have dependencies between disciplines.

Based on the initial architecture, the dependencies between the disciplines are known.

For each dependency, it should be made explicit who is involved. Responsibilities should be

assigned for delivering, integrating and verifying the deliverables. The plan should not be

expressed in excessive detail, as plans that are too detailed are difficult to manage.

When the product is understood and the project size has been estimated, a schedule

can be created (Size the Schedule). The schedule should contain the dependencies between

the disciplines and the milestones of the deliverables. The timing should be negotiated with

the customer (Engage Customers).

The common plan should be agreed upon by all disciplines (Unity of Purpose). During

execution of the plan, alignment between them is required. The team can align by arranging

a multidisciplinary Stand-up Meeting.

The plan is owned by the person who is responsible for the project deliverables (Owner

per deliverable).

A Patron Role can be assigned to the project when disciplines are involved in other

projects. The Patron should resolve organizational conflicts.

D
is

cu
ss

io
n

 o
n

 w
h

y
th

e
p

at
te

rn
 w

o
rk

s

Creating a common plan and alignment of the dependencies enforces communication

between disciplines (Shaping Circulation Realms).

Once the schedule has been agreed upon, each discipline can select the development

model that fits their needs.

Conflicts within the team will be reduced when responsibilities concerning integration

and testing deliverables are clear. Team members will not be wasting time on investigating

problems because of untested deliverables of other disciplines. Verification by others is also

highly inefficient because they lack the necessary expertise.

When the organization is not aligned with the product architecture, Conway’s Law

should be applied. If the team is geographically distributed, then Organization follows

Location should be used.

Dependencies between disciplines can hamper development. This can be resolved by

Hardware in the Loop or Simulator in the Loop strategies.

When the project team is working on a subsystem, a plan needs to be defined

concerning how this will be integrated in the system and what the responsibilities of the

disciplines are.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

51

O
p

ti
o

n
al

 d
e

sc
ri

p
ti

o
n

s

Examples:

Examples addressing how to create a common plan are network schedules (National

Aeronautics and Space Administration, 2008) and Gantt charts (Wallace, 1922).

Concurrent engineering design activities at NASA involve a management or leadership

team, a multidisciplinary engineering team, a stakeholder team, and a facility support team.

In their experience of concurrent engineering, it needs to be clear what the level of maturity

of the incoming design is, the stated goals and objectives of the engineering activity are, etc.

(National Aeronautics and Space Administration, 2007). NASA states in their best practices

on planning:

“Planning: Proper planning and preparation are crucial for efficient CACE

(Capability for Accelerated Concurrent Engineering) study execution.

Customers wanting to forgo the necessary pre-study activity or planning and

preparation must be aware of and accept the risk of a poor or less-than-

desired outcome.” (National Aeronautics and Space Administration, 2008).

A recommended action, in an organization that produces mechatronic systems, is to

create a clear plan to prevent potential failures. Potential failures can include multiple

versions of hardware needing to be released, lack of expertise and resources during a

project phase, and project entanglement. The consequences can include project delays,

integration problems, dependency on other projects being introduced, and unreleased

products being shipped (see Table G-1).

Related patterns:

Developer controls Process orchestrates the activities of a given feature. This pattern

does not describe how to coordinate the integration of multiple deliverables.

Holistic Diversity can be used to create a multidisciplinary team that is responsible for

delivering a feature.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

52

4.2.4 Pattern: Hardware in the Loop

Ti
tl

e
(c

a
n

 b
e

d
es

cr
ip

ti
ve

 a
n

d

so
m

et
im

es
 e

vo
ca

ti
ve

)

Hardware in the Loop
alias: Iron Bird

A
 p

ic
tu

re
 (

sh
o

u
ld

 u
n

d
er

sc
o

re
 t

h
e

h
u

m
an

 d
im

en
si

o
n

an
d

 s
h

o
u

ld
 h

el
p

 t
o

 m
ak

e
th

e
p

at
te

rn
 m

em
o

ra
b

le
)

(Velocipede on railroad track / John Hayford Album / NOAA's Historic Coast & Geodetic Survey (C&GS) Collection)

It is not a train but they are on the right track

P
ro

lo
gu

e
th

at
 d

e
sc

ri
b

es

th
e

co
n

te
xt

 in
 w

h
ic

h

th
e

p
ro

b
le

m
 is

 f
o

u
n

d

During concurrent development of a multidisciplinary project, hardware components of the

system can be unavailable until late in the development cycle. Also, software is under

development and may not yet be able to control a complete system. This dependency

between hardware and software delays Incremental Integration and Get on With It.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

53

P
ro

b
le

m
 s

ta
te

m
e

n
t

It is important to identify multidisciplinary integration problems early in the development

cycle.

D
is

cu
ss

io
n

 o
n

 t
h

e
fo

rc
es

 o
r

tr
ad

eo
ff

s
o

f
th

e
p

at
te

rn

There are several reasons why hardware may not be available. If the project team

develops a new system, hardware may still be in development (Boucher & Houlihan, 2008).

Another reason is that it may be too expensive to have it available for development and

integration (Alvarez Cabrera et al., 2010).

Integration is a multidisciplinary collaboration. To be successful, each discipline should

provide its deliverables, be available to share its knowledge, and collaborate with the other

disciplines (Alvarez Cabrera et al., 2010).

During development, modifications of the hardware and software will be made. The

modifications might be required because of non-compliance to the initial requirements or

due to changing requirements. The current status of the project should be clearly stated.

Threats to the setup include people who want to borrow parts for their own testing

purposes or who seek to use parts as a spare parts for manufacturing or servicing customer

systems. Modifications for testing purposes (e.g. software patch, disconnected sensors)

constitute another threat.

Integration of a setup does not include system integration.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

54

P
re

se
n

ta
ti

o
n

 o
f

th
e

so
lu

ti
o

n

(s
en

te
n

ce
 s

ta
rt

s
w

it
h

 “
Th

er
ef

o
re

:”
)

Therefore:

Build a hardware setup that can be used to verify the current state of the development.

The hardware setup does not need to have the exact specifications of the (sub-)

system that is being developed (see Get on With It). The project managers should seek

alternatives to cover their use cases and deal with limited resources. They can create a

setup with alternative parts that are already available. This makes it possible to initiate

testing before the final parts are available. To reduce the cost, they can also select cheaper

parts.

Building and maintaining the setup requires the collaboration of all disciplines. This can

be achieved by Unity of Purpose. When the participants from the different disciplines are

located in different geographical regions, they should have a Face to Face before Working

Remotely.

The setup requires an owner. This is because “Something that is everybody’s

responsibility is really no one’s responsibility” (Code Ownership). The person who is

assigned as owner should be the one who benefits from a representative setup. This could

be the software engineer who wants Incremental Integration or Get on With It. It could also

be the test engineers who can Engage Quality Assurance. The owner is responsible for

keeping the setup operational. To remain aware of the current state of development, the

owner should be informed of all design modifications. The owner can be informed by

joining the Stand-up Meeting.

After the successful integration on a setup, system integration tests still need to be

executed. These tests can be performed on a prototype (Build Prototypes) or on the final

product. These tests can be executed by Group Validation and subsequently with the

customer (Engage Customer; Surrogate Customer).

D
is

cu
ss

io
n

 o
f

w
h

y
th

e
p

at
te

rn

w
o

rk
s

Having a hardware setup allows disciplines to work in Private Worlds. The state of the

setup can be frozen (Named Stable Bases). This allows developers to make progress

(Programming Episode). Upgrades on the hardware or software can be planned and

prepared for. This creates the opportunity for multidisciplinary Incremental Integration.

The setup allows the execution of tests to be initiated early in the development cycle

(Boucher & Houlihan, 2008) (Engage Quality Assurance). For instance, team members can

start executing runs on evenings or weekends to test stability and reproducibility.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

55

O
p

ti
o

n
al

 d
e

sc
ri

p
ti

o
n

s

Principle involved:

The costs of fixing problems increase when they are discovered late in the

development cycle (Tassey, 2002). Solving integration issues late in the development cycle

might also lead to poor quality of the system. This is the case when there is no time

remaining to solve hardware problems. In contrast, correcting problems in the software

seems relatively easy (Alvarez Cabrera et al., 2010; Bradley, 2010).If the problem is not

solved at its source the solution might not be optimal. Furthermore, the software needs to

maintain the solution for the complete lifetime of the hardware.

Related pattern:

Building and maintaining the hardware setup by the team enforces communication

between disciplines (Shaping Circulation Realms).

Example:

A manager describes his experience with Hardware in the Loop testing:

“Going to HIL testing was a natural outgrowth of our concurrent development

strategy and our efforts to model devices. The ability to simulate the system

and test software has greatly increased first-time software quality and

allowed developers to have much more immediate and meaningful feedback

(by Senior VP Technical Services, Industrial Equipment Manager)” (Boucher &

Houlihan, 2008).

In an organization that produces mechatronic systems, having no Hardware in the Loop

is mentioned as a potential failure point for the projects. The consequences can include

insufficient hours for Mean Time Between Failure (MTBF) measurement, integration

problems, and discovering issues late in the development cycle (e.g. during production or in

the field) (see Table G-1).

Reading:

The use of Hardware in the Loop (HIL or HWIL) is presented in (National Aeronautics

and Space Administration, 2007; Boucher & Houlihan, 2008; Bradley, 2010).

The use of Iron Bird is described in (Alvarez Cabrera et al., 2010)

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

56

4.2.5 Pattern: Simulator in the Loop

Ti
tl

e
(c

a
n

 b
e

d
es

cr
ip

ti
ve

 a
n

d

so
m

et
im

es
 e

vo
ca

ti
ve

)

Simulator in the Loop

A
 p

ic
tu

re
 (

sh
o

u
ld

 u
n

d
er

sc
o

re
 t

h
e

h
u

m
an

 d
im

en
si

o
n

an
d

 s
h

o
u

ld
 h

el
p

 t
o

 m
ak

e
th

e
p

at
te

rn
 m

em
o

ra
b

le
)

(Marcel Marceau, 1923 – 2007 / Ahmad Kavousian / Getty Images)

Mime player who creates the suggestion of a real world.

P
ro

lo
gu

e
th

at
 d

e
sc

ri
b

es

th
e

co
n

te
xt

 in
 w

h
ic

h

th
e

p
ro

b
le

m
 is

 f
o

u
n

d

The use cases of a mechatronic system are defined. The current development state cannot

be verified because there is no system available. A reason for this might be that it is too

expensive to have multiple systems available to support all development teams, which

might have different locations and be situated in different time zones. This dependency

delays Incremental Integration and Get on With It.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

57

P
ro

b
le

m

st
at

em
en

t

It is important that system behavior can be verified before integration on a real system

begins.

D
is

cu
ss

io
n

 o
n

 t
h

e
fo

rc
es

 o
r

tr
ad

eo
ff

s
o

f
th

e
p

at
te

rn

To be able to verify system behavior, simulating (parts of) its behavior must be

possible.

System behavior can be verified by using simulators. Development of these simulators

is an investment.

The use of a simulator can introduce constraints. Some use cases cannot be supported.

In these cases, a different flow in the code might be required to deal with this omission.

Another constraint could be the timing of the behavior.

System-level simulation can be achieved when all simulators of the subsystems work

together. Hybrid system-level simulation is possible when simulators work in combination

with system.

P
re

se
n

ta
ti

o
n

 o
f

th
e

so
lu

ti
o

n

(s
en

te
n

ce
 s

ta
rt

s
w

it
h

 “
Th

er
ef

o
re

:”
)

Therefore:

Build simulator(s) that can simulate (sub-) system behavior.

A simulator is a product. It should therefore be developed like any other product that

is being developed by the organization (National Aeronautics and Space Administration,

2007). The simulator can be a software simulator or a hardware simulator.

The requirements should make clear which behavior is to be simulated, which

architectural constraints are to be applied, what the performance should be, and other

factors (Surrogate Customer, Architect controls Product). A software simulator can be a stub

with limited intelligence or a true representation of system behavior. The architect chooses

what type to use based on the requirements and the budget. When the complexity of the

system increases, the more benefits will be gained by using representative simulators.

During the design process, it should become clear how to deal with deviations

between the simulator and the real world. Preferably these are kept to a minimum.

Integration of the simulator into the product should be addressed, as well. As an example: It

should be clear how a simulated subsystem can work as part of a whole. That could

necessitate that some parts of the system are simulated, while other parts should contain

real subsystems. During the design process, other disciplines might get involved to provide

their input on (sub-) system behavior.

After implementation (Programming Episode), the simulator needs to be tested

(Engage Quality Assurance).

A simulator can be developed iteratively (Incremental Integration), and ownership of

the delivery should be assigned (Owner per Deliverable).

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

58

D
is

cu
ss

io
n

 o
f

w
h

y
th

e
p

at
te

rn
 w

o
rk

s

Having simulator(s) creates the opportunity to work in Private Worlds. This allows

developers and testers to make progress (Programming Episode; Application Design is

Bounded by Test Design) in an isolated environment. Early in the development cycle,

behavioral requirements can be validated (Boucher & Houlihan, 2008) by QA (Engage

Quality Assurance) and/or customer feedback (Engage Customers). This validation can be

performed as a standalone process. This early feedback can be used to improve the design

before it is verified on a prototype (Build Prototypes) or real system. This can also prevent

material from being damaged.

From the development perspective, simulators have several advantages in comparison

with real systems. First, a real system needs to become operational. This might require

training of the developers or support from an expert. Next, real systems have to manage

many variables (environment, mechanical tolerances, electronic signals, etc.). With all of

these variables, it can be difficult to reproduce behavior in a specific use case. That can

make it difficult to troubleshoot problems and to identify the root cause. Finally, real

systems are typically expensive. As a consequence, they are scarce and may need to be

shared among different groups. That means that only limited time may be available to

validate the implementation.

Simulators can be used to increase development speed. Use cases can be verified

much more quickly when the simulation speed can be increased. The developer can quickly

establish preconditions before testing his or her own implementation. With a simulator it

can also be much easier to trigger and verify extreme use cases, like error handling of error

situations that occur seldom in real life environment.

O
p

ti
o

n
al

 d
e

sc
ri

p
ti

o
n

s

Example:

Recommendation for companies to become more effective in developing mechatronic

products is given by (Boucher & Houlihan, 2008):

“Identify system level problems early in the design process by leveraging

simulation to validate system behavior.”

Related pattern:

Simulators can be used to maintain code quality. In a simulated environment,

automated tests can be executed. The results of the automated test should be reproducible.

The tests support the creation of Named Stable Bases.

Reading:

The use of simulators is discussed in (National Aeronautics and Space Administration,

2007; Boucher & Houlihan, 2008).

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

59

4.2.6 Conclusion

This section describes the added value of the new patterns to the existing pattern language.

The pattern Common Plan allows the orchestration of deliverables from different disciplines required

to manage the development schedule of the mechatronic system. With the current pattern language,

the assumption is that all activities are performed by one group of developers. When developing a

mechatronic system, this is not always the case. The development is influenced by external (e.g.,

third-party deliverables) and internal factors (e.g., resources allocation).

The pattern Hardware in the Loop and Simulator in the Loop makes the identification of

multidisciplinary integration problems early in the development cycle possible. With the current

pattern language, frequent integration is not possible because the mechatronic system (hardware

and software) is only available at the end of the project. Starting with software development is not

possible because such development is blocked when hardware that still has a low confidence is

required on the project direction and requirements.

The pattern Simulator in the Loop makes verification of the system behavior before integration on a

real system begins possible. The pattern allows the development and testing by multiple teams on

different locations and time zones without the expense of hardware setups. It also allows large test

coverage because testing different releases and configurations can be done relatively easy (in

comparison to hardware setup).

4.3 Pattern evaluation

4.3.1 Introduction

An evaluation is executed (section 3.7) to obtain insight on the coverage of failure categories, quality,

and pattern applicability.

