
E VA L U AT I O N O F H A S K E L L E X P R E S S I O N S
I N A T U T O R I N G E N V I R O N M E N T

master thesis

Author: Tim Olmer

Student number: 850530187

Date of defence: 17 June 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Open Universiteit Nederland

https://core.ac.uk/display/55538147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

E VA L U AT I O N O F H A S K E L L E X P R E S S I O N S
I N A T U T O R I N G E N V I R O N M E N T

master thesis

Author: Tim Olmer
Student number: 850530187

Date of defence: 17 June 2014

Graduation committee: prof. dr. J.T. Jeuring (chairman)
dr. B.J. Heeren (supervisor)

Open Universiteit of the Netherlands
Faculty of Management, Science & Technology

Master Software Engineering
T75317

Tim Olmer: Evaluation of Haskell expressions in a tutoring environment, Master
Thesis, © 17 June 2014

A B S T R A C T

Students that follow an introduction course in functional programming of-
ten face difficulties in understanding the evaluation steps of an expression.
Inspecting and practicing with the evaluation steps of a Haskell expression
can help students in better understanding these evaluation steps. In fact, the
stepwise evaluation of expressions can be used to explain programming con-
cepts such as recursion, higher-order functions, pattern matching and lazy
evaluation. This thesis describes how students in a tutoring environment can
be supported to understand evaluation strategies and programming concepts
using the evaluation steps of Haskell expressions. A prototype has been devel-
oped of a step-wise evaluator for Haskell expressions. The prototype supports
multiple evaluation strategies and besides inspecting the evaluation steps it
is possible to practice with evaluation steps and to get feedback.

The prototype uses the IDEAS framework, which is a generic framework
for rewriting terms, to rewrite expressions. In order to make use of the IDEAS
framework a domain reasoner needs to be defined. A domain reasoner con-
sists of a description of the domain (a data type for Haskell expressions),
rewrite rules for this domain and rewrite strategies that specify the order of
when a certain rewrite rule must be applied. The evaluation process does not
only depend on the evaluation strategy that is used, but also on the function
definitions. For the outermost evaluation strategy different arguments (de-
pending on the function definition) must be brought into weak head normal
form before a certain rewrite rule can be applied. The IDEAS framework con-
tains feedback services that can be used to diagnose an evaluation step and
to give several hints about the next evaluation step. A web front-end has been
developed to depict the derivation of a certain expression and to call feedback
services. The front-end made it also possible to conduct a small qualitative
research (survey) among teachers and students to validate the research.

The survey supports the hypothesis that the prototype can help students to
understand evaluation strategies and programming concepts. However, it is
important to make the tool configurable for teachers so they can use the tool
in their functional programming courses. To incorporate the prototype into
their courses it should support the possibility to specify user-defined function
definitions. This can be realized by defining a file with function definitions
that the prototype can parse. Rewrite rules and evaluation strategies can then
be generated from those function definitions. The major improvements to
make the prototype more mature are to support the lazy evaluation strategy,
to fully support user-defined function definitions and to make all function
definitions visible in the front-end.

v

A C K N O W L E D G M E N T S

First of all I would like to thank my supervisor Bastiaan Heeren for his guid-
ance, inspiration, feedback on draft work and his rapid response on my ques-
tions. I would also like to thank Johan Jeuring, the chairman of my graduation
committee for his critical comments on my work. I would also like to thank
them for the possibility of writing a paper together about my topic for the 3rd
International Workshop on Trends in Functional Programming in Education
that was held on 25 May, 2014 (TFPIE 2014).

The opportunity to present our work on the TFPIE was a great inspiring
experience. Therefore I would like to thank all participants of the TFPIE for
giving me the opportunity to present our work to them.

The survey among teachers and students that was held as a validation for
the research was helpful to support the hypothesis and to pinpoint useful
future work. I would like to thank Peter Achten, Koen Claessen, Marko van
Eekelen, Alex Gerdes, Jurriaan Hage, Wouter Swierstra, Manuela Witsiers and
all anonymous student participants for experimenting with the prototype and
providing relevant feedback on the prototype.

I would also like to thank my employer Sioux for making it possible to
follow this education.

Last but not least I would like to thank my girlfriend Alicia for her patience
and love. I know it was not always easy to live with someone who combines
his study with a busy job.

vii

C O N T E N T S

1 introduction 1

1.1 Research question 2

1.2 Contributions and scope 2

1.3 Thesis overview 3

2 background 5

2.1 Functional Programming 5

2.2 Functional Programming in Education 6

2.3 Programming concepts 6

2.4 Evaluation strategies 9

3 related work 17

3.1 Inspection of evaluation steps 17

3.2 Intelligent Tutoring Systems 19

4 research design 21

4.1 Research questions 21

4.2 Research method 21

5 rewrite rules and strategies 27

5.1 Definition of the domain 27

5.2 Rewrite rules 28

5.3 Strategies 30

5.3.1 Innermost strategy 33

5.3.2 Outermost strategy 34

6 user defined function definitions 39

7 validation 45

8 conclusions and future work 49

a survey 53

b survey results 59

bibliography 71

ix

L I S T O F F I G U R E S

Figure 2.1 Evaluation steps of drop 8

Figure 2.2 Evaluation steps of map 8

Figure 2.3 Evaluation steps of sum 13

Figure 2.4 Evaluation steps of head, tail and take according to the
outermost evaluation strategy 14

