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Abstract—A brain-computer interface (BCI) is a direct link
between the brain and a computer. Multi-modal input with
BCI forms a promising solution for creating rich gaming
experience. Electroencephalography (EEG) measurement is the
sole necessary component for a BCI system. EEG signals
have the characteristics of large amount, multiple channels
and sensitive to noise. The amount of valuable information
derived from EEG signals is dependent on both the amount
of noises embedded in the original measurement and the
algorithms selected for postprocessing. Therefore, artifacts
removal in the preprocess step is crucial. Electrooculography
(EOG) signals are one of the major artifacts that often
appear in EEG measurement. In this paper, we compared two
different algorithms (Recursive Least Square (RLS) and Blind
Source Separation (BSS)) to investigate their performances on
removing EOG artifacts from EEG signals. Results indicate
that the performance of RLS algorithm is better than BSS
algorithm no matter whether there are any EOG reference
signals. For BSS algorithm, the performance is better when
EOG reference signals are available. These results show that for
a BCI system, EEG reference is often necessary. Performance
will be sacrificed if an EEG system cannot have any EOG
reference signals.
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I. INTRODUCTION

In recent years, there has been growing interests in using
BCI as a new form of interaction modality for gaming.
BCI would not be just a substitute for classical interaction
peripherals, such as joysticks, but rather a complementary
means of interaction. One possible application to promote
BCI usage is videogames. With BCI, the interaction protocol
becomes invisible to the game player. Present BCIs use
EEG activity recorded at the scalp to perfom interaction
control. EEG signals have the characteristics of low aptitude,
multiple channels and sensitive to noise. A complete chain
of EEG signal processing will consist of preprocessing,
feature extraction and feature classification. In order to
derive valuable clinical or diagnostic information from EEG
measurement, artifacts removal is necessary and crucial.
The artifacts often founded in EEG measurement are EOG,
Electromyography (EMG) and ECG signals. Possible body
movement related motion artifacts are often seen as well.

Figure 1. Typical EOG artifacts in EEG measurements

Since most of EEG measurements are performed in still
conditions, motion artifacts can be avoidable. Because eye
movement is unavoidable, EOG signals become one of
the major artifacts that exist in EEG measurement. There
are at least two types of EOG signals: horizontal EOG
(HEOG) and vertical EOG (VEOG). They are produced by
corresponding eye movements or eye blink, as illustrated in
Figure 1.

II. RELATED WORK IN EOG ARTIFACTS REMOVAL

Various algorithms exist in order to remove EOG artifacts
embedded in the EEG measurements. These algorithms can
be classified into several major groups: regression/adaptive
filtering, spatial components or blind source separation
(BSS). Regression-based methods were introduced by re-
searchers in earlier works of artifacts removal due to its
simplicity of the principle and low computational cost as
well. Regression based methods can applied to either in
time domain [1], [2] or frequency domain [3], [4], [5].
With these regression methods, EOG signals are required
as references along with the EEG signals. The second
method is based on Principal Component Analysis (PCA)
[6], [7]. With PCA, EEG signals are transposed into several
principal components using its eigenvector. Then particular
components that contain EOG artifacts are removed. Those
principal components without EOG components are con-
verted back to the original data space. From statistics point
of view, the decomposed signals by PCA are uncorrelated,
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but not necessarily independent. Independent Component
Analysis (ICA) is another alternative approach. ICA can be
regarded as an extension of PCA, but does not have the same
constraint of orthogonality as PCA. ICA assumes the de-
composed components as approximately independent rather
than simply uncorrelated. Both these methods require great
computations and need many numbers of recording channels
in order to have reliable and accurate source estimation
and artifact removal process [8], [9]. There are some other
methods introduced by researchers, such as wavelet [10], and
dipole modeling [11], [12]. They have not been the major
interests for most of researchers in EOG artifacts removal.
Overall, there is no consensus regarding which algorithm is
superior to the others in terms of performance. Experimental
evidences show different results due to the differences of
measured signals in terms of electrode positions and channel
numbers. Evaluation protocols are often defined differently.

III. ALGORITHM SELECTION AND DATA COLLECTION

We have selected recursive least square (RLS) and second
order blind identification (SOBI) algorithms in our study for
EOG artifacts removal [13], [14], [15]. We chose these two
algorithms because they are representative in term of algo-
rithm simplicity and performance. For the first algorithm, it
is necessary to have the EOG signals as reference due to the
algorithm itself. However, the advantage of this algorithm
is that computational cost is quite low. SOBI has been
selected since it is a typical representative of spatial filter
methods. Such methods do not need to have reference EOG
signals. However, it is difficult to make the removal process
automatically due to the intermediate step of component
selection.

A. Recursive Least Square (RLS)

In general, the mathematical expression of EOG artifacts
embedded in EEG measurement can be represented as
follows:

EEGmeasured(n) = EEGclean(n) +NOISE(n) (1)

Here, EEGmeasured represent the samples of EEG collected
from a certain number of electrodes (n). EEGclean(n)
are the desired/original clean EEG signals. NOISE(n)
represent the noises created by eye or/and muscle movement.
In this paper, we simplify the noises embedded in EEG
measurement are only EOG. EOG noise components will
consist of horizontal and vertical eye movement.