Quality and applicability are determined based on reviewer feedback (section 4.3.2). Pattern

coverage of the failure categories is determined based on the occurrence of failure categories in

FMEA worksheets and retrospective reports (section 4.3.3). A conclusion is drawn based on these

results (section 4.3.3).

4.3.2 Review feedback on the patterns

This section describes the results of the reviewer feedback on the patterns (section 3.7.3).

Nine people provided feedback on the three patterns (section 4.2). On average, 20 minutes were

required to review each pattern. All patterns were received positively. The feedback is summarized in

Appendix M. As indicated above, the reviewers were positive on the presented patterns.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

60

On average, the patterns received the following ratings (Rating 1...10; 1 is bad and 10 is excellent):

 Common Plan 7.6

 Hardware in the Loop 7.8

 Simulator in the Loop 7.5

Figure 4.3-1 shows the average rating in more detail. The question presented to the reviewers was

(Table 3.7-1): Is the pattern description clear?

Figure 4.3-1: Review feedback: Is pattern description clear?

There was no real consensus on the rating. For example, the problem description for the Simulator in

the Loop was rated with a four by one reviewer and nine by another. To quantify the amount of

variation, a standard deviation overview is provided by Figure 4.3-2.

0
1
2
3
4
5
6
7
8
9

10

R
at

in
g

Pattern subjects

Quality of
pattern descriptions

Common Plan

Hardware in the Loop

Simulator in the Loop

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

61

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

D
e

vi
at

io
n

 o
n

 r
at

in
g

Pattern subjects

Standard deviation (σ)
on pattern description quality

Common Plan

Hardware in the Loop

Simulator in the Loop

Figure 4.3-2: Standard deviation for pattern rating

No causal relationship could be made between the ratings provided by the reviewers and their role,

experience, or organization for which they worked. In Figure 4.3-3, an attempt is made to reduce the

standard deviation for the pattern Simulator in the Loop.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

D
e

vi
at

io
n

 o
n

 r
at

in
g

Pattern subjects

Standard deviation (σ)
Simulator in the Loop

Review group

Excluded highest/lowest
average ranking

Excluded two highest
stddev scores

Excluded four reviewers

Figure 4.3-3: Standard deviation for Simulator in the Loop

In Figure 4.3-3, the “Review group” refers to the rating results from Figure 4.3-2 provided by the

reviewers. In order to reduce the standard deviation, the reviewers with the highest (Hardware

engineer) and lowest (Test engineer) average rating are excluded. This increases the standard

deviation of the Context slightly. All other subjects are reduced. In order to reduce the standard

deviation for Context, the two reviewers with the highest standard deviation (Software architect and

Software project leader) are excluded. This reduces the standard deviation of Context, but increases

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

62

that of Problem, Solution, and Reasoning. When excluding the four reviewers, all the subjects have a

reduced standard deviation. The excluded reviewers do not have a specific relationship to each

other, or to the reviewers who are not excluded. By excluding these reviewers, the total reviewer

group is reduced by almost half. The remaining group does not comply with the requirements set in

section 3.7.2; therefore, the result is not representative.

The feedback on Common Plan is that it could also be influenced by standards, policies, and

regulatory requirements. Another remark is that more aspects of Scrum Agile could be used, such as

planning poker and backlog meeting.

Most of the feedback on the Hardware in the Loop is related to the pattern Build Prototypes

(Appendix O). There is a relationship between these two patterns, although they serve different

purposes. Such difference is that Hardware in the Loop has more focus on incremental

(multidisciplinary) development, integration, and multidisciplinary collaboration, whereas the main

purpose of Build Prototype is to gain knowledge. Such difference is not explained in the pattern.

Most of the feedback on the Simulator in the Loop relates to costs. The pattern description does not

address this issue as a force or tradeoff.

4.3.3 Coverage of failure categories

This section describes the coverage of failure categories by the patterns (section 3.7.3).

To obtain insight on the coverage of the failure categories by the patterns, an overview is created

(Table 4.3-1) that is a subset of Table H-1. Only the failure categories that relate (Table 3.7-2) to the

patterns (section 4.2) are demonstrated. The table is sorted on severity ranking. These data relate

only to the organization that made the field data available.

Table 4.3-1: Coverage of failure categories by the new patterns

FMEA: Failure categories

FMEA:
Average
severity
ranking

FMEA:
Occurrences of
failure category

Retrospective:
Positive
remarks

Retrospective:
Negative
remarks

Retrospective:
Improvements

Integrated system behavior is not considered 6.2 153 12.9% 7 1.9% 23 4.1% 1 1.1%

Test coverage is too low 6.1 10 0.8% 29 7.9% 54 9.6% 8 8.9%

Project plan is not managed 5.8 24 2.0% 50 13.6% 79 14.0% 18 20.0%

Responsibility is not assigned 5.8 9 0.8% 2 0.5% 21 3.7% 1 1.1%

Resources (hardware) are scarce 5.1 14 1.2% 10 2.7% 40 7.1% 7 7.8%

Project intake is not managed 4.8 23 1.9% 7 1.9% 23 4.1% 4 4.4%

Production is not efficient 4.4 24 2.0% 108 29.3% 151 26.8% 25 27.8%

Total 5.5 257 21.6% 213 57.8% 391 57.8% 64 71.1%

The average severity ranking of this subset (5.5) is almost equal to the average of all failure

categories, which is 5.4 (Table H-1). This ranking means that the patterns, on average, solve failure

categories with medium impact (Table 3.4-1). The severity of the effect is “Minor tool/equipment

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

63

damage and system specification compromised.” The coverage of FMEA failures is slightly above

20%. Because a pattern only covers aspects of a failure category, the conclusion is that the

introduction of these patterns does not reduce the potential failures modes of a project significantly.

The coverage of the retrospective remarks is above 57%. Although a pattern only covers aspects of a

failure category, the conclusion is that the introduction of these patterns can help to solve the

negative remarks (coverage of 69%) and provide support for the improvement actions (coverage of

71%).

4.3.4 Conclusion

This section describes the conclusion based on the results.

The reviewers were positive on the presented patterns. Almost everyone recognized the patterns

and confirmed that they have seen them being used. Based on the rating (Figure 4.3-1) and

textual/verbal feedback (Appendix M), it is concluded that the patterns can be used for the

development and integration of a mechatronic system in a multidisciplinary environment developed

concurrently.

The conclusion is that the patterns cover aspects of field problems (Table 4.3-1). Introduction of

these patterns can help the organization that made the field data available to improve production

efficiency, manage the project plan, and increase the test coverage.

4.4 Conclusion
This section describes how the multidisciplinary development problems of mechatronic systems are

addressed with the new patterns presented in this chapter.

The conclusion of this chapter is that the patterns address the problems mentioned in section 1.3. In

this section, the following problems were reported:

 Collaboration between disciplines

 Integration of deliverables

 Dependency between disciplines

The three patterns presented in this chapter address these problems (see also 4.2.6) as follows:

 Orchestration of deliverables from different disciplines

 Identification of multidisciplinary integration problems early in the development cycle

 Verification of system behavior before integration on a real system begins

The Common Plan patterns support collaboration, integration, and independency. Creating a

common plan and alignment of the dependencies enforces communication between disciplines.

Once the schedule has been agreed, each discipline can select the development model that fits their

needs. Conflicts within the team are reduced when the responsibilities that concern integration and

deliverable testing are clear.

The Hardware in the Loop pattern supports collaboration, integration, and independency. Building

and maintaining a hardware setup requires the collaboration of all disciplines. Having a hardware

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

64

setup allows disciplines to work independently. The state of the setup can be frozen. This allows

developers to make progress. Upgrades on the hardware or software can be planned and prepared.

The setup allows the execution of tests to be initiated early in the development cycle. This supports

early deliverable integration.

The pattern Simulator in the Loop supports collaboration, integration, and independency. Having

simulator(s) creates the opportunity to work independently, which allows developers and testers to

make progress. Simulators have several advantages in comparison with real systems, and such

advantages support deliverable integration. Early in the development cycle, behavioral requirements

can be validated. During the simulator design process, other disciplines might become involved in

order to provide their input on (sub-)system behavior. This allows multidisciplinary collaboration.

The quality of the pattern descriptions is sufficient for practitioners to understand all pattern aspects,

which are context, problem, forces, solution, and a discussion on why pattern works.

The patterns proposed a solution for the problems faced by the organization that made the field data

available.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

65

5 Discussion

5.1 Patterns

5.1.1 Commonalities between patterns

The patterns Build Prototype, Hardware in the Loop, and Simulator in the Loop have commonalities:

they all allow early implementation, confrontation, and incremental development. The resolving of

forces justifies the need for Simulator in the Loop:

 Multiplication can be done at low cost. This way, all developers can have access to a test

environment that can be supportive of the development of large systems, multisite

development, and automated testing.

 Behavioral requirements at the system level can be verified before a system is available.

 The use of a simulator does not require a system expert for operation.

 Problems are easier to reproduce because there are fewer variables (e.g., environment,

mechanical tolerance).

 Easy to verify extreme use cases that occur seldom in the real-life environment.

Hardware in the Loop strongly relates to Build Prototype. The difference is that Hardware in the Loop

has more focus on incremental (multidisciplinary) development, integration, and multidisciplinary

collaboration, whereas the main purpose of Build Prototype is to gain knowledge. Another difference

is that hardware setup evolves over time, and therefore, it represents the latest state of

development. This setup does not need to be discarded; it can be used continuously for development

and testing.

5.1.2 General pattern applicability

The pattern Common Plan resolves dependencies between disciplines, unassigned responsibilities,

and misinterpretations on design. The pattern might also be applicable outside the mechatronic

development domain. An indication of this is that the pattern covers general process development

issues based on Table J-1 and Table N-1:

 Production is not efficient

 Project intake is not managed

 Project plan is not managed

 Responsibility is not assigned

Discussion with other people outside the mechatronic development domain is required to obtain

confirmation of this statement.

5.1.3 Pattern language

The patterns are integrated into a language based on software development. Several patterns, such

as Parser Builder, Code Ownership, and Programming Episode (Appendix O), strongly refer to this.

Most patterns are more generally applicable. For example, the Named Stable Bases describes

stabilizing the system architecture and provides a name that can be used to identify that version. This

pattern can also be applied to hardware. The hardware engineers create stable bases with functional

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

66

models and Alpha and Beta versions that can have subversion when minor modifications are applied.

Another example is the Architect Controls Product. Within the development of a mechatronic system,

a system engineer fulfills this role, and the Architecture Team with representatives from all

disciplines support the system engineer. Because most patterns can also be applied to mechatronic

development, the new patterns can be seen as language extensions.

5.2 Evaluation

5.2.1 Coverage

The evaluation shows the coverage of the patterns on the failure categories (Table 4.3-1), and such

coverage is based on the field data of one organization. Therefore, this result cannot be

extrapolated. Coverage within another organization that has, for example, a higher maturity level

(e.g., Level 5 of the Capability Maturity Model (Humphrey, 1989)), could have a different outcome.

The evaluation also shows that the patterns do not cover the top most failure categories of the FMEA

worksheets (Table 4.3-1). During this research, practices were mined that cover these top most

failure categories, for example, System integration/Module testing, Review deliverables, and

Boundary involvement. However, some of the practices were dropped mainly because they were not

specific for multidisciplinary development. Therefore, no pattern was written to cover these failure

categories. If the research question were formulated differently, they might be selected.

5.2.2 Review

The intention for the review is to see how practitioners receive the patterns, and obtain feedback on

how they can be improved.

The group of reviewers consisted of nine individuals. For a first review, this group was sufficiently

large because most of the comments had overlap. A significant spread on the description rating was

determined; however, no explanation could be found for such spread. If more individuals were

added to the group, a causal relationship might become apparent. Another approach would be to

hold a discussion with all reviewers with regard to their ratings. This should provide an explanation

for the rating, as well as more input for description improvements. Such an initiative was not

undertaken because of the time constraint for this thesis.

5.3 Research approach

5.3.1 Influence of personal knowledge

This research is influenced by the author’s personal knowledge and perspective, given that the

author has worked for more than 15 years in the development of mechatronic systems. In those

years, the author has executed different roles, such as developer, architect, team leader, and project

leader, all of which were performed within the software discipline. As a contractor, the author has

performed these roles in nine different companies active in different industries and of different size.

Some of such companies have a maximum of 50 employees, and others over 4,000.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

67

This personal knowledge has influenced:

 Definition of the practices (Table D-1, Table G-1, Table J-1)

 Definition and assignment of failure categories (Appendix F)

Such influence can be prevented if the research question were answered with a different approach.

An option is to present the problem statement to the pattern community (EuroPLoP, 2015;

ScrumPLoP, 2015) and mine patterns through discussion. However, such approach does not qualify

for academic research because it is not an independent research that demonstrates research skills. It

is also difficult to reproduce the discussion results because the result depends on the knowledge of

the present participants.

The definition of practices and pattern writing (section 3.6) are performed based on common sense.

This process can be done according to a pattern language for writing patterns (Meszaros, Doble,

Martin, Riehle & Buschmann, 1997). However, for this thesis, this is a missed opportunity because

the author learned of the existence of such language after writing the patterns.

5.4 Recommendations and future work

5.4.1 Pattern description

The pattern descriptions (section 4.2) are solely based on this research, and they can be improved by

incorporating feedback from the reviewers. Another method is to brainstorm the pattern

descriptions during a writer’s workshop (ScrumPLoP, 2015; EuroPLoP, 2015). This is a platform to

improve patterns through group exposure, and it can lead to new insights to refine the description.

Such platform also allows the possibility of publication (e.g., Springer journal LNCS Transactions on

Pattern Languages of Programming). When the patterns are published, they will become more visible

to the public, which should increase the social relevance of this thesis.

Exposure of the pattern description to the writer’s workshop does not contradict the statement

made in 5.3.1, which is that mining practices through discussion does not qualify for academic

research. The objective of the exposure of the pattern description to the writer’s workshop is to

refine it in order to allow the possibility of publication.

5.4.2 Pattern language

During the literature study, publications were found that describe development by multidisciplinary

teams (Michalski, 1998; Parker, 2003). No publication was found of a pattern language that describes

multidisciplinary development. The existence of such a language can contribute to the process

improvements of a multidisciplinary team. The existing patterns (Coplien & Harrison, 2005) used for

the new patterns can be considered when such a language is constructed. These patterns are based

on section 4.2 and listed in Table 5.4-1. A short description of these patterns can be found in

Appendix O.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

68

Table 5.4-1: Existing patterns referred in new patterns

Pattern names

Application Design Is
Bounded By Test Design

Engage Customer Named Stable Bases Size the Schedule

Architect Controls Product Engage Quality Assurance Organization Follows Location Stand-up Meeting

Architecture Team Face to Face Before Working Remotely Owner per Deliverable Surrogate Customer

Build Prototypes Get on with It Patron Role Unity of Purpose

Code Ownership Group Validation Private Worlds

Conway’s Law Holistic Diversity Programming Episode

Developer Controls Process Incremental Integration Shaping Circulation Realms

5.4.3 Solution for top most failure categories

No solution is provided for the top most failure categories of the FMEA worksheets. Research can be

conducted to mine practices that address these categories. One recommendation is to execute a

literature study first. Then, the individuals actively involved in the development of mechatronic

systems can be interviewed. Next, the patterns can be written not as a Solo Virtuoso, but by

Developing in Pairs (Table O-1). When the patterns are mature, they can be presented at a writers’

workshop (EuroPLoP, 2015; ScrumPLoP, 2015).

5.4.4 Mining different sources

The field data used are FMEA worksheets and retrospective reports. There are other organizations

that have also archived their development data and made them accessible to the public. An example

of this is NASA’s Lessons Learned (NASA - Lessons learned, 2015). These data can be used as source

for mining practices.