Figure 2.5 Evaluation steps of head, tail and take according to the
innermost evaluation strategy 15

Figure 4.1 Component diagram of the prototype 23

Figure 4.2 Practice with evaluation steps 25

Figure 5.1 Data type for expressions 28

Figure 5.2 Smart constructors for expression data type 28

Figure 5.3 Internal structure of ’sum ([] ++ [5])’ 29

Figure 5.4 Extensional rewrite rule for (+) 30

Figure 5.5 Intensional rewrite rule for sum 30

Figure 5.6 Intensional rewrite rule for foldl 31

Figure 5.7 Intensional rewrite rule for (++) 31

Figure 5.8 Navigation functions 32

Figure 5.9 Innermost evaluation strategy 33

Figure 5.10 Internal structure of ’foldl (+) 0 ([] ++ [5])’ 33

Figure 5.11 Outermost evaluation strategy 34

Figure 5.12 Node inspection 36

Figure 5.13 Node navigation 36

Figure 5.14 Evaluate data structures 37

Figure 5.15 Evaluation strategies for the definitions 37

Figure 6.1 Function definition file 40

Figure 6.2 Pattern data type 41

Figure 6.3 Generate rewrite rules 42

Figure 6.4 Abstraction of evaluation strategies for the definitions 42

Figure 6.5 Generate evaluation strategies 43

L I S T O F TA B L E S

Table 5.1 Generic strategy combinators 32

x

1
I N T R O D U C T I O N

Novice functional programmers often face difficulties in understanding the
evaluation steps of an expression in a functional language, and even more
experienced programmers find it hard to predict the space behavior of their
programs [3]. Many problems that students have in understanding expres-
sions is connected with the priority and associativity rules and the placing of
parenthesis [21]. Another source of problems is connected with type expres-
sions where for example students do not recognize a function with more than
one argument or do not place parentheses around operator arguments that
are functions. Many students that already have experience in an imperative
language find the computational model confusing. The computational model
in the functional paradigm is based on rewriting instead of memory states
and state transitions in the imperative paradigm. Some students use the im-
perative model in functional programming. For example some students think
it is needed to store intermediate results or they expect changes in the value
of variables by function application [21]. The compact syntax that is used in
Haskell makes it also sometimes hard to get an operational view of a func-
tional program [37].

Many introductory textbooks about functional programming use calcula-
tions to illustrate the evaluation steps of expressions [7, 17, 19]. Other intro-
ductory textbooks that do not use these calculations compensate for this by
giving a lot of examples with an interpreter [32, 26]. Actually understanding
a computation and how a certain result was computed can be used to under-
stand different concepts in computer science [34]. The depiction of the step-
wise evaluation steps of Haskell expressions can be a useful approach to offer
students a better insight into the central programming concepts of Haskell,
such as pattern-matching, recursion, higher-order functions and lazy evalua-
tion. This approach is also used in some textbooks on Haskell [19]. Students
learning a functional programming language can get a feeling for what a pro-
gram does by step-wise evaluating an expression on a piece of paper [8]. A
disadvantage of this approach is that there is no simple way to view the eval-
uation steps for some Haskell expression and that there is no direct feedback
from a tutor. Learning by doing is very important to learn the basic structures
of a programming language. Most students feel that they learn programming
best when they do programming by themselves [23].

1

2 introduction

1.1 research question

This research is concentrated on how students can be given insight into the
evaluation steps of a Haskell expression in a tutoring environment. The re-
search question that will be answered in this thesis is:

How can students in a tutoring environment be supported to under-
stand evaluation strategies and programming concepts using the eval-
uation steps of Haskell expressions?

To accomplish this goal and because current tools lack support for prac-
ticing with the step-wise evaluation of Haskell expressions a prototype im-
plementation has been developed of a step-wise evaluator for Haskell ex-
pressions. The prototype supports multiple evaluation strategies and besides
inspecting the evaluation steps it is possible to practice with evaluation steps
and to get feedback.

1.2 contributions and scope

The developed prototype implementation is based on the approach of rewrite
and reduction rules to determine the evaluation steps of a Haskell expres-
sion. With the prototype a student can inspect the evaluation steps of various
Haskell expressions and can also provide his own evaluation step as input.
The input is checked against various evaluation strategies and based on this
information the prototype can give feedback about input expressions. The
prototype can also give some hints to a student. For example, how many
steps are left in the derivation or a description of the next evaluation rule
that should be applied. The steps are presented at the level of abstraction of
Haskell expressions. The prototype supports a call-by-value and call-by-name
strategy variant and therefore students can get insight into the implications
and differences of using a certain strategy. Practicing with evaluation steps
can give students also insight into how certain programming concepts such as
recursion, higher-order functions, and pattern matching behave exactly. An-
other objective is to give students insight in why expressions do not behave as
expected. This can be useful for example if a test fails with some expression
and the student does not understand why this expression exactly fails. The
main testing mechanisms in Haskell, to verify if code functionality operates
as expected, are traditional unit testing with the HUnit library and property
testing with QuickCheck [32]. Property-based testing is based on a high-level
approach to testing where properties are specified for functions. These prop-
erties should be satisfy universally. The actual test data is generated for the
programmer by QuickCheck. With this approach the functions under test will
be tested with thousands of tests that would be infeasible to write by hand. If

1.3 thesis overview 3

a test fails QuickCheck will depict a counter example to which the property
fails. By using the shrink option in QuickCheck, QuickCheck tries to reduce
the faulty data to the minimum. This reduced faulty data can be used as an
input expression in the prototype which enables the student to get insight
into why this faulty data fails.