EEGmeasured(n) = EEGclean(n) + EOG(n) (2)

To drive clean EEG signals from measured signals with two
finite impulse response (FIR) filters, the expression 2 can
represented as

EEGclean ≈ EEGcorrected(n)

= EEGmeasured(n)− EOGh − EOGv (3)

Where EOGh and EOGv represents the filtered refer-
ence EOG signals (horizontal and vertical). For FIR filters,
EOGh and EOGv can be derived from two reference inputs
EOGh and EOGv as the following equations describe:

EOGh =

M∑
m=1

hh(m)EOGh(n+ 1−m) (4)

EOGv =

M∑
m=1

hv(m)EOGv(n+ 1−m) (5)

hh(m) and hv(m) represent the nth coefficients of two FIR
filters of length M.

The objective of removing EOG artifacts is to pro-
duce output signals EEGcorrected(n) that are as close
to EEGclean(n) as possible, by adjusting the filter co-
efficients hh(m) and hv(m). By minimizing EOGh and
EOGv with the recursive least-square (RLS) algorithm,
EEGcorrected(n) can be obtained. More details about the
algorithm can be found in He et al. [13].

B. Blind Source Separation (BSS)

Blind source separation (BSS) methods (for example
SOBI) for EOG artifacts removal are built upon a linear
mixture model of the EEG source EEGsource(n) and the
ocular activity EOGsource(n) .

[
EEGobserved

EOGobserved
] = A× [

EEGsource

EOGsource
]

= [
aN×N bM×N

cN×M dM×M
]× [

EEGsource

EOGsource
]

(6)

Where A is the mixing matrix, EEGsource and EOGsource

are the observed EEG and EOG channels respectively. The
inverse of the mixing matrix is called the unmixing matrix
W

W = A−1 = [
UN×N VM×N

YN×M XM×M
]

(7)

Which is used for reconstructing the and components from
the observed data Among BSS methods, SOBI is able to
estimate matrix A as long as the unknown source signals
are temporally uncorrelated to each other but having non-
zero time-delayed autocorrelations [14]. This is a plausible
assumption for the case of EEG and EOG sources. SOBI
computes the mixing matrix as the matrix that jointly
diagonalizes a set of p cross-correlation matrices

R(τi) = E[EEGobserved(t)EEGobserved(t− τi)] (8)

where i = 1.,...,p, and E[ ] is the expectation operator.
With SOBI, n-channel continuous EEG signals can be
decomposed into the same number of SOBI components,
which corresponds to those recovered putative sources that



Figure 2. Electrodes positions of EOG and EEG

contribute to the scalp EEG signals. Every individual SOBI-
decomposed putative component has a time course of activi-
tation and an associated sensor space projection that specifies
the effect of that putative source on each of the n electrodes.

C. Data Collection

In order to compare the algorithm performances, we
collect both EEG and EOG measurements through our
controlled experiments with particular protocol.

1) Experimental Collection: Ten healthy subjects (10
male, age between 20 and 31) took part in the experiments.
Eight EEG channels, four monopolar EOG channels, two
EMG channels (see Figure 2) were recorded with ECI
Electro-Cap Electrode System and pre-gelled Ag/AgCl elec-
trodes. They shared a common reference electrode at the left
mastoid and a ground electrode at the right mastoid. In this
study, only the EEG and EOG channels were used. These
eight EEG channels were chosen as examples of frontal,
parental and occipital lateral sites and as the centurial site,
of the scalp, which are clinically important and relevant to
our target applications. Two of the four EOG electrodes
were positioned above and below the right eye. Another
two electrodes are put on the outer canthi of the eyes. The
bipolar EOG channels left-right and up-down were able to
capture horizontal and the vertical/radial EOG components.
Two EMG electrodes were positioned on the left and right
side of the cheek for every participant.

The acquired EEG and EOG data was band pass filtered
with a broadband anti-aliasing filter from 0.1 to 60 Hz
and a 50 Hz notch filter, sampled with 256 Hz and 12
bit quantization. The dynamic ranges for EEG and EOG
signals were 100 µ V and 1 mV, respectively. The recording
system consisted of one 16-channel amplifier (g.tec USBMP,
Graz, Austria), and a commercial desktop PC with two VGA
output running under Windows XP. The software for data
recording is G-recorder that was provided with g.tec. The
software for creating animation to guide eye movement and
controlling the experiment was implemented in MATLAB
R2010a (The MathWorks, Inc., Natick, USA).

During the experiment, participants were asked to sit in
front of a LCD monitor and instructed not to move and keep
still. Each subject was asked to perform 5 steps of actions
for eye movement and 2 steps of actions for facial muscle
movement. Details can be found in Table I.