5.4.5 Relationship between standards and language

When a business wants to improve its development practices, it can apply international standards

(e.g., ISO/IEC, 2008) or achieve a higher level in the Capability Maturity Model (Humphrey, 1989).

Another approach is to apply a development pattern language.

Research can be conducted to determine how the pattern languages of (Coplien & Harrison, 2005)

relate to international standards (e.g., ISO/IEC, 2008). The possibility of formalizing the use of pattern

languages, similar to international standards, can also be investigated. By executing an audit in an

organization, the level to which such organization complies with a language can be determined. Such

an audit can result in improvement advice, which in turn, can improve the processes within an

organization and popularize the use of pattern languages.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

69

6 Conclusion

The conclusion is that the research question was answered positively. The research question is as

follows:

“Is it possible to formulate organizational patterns that can be used for the development

and integration of a mechatronic system in a multidisciplinary environment developed

concurrently?”

The problem statement was described in section 1.3, and the following problems were reported:

 Collaboration between disciplines

 Integration of deliverables

 Dependency between disciplines

Such problems lead to project delays and integration issues. These problems were addressed with

the new patterns (section 4.4). Project delays can be prevented because a Common Plan (section

4.2.3) orchestrates the deliverables from different disciplines. This Common Plan manages the

development schedule of the mechatronic system. In addition, conflicts within the team can be

reduced because the responsibilities that concern integration and testing deliverables are

determined. Hardware in the Loop (section 4.2.4) and Simulator in the Loop (section 4.2.5) allow the

possibility of disciplines to work independently, which permits concurrent engineering, and hence

reduces project delays. A project can also be delayed because of integration issues, which can be

reduced by Hardware in the Loop and Simulator in the Loop. These patterns allow early integration.

It is the first time that these solutions are formalized and presented as an organizational pattern and

integrated into the organizational pattern language of (Coplien & Harrison, 2005). This result can

benefit a multidisciplinary team that develops a mechatronic system concurrently. It will make them

aware of: a solution to their problem, when to apply it, the forces and trade-offs of the solution, and

how the solution can be implemented. These patterns will empower the multidisciplinary team to

solve the stated problems.

This result was achieved by mining practices in publications (section 3.3) and in field data that consist

of FMEA worksheets (section 3.4) and retrospective reports (section 3.5). Based on several criteria,

three practices were selected to be written as a pattern (section 3.6) according to a form layout

(Figure 3.2-1). For reading clarity, sidebars were introduced. The reviewers explicitly mentioned such

sidebars as being very supportive to understanding the patterns. The patterns were integrated into

two pattern languages (section 4.2.2): People and code, and Project management. With this

integration, the new patterns can be understood more easily and applied successfully in the correct

order.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

70

The fact that the patterns cover aspects of the following failure categories within the organization

that made the field data available (section 4.3.3) was determined:

 Integrated system behavior is not considered

 Production is not efficient

 Project plan is not managed

 Resources (hardware) are scarce

 Responsibility is not assigned

 Test coverage is too low

The introduction of these patterns can help the organization at least to improve production

efficiency, manage the project plan, and increase test coverage.

Individuals who work in the field of mechatronic systems and multidisciplinary projects (section

4.3.2) reviewed the patterns. Such reviewers were positive on the presented patterns. Almost

everyone recognized the patterns and confirmed that they have seen them being used. All the

patterns rated 7.5 or higher (1 is bad and 10 is excellent). Based on this rating and textual/verbal

feedback (Appendix M), it is concluded that the patterns can be used for the development and

integration of a mechatronic system in a multidisciplinary environment developed concurrently.

Recommendations for future work (section 5.4) are as follows:

 Improve pattern description

 Construct dedicated pattern language for developing a mechatronic system

 Write patterns for top most failure categories

 Mine different sources to retrieve practices

 Investigate the relationship between standards and pattern language

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

71

7 Reference

Alvarez Cabrera, A., Foeken, M., Tekin, O., Woestenenk, K., Erden, M., & De Schutter, B., et al. (2010).
Towards automation of control software: A review of challenges in mechatronic design.
Mechatronics, 20(8), 876-886. doi:10.1016/j.mechatronics.2010.05.003

Armoush, A., Salewski, F., & Kowalewski, S. (2008). Recovery block with backup voting: A new pattern

with extended representation for safety critical embedded systems. Paper presented at the
International Conference on Information Technology (ICIT), (pp. 232-237), Bhubaneswar,
India.

Beckers, J., Muller, G., Heemels, W., & Bukkens, B. (2007). Effective industrial modeling for high-tech

systems: The example of happy flow. Paper presented at the International Council on System
Engineering (INCOSE), San Diego, USA.

Bonnema, G., Borches, P., & Houten, F. (2010). Communication: Key factor in multidisciplinary system

design. Paper presented at the 8th Conference on Systems Engineering Research (CSER),
Hoboken, NJ, USA.

Boucher, M., & Houlihan, D. (2008). System design new products development for mechatronics.

Boston, MA, USA: Aberdeen Group.

Bradley, D. (2010). Mechatronics – More questions than answers. Mechatronics, 20(8), 827-841.

doi:10.1016/j.mechatronics.2010.07.011

Buschmann, F., Henney, K., & Schmidt, D. (2007). Pattern-oriented software architecture, on patterns

and pattern languages. UK: John Wiley & Sons.

Chandler, G., Denson, W. K., Rossi, M. J., & Wanner, R. (1991). Failure mode/mechanism distribution

(ADA259655). USA: Reliability Analysis Centre (RAC).

Chen, D. J., & Torngren, M. (2001). Towards a framework for architecting mechatronics software

systems. Paper presented at the 7th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS), (pp. 170-179), Skvde, Sweden.

Christopher, A., Ishikawa, S., & Silverstein, M. (1977). A pattern language. Oxford University Press.

Colorado State University (2012). Definitions of "Mechatronics." Retrieved 5 Feb 2015, from

http://mechatronics.colostate.edu/definitions.html

Coplien, J. O., & Harrison, N. (2005). Organizational patterns of agile software development. USA:

Prentice Hall.

Department of defense (1980). Military standard: Procedures for performing a Failure Mode, Effects

and Criticality Analysis (MIL-STD-1629A). Washington, DC, USA: Department of defense.

Derby, E., & Larsen, D. (2006). Agile retrospectives. USA: Pragmatic Bookshelf.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

72

Eppinger, S., & Salminen, V. (2001). Patterns of product development interaction. Paper presented at
the International Conference on Engineering Design (ICED), Glasgow, UK.

EuroPloP (2015). European conference on patterns and pattern languages. Retrieved 21 Feb 2015,

from http://www.europlop.net/

Fantuzzi, C., Bonfe, M., Secchi, C., e Reggio, U., & Emilia, D. (2009). A design pattern for model based

software development for automatic machinery. Paper presented at the 13th IFAC
Symposium on Information Control Problems in Manufacturing (INCOM), Moscow, Russia.

Forsberg, K., & Mooz, H. (1991). The relationship of systems engineering to the project cycle. Paper

presented at the First Annual Symposium of the National Council On Systems Engineering
(NCOSE), Chattanooga, TN, USA.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns. USA: Pearson Education.

Garro, R., Ordinez, L., & Alimenti, O. (2011). Design patterns for cyber-physical systems: The case of a

robotic greenhouse. Paper presented at the Brazilian Symposium on Computing System
Engineering (SBESC), (pp. 15-20), Florianopolis, Brazil.

Graaf, B., Lormans, M., & Toetenel, H. (2003). Embedded software engineering: The state of the

practice. Software, IEEE, 20(6), 61-69.

Haapanen, P., & Helminen, A. (2002). Failure mode and effects analysis of software-based

automation systems. Helsinki, Finland: STUK.

Heemels, W., van de Waal, E., & Muller, G. (2006). A multi-disciplinary and model-based design

methodology for high-tech systems. Paper presented at the Conference on Systems
Engineering Research (CSER), Los Angeles, USA.

Humphrey, W. S. (1989). Managing the software process. Boston, MA, USA: Addison-Wesley

Professional.

ISO/IEC (2008). ISO/IEC 15288:2008, Systems and software engineering—System life cycle processes.

Switzerland: International Organization for Standardization/International Electrotechnical
Commission.

Keutzer, K., Massingill, B., Mattson, T., & Sanders, B. (2010). A design pattern language for

engineering (parallel) software: Merging the PLPP and OPL projects. Paper presented at the
Workshop on Parallel Programming Patterns (ParaPLoP), Carefree, AZ, USA.

Kim, D. H., Kim, J. P., & Hong, J. E. (2009). Practice patterns to improve the quality of design model in

embedded software development. Paper presented at the 9th International Conference on
Quality Software (QSIC), (pp. 179-184), Jeju, Korea.

Kleinsmann, M., Buijs, J., & Valkenburg, R. (2010). Understanding the complexity of knowledge

integration in collaborative new product development teams: A case study. Journal of
Engineering and Technology Management, 27(1-2), 20-32.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

73

Meszaros, G., Doble, J., Martin, R. C., Riehle, D., & Buschmann, F. (1997). A pattern language for
pattern writing. Pattern languages of program design 3. Boston, MA, USA: Addison-Wesley
Professional.

Michalski, W. (1998). 40 Tools for cross-functional teams. USA: Productivity Press.

Moneva, H., Hamberg, R., Punter, T., & Vissers, J. (2010). Putting chaos under control on how

modeling should support design. Paper presented at the International Council on Systems
Engineering (INCOSE), Chicago, USA.

Muller, G. (2005). Do useful multi domain methods exist? Paper presented at the Conference on

Systems Engineering Research (CSER), Hoboken, NJ, USA.

Nakata, C., & Im, S. (2010). Spurring cross-functional integration for higher new product

performance: A group effectiveness perspective. Journal of Product Innovation Management,
27(4), 554-571. doi:10.1111/j.1540-5885.2010.00735.x

NASA - Lessons learned (2015). Public Lessons Learned System. Retrieved 21 Feb 2015, from

http://llis.nasa.gov/

NASA Academy of Aerospace Quality (2014). Failure mode and effects analysis module objectives.

Retrieved 11 Jan 2015, from http://aaq.auburn.edu/node/501

National Aeronautics and Space Administration (2007). Systems engineering handbook (NASA/SP-

2007-6105 Rev1). USA: NASA.

OrgPatterns (2001). Pattern template. Retrieved 9 Feb 2015, from

http://web.archive.org/web/20061012032421/http://www.easycomp.org/cgi-
bin/OrgPatterns?PatternTemplate

Parker, G. (2003). Cross-functional teams: Working with allies, enemies, and other strangers. USA:

John Wiley & Sons.

Pont, M., & Banner, M. (2004). Designing embedded systems using patterns: A case study. Journal of

Systems and Software, 71(3), 201-213.

Ratcheva, V. (2009). Integrating diverse knowledge through boundary spanning processes—The case

of multidisciplinary project teams. International Journal of Project Management, 27(3), 206-
215. doi:10.1016/j.ijproman.2008.02.008

Royce, W. (1970). Managing the development of large software systems. Paper presented at the IEEE

Western Electronic Show and Convention 26 (WESCON), Los Angeles, USA.

Schafer, W., & Wehrheim, H. (2007). The challenges of building advanced mechatronic systems.

Paper presented at the Future of Software Engineering (FOSE), (pp. 72-84), Minneapolis, MN,
USA.

Schwaber, K., & Beedle, M. (2002). Agile software development with scrum. USA: Prentice Hall.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

74

ScrumPLoP (2015). Scrum pattern community. Retrieved 9 Feb 2015, from
http://www.scrumplop.org/

Society of Automotive Engineers (1996). Standard ARP4761: Guidelines and methods for conducting

the safety assessment process on civil airborne systems and equipment. Washington, DC,
USA: SAE International.

Society of Automotive Engineers (2000). Standard J1739: Potential failure mode and effects analysis

in design (Design FMEA), Potential failure modes and effects analysis in manufacturing and
assembly processes (Process FMEA), and potential failure mode and effects analysis for
machinery (Machinery FMEA). Warrendale, PA, USA: SAE International.

Teich, J. (2012). Hardware/Software co-design: The past, the present, and predicting the future.

Proceedings of the IEEE, 100 (Special Centennial Issue), 1411-1430.
doi:10.1109/JPROC.2011.2182009

Vijaykumar, & Chakrabarti (2007). Understanding patterns of interaction between designers during

design process. Paper presented at the 16th International Conference on Engineering Design
(ICED), Paris, France.

Wagner, S., Schatz, B., Puchner, S., & Kock, P. (2010). A case study on safety cases in the automotive

domain: Modules, patterns, and models. Paper presented at the 21st International
Symposium on Software Reliability Engineering (ISSRE), (pp. 269-278), San Jose, CA, USA.

Wallace, C. (1922). The Gantt chart, a working tool of management. New York, USA: Ronald Press.

Wikipedia - Mechatronics (2015). Mechatronics. Retrieved 5 Feb 2015, from

http://en.wikipedia.org/wiki/Mechatronics

Zheng, C., le Duigou, J., Bricogne, M., & Eynard, B. (2013). Survey of design process models for

mechatronic system engineering. Paper presented at the 10th Congres International de Genie

Industriel (CIGI), La Rochelle, France.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

75

Appendix A Acronyms

Acronyms Meaning

CMM Capability Maturity Model

FMEA Failure Methods and Effects Analysis

ISO/ECI International Organization for Standardization/International Electrotechnical

Commission

PLoP Pattern Languages Of Programs

NASA National Aeronautics and Space Administration

SysML System Modeling Language

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

76

Appendix B Glossary

Term Definition/Context

Concurrent engineering A methodology used in product development based on the concept of tasks being executed simultaneously.

Some examples include parallel development of a system, subsystem, or module.

Current design control Description of a design control (e.g., review, prototyping, etc.) already in place to prevent failure from

occurring or eliminate/reduce the immediate consequences of the failure.

This description is part of FMEA ((NASA Academy of Aerospace Quality, 2014), DFMEA continued)

Failure category Abstraction of potential failure modes.

FMEA activity This activity is a process with the objective of preventing or reducing the impact of a potential failure mode.

The activity identifies the potential failure modes of a product (Functional/Design FMEA) being developed, or

identifies the potential failure modes that can occur during the development process (Process FMEA). For each

potential failure mode, the following items are determined: potential failure effects, potential cause(s),

probability, severity, and detection. Corrective measures need to be taken to prevent or reduce the impact of

a potential failure mode with high severity ranking. The measures are called current design controls, or

recommended actions (Department of defense, 1980).

FMEA category The FMEA categories are the subjects on which the FMEA (product or process) can be applied.

 The FMEA categories for the product FMEA are: hardware, software, and timing/sequence.

 The FMEA categories for the process FMEA are: production, maintenance, and use

Retrieved from: (Haapanen & Helminen, 2002)

FMEA category

examples

Examples of FMEA categories described by (Haapanen & Helminen, 2002) are:

 Hardware category: “a system’s electrical, mechanical, and hydraulic subsystems and the interfaces

between these subsystems.”

 Software category: “programs and their execution as tasks that implement various system

functions. This category also includes the program interfaces with the hardware and those

between different programs or tasks.”

 Timing/sequence category: “timing and sequence of various system operations.”

 Production category: “the production of the hardware of a software-based system may involve

chemical processes, machining operations, and the assembly of subsystem components. The

software production includes the production routines reaching from requirement specification to

the final testing of the software.”

 Maintenance category: “preventive and corrective maintenance as well as configuration control.”

 Use category: “all of the ways a product may be used; it includes operator or other human

interfaces, effects of over-stress conditions, and possible misuses of the system.”

FMEA classification Depending on the application, FMEA can generally be classified as either process or product.

 “The product FMEA analyses the design of a product by examining the way that item’s failure

modes affect the operation of the product.“

 “The process FMEA analyses the processes involved in design, building, using, and maintaining a

product by examining the way that failures in the manufacturing or service processes affect on the

operation of the product.”