The prototype only supports integers, list notation, recursion, higher-order
functions and pattern matching. The target audience for the prototype are
students taking an introductory course on functional programming. Another
limitation is that only small code fragments are considered. The assumption
is made that the evaluated expressions are well-typed and do not contain
compile-time errors.

Related work mainly focuses on showing evaluation steps, and does not
offer the possibility for a student to enter his own evaluation step [35, 25] or
presents evaluation steps at a lower level of abstraction, such as the lambda
calculus [36, 1].

1.3 thesis overview

The thesis starts by first describing some background information about func-
tional programming, programming concepts and evaluation strategies in chap-
ter 2. Readers that are familiar with functional programming and the concepts
that are considered to be important in functional programming can skip this
chapter. Chapter 3 discusses some related work about methods to inspect
evaluation steps of a Haskell expression and other intelligent tutoring sys-
tems. The research questions, research method and prototype are discussed
in more detail in chapter 4. The rewrite rules and strategies that are used
to inspect evaluation steps of Haskell expressions are explained in chapter
5. Chapter 6 discusses a method to add user-defined function definitions. To
validate the research, a small qualitative research in the form of a survey with
open questions has been executed among teachers and students that partic-
ipate or participated in an introduction course on functional programming.
The purpose of the survey is to determine if a tool like the developed pro-
totype can support students in the understanding of programming concepts
and evaluation strategies using the evaluation steps of Haskell expressions.
The survey is discussed in chapter 7, the complete conducted survey can be
found in appendix A and all results on the survey can be found in appendix
B. Chapter 8 contains the conclusion where an answer is formulated on the
research question. Improvements and suggested future work is also discussed
in this chapter.

Notice that some parts of this thesis are re-used from the draft paper “Eval-
uation of Haskell expressions in a tutoring environment" that was submitted
to the 3rd International Workshop on Trends in Functional Programming in
Education (TFPIE 2014).

2
B A C K G R O U N D

In this chapter the context of the research will be described. The first para-
graph will give a short introduction into functional programming. The sec-
ond paragraph characterizes the relevance of functional programming in ed-
ucation. The third paragraph discusses some programming concepts that are
important in the functional programming paradigm and uses the evaluation
steps of expressions to explain those concepts. The last paragraph discusses
some evaluation strategies and also uses evaluation steps of expressions to
explain those evaluation strategies.

2.1 functional programming

Haskell is a purely functional programming language that has some funda-
mental differences with imperative programming languages like C, C++, C#
and Java. Imperative languages are based on the idea that a variable is a
changeable association between a name and values [29]. A typical impera-
tive program consists of sequences of assignments which change a value of a
stored variable. In that sense those languages are closely linked to the under-
lying hardware [19]. In a functional language a name can only be associated
once with a value. A typical functional program is an expression that con-
sists of nested function calls. Because Haskell lacks assignment a function
in Haskell can only calculate something and return the result. This means
that if a function is called twice with the same arguments, it is guaranteed
to return the same result [26]. This property is called referential transparency
and makes it possible to delay the evaluation of a sub-expression until it is
required for computing the top expression. Because of the property of refer-
ential transparency, functions are state independent, can be evaluated in any
order, or even parallel without any side-effects. The evaluation strategy that
is used by default in Haskell is called lazy evaluation where sub-expressions
are only evaluated if they are required for computing the top expression. In
imperative programming languages the more familiar eager evaluation strat-
egy is used where all sub-expressions are completely evaluated regardless of
whether they are necessary for the final result [24].

5

6 background

2.2 functional programming in education

Most universities traditionally teach students how to program by using an
imperative programming language such as C, C++, C# or Java. However this
might not always be the best choice for a first course on programming. An
introduction computing course should have three principal aims: teach the
elementary techniques of programming (practical aspect), introduce the es-
sential concepts of computing (theoretical aspect) and foster the development
of analytic thinking and problem solving skills (methodological aspect) [8].

A functional program consists of a clean reusable software style because
a functional program is decomposed into independent functions that glue
other functions together [33]. A function output only depends on its input.
Advantages of functional programs are therefore that program construction is
more modular, less error-prone and more rapid [37] and that the lightweight
syntax helps to remove syntactic issues to the background which make it
possible to focus on general programming concepts.

An important advantage of using the functional paradigm in teaching pro-
gramming is that it therefore allows the student and the instructor to focus
directly on algorithmic issues and avoiding technical overhead [33]. Most stu-
dents have some prior experience in programming which results in a very
different experience level between students. This makes is hard for a teacher
to motivate all students [23]. An advantage in teaching functional program-
ming is that almost no first year students have prior experience in functional
programming which results in a more uniform starting level between all stu-
dents. Functional programming also has a better match with the mathemat-
ical background of pre-university students that have no prior programming
experience [8]. Those described advantages support the three principal aims
mentioned earlier.