Table I
EYE AND FACIAL MUSCLE MOVEMENT PROTOCOL

Movement Actions

Eye

- Step1 eye close and closing (1 minute)
- Step2 left and right movement (5 times)
- Step3 up and down movement (5 times)
- Step4 blink (5 times)
- Step5 natural eye movement of

text reading (1 minute)

Facial muscle - Step1 mouth opening and closing
- Step2 gum chewing (half minute)

2) Simulation data: The nature of EEG measurement
leads to the fact that it is difficult to retrieve artifact-free EEG
data. In order to use SNR (signal noise- ratio) to evaluate
algorithm performance, simulation data were reconstructed
from the collected data. The EEG measurements of channel
O1 and O2 are selected as clean EEG signals. EOG signals
(left-right movement, up-down movement, and blink) were
added into these clean signals to create contaminated EEG
signals. As the scaling factors, α and β is used to create
different SNRs.

EEGcontaminated−s = EEGclean+α×EOGv+β×EOGh

(9)

IV. RESULTS

With aforementioned data, the selected algorithms includ-
ing BSS and RLS were applied to the simulation data. For
the BSS algorithm, there are two types of configurations:
with (w/EOG) and without EOG reference signals (w/o
EOG). In this way, we investigate the relative performance
of each algorithm for each type of EOG artifact (left-
right movement, blink, and updown movement). Deferent
evaluation metrics has been applied by researchers during in-
vestigating the algorithm performance for artifacts removal.
There is no consensus on which metrics is superior to
the others partly because clean EEG signals do not exist
and cannot measure directly and easily. In this paper, the
metrics we use include correlation both in frequency and
time domain, root mean square (RMS) of difference between
clean and corrected signals

A. Visual Comparison

To measure the effects of EOG artifacts removal, one
direct approach will be the visual inspection of the signals.
Figure 3 show the corrected EEG signals after applying these
three methods. The original EOG and contaminated EEG
signals with eye blink artifact are also shown in Figure 3.

B. Power Spectral Density

EOG artifacts, for example, eye blink often show unique
frequency response. It is mainly reflected in low frequency
range from 0.1 - 5 Hz. By looking at the power spectral



Figure 3. Corrected EEG signals created by three methods. Raw EEG
signals with blink artifact and EOG signals are included

density, we can investigate the performance of all these
algorithms in frequency domain (see Figure 4).

Table II
RESULTS OF THREE ALGORITHMS FOR EYE BLINK ARTIFACTS

RLS BSS w/ EOG BSS w/o EOG

Correlation in 0.9801 0.995 0.3594
time domain

Correlation in 0.9999 0.9999 0.983
frequency domain

C. Correlation in time and frequency domain

The performances of these three methods are further com-
pared using the correlation coefficient between clean EEG
signals and corrected EEG signals in time and frequency
domain. Results are summarized in Table II. After applying
the BSS method with EOG reference signal, the corrected
EEG signal has the highest correlation in time and frequency
domain with the clean EEG signal.

D. Average Results

In this section, the performances of three methods applied
to all ten subjects are summarized. Correlations coefficient
in time and frequency domain are calculated with different
SNRs as input. RMS of differences between clean and
corrected EEG signals is also calculated.

Figure 5 shows the correlation coefficient in frequency
domain between the correct and clean EEG signals. Results
indicate that RLS method has the highest correlation and the
correlation increases as SNR increases. On the contrary, for
the other two methods, as SNR increases, the correlations

Figure 4. Power spectral density for clean EEG, simulation EEG, and
corrected EEG data

Figure 5. Correlation coefficient for left right eye movement

Figure 6. Correlation coefficient for up down eye movement

decrease. The performance of BSS method without EOG
reference signal is the lowest.

Figure 6 shows the correlation coefficient in frequency
domain between the corrected and clean EEG signals for
the up-down eye movement artifact after applying the three



Figure 7. Correlation coefficient for eye blink artifacts

methods to contaminated EEG signal. Surprisingly the BSS
method with EOG reference leads to the highest correlation
coefficient and only till SNR increases up to 3 and higher,
the correlation coefficient for the RLS method becomes the
highest.

Figure 7 shows the correlation coefficient in frequency
domain between corrected and clean EEG signals after
applying the three methods to contaminated EEG signal with
eye blink movement artifact. Still RLS method leads to the
highest correlation in frequency domain but the differences
among all three methods are not that big. For RLS method,
the correlation coefficient does not change much as the SNR
increases.

V. CONCLUSION

In this paper, we compared the performance of two major
algorithms (BSS and RLS) with three configurations for re-
moving three kinds of EOG artifacts in EEG measurements.
For BSS algorithm, we investigated the effects of with and
without EOG reference signals. A simulation database is
constructed through a controlled experiment and used to
benchmarking the algorithms. RLS method has shown the
best performance most of time in frequency domain. While
there is no EOG reference signal, the performance of BSS
method decreases. Future work will include measuring the
algorithm performance with real EEG measurement and
optimizing the algorithm for real time environment.
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