Retrieved from: (Haapanen & Helminen, 2002)

Force “The features or characteristics of a situation that, when brought together, find themselves in conflict and
create a problem. To consider any solution to the problem effective, the forces must be balanced.”
(Buschmann, Henney & Schmidt, 2007)

Mechatronic system “A computer-controlled mechanical system, including both an electronic computer and electromechanical
components” (Wikipedia - Mechatronics, 2015)

Mining The process of analyzing data and summarizing it into useful information. Within the context of this thesis,

practice mining such useful information contains problem and solution descriptions that solve the problem.

Patlet “A short summary of the problem and solution for a pattern.” (Coplien & Harrison, 2005)

Pattern “Each pattern describes a problem that occurs over and over again in our environment, and then describes

the core of the solution to that problem, in such a way that you can use this solution a million times over,

without ever doing it the same way twice.”(Christopher, Ishikawa & Silverstein, 1977)

Pattern language A network of interrelated patterns that define a process for resolving development problems systematically.

Definition based on (Buschmann, Henney & Schmidt, 2007)

Pattern sequence “A sequence of patterns applied to create a particular architecture or design in response to a specific

situation. From the point of view of a pattern language, a pattern sequence represents a particular path

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

77

through the language.” (Buschmann, Henney & Schmidt, 2007)

Potential effect(s) of

failure

This term is used within FMEA worksheets, and it is a description of the immediate consequence of a specific

failure ((NASA Academy of Aerospace Quality, 2014), DFMEA continued)

Potential failure mode This term is used within FMEA worksheets, and it is a description of a specific failure that may occur within the

project, or with the system and its functions ((NASA Academy of Aerospace Quality, 2014), DFMEA continued)

Practice A way to solve a problem. A practice describes the problem and solution, and has a descriptive name based on

the solution.

Product development

domains

The product development domains are defined as follows (Eppinger & Salminen, 2001):

 “Product” is what an organization produces. “A complex product or large system is decomposed

into sub-systems, and these in turn may be further decomposed into sub-assemblies and/or

components.”

 “Process” is the way an organization produces a product. “A full development process is

decomposed into phases or sub-processes, and these in turn may be further decomposed into

tasks, activities, and work units.”

 “Organization” produces a product through a process. “A large development organization is

decomposed into teams, and these in turn may be further decomposed into working groups and

individual assignments.”

Project lifecycle phase The project lifecycle phases are based on the waterfall model. These are (Royce, 1970):

 Requirements specification

 Design

 Construction (Implementation)

 Integration

 Testing (and debugging)

 Installation

 Maintenance

Note: This definition is only used to define the project phases and not the development process.

Recommended action This term is used within FMEA worksheets, and it is a description of an action that can be taken to prevent

failure from occurring, or eliminate/reduce the immediate consequences of the failure. ((NASA Academy of

Aerospace Quality, 2014), DFMEA continued)

Retrospective A retrospective is a team activity in which a team reflects on the past period of development. The objective is

to learn from the past period and use this knowledge to increase product quality and the work life of team

members. This is accomplished by incorporating the successes and improvements in the next period.

Retrospective can be done in many different ways (Derby & Larsen, 2006)

Retrospective

categories

During a retrospective, an individual or team can make remarks. Such remarks are categorized as follows:

 Positive remark. Remarks on product development of which the individual or team is proud and

wants to continue.

 Negative remark. Remarks on product development of which the individual or team is dissatisfied.

 Improvement remark. Action assigned to an individual or team in order to improve a negative

remark.

Severity This term is used within FMEA worksheets, and it is the evaluation of the severity of the failure effect on the

next system or internal/external customer. Sometimes, large values of severity can be reduced through design

reviews that compensate or mitigate the resulting severity (NASA Academy of Aerospace Quality, 2014,

DFMEA continued).

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

78

Appendix C Confidential sources

The FMEA worksheets and Retrospective reports were made available by an organization that

develops and produces mechatronic systems. However, such organization made these reports

available under the strict condition that the information is kept confidential.

Information details:
- 1 A4 book (101 A4-pages)

o 17 FMEA worksheets (24 A4-pages).
Adjustments to the information:

 Names are made anonymous
 Financial information is removed
 Removed severity level, probability, detectability, and risk priority number

o 57 Retrospective reports (77 A4-pages).
Adjustment to the information

 Names are made anonymous

One hardcopy of the information is provided to the graduation committee. For those who want to

see this information, please contact:

Open Universiteit Nederland
Department: Computer Science
Valkenburgerweg 177
6419 AT Heerlen
The Netherlands
e-mail: info@ou.nl
Phone: +31 45 576 2888

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

79

Appendix D Literature study: practices

This appendix provides an overview of the practices mined during the literature study.

In Table D-1, the first column describes the problem. The second column contains the solution to the

problem. This problem and the solution can have multiple references. The third column contains the

practice name, which is inspired by the solution. The table is sorted based on the practice name.

Table D-1: Practices mined from literature

Problem Solution Practice name

Communication between disciplines is hampering. The
reason is that there is no common understanding (Beckers
et al., 2007);
Integration problems caused by the complexity of the
dependencies between subsystems and developers
(Alvarez Cabrera et al., 2010)

Create a simplified view of the required system behavior.
This description can be based on the ideal world (Happy
flow) (Beckers et al., 2007);
Increase abstractions level of the design (Alvarez Cabrera
et al., 2010)

Abstract design

The problem is that a design decision made in one
discipline can have enormous impact on another discipline.
A reason for this is that monodisciplinair design decisions
are not communicated to other disciplines (Moneva et al.,
2010) (Heemels, 2006) (Boucher & Houlihan, 2008)

Make a selection of the most critical aspects of the
system. Manage the requested modification by a formal
process (Moneva et al., 2010);
Analyze the impact of the design decision on the system
as soon as possible. A framework can support this
analysis (Heemels, 2006);
Implement a process that organizes the communication
of changes to all disciplines (Boucher & Houlihan, 2008)

Alert design
change

Collaboration between engineers of different disciplines
hampers during initial design phase. This can result in poor
system design (Alvarez Cabrera et al., 2010);
The design work is not divided among the disciplines. This
can result in poor system design (Alvarez Cabrera et al.,
2010)

Organize an activity in which information is exchanged
between the engineers of all disciplines (brainstorm,
group reviews) (Alvarez Cabrera et al., 2010)

Brainstorm on
design

A multidisciplinary design is too abstract to extract detailed
requirements (Muller, 2005);
No verification can be done based on a multidisciplinary
design (Muller, 2005).

Create an explicit design based on budgets (e.g.,
Performance, use of resources, etc.) (Muller, 2005)

Budget design

There is no team synergy (Michalski, 1998, pp. 21, 28) When making decisions, favor consensus over voting.
When consensus is reached, all team members will
support the outcome, even when it fails (Michalski, 1998,
p. 28)

Build
commitment

Team members fail to cooperate with each other and
abdicate responsibility (Nakata & Im, 2010, p. 13)

Assign a central power (Nakata & Im, 2010, p. 13) Central power

Team fails to achieve goal (Michalski, 1998, p. 23) Set clearly stated mission, goals, and team objectives
(Michalski, 1998, p. 23)

Clear priorities

Team fails to achieve goal (Michalski, 1998, p. 23) Create a clear definition of tasks (Michalski, 1998, p. 12) Clear tasks

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

80

The project engages unnecessary iterative loops
(Kleinsmann, Buijs & Valkenburg, 2010, p. 22);
Miscommunication occurs (Vijaykumar & Chakrabarti,
2007, p. 3);
Lack of common background knowledge at the beginning
of the projects (Ratcheva, 2009)

Iterative style of informal communication allows people
to reach well-founded decisions and find common
ground (Vijaykumar & Chakrabarti, 2007, p. 2);
Develop a shared vocabulary by which to communicate
(Vijaykumar & Chakrabarti, 2007, p. 4);
Create shared understanding on development process
and its content (Kleinsmann, Buijs & Valkenburg, 2010,
p.21);
One person must “mutually accept” another's references
before the conversation proceeds (Vijaykumar &
Chakrabarti, 2007)

Common ground

Projects suffer from overlapping responsibilities and
ambiguous command chains, generating psychic distance
and intense conflict among team members (Nakata & Im,
2010, p. 7)

Create a common project plan (Nakata & Im, 2010, p. 7) Common plan

Tasks of disciplines are not aligned. This leads to inefficient
execution of the project (Zheng et al., 2013)

Inform the status of the project to all disciplines. Make
clear which parts have impact on each other (Zheng et
al., 2013)

Define
dependencies

There is no team synergy (Michalski, 1998, p. 27) Define team roles (Michalski, 1998, p. 27) Define roles in
team

There is no cross-functional knowledge. This can lead to
unawareness of the impact of modifications. This can also
lead to a non-optimal solution for a multidisciplinary
problem (Boucher & Houlihan, 2008);
The consequence of a monodisciplinair design decision on
other disciplines is unclear (Heemels, 2006)

Inform other disciplines of the design and design choices.
This will actively involve other disciplines to interact and
benefit the overall system design (Boucher & Houlihan,
2008);
Invest on the consequences of a design decision for all
disciplines as soon as possible (Heemels, 2006)

Design
walkthrough

Development of a new product takes too long (Parker,
2003, p. 15);
Group does not working effectively (Nakata & Im, 2010,
p. 558)

Grant team authority to make decisions on functionality,
cost, production, and appearance (Parker, 2003, p. 15,
chapter 5); (Michalski, 1998, p. 27; Nakata & Im, 2010,
p. 558)

Empower the
team

Team is not well integrated (Parker, 2003, p. 28) (Nakata &
Im, 2010, pp. 554, 566)

As management, accept failures. This motivates teams to
pursue high potential projects (Nakata & Im, 2010,
p. 560)

Encourage risk
taking

Team does not meet goals (Parker, 2003, p. 90) Introduce feedback loop on the team’s activities (e.g.,
plan versus actual) (Parker, 2003, p. 90)

Establish a
scoreboard

Models and simulations do not exactly represent the real
system. Therefore, system verification cannot be executed
(Alvarez Cabrera et al., 2010);
Many integration problems at the end of the project
(Alvarez Cabrera et al., 2010), (David Bradley, 2010);
Fault detection and diagnoses can only be executed when
the final system is available (Boucher & Houlihan, 2008)

Create a setup that involves only the critical hardware
parts and software to be integrated (Boucher &
Houlihan, 2008), (David Bradley, 2010), (Alvarez Cabrera
et al., 2010)

Hardware in the
Loop

Lack of support by functional department (Parker, 2003,
pp. 89, 95)

Incorporate team goals into goals of the functional
department (Parker, 2003, pp. 89, 95)

Incorporate
goals

People do not understand the big picture, do not know
what to know, experience information distortion, and have
different interpretation of representations (Vijaykumar &
Chakrabarti, 2007, p. 2)

Create appropriate information flow (Vijaykumar &
Chakrabarti, 2007)

Information flow

There is no good mechanism to coordinate the varied
efforts (Parker, 2003, p. 32)

Assign a role whose job it is to facilitate the coordination
of the various allies, enemies, and strangers among the
project (Parker, 2003, p. 32)

Integrator

Development of a new product takes too long (Parker,
2003, p. 15)

Compose a team with all relevant departments, including
marketing and purchase (Parker, 2003, p. 15).

Involve key
stakeholders

Development of a new product takes too long (Parker,
2003, p. 15)

Enforce the discipline necessary to maintain the
schedule. This can be done by setting strict deadlines and
hold to them (Parker, 2003, pp. 15-16)

Keep the
schedule

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

81

Impact of a new requirement on the design cannot be
determined because the relationship between design and
requirements are unclear. This is especially difficult for
multidisciplinary projects because requirement
implementations can be divided among disciplines (Graaf,
2003)

Keep track of requirements during design by
implementing requirements management (Graaf, 2003)

Keep track of
requirements

The problem is that requirements are not implemented.
Top-level requirements are divided over the disciplines.
When dividing requirements, details can be lost. In
addition, during development, new requirements emerge.
This may not be addressed correctly (Boucher & Houlihan,
2008)

Assign one person who becomes owner of all
requirements. This person has the oversight of the
requirements (Boucher & Houlihan, 2008)

Key master

Lack of ability to integrate knowledge can keep the team
from gaining any benefits from resource pool (Ratcheva,
2009, p. 208);
Diverse knowledge is not integrated in team (Ratcheva,
2009, p. 208);
Knowledge integration is difficult because team members
often have different interests and perspectives on new
methods to develop the product (Kleinsmann, Buijs &
Valkenburg, 2010, p. 21);
A domain expert cannot find a solution in another domain.
This may lead to an inefficient solution (David Bradley,
2010);
For the engineers, it is difficult to foresee the consequence
of becoming involved in a task outside their direct scope
(Kleinsmann, Buijs & Valkenburg, 2010, p. 26);
Disciplines are caught in knowledge silos. As a
consequence, design decisions made by one discipline can
have a negative impact on another discipline in a next
development phase (Boucher & Houlihan, 2008)

Maintain the team together over time. Behaviors are
learned over time from working in a specific setting
(Ratcheva, 2009, p. 208);
Create transitive memory. This makes it possible to
develop complex products with actors from different
disciplines without having too much redundancy of
knowledge (Nakata & Im, 2010, p. 22);
Increase interpersonal interactions and relational capital
developed among members (Ratcheva, 2009);
Face-to-face communication (Kleinsmann, Buijs &
Valkenburg, 2010);
Firms should develop an organizational context that
allows collective action (Kleinsmann, Buijs & Valkenburg,
2010, p. 29);
Case-based reasoning can lead to an existing solution or
to granular ideas of a solution. This idea can be taken to
the domain expert (David Bradley, 2010);
Make clear the allocation of tasks and responsibilities
(Kleinsmann, Buijs & Valkenburg, 2010, p. 26);
Increase multidisciplinary knowledge of the engineers.
This can be accomplished by cross-training. (Boucher &
Houlihan, 2008)

Knowledge
integration

Team is not effective (Ratcheva, 2009) Let a new way of working emerge and develop through
intense interactions (Ratcheva, 2009)

Learn by
interaction

Teams do not benefit from team diversity (Parker, 2003,
p. 28)

Conduct technical training (Parker, 2003, p. 31);
Provide team training (Parker, 2003, p. 31)

Learning
community

Lack of common understanding between multidisciplinary
engineers (Heemels, 2006);
No idea on how to approach the challenges of the
development of the system (David Bradley, 2010);
Not all disciplines are aware of the current
multidisciplinary design conflicts. The conflicts should be
considered when new design decisions are made. If this
out of scope, decisions can have negative consequences
(Boucher & Houlihan, 2008)

Write the most important insights on the design,
development, and practices of the previous systems.
Successful solutions can be reapplied (Heemels, 2006);
Formally document the multidisciplinary integrations
issues. This improves visibility of the design conflicts
(Boucher & Houlihan, 2008)

Lessons learned

Team members have different personal objectives and
motivations for participation, which do not align with the
project or organizational objectives (Ratcheva, 2009)

Managing expectations is of paramount importance for
successfully accomplishing a project. Therefore, project
teams are required to adopt a much wider set of
responsibilities beyond the immediate technical aspects
of the project, and be granted greater autonomy
(Ratcheva, 2009, p. 214)

Manage team
member
expectations

Team fails to achieve goal (Michalski, 1998, p. 23);
Team members are less motivated to put effort in the
project because they are not evaluated against project
objectives (Parker, 2003, p. 95)

Assign challenging, but fair, set of measures directly
linked to the team’s goal and objectives (Michalski, 1998,
p. 23);
Incorporate team goals into the goals of the team
member (Parker, 2003, pp. 89, 95);
Evaluate team members on their performance in the
project (Parker, 2003, p. 95)

Mutual
accountability

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

82

Designing all aspects of a system is not cost effective
(Moneva et al., 2010)

Only design the critical parts of a system (Moneva et al.,
2010)

Only design
critical parts

Team underperforms because it is not highly motivated
(Parker, 2003, p. 90)

Set a compelling goal for the team (Parker, 2003, p. 90) Provide an
incentive

Team fails to achieve goal (Michalski, 1998, p. 12) Share leadership across members (Michalski, 1998, p. 12) Shared
leadership

System level issues are discovered late in the design
process. As a consequence, design options are reduced
because critical decisions are already made (Boucher &
Houlihan, 2008)

Simulate behavior at system level. With this simulation,
virtual tests can be executed early in the design cycle.
This allows early identification of problems on system
level. (Boucher & Houlihan, 2008)

Simulator in the
Loop

It is difficult to determine where to go for information
regarding the project (e.g., status, technical details).
(Parker, 2003, pp. 31-36)

Assign a role (e.g., team leader) whose job is to
communicate team information to the stakeholders
(Parker, 2003, pp.31-36)

Single point of
contact

In larger projects, the design and integration of a system
requires a significant amount of time. This can be caused
by organizational issues, politics, and projects that are not
aligned (Heemels, 2006)

Form small multidisciplinary teams. A small team can
work efficiently (Heemels, 2006)

Small team

The problem is that requirements are not implemented. It
is unclear how the responsibilities of the system are
divided (Boucher & Houlihan, 2008), (Zheng et.al, 2013);
Integration of a mechatronic system is difficult (David
Bradley, 2010)

Create one role that divides the system into manageable
parts (such as subsystems and components) over all the
disciplines (Boucher & Houlihan, 2008)

Splitter

Problems are too complex to be solved by a series of
functional teams (Parker, 2003, pp. 17-19, Chapter 8);
No single person can do it alone (Parker, 2003, pp. 17-19,
Chapter 8)

Bring together scientist and engineers from a variety of
backgrounds and diverse training (Parker, 2003, pp. 17-
19, Chapter 8)

Team of experts

Development of a new product takes too long (Parker,
2003, p. 15)

Conduct many tasks in parallel (Parker, 2003, p. 16) Work in parallel

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

83

Appendix E FMEA: Worksheet layout

This appendix shows the layout of the FMEA worksheet made available by an organization that

produces mechatronic systems (see also Appendix C). In this layout, a description is provided on the

columns that need to be completed (red squares).