2.3 programming concepts

A recursive function is a function which is applied inside its own definition
[26]. In imperative languages you can specify how something is computed.
New values may be associated with the same name and loop construct such
as ’while’ and ’for’ are used to execute the same code multiple times (for
example to iterate through a list) [29]. Because a value in functional program-
ming may only be associated once with a name this is not possible in func-
tional programming and the alternative is to use recursion. Recursion can
therefore be seen as the counterpart of the ’while’ and ’for’ loop constructs in
imperative programming. Recursion is an important programming concept
in functional programming because computations are defined by declaring
what something is rather than specifying how something will be computed.

2.3 programming concepts 7

An example is the definition of the drop function that removes the first
n elements from a list [19]. The drop function is defined in the prelude, a
standard module that is imported by default into all Haskell modules. The
drop function is called with two arguments: the first argument contains the
number of elements that must be dropped and the second argument contains
the list. The function definition has two base cases which are defined without
recursion and one recursive case which results in a recursive nested function
call.

drop :: Int → [a] → [a]
drop 0 xs = xs
drop (n + 1) [] = []

drop (n + 1) (x : xs) = drop n xs

In the drop function definition pattern matching is used to determine which
of the three lines in the function definition must be used. Pattern matching
is used to specify patterns to which an expression must conform and to de-
construct the expression according to those patterns [26]. The patterns of a
function definition will be checked from top to bottom and from left to right.

In the drop function definition the identifier n is a variable name for the
number of elements that must be dropped. The identifier xs represents the list
variable. In Haskell, by convention, the letter s after a variable name means
list. The notation (x:xs) is used to deconstruct a value of the list data type
where x is bound to the first element of a list and xs is bound to the tail of
that list. The notation _ denotes a wildcard. The notation [] represents the
empty list.

If an expression matches a certain pattern in the drop function definition
then that expression will be rewritten to the expression that is given at the
right-hand side of the function definition. The first pattern in the function
definition results in the behaviour that if the drop function is called with
the number zero and a list that the result equals the list that is given as the
second argument. The second pattern in the function definition results in the
behaviour that if the drop function is called with a number n that matches
the pattern (n+1) and an empty list that the result is the empty list. In other
words it is not possible to drop any element from an empty list. The recursive
case will result in a nested function call where the number n is decreased by
one and the first element of the list is removed. This behaviour will continue
until the number is zero or the list is empty. The evaluation steps of the drop
function with the expression drop 2 [90, 20, 40, 75] is given in figure 2.1 as an
example.

In Haskell, functions are first-class values, which means that functions are
treated exactly the same as for example numbers. A higher-order function is
a function that either returns a function as a return value or takes a function
as a parameter [26]. The concept of higher-order functions is heavily used

8 background

drop 2 [90, 20, 40, 75]

= { definition drop }

drop 1 [20, 40, 75]

= { definition drop }

drop 0 [40, 75]

= { definition drop }

[40, 75]

Figure 2.1: Evaluation steps of drop

map (3 *) [9, 2]

= { definition map }

(3 * 9) : (map (3 *) [2])

= { applying * }

27 : (map (3 *) [2])

= { definition map }

27 : ((3 * 2) : (map (3 *) []))

= { applying * }

27 : (6 : (map (3 *) []))

= { definition map }

[27, 6]

Figure 2.2: Evaluation steps of map

in Haskell. For example, in Haskell every function actually takes only one
argument. A function that accepts multiple parameters is called a curried
function. A curried function is a function that always takes exactly one pa-
rameter and when it is called with that parameter, it returns a function that
takes the next parameter until all parameters are handled [26].

Another example is the map function that takes a function and a list and
applies that function to every element in the list, producing a new list [26].
The evaluation steps of the map function with the expression map (3 *) [9, 2]
is given in figure 2.2 as an example.

map :: (a → b) → [a] → [b]
map _ [] = []

map f (x : xs) = f x : map f xs

2.4 evaluation strategies 9

2.4 evaluation strategies

Functional programming is based on the lambda calculus. It is a formal sys-
tem where the notation of a computable function is defined [12]. Lambda
terms can be viewed as expressions to be calculated. These calculations can be
performed using conversions like alpha conversions, beta reductions and/or
eta conversions. Alpha conversion allows that bound variable names may be
changed. Beta reduction captures the idea of function application. Eta con-
version captures the idea that a function which only passes its parameters to
another functions can be replaced by this function [5].

A functional program is composed of a set of expressions. An expression
that has the form of a function that is applied to one or more arguments is
called a reducible expression or redex for short [19]. These expressions can be
evaluated by rewriting those expressions according to some beta reduction
steps. If a term cannot be reduced any further, it can be considered the result
of the computation. This result is called a normal form. There are several
evaluation strategies to evaluate or rewrite such an expression. There are two
main strategies called eager evaluation and normal-order evaluation. The
evaluation strategies will be described with an example. In this example the
expression powerOfThree (10 - 4) will be evaluated. The function powerOfThree
is defined below.

powerOfThree :: Num a ⇒ a → a
powerOfThree x = x * x * x

Eager evaluation means that the actual parameter is evaluated once at the
point of the function call [40]. This strategy is also used in imperative pro-
gramming languages. The strategy is also called innermost evaluation and
call-by-value evaluation. This strategy consists of always choosing the redex
that does not contain an other redex. If more than one redex can be evaluated,
the redex that begins at the leftmost position in the expression is selected by
convention. By using the innermost strategy the arguments of a function are
always fully evaluated before the function itself is applied. With this strategy
arguments are passed by value. The evaluation steps according to the inner-
most evaluation strategy of the powerOfThree function example are depicted
on the next page.

10 background

powerOfThree (10 - 4)

= { applying - }

powerOfThree 6

= { applying powerOfThree }

6 * 6 * 6

= { applying * }

36 * 6

= { applying * }

216

Normal-order evaluation means that the actual parameter is only evaluated
when the argument is actually needed [40]. This strategy is also called outer-
most evaluation and call-by-name evaluation. This strategy consists of always
choosing the redex not contained in any other redex. If more than one redex
can be evaluated, the redex that begins at the leftmost position in the expres-
sion is selected by convention. With this strategy arguments are passed by
name. The advantage of this strategy is that an expression is only evaluated
if it is really needed. A disadvantage is that an expression is evaluated mul-
tiple times if for example an argument is used more than once in a function.
The evaluation steps according to the outermost evaluation strategy of the
powerOfThree function example are depicted below.

powerOfThree (10 - 4)

= { applying powerOfThree }

(10 - 4) * (10 - 4) * (10 - 4)

= { applying - }

6 * (10 - 4) * (10 - 4)

= { applying - }

6 * 6 * (10 - 4)

= { applying * }

36 * (10 - 4)

= { applying - }

36 * 6

= { applying * }

216

The problem that an expression will be evaluated multiple times can be
solved by using pointers to the evaluation result. This is called sharing. If
outermost evaluation is combined with sharing it is called Lazy evaluation.
Lazy evaluation is also the evaluation strategy that is used in Haskell. The

2.4 evaluation strategies 11

evaluation steps according to the lazy evaluation strategy of the powerOfThree
function example are depicted below. Notice that lazy evaluation, because of
the sharing property, never requires more evaluation steps than innermost
evaluation.

powerOfThree (10 - 4)

= { applying powerOfThree }

x * x * x x points to (10 - 4)

= { applying - }

x * x * x x points to 6

= { applying * }

36 * x x points to 6

= { applying * }

216

extended examples To get a better understanding of the evaluation of
Haskell expressions and the implications of using different evaluation strate-
gies the evaluation steps of two more extended example expressions are given.
The expressions are evaluated according to the outermost evaluation strategy
(call-by-name) and the innermost evaluation strategy (call-by-value).

In the first example the expression sum ([3, 7] ++ [5]) will be evaluated. In
this example the function definitions sum, foldl and (++) that are defined in
the prelude are used [19].

The foldl (fold left) function processes a list using an operator that asso-
ciates to the left. The first argument is the operator (binary function) that
will be applied to every element of a list, the second argument is the starting
value (accumulator) and the third argument is the list that must be processed.
The foldl function reduces a list to a single value [26]. The first pattern in the
function definition specifies that if the third argument is an empty list, the ac-
cumulator is used as the result. The second pattern in the function definition
of foldl specifies that a foldl function will be rewritten into another foldl func-
tion where the second argument is the result of the operator that is applied
on the first argument on the list and the accumulator and the third argument
is the tail of the list.

foldl :: (a → b → a) → a → [b] → a
foldl _ v [] = v
foldl f v (x : xs) = foldl f (f v x) xs

The sum function calculates the sum of a list of numbers. The sum function
is defined in terms of the foldl function. The sum definition does not take any
explicit arguments and will therefore immediately be rewritten into a foldl.da

12 background

In Haskell it is possible to call a function with fewer arguments than specified
in the function definition. In this case a partially applied function, which is
simply another function that takes as many arguments as left out, is returned
[26]. For example, foldl (+) 0 returns a function that takes one argument (the
list). This function will then be associated with the name sum.

sum :: Num a ⇒ [a] → a
sum = foldl (+) 0

The (++) function appends two lists. The first pattern in the function def-
inition specifies that if the first argument is the empty list ([]), the second
argument is taken as the result. The second pattern in the function definition
specifies that the first element of the list that is given as the first argument is
used to construct a new list where the tail of that new list is the tail of the
list that is given as first argument (xs) appended with the list that is given as
second argument.

(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

In the derivation that is depicted at the left side of figure 2.3 the evalua-
tion steps are given if the expression is evaluated according to the outermost
(call-by-value) evaluation strategy. The outermost evaluation strategy will try
to evaluate the outermost parts immediately and will delay evaluation of ar-
guments if they are not needed for the final result. After rewriting sum into
a foldl the evaluation steps of the ++ definition (which produces a list) and
the foldl definition (which consumes a list) are interleaved. Notice that the
additions are calculated at the very end.