Figure E-1: FMEA worksheet example

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

84

Appendix F FMEA: process for creating failure category

This appendix describes the process for creating failure categories, which is performed in two stages.

First, a classification is made of all the potential failure modes (see Figure F-1). In the second stage, a

list of failure categories are defined based on the classification list (see Figure F-2). The purpose is to

create a list of (maximum 30) failure categories.

Figure F-1 shows the process for classifying the potential failure modes. On the left side, the process

flow is visualized. On the right side, assignment options for each step are defined. The FMEA

assignment options are based on the definitions of Figure 3.4-1. The process steps are described in

more detail in Table F-1. An example of the output of the process is provided in Table F-2.

A. Assign

project lifecycle

phaseAll potential failure mode

(random order)

B. Assign

FMEA

classificationAll potential failure mode

(sorted by project life cycle)

C. Assign

FMEA categoryAll potential failure mode

(sorted by project life cycle

and FMEA classification)

Assignment completed

Assignment completed

D. Assign

FMEA category

examples

List of

potential failure modes

Classification list of

potential failure modes

Assignment completed

All potential failure mode

(sorted by FMEA category)

Project lifecycle phases:

 Requirements specification
 Design

 Construction (Implementation)
 Integration
 Testing (and debugging)
 Installation
 Maintenance

FMEA Classifications:

 Product

 Process

FMEA Categories:

 Product

Hardware

Software

Timing/Sequence

 Process

Production

Maintenance

Use

FMEA Category examples:

 Hardware

Electrical / Mechanical / ..

 Software

Program / HW interface / ..

 Timing/Sequence

 Production

Assembly / Machining / ..

 Maintenance

Documentation / Training / ..

 Use

Human interface / Overstress / ..

Figure F-1: Process description for the classification of potential failure modes

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

85

Table F-1: Process description for classification of potential failure modes (Figure F-1)

Process step Process description

A. Assign project

lifecycle phase

Input List of potential failure modes. This list contains all the potential failure modes of all the

FMEA worksheets.

Process One potential failure mode is read. Based on the available information, one project

lifecycle phase is assigned to that specific potential failure mode. This process continues

until all potential failure modes are assigned to a project lifecycle phase. Examples are

requirement analysis, design, and construction.

Output List of potential failure modes assigned to a project lifecycle phase.

B. Assign FMEA

classification

Input List of potential failure modes assigned to a project lifecycle phase. This list is sorted by

the project lifecycle phases. Such sorting can accelerate the process when duplicate

descriptions are found.

Process Process is similar to process “step A.” The difference is that this process assigns FMEA

classifications, which are process and product.

Output List of potential failure modes assigned to FMEA classification.

C. Assign FMEA

category

Input List of potential failure modes assigned to a project lifecycle phase and one FMEA

classification. This list is sorted by project lifecycle phases and FMEA classification. Such

sorting can accelerate the process when similar or duplicate descriptions are found.

Process Process is similar to process “step A.” The difference is that this process assigns a FMEA

category. Examples are: hardware and software.

Output List of potential failure modes assigned to a FMEA category.

D. Assign FMEA

category examples

Input List of potential failure modes assigned to a project lifecycle phase, FMEA classification,

and FMEA category. This list is sorted by FMEA category. Such sorting can accelerate the

process when similar or duplicate descriptions are found.

Process Process is similar to process “step A.” The difference is that this process assigns a FMEA

category example. Examples are: human interface, overstress.

Output List of potential failure modes assigned to FMEA category example.

Table F-2 lists examples of the output for this step. The data used are real data from the worksheets.

Table F-2: Examples of classification of the potential failure modes

Potential Failure Mode(s)
(real data)

Project lifecycle
phase when risk

arises

FMEA
Classification

FMEA
Category

FMEA Category
example

Cable routing causes interference on system
performance

Maintenance Product Hardware Electrical

Difficult to validate that a correct Wizard is included in
the built

Installation Process Production Software

Module configurations in the field are unknown Maintenance Process Maintenance Configuration control

No offline test environment is available Testing Product Software Hardware interface

Still gases present when cleaner is switched on Maintenance Product
Timing/
Sequence

-

User interface does not adapt to larger display Maintenance Process Use Human Interface

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

86

Figure F-2 shows the process of creating failure categories.

E1. Create set

based on FMEA

category example

All sets

(human interface, overstress, etc.)

F. Define

failure category

E2. Create set

based on

FMEA category

G. Define /

redefine

failure category

E3. Create set

based on FMEA

classification and

project phase

H. Define /

redefine

failure category

I. Redefine /

merge

failure category

All sets

(hardware, software, etc.)

All sets

(process, product)

List of

failure categories

List of

failure categories (max. 30)

Set of

potential failure

modes

Set of

potential failure

modes

Set of

potential failure

modes

List of

failure categories

List of

failure categories

List of

failure categories

Figure F-2: Process description for creating failure categories

The process for creating the failure categories starts with all the potential failure modes that are

classified (Figure F-1). The three classifications are:

• FMEA classification and project lifecycle phase

• FMEA category

• FMEA category examples

The “steps E1,” “E2,” and “E3” use the classified potential failure modes as input. In “step F,” failure

categories are created based on the set of potential failure modes. This creation starts with fine-

grained failure categories. After several more generic steps, coarse-grained failure categories are

created. At the end of the process (“steps G,” “H,” and “I”), a list of maximum 30 failure categories is

defined. This limitation helps maintain the description generic. In Table F-3, the process steps are

described in more detail. An example of this process is provided in the next section (under Table F-3).

During this process, the author used domain knowledge to define failure categories and assign these

to a potential failure. The domain knowledge used is: abbreviations, technical context, organization

knowledge, and supplier knowledge.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

87

Table F-3: Process description for creating failure category

Process step Process description

E. Create sets Input All potential failure modes that are classified

Process Create sets based on:

 FMEA category examples

 FMEA category

 FMEA classification and project lifecycle phase

These are made by executing a query on the classified potential failure modes (see

Table F-2)

Output Each sub-step has its own specific output:

 Step E1. A total of 15 sets of potential failure modes based on FMEA

category examples (examples are: human interface, overstress, etc.)

 Step E2. Six sets of potential failure modes based on FMEA category

(examples are: hardware, software, etc.)

 Step E3. Two sets of potential failure modes based on FMEA classification

(process, product)

F. Define failure

category

Input Sets of potential failure modes (human interface, overstress, etc.)

Process 1) Similar potential failure modes are searched within the set.

2) A failure category is created based on similar potential failure modes.

3) This new failure category is compared with the existing failure categories. When

there is a similar failure category, a new failure category is created to cover both,

or they are redefined to distinguish them better. Each set can have multiple failure

categories.

4) This process ends when all sets are processed.

An example of this process is described below this table.

Output A list of failure categories

G. Define/redefine

failure category

Input Sets of potential failure modes (hardware, software, etc.)

A list of failure categories

Process Process is similar to the process for “step F.”

Output A list of failure categories

H. Define/redefine

failure category

Input Sets of potential failure modes (process, product)

A list of failure categories

Process Process is similar to the process for “step F.”

Output A list of failure categories

I. Redefine/merge

failure category

Input A list of failure categories

Process This process only starts or continues when there are more than 30 failure categories.

In such a case, similar failure categories are searched. These similar failure categories

should be redefined to cover both.

Output A list of 30 or fewer failure categories

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

88

This section describes an example of the creative process for defining a failure category. This

example is based on “step F” of Figure F-2. The description of the sub-steps can be found in Table

F-3. The data used for this example are real data retrieved from the FMEA worksheets.

Step F. Process 1

 The set “Process.Production.Software” (see Figure 3.4-1) is selected.

 All the potential failure modes are read. A manual search is performed on similar subjects

(can be failure modes, possible root causes, or similar description). One example is several

potential failure modes that consider requirements.

Potential failure mode (real data obtained directly from the source)

Limited feedback from customers about UI

New system will just be a set of point solutions, not clear what customer expects

Software automation, consequences unknown because it is not yet defined

The risk that use cases are not fully analyzed and linked to requirements

Unclear how much customer feedback is expected (i.e., changes to requirements)

Uptime requirements? System SW does not guarantee uptime!

Step F. Process 2

 Define or assign a failure category for each potential failure mode.

Potential failure mode (real data obtained directly from the source) Failure category

Limited feedback from customers about UI User feedback not considered

New system will just be a set of point solutions, not clear what customer expects Expectations of customer unclear

Software automation, consequences unknown because it is not yet defined Not clear what will be created

The risk that use case are not fully analyzed and linked to requirements Requirement cannot be traced

Unclear how much customer feedback is expected (i.e. changes to requirements) Expectations of customer unclear

Uptime requirements? System SW does not guarantee uptime! No requirement defined

 The six potential failure modes result in five unique failure categories. Such five unique

failure categories should be reduced to one failure category. This is done by asking the

following questions:

o What is the possible root cause?

o What is the impact on the system/customer of this root cause?

o What could be done to prevent/improve this impact?

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

89

Potential failure mode (real data) Possible root cause Impact on system/customer Prevent/Improve

Limited feedback from customers about
UI

R&D is focused inside out.
No active feedback from
customer gathered.

System does not comply
with customer expectations.

Define requirements

New system will just be a set of point
solutions, not clear what customer
expects

R&D is focused inside out.
Never asked customer
about his requirements.

System does not comply
with customer expectations.

Define requirements

Software automation, consequences
unknown because it is not yet defined

A project starts without
clear requirements.

System development delays Define requirements

The risk that use case are not fully
analyzed and linked to requirements

No focus on good
requirements
management.

Features are not available to
the customer.

Define requirements

Unclear how much customer feedback is
expected (i.e. changes to requirements)

R&D is focused inside out.
No customer feedback was
gathered during
development.

System does not comply
with customer expectations.

Define requirements

Uptime requirements? System SW does
not guarantee uptime!

No focus on determining
the expected behavior of
the system.

System availability can be
lower than expected by the
customer.

Define requirements

Now, sentences can be made (If…then…To achieve this….):

 If requirements are defined, then a feature will be available for the customer. To

achieve this, good requirement management is required.

 If requirements are defined, then the system can comply with customer

expectations. To achieve this, R&D needs to focus outside-in and actively gather

customer feedback.

If the sentences make sense, the failure category can be defined based on

“prevent/improve.” The failure category is a negative formulation of “prevent/improve.” In

this example, the “failure category” becomes “Requirement is not defined.”

Note: during this process, the author used the following domain knowledge:

 Abbreviations (e.g., HM, UEC, TAD, HAL, etc.)

 Technical context (e.g., names of modules, application)

 Organization (e.g., responsibilities)

 Suppliers (e.g., supplied modules)

Step F. Process 3

 When failure category descriptions are similar, the same process as “step F.2” is executed.

The result could be that two failure categories become one. The result could also be that the

failure categories are redefined to a more distinct description. If the failure categories are

redefined, all assigned potential failure modes should be analyzed again to determine

whether the failure category still fits.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

90

Appendix G Result of FMEA worksheet analysis

This appendix contains an overview of all the failure categories identified during the FMEA worksheet

analysis (chapter 3.4). In some cases, a practice name is assigned to a failure category. The name of

the practice is inspired by the solution. The same name is used when solutions appears to be the

same.

Table G-1 lists the result of that analysis. The table is sorted on average severity ranking (second

column). The ranking of each failure category is based on Table 3.4-1.The third column contains the

occurrences of potential failure mode found in all the worksheets. The fourth, fifth, and sixth

columns contain examples, which are examples of potential failure mode(s), potential effects of

failure, and current design control and/or recommended action.

The table contains information to start writing patterns (section 3.6). The problem is described in the

first and fourth columns (see second row of the table). The fifth column contains examples that can

become part of the context or the forces/tradeoffs description. The sixth column contains the

solution, and the seventh column the practice name. Refer to Table G-2 for details on the mapping

between solution and practice name.