In the derivation that is depicted at the right side of figure 2.3 the evalua-
tion steps are given if the expression is evaluated according to the innermost
(call-by-value) evaluation strategy. The innermost evaluation strategy will try
to evaluate the innermost parts immediately, also if they are not needed for
the final result. Observe that sum is immediately rewritten into a foldl. You
might not expect this behavior with an innermost evaluation strategy where
arguments are completely evaluated before the function is evaluated. The rea-
son for this behavior lies in the definition of sum. The definition of sum that is
used does not have an explicitly specified parameter, but it applies foldl par-
tially. Also notice that the sub-expression [3, 7]++[5] is fully evaluated before
using the definition of foldl. Also observe that the additions are immediately
calculated, this in contrast with the outermost evaluation strategy.

In the second example the expression head(tail(take 3 ([5, 8]++[80, 40, 120])))
will be evaluated. The head, tail and take functions from the prelude will be
introduced in this example [19].

2.4 evaluation strategies 13

sum ([3, 7] ++ [5])

= { definition sum }

foldl (+) 0 ([3, 7] ++ [5])

= { definition ++ }

foldl (+) 0 (3 : ([7] ++ [5]))

= { definition foldl }

foldl (+) (0 + 3) ([7] ++ [5])

= { definition ++ }

foldl (+) (0 + 3) (7 : ([] ++ [5]))

= { definition foldl }

foldl (+) ((0 + 3) + 7) ([] ++ [5])

= { definition ++ }

foldl (+) ((0 + 3) + 7) [5]

= { definition foldl }

foldl (+) (((0 + 3) + 7) + 5) []

= { definition foldl }

(((0 + 3) + 7) + 5)

= { applying + }

((3 + 7) + 5)

= { applying + }

(10 + 5)

= { applying + }

15

sum ([3, 7] ++ [5])

= { definition sum }

foldl (+) 0 ([3, 7] ++ [5])

= { definition ++ }

foldl (+) 0 (3 : ([7] ++ [5]))

= { definition ++ }

foldl (+) 0 (3 : 7 : ([] ++ [5]))

= { definition ++ }

foldl (+) 0 [3, 7, 5]

= { definition foldl }

foldl (+) (0 + 3) [7, 5]

= { applying + }

foldl (+) 3 [7, 5]

= { definition foldl }

foldl (+) (3 + 7) [5]

= { applying + }

foldl (+) 10 [5]

= { definition foldl }

foldl (+) (10 + 5) []

= { applying + }

foldl (+) 15 []

= { definition foldl }

15

Figure 2.3: Evaluation steps of sum

14 background

head (tail (take 3 ([5, 8] ++ [80, 40, 120])))

= { definition ++ }

head (tail (take 3 (5 : ([8] ++ [80, 40, 120]))))

= { definition take }

head (tail (5 : (take 2 ([8] ++ [80, 40, 120]))))

= { definition tail }

head (take 2 ([8] ++ [80, 40, 120]))

= { definition ++ }

head (take 2 (8 : ([] ++ [80, 40, 120])))

= { definition take }

head (8 : (take 1 ([] ++ [80, 40, 120])))

= { definition head }

8

Figure 2.4: Evaluation steps of head, tail and take according to the outermost evalu-
ation strategy

The head function selects the first element of a non-empty list, the tail func-
tion removes the first element of a non-empty list and the take function selects
the first n elements of a list.

head :: [a] → a
head (x : _) = x

tail :: [a] → [a]
tail (_ : xs) = xs

take :: Int → [a] → [a]
take 0 _ = []

take (n + 1) [] = []

take (n + 1) (x : xs) = x : take n xs

In the derivation that is depicted in figure 2.4 the evaluation steps are given
for the expression when it is evaluated according to the outermost (call-by-
name) evaluation strategy. Notice that as soon the first element of the list has
been determined, the tail and head functions will be used.

In the derivation that is depicted in figure 2.5 the evaluation steps are given
for the expression when it is evaluated according to the innermost (call-by-
value) evaluation strategy. Notice that sub-expressions are fully evaluated
before they are used.

2.4 evaluation strategies 15

head (tail (take 3 ([5, 8] ++ [80, 40, 120])))

= { definition ++ }

head (tail (take 3 (5 : ([8] ++ [80, 40, 120]))))

= { definition ++ }

head (tail (take 3 (5 : (8 : ([] ++ [80, 40, 120])))))

= { definition ++ }

head (tail (take 3 [5, 8, 80, 40, 120]))

= { definition take }

head (tail (5 : (take 2 [8, 80, 40, 120])))

= { definition take }

head (tail (5 : (8 : (take 1 [80, 40, 120]))))

= { definition take }

head (tail (5 : (8 : (80 : (take 0 [40, 120])))))

= { definition take }

head (tail [5, 8, 80])

= { definition tail }

head [8, 80]

= { definition head }

8

Figure 2.5: Evaluation steps of head, tail and take according to the innermost evalua-
tion strategy

3
R E L AT E D W O R K

In this chapter the related work will be discussed. The first paragraph dis-
cusses related work concerning the inspection of Haskell expressions and the
second paragraph discusses related work concerning intelligent tutoring sys-
tems.