Table G-1: Failure category overview based on FMEA worksheets

Failure category
(The risk is that …)

A
ve

ra
ge

 s
ev

er
it

y
ra

n
ki

n
g

O
cc

u
rr

en
ce

s
in

w

o
rk

sh
e

e
ts

Examples of
Potential Failure Mode(s)

Examples of
Potential Failure

Effect(s)

Examples of current
design control and/or
recommended action

Problem

Example of problem

Solution Practice name

Human safety is
not considered

8.6 83 X-Ray leak
Pinch hazard
Lack of safety expertise
Parts are not explosive-
proof

User dies
System cannot be
shipped
Component or
system becomes
damaged

Review the design
Add safety instructions
to work instructions
Determine safety
responsibility
(customer or supplier)

Review deliverables
System integration
testing

Customer
expectation is not
managed

6.7 12 System specification
cannot be met in case of
some system options
Certain combinations of
system options are not
possible
Immature feature is sold
Deviations in service
contract are not
communicated

System is not
accepted by
customer
Customer complaints
Customer ignorance
causes more service
actions

-

Requirement is not
defined

6.2 27 Exact customer
specifications are
unknown
Crucial feature
requirements are
unknown
Cost of good (COGS)
target is unknown

Project delay
Redesign required
System does not
meet specifications

Discuss and decide
requirements with
stakeholders
Discuss and decide
requirements with
suppliers
Determine
responsibility

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

91

Integrated system
behavior is not
considered

6.2 153 Collision between
components
Pre-conditions for
operation are not met
Disturbances (e.g.,
vibration, temperature
variation) influences
performance

Reduced system
performance
Component or
system becomes
damaged
System cannot be
used

Improve design (e.g.,
add fail-safe
mechanism, improve
system robustness)
3D design check
Bench testing

Mock-up
Hardware in the Loop

Behavior of system
is unknown

6.2 25 Customer uses system
with non-standard
materials
Untested effects of
functionality on system
Behavior after failure is
unknown

Component or
system becomes
damaged
Reduced system
performance
Customer complaints

Execute system
integration tests
Verify behavior with
engineers

System integration
testing

Test coverage is
too low

6.1 10 No test plan available
Tests are not
representative for end-
user qualification
Low testability during
system buildup

Component or
system becomes
damaged
Service action
required
Unstable or
unreliable system
behavior

Extend factory
acceptance test (FAT)
with tests for new
components
Design and verify
qualification tool in the
supply chain
Align quality control
system with supplier

System
performance varies

5.9 23 Mechanical tolerances
Repeatability of system is
low

Reduced system
performance
System performance
not within
specifications
Lifetime decreases

Measure performance
Redesign component
Automate procedure
(e.g., startup procedure
for better conditioning)

System
deteriorates over
time

5.8 107 System becomes
contaminated
Parts wear out
Corrosion on components
Parts become loose (e.g.,
because of aging glue,
cracked solder joints)

System becomes
unreliable
Component or
system becomes
damaged
Safety issues may
arise

Component redesign
(e.g., use other
materials)
Reduce load on
component (e.g.,
restrict number of
retries)
Execute lifetime tests
of a component at the
supplier

Module Testing

Responsibility is not
assigned

5.8 9 Not clear if customer or
supplier has a
responsibility on safety
issues
Not clear who is
responsible for
maintaining non released
products

Legal discussions
with customer
Version problems
Hardware/firmware
Safety issue overseen

Assign responsibility to
specific person
Only support released
products

Project plan is not
managed

5.8 24 No release plan
No integration plan
Project status not clear
Creating unnecessary
project dependencies

Project delay
Shipping of
unreleased products
Introduction of
dependency of other
projects

Make clear plan
Requirements/design
review
Discuss project risks
with marketing

Clear plan
Review deliverables

Project scope is not
managed

5.8 8 Not clear which
requirements are the
responsibility of the
project
Not clear how to manage
conflicting requirements

Additional costs and
resources involved
Project delay
Customer complaints

Make decision on
project scope

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

92

Requirement is not
met

5.7 92 Requested feature is not
available when system is
released
System performance not
within specifications
Feature does not work as
expected
No certification

Reduced system
performance
System cannot be
shipped
Missing system
functions

Improve design
Extend factory
acceptance test (FAT)
Implement missing
functionality

Factory acceptance
test

Failure can occur
during production

5.6 103 Assembly mistakes
Wrong material used
Damage during
component handling

Lifetime decreases
System cannot be
used
System does not
meet specification

Define/review factory
acceptance test (FAT)
Improve awareness
(e.g., cleanliness)
Improve production
process

Factory acceptance
test
System integration
testing

Status of system
cannot be
monitored

5.5 33 No signal readout
available
Insufficient diagnostic
information available
Mismatch between real
and set value

Unknown safety risks
Problem cannot be
determined
Unstable system

Implement tool that
can diagnose the
system
Implement
functionality that logs
current status (e.g.,
active errors, operator
input)
Improve current
monitor solution (e.g.,
sensor read-out)

Vendor is locked-in 5.5 17 Lead-time dependence
for parts
No fast switching possible
when supplier disappears

Risk in the supply
chain
No upgrades possible
Redesign required

Introduce second
supplier

Design is not
feasible

5.4 95 Feature cannot be
integrated in system
Feature does not cover
requirements

Component or
system becomes
damaged
System cannot be
assembled
Redesign required

Make return of
investment (ROI)
analysis
Execute system test to
validate critical
specifications
Redesign

Mock-up
Review deliverables
System integration
testing
Drop-In replacement

System is not
reliable

5.3 125 Component lifetime is not
met
Component parts do not
operate (e.g., vans)
Software crashes
Software cannot control
the hardware (e.g., failed
to upload firmware, no
communication with
hardware)

System cannot be
used
System performance
not within
specifications
Service action
required

Redesign component
Organize lifetime test
Improve testability of
real problem

Module Testing

Resources
(hardware) are
scarce

5.1 14 No system or system
options available for
integration and
verification
No test setup available
for implementation and
integration

Project delay
Component or
system not tested
sufficiently
Component or
system becomes
damaged

Create test plan
Use test bench
Investigate what
functionality is not
tested on hardware

Hardware in the Loop

Configuration
management is
inaccurate

5.0 10 System configuration in
field is unknown
Wrong firmware is
installed
Wrong system option is
selected

System cannot be
used
Incompatible field
upgrades
Troubleshooting
takes too long

Train people
Overview present
configuration
Restrict functionality
based on configuration

Define
up/downgrade
strategy
Embed knowledge in
system

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

93

Failure can occur
during use

5.0 23 User provides wrong
input
Procedure not followed
Errors made in expert
mode

Customer complaints
Component or
system becomes
damaged
Unreliable results

Check validity of input
values
Restrict possible
parameters that can be
modified (e.g., by
reading values from
system)
Improve procedure

Embed knowledge in
system

Resources (people)
are scarce

4.9 14 No software developer
available for support
(e.g., solving bugs)
No test engineer available
for verification

Project delay
Loss of knowledge
over time
Time delays in solving
issue

Request for resource
capacity or adjust
project plan accordingly
Create resource
allocation plan
Define responsibilities

Clear plan

Project intake is
not managed

4.8 23 Third-party software not
under version control
Unknown semantic
changes made in
firmware can lead to
system failures
Intake not delivered on
time

Project delay
Unstable or slow
system
Unplanned upgrades
required

Requirement/design
review of deliverables
from supplier
Make deliverables
explicit in supplier
contract
Align quality control
system with supplier

Maintenance is not
efficient

4.8 53 Diagnose time is too high
Service procedures not
available
Component difficult to
replace
Upgrade tooling not
available

Increased downtime
Only limited service
actions possible
Higher cost for
service action

Pre-assessment of
system before upgrade
Write procedures
Make return of
investment (ROI)
analysis

Clear plan

Maintainability of
the system
becomes difficult

4.5 15 Parts become obsolete
No backwards
compatibility
Upgrade issues

Production problems
when parts are not
available
Higher cost for
service actions
No more systems
sold, no revenue

Write supplier
agreement
Competence
management

Production is not
efficient

4.4 24 Logistic problems
Tuning problems
Geographical separation
of software development
Cycle time in factory too
high

Production delay
System is not
accepted
Time delays in solving
issue

Increase expertise of
components
Prevent wrong
assembly of component
(e.g., by using different
screws)
Investigate the need for
additional production
tools

Utilization of the
system is not
optimal

4.3 23 Procedures (e.g.,
calibration, install time)
takes too long
Time before system is
stable is too long
No abort functionality
available

Increased downtime
Not acceptable
waiting time
Reduced system
performance

Implement a standby-
modus
Implement
functionality to restore
system status
Use pre-measured
values

Design
documentation is
not available

4.3 10 Impact of modification on
the system is unknown
(e.g., volume claims)
Non-documented
behavior
More time required to
solve issues in production
or in the field

More time required
to solve issues in
production or in the
field
Difficult to extend
functionality or
hardware in the
future
Unforeseen failures

Test component before
system integration
Create design solution

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

94

Failure can occur
during
maintenance

2.8 30 Damage made to part of
the system
Components not correctly
connected
Transportation causes
damage

System cannot be
used
Component or
system becomes
damaged
Delay in upgrade

Add instruction to
service manual
Improve component
handling (e.g.,
transportation lock)
Improve service tooling

Test with dummies

The first column in Table G-2 describes the problem. Such problems are the failure categories

determined through FMEA Analysis (section 3.4). The second column contains the solution to the

problem. These solutions are retrieved from the worksheets (current design controls and

recommended actions). Most can be found in Table G-1, the others are copied from the worksheets.

The third column contains the practice name, which is inspired by the solution. The same name is

used when solutions appears to be the equal.

Table G-2: Mapping of practice name to solution

Problem (Failure category) Solution Practice name

Behavior of system is unknown Execute system integration tests System integration testing

Configuration management is inaccurate Latest firmware should become the new standard Define up/downgrade
strategy

Overview of the present configuration should be given Embed knowledge in
system

Design is not feasible 3D design check Mock-up

Design review Review deliverables

Execute system test to validate critical specifications System integration testing

Scope is only “drop-in-replacement” Drop-In replacement

Failure can be made during maintenance Organize test session with inexperienced user, followed by
process FMEA

Test with dummies

Failure can be made during production Define/review factory acceptance test (FAT) Factory acceptance test

Plan system integration test to test performance System integration testing

Failure can be made during use Check validity of input values Embed knowledge in
system

Human safety is not considered Review the design Review deliverables

System testing System integration testing

Integrated system behavior is not
considered

3D design check Mock-up

Bench testing Hardware in the Loop

Maintenance is not efficient Make upgrade plan Clear plan

Project plan is not managed Make clear plan Clear plan

Design review Review deliverables

Requirement is not met Extend factory acceptance test (FAT) Factory acceptance test

Resources (hardware) are scarce Use test bench Hardware in the Loop

Resources (people) are scarce Create resource allocation plan Clear plan

System deteriorates over time Execute lifetime tests of a component at the supplier Module Testing

System is not reliable Organize lifetime test Module Testing

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

95

Appendix H Failure category statistics (based on FMEA and

Retrospective reports)

This appendix provides a statistical overview of the data from FMEA worksheets and the

retrospective reports. This overview relates the worksheet and report data based on the failure

categories, and it can provide insight on how the two data sources relate to each other (see Table

H-1).

The table is sorted on the first column in alphabetic order. The second column is an overview of the

average severity ranking and the occurrences of the failure categories in the FMEA worksheets.

These values were determined during FMEA analysis (section 3.4). This second column allows the

possibility of relating the FMEA categories to the retrospective remarks. The third to sixth columns

provide the amount of occurrences/assigned remarks and their ratio. With the ratio value,

determining the focus of the FMEA and retrospective reports is easier. The failure categories with the

highest average severity ranking (column 2) are marked in yellow. This column is used to sort the

table. The three most mentioned failure categories (in columns 3, 4, 5, and 6) are also marked in

yellow.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

96

Table H-1: Failure category statistics

FMEA: Failure categories FMEA:
Average
severity
ranking

FMEA:
Occurrences of
failure category

Retrospective:
Positive
remarks

Retrospective:
Negative
remarks

Retrospective:
Improvements

Human safety is not considered 8.6 83 7.0% 0 0.0% 0 0.0% 0 0.0%

Customer expectation is not managed 6.7 12 1.0% 6 1.6% 7 1.2% 0 0.0%

Behavior of system is unknown 6.2 25 2.1% 0 0.0% 0 0.0% 0 0.0%

Integrated system behavior is not considered 6.2 153 12.9% 7 1.9% 23 4.1% 1 1.1%

Requirement is not defined 6.2 27 2.3% 10 2.7% 23 4.1% 3 3.3%

Test coverage is too low 6.1 10 0.8% 29 7.9% 54 9.6% 8 8.9%

System performance varies 5.9 23 1.9% 0 0.0% 0 0.0% 0 0.0%

Project plan is not managed 5.8 24 2.0% 50 13.6% 79 14.0% 18 20.0%

Project scope is not managed 5.8 8 0.7% 16 4.3% 35 6.2% 2 2.2%

Responsibility is not assigned 5.8 9 0.8% 2 0.5% 21 3.7% 1 1.1%

System deteriorates over time 5.8 107 9.0% 27 7.3% 14 2.5% 7 7.8%

Requirement is not met 5.7 92 7.8% 32 8.7% 21 3.7% 4 4.4%

Failure can occur during production 5.6 103 8.7% 11 3.0% 7 1.2% 0 0.0%

Status of system cannot be monitored 5.5 33 2.8% 2 0.5% 0 0.0% 0 0.0%

Vendor is locked-in 5.5 17 1.4% 0 0.0% 0 0.0% 0 0.0%

Design is not feasible 5.4 95 8.0% 4 1.1% 1 0.2% 0 0.0%

System is not reliable 5.3 125 10.5% 11 3.0% 0 0.0% 0 0.0%

Resources (hardware) are scarce 5.1 14 1.2% 10 2.7% 40 7.1% 7 7.8%

Configuration management is inaccurate 5.0 10 0.8% 0 0.0% 1 0.2% 2 2.2%

Failure can be made during use 5.0 23 1.9% 1 0.3% 0 0.0% 0 0.0%

Resources (people) are scarce 4.9 14 1.2% 14 3.8% 27 4.8% 7 7.8%

Maintenance is not efficient 4.8 53 4.5% 0 0.0% 5 0.9% 0 0.0%

Project intake is not managed 4.8 23 1.9% 7 1.9% 23 4.1% 4 4.4%

Maintainability of the system becomes difficult 4.5 15 1.3% 16 4.3% 23 4.1% 1 1.1%

Production is not efficient 4.4 24 2.0% 108 29.3% 151 26.8% 25 27.8%

Design documentation is not available 4.3 10 0.8% 4 1.1% 9 1.6% 0 0.0%

Utilization of system is not optimal 4.3 23 1.9% 1 0.3% 0 0.0% 0 0.0%

Failure can occur during maintenance 2.8 30 2.5% 0 0.0% 0 0.0% 0 0.0%

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

97

Appendix I Positive formulation of failure category

 This appendix provides an overview of the translation from failure category to success category. The

success category is a positive formulation of the failure category. Table I-1 translated all failure

categories from Table G-1.

Table I-1: Translation of failure category to success category

Failure categories Success category

Behavior of system is unknown Behavior of system is known

Configuration management is inaccurate Configuration management is accurate

Customer expectation is not managed Customer expectation is managed

Design documentation is not available Design documentation is available

Design is not feasible Design is feasible

Failure can occur during maintenance Maintenance action is improved to prevent failure

Failure can occur during production Production is improved to prevent failure

Failure can occur during use Usability is improved to prevent failure

Human safety is not considered Human safety is considered

Integrated system behavior is not considered Integrated system behavior is considered

Maintainability of the system becomes difficult System remains maintainable

Maintenance is not efficient Maintenance is efficient

Production is not efficient Production is efficient

Project intake is not managed Project intake is managed

Project plan is not managed Project plan is managed

Project scope is not managed Project scope is managed

Requirement is not defined Requirement is defined

Requirement is not met Requirement is met

Resources (hardware) are scarce Resources (hardware) are available

Resources (people) are scarce Resources (people) are available

Responsibility is not assigned Responsibility is assigned

Status of system cannot be monitored Status of system can be monitored

System deteriorates over time System functionality improves

System is not reliable System is reliable

System performance varies System performance is constant

Test coverage is too low Sufficient test coverage

Utilization of system is not optimal Utilization of system is improved

Vendor is locked-in Vendor is not locked-in

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

98

Appendix J Result of retrospective report analysis

This appendix summarizes the data from the retrospective reports in the context of the failure

categories and FMEA worksheets. In some cases, a practice name is assigned to a failure category,

which is inspired by the solution. The same name is used when solutions appears to be the same.

A worksheet has the descriptions current design control and recommend action. The positive remarks

can be seen as examples of current design control proven to be successful. The retrospective

improvement remarks can be seen as examples of recommended action. The negative remarks can

be seen as examples of failure categories that did occur. For each failure category, a limited amount

of retrospective examples is given. This limitation helps maintain the overview easy to read. When

the reports do not have examples, the cell is marked with “-“ (Table J-1). In the fifth column, practice

names are provided. Refer to Table J-2 for details on the mapping between practice name and

solution.

Table J-1: Failure category overview based on retrospective reports

Failure category Negative remarks Positive remarks Improvement remarks

Problem Example of problem Solution Solution Practice name

Behavior of system
is unknown

- - -

Configuration
management is
inaccurate

Configuration management is
a mess

- Create deliverables on a
regular basis
Create a configuration
management plan

Customer
expectation is not
managed

Communication to users
regarding changes & new
features is not sufficiently
good
Stakeholders are not involved
Demo can provide wrong
impression on current status
Stakeholders expectations are
too high

Obtain customer acceptance
before delivering a feature
Ask for feedback from the
customers (e.g., Beta sites)

-

Design
documentation is
not available

Missing top level overview
Documentation is not up to
date
Insufficient time to do proper
design

Create design incrementally
Organize design sessions
Focus on design

-

Design is not
feasible

Idea cannot be implemented Obtain feedback from users
Incremental development
Organize design sessions

- Design by team

Failure can occur
during maintenance

- - -

Failure can occur
during production

Time pressure
No attention for quality
Problems are not solved

Introduce procedures
Design together
Review each other’s work
Use a template for functional
requirements specification
document

- Design by team
Review deliverables

Failure can occur
during use

- Encapsulate details by
providing high level
abstraction interface

-

Human safety is not
considered

- - -

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

99

Integrated system
behavior is not
considered

Performance issues
Calibration failures
No time to concentrate on the
big picture
No correct error message is
given

Arrange Beta sites that use
Beta version and ask for
feedback
Verify feature on a real
system
Customer focus

Obtain clear requirements.
Make decision on what to
implement based on
cost/benefit analysis

Early confrontation

Maintainability of
the system becomes
difficult

Deviation from standards
Use of “over-complicated” &
non-mature technologies
Code difficult to read/obtain
overview
No time for refactoring

Select simple solution
Refactor
Fix issues (part of backlog
management)
Create stable codebase
Increase quality of code by
conducting reviews

Track design decisions that
create future
maintainability issues. This
overview provides insight
on the size of the
maintenance problem that
is being created.

Debt management
Incremental
improvement
Keep it simple
Review deliverables

Maintenance is not
efficient

Poor description of problems
Problem report not assigned
to the right person
Unclear how to manage
problem report backlog
Reentering issues

- -

Production is not
efficient

Too many meetings
Too many simultaneous
activities
Infrastructure is a bottleneck
for development
Engineers not located
together

Prevent disruption (delivery of
other teams) of tested
baselines prior to delivery
Focus on one feature
Automate repetitive work
Have continuous attention for
process improvements
Continuous integration and
delivery

Organize knowledge
transfer
Develop software in pairs
Developers will verify their
own work on a system
Create small work packages.
This way it is easier to track
the progress of the team.

Automate repetitive
work
Boundary
involvement
Constructive
disagreement
Co-ownership
Design by team
Document
overview/interface
Increase system
knowledge
Incremental
architecture
Incremental
improvement
Knowledge transfer
Work in parallel
Prioritize for focus
Empower the team
Short lines

Project intake is not
managed

Cooperation with other
project is far from optimal
Commitments are not met
Deliverables have a poor
quality

System construction timing
determines the delivery
deadlines

Outsource team member to
other team (from which the
intake is received)
Organize regular project
meetings
Organize team interaction
(design and code review
meetings)
Discuss cooperation
problems on management
level

Boundary
involvement
Common plan

Project plan is not
managed

Focus is only on solving issues
Roadmap is not clear
Project status is not
communicated
Project is poorly planned

Create roadmap (define
features, define milestones)
Create planning/work
breakdown and track the plan
Communicate project status
Create focus on tasks

Organize regular meeting
with stakeholder to discuss
priorities and requirements
of features
Monitor and categorize all
unplanned tasks
Create short feedback loop
to the team on the progress
of the project
Inform individuals on what
is expected from them
Improve estimation of the
work

Clear plan
Common plan
Prioritize for focus

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

100

Project scope is not
managed

Implemented features that
were not requested
No clear common view on
project scope
Conflicting priorities between
projects
Content of backlog not
managed

Hold on to agreed milestones
Make project goals clear
Determine dependencies with
others
Decide to drop features with
have lower priority when
target cannot be met

Let management decide
how to manage the delta
between workload and
available resources
Clearly define the content
of the work

Boundary
involvement
Clear plan
Prioritize for focus
Deliver or Delay

Requirement is not
defined

Inconsistent wishes
Last minute requirement
changes
Unexpected feature requests
Unclear description of feature
request

Discuss feature with customer
and receive feedback
Incremental delivery of
feature. This allows early
feedback on the feature.
Proactively gather
requirements (e.g., discuss
with stakeholders, consult
suppliers, execute
investigation)
Write requirements for each
feature in a functional
requirements specification
document

Assign responsibilities for
requirements definition
Enforce the importance of
requirement definition to
all people involved
Ask for requirements at
management level

Boundary
involvement
Clear specification

Requirement is not
met

No time reserved for extra
fixes after testing by system
engineer
Shortcuts required because of
limited time
Much unforeseen work
Specification is not
implemented

Determine when feature is
complete
Determine content of
software release

Execute code reviews
Focus on solving
Give support to clients that
use the functionality

Resources
(hardware) are
scarce

All systems are down
Poor performance of
prototypes
No effective system test
planning
No system available with the
correct configuration

Dedicated systems for testing
Use factory systems (that are
being produced for
customers) for testing
Use prototypes for testing
Organize system reservation
process

Use simulators
Plan and reserve system
time ahead
Obtain reconfirmation of
reserved system time prior
to testing, because system
can be down
Bundle items that require
system verification

Hardware in the
Loop
Simulator in the
Loop

Resources (people)
are scarce

Losing a team member
Availability of team member
reduced because of other
priorities
More ideas and activities than
we have capacity to do

Add resources to the team
Make balance between team
capacity to project execution

Claim resources for a short
period for a specific task
(e.g., Testing, integration)
Create overview of the
burned effort on a feature.
This insight can help
understand how time is
spent
Create overview of the
allocation claims on the
resources. This insight can
help set priorities
Involve core knowledge
efficiently (invite required
external resource to join
team meetings)
Communicate to
management the impact of
a resource leaving the team

Tester in team

Responsibility is not
assigned

Conflict with priorities of
other team
Product owner is not visible
Unclear how to manage failing
unit test
Responsibilities of roles
unclear

Assign one person to have the
overall decision authority
Define stakeholders with the
responsibility to accept the
deliverables

Revise the assignment of
stakeholders during the
project
Create an overview of the
stakeholders for each area
of expertise

Product owner

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

101

Status of system
cannot be
monitored

- Create ability to execute
diagnostics on system

- System monitor

System deteriorates
over time

Software is unstable
(crashes/patches)
Features do not work
anymore because of
modification
Deliverables are not
stabilizing

Improve quality of deliveries
Improve codebase stability
Solve (blocking) issues

At the end of the
development phase, do not
implement new
requirements, but only
concentrate on software
crashes
Increase priority of fixing
issues through the defect
handling process. This
process is controlled by the
change control board (CCB).
Escalate issues to
management
Team members should
follow way of working
(review code, offline and
online testing, etc.)

System is not
reliable

- Create awareness on
reliability
Introduce tooling for tracking
stability

-

System performance
varies

- - -

Test coverage is too
low

Not all high risk issues have
been verified
No testing is done on a real
system
No test plan available
Too many new bugs found in
the end phase

Create Unit tests
Execute automated tests (e.g.,
weekend runs, nightly runs,
smoke tests)
Remote testing when specific
hardware is on another
location
Execute system testing (e.g.,
verify deliverables, regression
test)

Write unit tests
Use simulation for (offline)
testing
Test deliverables
Improve facilities for local
testing

Duration runs
Hardware in the
Loop
Simulator in the
Loop
Tester in team
Unit testing

Utilization of system
is not optimal

- Made usage simpler - Customer centric
development

Vendor is locked-in - - -

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

102

The first column of Table J-2 describes the problem. Such problems are the failure categories

determined with FMEA Analysis (section 3.4). The second column contains the solution to the

problem. These solutions are retrieved from the reports (positive remarks and improvement

remarks). Most can be found in Table J-1, the others are copied from the reports. The third column

contains the practice name, which is inspired by the solution. The same name is used when solutions

appear to be the equal.

Table J-2 Mapping of practice name to solution

Problem (Failure category) Solution (example of retrospective reports) Practice Name

Design is not feasible Organize design sessions Design by team

Failure can be made during
production

Design together Design by team

Review each other’s work Review deliverables

Integrated system behavior is not
considered

Arrange Beta sites that use Beta version and ask for feedback Early confrontation

Maintainability of the system
becomes difficult

Fix issues (part of backlog management) Debt management

Create stable codebase Incremental
improvement

Select simple solution Keep it simple

Increase quality of code by conducting reviews Review deliverables

Production is not efficient Automate repetitive work Automate repetitive
work

A regular meeting with people on whom the team relies is arranged Boundary involvement

In order to make meetings more efficient, the team members follow
“constructive disagreement” approach

Constructive
disagreement

Share knowledge. No islands: general knowledge is owned by the
complete team

Co-ownership

Think of solutions together Design by team

The “old” team members write the high-level overview of the architecture Document overview /
interface

Developers verify their own work on a system Increase system
knowledge

Step-by-step development of architecture Incremental architecture

Have continuous attention for process improvements Incremental
improvement

Organize knowledge transfer Knowledge transfer

Do parallel development Work in parallel

Focus on one feature Prioritize for focus

Self empowerment of the Team Empower the team

Put team members together Short lines

Project intake is not managed Outsource team member to other teams (from which the intake is
received)
Organize team interaction (design and code review meetings)

Boundary involvement

System construction timing determines the delivery deadlines Common plan

Project plan is not managed Create planning/work breakdown and track the plan Clear plan

Create roadmap (define features, define milestones) Common plan

Create focus on tasks Prioritize for focus

Project scope is not managed Determine dependencies with others Boundary involvement

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

103

Make project goals clear Clear plan

Decide to drop features with lower priority when target cannot be met Prioritize for focus

Plan additional release for missed features Deliver or Delay

Requirement is not defined Proactively gather requirements (e.g., discuss with stakeholders, consult
suppliers, execute investigation)

Boundary involvement

Write requirements for each feature in a functional requirements
specification document

Clear specification

Resources (hardware) are scarce Dedicated systems for testing Hardware in the Loop

Use simulators Simulator in the Loop

Resources (people) are scarce Claim resources for a short period for a specific task (e.g., Testing,
integration)

Tester in team

Responsibility is not assigned Assign one person with the overall decision authority Product owner

Status of system cannot be
monitored

Create ability to execute diagnostics on system System monitor

Test coverage is too low Execute automated tests (e.g., weekend runs, nightly runs, smoke tests) Duration runs

Execute system testing (e.g., verify deliverables, regression test) Hardware in the Loop

Use simulation for (offline) testing Simulator in the Loop

Adopt tester in team. This will increase the added value. Tester in team

Write unit tests Unit testing

Utilization of system is not optimal Made usage simpler Customer centric
development

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

104

Appendix K Practices with context and forces

This appendix provides an overview of the practices for which the context and forces are described.

The problem description is summarized into a “How can ..” question (see Table K-1). This helps to

focus on the core of the problem.

Table K-1: Pattern description with context, problem, and forces

Practice Context Problem Forces

Common Plan Stakeholder expectations, the vision of a particular stakeholder
individual or group, result when they specify what is desired as
an end state or as an item to be produced and put bounds upon
the achievement of the goals. These bounds may encompass
expenditures (resources), time to deliver, performance
objectives, or other less obvious quantities, such as
organizational needs or geopolitical goals (NASA, 2007, p. 34)
The team should also ensure that the goals can be met and
failure modes are considered, as is the entire system (NASA,
2007, p. 63)
High-technology firms NPD teams work on projects that are
inherently complex. Greater planning aids the effort, fostering
integration, by providing the predictability and control required
for progress on these uncertain and risky projects (Nakata & Im,
2010, p. 7)

How can a complex
multidisciplinary
project be
predictable?

 Projects that are inherently
complex (Nakata & Im, 2010,
p. 7)

Hardware in
the Loop

Becomes as close to the actual concept of operation as possible
to support verification and validation when the operational
environment is difficult or expensive to recreate (NASA, 2007,
p. 96)
Development of mechatronic systems requires collaboration
among experts from different design domains (Alvarez Cabrera et
al., 2010)
In practice, specific models are developed to perform tests at
different stages of the design. Because of the use of domain-
specific modeling tools, such models usually correspond to a
specific system perspective, such as either the electrical or
mechanical aspects, or continuous dynamics and discrete,
sequential behavior (Bradley, 2010)

How can
integration
problems at the
end of the project
be prevented?

Fault detection and diagnoses
can only be executed when the
final system is available (Boucher
& Houlihan, 2008)
Because of the use of domain-
specific modeling tools, such
models usually correspond to a
specific system perspective, such
as either the electrical or
mechanical aspects, or
continuous dynamics and
discrete, sequential behavior
(Bradley, 2010)
Models and simulations do not
exactly represent the real
system. Therefore, system
verification cannot be executed.
(Alvarez Cabrera et al., 2010)
Resources (hardware) are scarce
(FMEA Analysis, see 3.4)
Inter disciplinary collaboration

Simulator in
the Loop

Provide insight into trends and tendencies of system and
subsystem performance that might not otherwise be possible
because of hardware limitations (NASA, 2007, p. 96)
Testing early to identify problems on system level (Boucher &
Houlihan, 2008)
Increase the ability to predict system level behavior prior to
testing (Boucher & Houlihan, 2008)

How can
integration start
when not all
disciplines have
delivered their part
of the product?

Resources (hardware) are scarce
(Retrospective Analysis, section
3.5)

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

105

Appendix L Pattern sequences

This appendix describes the relationship between patterns.

Such new patterns are placed into sequence with the existing patterns of (Coplien & Harrison, 2005)

based on the unresolved force(s). These are determined based on the resulting context of the

solution provided by the first pattern and the problem statement of the second pattern (see Table

L-1).

Table L-1: Pattern sequences based on unresolved forces

Common Plan

Community of Trust Common Plan

Solution “Do things that explicitly demonstrate trust. Managers, for example, should make it overtly obvious that they

facilitate the achievement of organizational goals, rather than playing a central role to assert control over people.

Take visible actions to give developers control over the process.”

Unresolved forces

The deliverables between disciplines and the responsibilities need to be clear. Trust alone is insufficient for

managing a project because the agreements can be influenced by external factors (e.g., third-party deliverables)

and internal factors (e.g., resources allocation). These factors can be triggered from outside the Community of

Trust.

Problem statement “Orchestration of deliverables is required to manage the schedule.” (see 4.2.3)

Common Plan Size The Schedule

Solution “Create a common plan of the deliverables that have dependencies between disciplines.” (see 4.2.3)

Unresolved forces A plan that considers all the deliverables between dependencies might result in an unrealistic schedule.

Problem statement “Both overly ambitious schedules and overly generous schedules have their pains either for the developers or the

customers.”

Hardware in the Loop

Incremental Integration Hardware in the Loop

Solution “Provide a mechanism to allow developers to build all of the current software periodically. Developers should be

discouraged from maintaining long intervals between check-ins. Developers should at any time also be able to build

against any of the Named Stable Bases or the newest check-in software.”

Unresolved forces

When developing a mechatronic system, the Named Stable Bases can be seen as a mechatronic system (hardware

and software). This is only available at the end of the project because hardware is still under development, which

means that frequent integration is not possible.

Problem statement “It is important to identify multidisciplinary integration problems early in the development cycle.” (see 4.2.4)

Get On With It Hardware in the Loop

Solution “As soon as you have confidence about project direction, start developing area’s in which you have high

confidence.”

Unresolved forces

When developing a mechatronic system, there might be high confidence of the software direction. This

development is blocked when it requires hardware that still has a low confidence.

For instance, it is clear which third-party Application Programming Interface (API) needs to be integrated, but the

hardware requirements for that third-party are still unclear.

Problem statement “It is important to identify multidisciplinary integration problems early in the development cycle.” (see 4.2.4)

Hardware in the Loop Private World

Solution “Build a hardware setup that can be used to verify the current state of the development.” (see 4.2.4)

Unresolved forces

When developing with a multidisciplinary team, each discipline can have its own preferences on the setup.