3.1 inspection of evaluation steps

There are roughly three approaches to inspect the evaluation steps of a Haskell
expression: trace generation, observing intermediate data structures, and us-
ing rewrite rules.

trace generation A Haskell program is divided into two separate parts:
the core part that is modelled as a set of pure functions and a part that can
deal with user input and user output. Pure functions are functions that take
all their input as explicit arguments, and produce all their output as explicit
results [19]. A common way to debug / inspect programs written in an imper-
ative language is to add some debug statements that print a message to the
standard output or a log file to depict the flow of the program. In Haskell it
is not possible to add any debug statements in a pure function because of the
clear separation between pure functions and functions that deal with input
and output. Trace generation is therefore used to debug Haskell programs.
Trace generation is based on the idea to have a look at how the compiler
reduces an expression.

glasgow haskell compiler The main compiler for Haskell code is
the Glasgow Haskell Compiler (GHC). GHC converts Haskell source code
into some core syntax code by means of parsing, renaming, type checking
and desugaring [20]. Several core-language transformations can be applied to
improve this code. In the next step this code will be transformed to the Shared
Term Graph Language. Several transformations can also be applied on this
code to improve it. Finally the code generation part will convert this language
to the Abstract C data type that can be printed in C syntax. The printed C
syntax is offered to a C compiler which will convert the C code to machine
code. A main advantage of this approach is that a C compiler is almost always
available for a certain hardware platform which improves portability. Another
advantage is that GHC directly benefits from improvements made in the C

17

18 related work

compiler. Because of this approach Haskell can be viewed as a high level
language on top of C.

redex trails It is possible to view a trace of a functional program in so
called redex trail format [37]. Redex trails give a user insight into what re-
dex will be selected by the compiler to reduce an expression. The solution to
achieve this is to transform the original Haskell code into Haskell code with
tracing facilities. Pure Haskell functions will be transformed to Haskell func-
tions that store the evaluation order in a data type that can be printed to the
user. The research on tracing functional programs has resulted in a complete
debug library called Hat [10]. Hat can be used to understand how a program
works and for locating errors in a program. The tracing consists of two phases:
trace generation and trace viewing. The central idea for the trace generation
is that every expression will be transformed into an expression that is supple-
mented with a description in the trace. The trace information will be saved
in a data type that can be viewed by the trace viewing component. The main
advantage of Hat is that it is completely separated from the compiler so it
does not matter which compiler is used. Hat provides also a graphical trace
view of a Haskell expression.

A disadvantage of the approach described above is that the instrumenta-
tion of the original code can alter the execution of the program. The Shared
Term Graph of the traced program can be different from the original pro-
gram without the trace instrumentation code. Another approach, that is used
by WinHIPE for example, is to use traces as pure observations of the program
which results in an equally Shared Term Graph for both programs [33]. The
approach is not to instrument the provided Haskell code but to instrument
the interpreter. The advantage of this approach is that it allows to produce
traces for any program that is executed without additional work for the pro-
grammer. Another advantage is the guarantee that the Shared Term Graph
will not be altered so there is a clean separation between the trace and the
program being observed. A disadvantage of this approach is that the inter-
preter (part of the compiler) needs to be adjusted. A main feature of WinHIPE
is that it can depict the evaluation of Haskell expressions graphically in a call
graph view.

other approaches The approach to observe intermediate data struc-
tures, that is also mainly used for debugging, is used in the Hood debugger
[37]. With Hood it is possible to observe for example base types (such as Int
and Bool) and finite and infinite structures (such as lists and trees). It is also
possible to add observational capabilities for new defined types.

The approach to specify rewrite rules to inspect the evaluation of expres-
sions is used for example in the stepeval project where a subset of Haskell
expressions can be inspected [30].

3.2 intelligent tutoring systems 19

With these approaches it is possible to inspect the evaluation steps of a
Haskell expression, but it is not possible to practice with these evaluation
steps.

3.2 intelligent tutoring systems

The biggest problem for novice programmers is not to understand basic pro-
gramming concepts but to learn how to apply these programming concepts
in practice [23]. To keep students motivated to learn programming it is there-
fore important to teach it incrementally, to practice with practical exercises
and to give them early and direct feedback on their work [39]. Most students
feel that they learn programming best by studying alone and while working
alone on some programming assignment [23]. A main disadvantage of learn-
ing programming by doing and especially by doing it alone is that usually
no direct feedback is available. Students can get frustrated and demotivated
if they do not understand what is going wrong in their program.

An intelligent tutoring system has the purpose of overcoming this disad-
vantage. The main advantage of an intelligent tutoring system is that the
student gets feedback at any desired moment. An intelligent tutoring system
consists of an inner loop and an outer loop. The main responsibility of the
outer loop is to select an appropriate task for the student and the main re-
sponsibility for the inner loop is to give hints and feedback on student steps.

There are three important aspects for programming tutors [14]: develop-
ment process, correctness and adaptivity. Development process is an indicator
to which extent a tutor supports the incremental development of programs
where students can obtain feedback or hints on incomplete programs and to
which extent a student can follow his preferred way to solve a programming
problem. Correctness is an indicator to which extent the tutor can guarantee
that a student solution is correct, to which extent it can check if the student
has followed good programming practice, if it can give counterexamples for
incorrect programs and if it can detect at which point of a program a prop-
erty is violated. Adaptability is an indicator to which extent a tutor provides
functionality for a teacher to add his own exercises and to which extent partic-
ular solutions are enforced or disallowed. Several intelligent tutoring systems
have been developed to learn Haskell. Two Haskell tutors will be described,
one tutor is focused on the outer loop and one tutor is focused on the inner
loop.