For instance, the software discipline wants to test their latest features and fixes, whereas service engineering wants

to verify features against a previous Named Stable Bases (which can include other hardware).

Problem statement “How can we balance the need for developers to use current revisions, based on periodically baselines, with the

desire to prevent developers from experiencing undue grief by having development dependencies change

underneath them?”

Simulator in the Loop

Incremental integration Simulator in the Loop

Solution “Provide a mechanism to allow developers to build all of the current software periodically. Developers should be

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

106

discouraged from maintaining long intervals between check-ins. Developers should at any time also be able to build

against any of the Named Stable Bases or the newest check-in software.”

Unresolved forces

When developing a mechatronic system, the Named Stable Bases can be seen as a mechatronic system (hardware

and software). This is only available at the end of the project because hardware is still under development, which

means that frequent integration is not possible.

Problem statement “It is important that system behavior can be verified before integration on a real system begins.”(see 4.2.5)

Get On With It Simulator in the Loop

Solution “As soon as you have confidence about project direction, start developing area’s in which you have high

confidence.”

Unresolved forces

When developing a mechatronic system, there might be high confidence of the software direction. This

development is blocked when hardware that still has a low confidence is required.

For instance, it is clear which behavior modules should have, but building hardware setup is too expensive.

Problem statement “It is important that system behavior can be verified before integration on a real system begins.”(see 4.2.5)

Hardware in the Loop Simulator in the Loop

Solution “Build a hardware setup that can be used to verify the current state of the development.” (see 4.2.4)

Unresolved forces

Multiple teams can develop a mechatronic system. These teams can be on different locations and time zones.

Supporting these teams with hardware setups can become expensive.

The creation of Named Stable Bases can be done by executing unit in module tests. For a large software base, this

testing can take hours. Therefore, this is usually done at night. In one night, multiple Named Stable Bases can be

created (different releases, configurations, etc.). Supporting this by hardware setups is expensive.

Problem statement “It is important that system behavior can be verified before integration on a real system begins.”(see 4.2.5)

Simulator in the Loop Private World

Solution “Build simulator(s) that can simulate (sub-) system behavior.” (see 4.2.5)

Unresolved forces

During development of a simulator, its behavior might change over time. For instance, when a simulator is

implemented incrementally, the initial behavior only supports happy flow. When the simulator matures, it can

verify parameters, autonomously send events, or have a completely different start-up procedure.

Problem statement “How can we balance the need for developers to use current revisions, based on periodically baselines, with the

desire to prevent developers from experiencing undue grief by having development dependencies change

underneath them?”

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

107

Appendix M Pattern feedback

This appendix contains a summary of the feedback retrieved from the reviewers on all patterns. This

feedback was gathered based on a review form (Table 3.7-1). The result is presented with the same

form. The average time required by the reviewers to review, and the average rating of the

description, is presented between square brackets (“[..]”).

Common Plan
Review feedback on pattern Reviewer’s feedback

How long did the review take?

(e.g., 15 min)

[28 min]

Is the pattern description clear?

Rating 1...10 (1 is bad; 10 is

excellent)

Context (Prologue) [7.6]

Problem [7.4]

Forces/Trade-offs [7.6] From here I understood the context, not from the beginning

Solution [7.9]

Discussion on why pattern works [7.8]

Pattern being used

Are there other forces/trade-offs?

(Yes/No)

(Please explain your reasoning and

rational for your view)

Can contain constraints

Could also be influenced by: standards and policy, regulatory requirements, QA,

testing

Different mindset/approach perception, quality about the deliverable and/or goal,

between departments/disciplines.

Do you think that the proposed

solution will solve the problem?

(Yes/No)

(Please explain your reasoning and

rational for your view)

We always use a action plan (Dutch: “plan van aanpak”) in multidisciplinary projects

this way

Maybe strengthened by use of a stakeholder map

You hint at standup meetings, but it also uses other scrum methods, such as poker

planning/sprints

Reviewer comments

Do you know another pattern

name (alias) that also covers the

pattern description?

Scrum sprint and backlog meeting

Shared Plan (It is a plan with shared interest)

Additional feedback (if applicable) Not all the tradeoffs of forces seem to completely match with the problem of

common plan.

Throw over wall and status are more like communication issues than the lack of a

common plan.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

108

Hardware in the Loop
Review feedback on pattern Reviewer’s feedback

How long did the review take?

(e.g. 15 min)

[22 min]

Is the pattern description

clear?

Rating 1...10 (1 is bad; 10 is

excellent)

Context (Prologue) [8.2]

Problem [7.1] Description can be more concrete

Forces/Trade-offs [8.0]

Solution [7.9]

Discussion on why pattern

works

[7.6]

Pattern being used

Are there other forces/trade-

offs? (Yes/No)

(Please explain your reasoning

and rational for your view)

For the setup itself a skilled human resource might be needed, which is not related to

cost but a scarce resource.

Hardware deliverables typically have a high dependency on (multiple) external suppliers

and relatively long lead times (LLI = long lead items), causing lack of availability of the

hardware.

Missing research; testing multiple components, which is best.

Allows reliability on component level to be partially tested/estimated

Allows validation and verification of use cases and test scripts.

New insights during development of both hard- and software might not be

communicated because of lack of right communication channels.

Do you think that the proposed

solution will solve the

problem? (Yes/No)

(Please explain your reasoning

and rational for your view)

No, depends on the product. To use cheaper or other parts/components for testing can

also increase error rate when implementing the correct part. or in the worst case, if the

correct part does not full fill your requirements, it will be noticed in a late stage of your

development.

No, not always possible

No, specification and design issues do not usually appear at this phase.

Reviewer comments

Do you know another pattern

name (alias) that also covers

the pattern description?

No, although from a hardware point of view the pattern could be called “Software in the

loop.”

HW integration testing

Additional feedback (if

applicable)

What should be the balance between investing in the hardware twice and/or a

surrogate hardware solution against investing more time in the final integration phase

with just one final piece of hardware?

The need for a temporary hardware setup (FUMO, PROTO) is not only dictated by

integration needs with software, but also for early verification purposes of the hardware

itself (e.g., product handling on transport system).

Regarding threats to the setup, I’ve seen prototypes created that were designed to be

commercially useless to prevent losing it prematurely.

Also seen in experimentation/prototype projects

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

109

Simulator in the Loop
Review feedback on

pattern

Reviewer’s feedback

How long did the review

take? (e.g., 15 min)

[23 min]

Is the pattern description

clear? Rating 1...10 (1 is

bad; 10 is excellent)

Context (Prologue) [7.1] A little lightweight description

Problem [7.2] Not formulated as problem

Forces/Trade-offs [7.1]

Solution [8.1]

Discussion on why

pattern works

[7.7] I would expect that restrictions are also mentioned.

Simulator is also is complementary to model based development and model based testing

Pattern being used

Are there other

forces/trade-offs?

(Yes/No)

(Please explain your

reasoning and rational

for your view)

When and why is this pattern not a solution?

Building a simulator is an investment as well

Simulators can also be used as production test tooling.

- System also includes the environment which can also be simulated

- Simulation is never 100%; so is always an abstraction of the sum of part of the environment

and the sum of the sub systems simulated [gives a coverage of 40%]

You could also add a caveat that the simulation can also have its own design flaws and bugs.

While hardware is still in development the actual behavior might be still unclear. Risk is that
wrong assumptions are made.
Maintainability & development costs can be very high compared to the product, which might

lead to the decision not to invest in simulator.

Yes, with the remark that building a simulator must been seen as serious business. Many

hours of development work and communication are needed to have a good usable simulator.

Ideally one could think of a model driven behavior description that is used in hw

development. Any updates might be taken over in sw sim.

Also there is the risk of false feeling of correct working of the product. It does not reduce the

late found integration errors in this case.

Do you think that the

proposed solution will

solve the problem?

Yes, it is more a tool to speed up the development.

Yes, expensive solution although

Reviewer comments

Do you know another

pattern name (alias) that

also covers the pattern

description?

SW system under test [SUT]

Additional feedback (if

applicable)

The problem statement is more or less the same as “Hardware in the loop,” yet the solution is

different depending on the need of a temporary hardware setup and simulation needs.

Simulators are handy even when the hardware is available. It takes no physical space. It can

also help in situations where the hardware is located in the far distance of the developer site.

Using keywords like mechatronics in the pattern descriptions makes the patterns less general.

What is the definition of a system? I assume it is meant the lack of a proper hardware

environment?

The way how the problem statement is formulated, does not actually read like a problem.

Often used in safety critical systems

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

110

Appendix N Mapping literature practices to failure categories

This appendix shows how the practices found in the publications (section 3.3) relate to the failure

categories determined during FMEA worksheet analysis (section 3.4). This relationship is made based

on the problem description presented in Table D-1.

Table N-1: Mapping practices to failure category

Practice Problem Failure category

Common Plan
Projects suffer from overlapping responsibilities and ambiguous command
chains, generating psychological distance and intense conflict among team
members (Nakata & Im, 2010, p. 7)

Responsibility is not
assigned

Hardware in the Loop
Models and simulations do not exactly represent the real system. Therefore,
system verification cannot be executed. (Alvarez Cabrera et al., 2010)

Integrated system behavior
is not considered

Hardware in the Loop
Many integration problems at the end of project. (Alvarez Cabrera et al., 2010),
(David Bradley, 2010)

Production is not efficient

Hardware in the Loop
Fault detection and diagnoses can only be executed when the final system is
available. (Boucher & Houlihan, 2008)

Production is not efficient

Simulator in the Loop
System level issues are discovered late in the design process. As a consequence,
design options are reduced because critical decisions are already made.
(Boucher & Houlihan, 2008)

Integrated system behavior
is not considered

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

111

Appendix O Referenced patterns

This appendix provides a summary of the patterns (also known as patlets) referred to in the pattern

descriptions (see section 4.2). The summary of these patterns consists of the problem and the

solution (“If…Then…”). The descriptions are retrieved from (Coplien & Harrison, 2005). The pattern

names are sorted alphabetically.

Table O-1: Patlets of referred patterns

Pattern name Summary

Application Design is

Bounded by Test

Design

If you want to organize the interworking between test and software developers, Then: organize

the process so that "Application Design Is Bounded By Test Design."

Architect controls

Product

If a project has a long life, Then: use the architect to carry the vision forward and serve as the long-

term keeper of architectural style.

Architecture Team If you are building a system too large or complex to be thoroughly understood by a single

individual, Then: build a team with both the responsibility and the power to create the

architecture.

Build Prototypes If early acquired requirements are difficult to validate without testing, Then: build a prototype

whose purpose is to understand requirements.

Code Ownership If you need responsibility for code and want to build on "Domain Expertise In Roles," Then: grant

various individuals responsibility for the overall quality of the code.

Conway’s Law If organization structuring concerns are torn between geography, expertise, politics, and other

factors, Then: align the primary organizational structuring with the structure of the business

domains and the structure that will be reflected in the product architecture.

Developer controls

Process

If you need to orchestrate the activities of a given location or feature, Then: put the Developer role

in control of the succession of activities.

Engage Customer If you want to manage an incremental process that accommodates customer input, and if you

want the customer to feel loved, Then: engage customers after Quality Assurance and project

management are prepared to serve them.

Engage Quality

Assurance

If developers cannot be counted on to test beyond what they already anticipated going wrong,

Then: engage QA as an important function.

Face-to-Face before

Working Remotely

If a project is divided geographically, Then: begin the project with a meeting of everyone in a single

place.

Get on With It If you are starting a project and have sufficient information to start parts of it, Then: do not wait

until you have a complete schedule before starting to do parts of the project.

Group Validation If you want to avoid being blindsided in quality assurance, Then: engage Customers and

Developing In Pairs and others to validate the system.

Holistic Diversity If Development of a subsystem requires many skills, but people specialize, Then: create a single

team from multiple specialties.

Incremental

Integration

If you want developers to be able to test changes before publishing them, Then: allow developers

to build the entire product code independently to allow testing with the latest base (not with the

latest Named Stable Bases).

Named Stable Bases If you want to balance stability with progress, Then: have a hierarchy of named stable bases

against which people can work.

Organization follows

Location

If you need to distribute work geographically, communications suffer, but you can limit the

damage if work is partitionable. Therefore: organize work at locations so that groups of people

that work together are at the same location.

Owner per Ensure every deliverable has one and only one owner.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

112

Deliverable

Patron Role If you need to insulate Developers so that Developer Controls Process and provide some

organizational inertia at the strategic level, Then: identify a patron to whom the project has access,

who can champion the cause of the project.

Private Worlds If you want to isolate developers from the effects of changes, Then: allow developers to have

private workspaces that contain the entire build environment.

Programming

Episode

If you need to divide work across time, Then: do the work in discrete episodes with mind share to

commit to concrete deliverables.

Shaping Circulation

Realms

If you require mechanisms to facilitate the communication structures necessary for good group

formation, Then: shape circulation realms.

Size the Schedule If the schedule is too long, developers become complacent; however, if it is too short, they

become overtaxed. Therefore: reward meeting the schedule, and maintain two sets of books.

Stand-up Meeting If there are pockets of misinformation or people out of the loop, Then: hold short daily meetings

to socialize emerging developments.

Surrogate Customer If you require answers from your customer, but no customer is available to answer your questions,

Then: create a surrogate customer role in your organization to play advocate for the customer.

Unity of Purpose If a team is beginning to work together, Then: ensure all members agree on the purpose of the

team.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

113

Appendix P Pattern Language

This appendix presents two adapted pattern languages from (Coplien & Harrison, 2005).

In Figure P-1 and Figure P-2, the patterns of (Coplien & Harrison, 2005) are presented. The new

patterns (4.2) are integrated within this language. The new patterns can be identified by their gray

squares. To understand the relationship between the patterns, please refer to section 4.2.2.

Community

of Trust

Architect

controls

Product

Architect

also

Implements

Code

Ownership Incremental

Integration

Standards

Linking

Locations

Architecture

Team

Owner

per

Deliverable

Deploy

along

the

Grain

Generics

and

Specifics

Hierarchy

of

Factories

Feature

Assignment

Parser

Builder

Private

Versioning

Team

per

Task

Distribute

Work

Evenly

Developing

in

Pairs

Factory

Method

Subclass

per

Team

Function

Owner

and

Component

Owner

Stand-up

Meeting Loose

Interfaces

Variation

behind

Interface

Private

World
Smoke

Filled

Room

Lock’em

up

Together

Unity

of

Purpose

Hardware

in

the

Loop

Simulation

in

the

Loop

Figure P-1: Integration of patterns (gray squares) in people and code pattern language

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

114

Community

of Trust

Size

the

Schedule

Informal

Labor

Plan

Build

Prototypes

Incremental

Integration

Surrogate

Customer

Take

no

Small

Slips

Phasing

it In
Early

and

Regular

Delivery

Compensate

Succes

Named

Stable

Bases

Get

on

With

It

Work

Queue

Developer

controls

Process

Developing

in

Pairs

Work

Split

Development

Episode

Sacrifice

one

Person

Day

Care

Someone

always

Makes

Progress

Recommitment

Meeting

Completion

Headroom

Team

per

Task

Private

World

Programming

Episode

Feature

Assignment

Implied

Requirements

Work

flows

Inward

Mercenary

Analyst

Fire

Walls

Don’t

Interrupt

an

Interrupt

Interrupts

unjam

Blocking

Scenario

define

Problem

Hardware

in

the

Loop

Simulation

in

the

Loop

Common

Plan

Figure P-2: Integration of patterns (gray squares) in project management pattern language

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

115

Appendix Q Examples of form layout

This appendix provides two pattern descriptions of (Coplien & Harrison, 2005). These illustrate the

form layout used in (Coplien & Harrison, 2005), which describe a total of 93 patterns.

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

116

Organizational Patterns for Multidisciplinary Development of Mechatronic Systems
Master's thesis Computer Science

117