The Web-Based Haskell Adaptive Tutor focusses more on the outer loop. It
classifies each student into a group of students that share some attributes and
will behave differently based on the group of the student [27]. A student can
practice with three kinds of problems: evaluating expressions, typing func-
tions and solving programming assignments. The difficulty of the exercises
will be constrained by the level that the student has reached in previous ses-

20 related work

sions and a student is not allowed to practice topics that have not yet been
covered in the classroom. A disadvantage of this tutor is that it does not sup-
port the stepwise development of a program.

Ask-Elle is a Haskell tutor system that focusses more on the inner loop. It
aims to teach students functional programming by developing their programs
incrementally, receive feedback about whether or not they are on the right
track, ask for a hint when they are stuck and see how a complete program
is stepwise constructed [13]. Ask-Elle is developed by the Open Universiteit
of the Netherlands and Utrecht University. It aims to support students that
follow an introduction course in functional programming.

4
R E S E A R C H D E S I G N

This chapter describes the research questions and research method in more
detail. The components of the developed prototype are also described in more
detail.

4.1 research questions

The main research question in this thesis is:

How can students in a tutoring environment be supported to under-
stand evaluation strategies and programming concepts using the eval-
uation steps of Haskell expressions?

The research question is divided into the following sub research questions:

1. Which programming concepts are suitable to illustrate with the step-
wise evaluation of Haskell expressions?

2. How can the evaluation of Haskell expressions be inspected by system-
atically rewriting expressions?

3. How can feedback be generated when a student must provide the eval-
uation steps of a Haskell expression?

4. How can multiple evaluation strategies and user defined function defi-
nitions be supported?

4.2 research method

The motivation for this research is the observation that students following a
first course in functional programming facing difficulties in understanding
the evaluation steps of Haskell expressions. This research aims to support
these students. Multiple research methods will be used: literature study, ex-
periment and survey.

The literature study will focus on current possibilities in a tutor environ-
ment to support students in better understanding the evaluation steps of
Haskell expressions. Another part of the literature study is focused on the
understanding of technical concepts of how parts of the prototype can be
realized.

21

22 research design

The experiment consists of the development of a prototype which has the
purpose of supporting students in understanding the evaluation of Haskell
expressions and understanding evaluation strategies and programming con-
cepts in general.

The survey will validate the conducted research. During the survey par-
ticipants will be able to use the prototype to validate if the inspection and
feedback are appropriate. The participants will also answer several questions
about which programming concepts may be suitable to add to the prototype,
which step size (granularity of the steps) is appropriate for them and does
the prototype fulfil a particular need for them.

prototype The prototype is divided into separate components so they
can easily be changed for other components in future releases. This might
be useful in the future if the prototype will be integrated with a functional
programming tutor such as Ask-Elle [13]. The component model of the pro-
totype is shown in figure 4.1 and consists of a front-end, a back-end, and a
strategy component. The back-end component uses the external components
IDEAS and Helium. The research is focussed on the back-end and strategy
components. The strategy component contains all rewrite rules and rewrite
strategies for a certain evaluation strategy. The Helium compiler [15] is used
for parsing and pretty-printing expressions. Pretty printers are libraries that
produce output that is suitable either for human consumption (for exam-
ple debugging) or for machine processing [32]. The advantage of choosing
the Helium compiler is that this component is already used by the Ask-Elle
tutor, which makes future integration easier. The back-end is developed in
Haskell. The main reason for this is that Ask-Elle and IDEAS are also writ-
ten in Haskell, which makes integration easier. The back-end operates as a
glue component that connects all other components. It receives an expres-
sion string from the front-end, uses the Helium compiler to parse the string
and then converts the Helium output to the defined expression data type.
The back-end receives expression results from IDEAS and will convert the de-
fined expression data type back to the Helium data type and will then use the
pretty-printer of the Helium compiler to convert this data type into a string.
This string is presented to the user via the front-end.

ideas framework IDEAS stands for Interactive Domain-specific Exer-
cise Assistants and is developed by the Open Universiteit of The Netherlands
and Utrecht University. It is a framework for developing domain reasoners
that give intelligent feedback [16]. A mathematical equation or a program-
ming exercise is mostly solved by following some kind of procedure. A pro-
cedure or strategy describes how basic steps may be combined to solve a
particular problem [13]. It is possible to provide such a strategy in an em-
bedded domain specific language (EDSL) to IDEAS. IDEAS interprets the

4.2 research method 23

Figure 4.1: Component diagram of the prototype

provided strategy as a context-free grammar. The sentences of this grammar
are sequences of rewrite steps that will be used to check if a student follows
the strategy. The main advantage of using IDEAS is that it is a generic frame-
work that makes it possible to define exercises that must be solved using some
kind of strategy and that it provides feedback to a student who is doing the
exercise. The feedback is implemented by adding label information to certain
locations in the strategy. The IDEAS framework is used for example in the
functional programming tutor Ask-Elle and an intelligent tutor for rewriting
logic expressions.

The back-end of the prototype can be seen as a domain reasoner for Haskell
expressions. To develop a domain reasoner three parts needs to be defined:
the domain itself (data type that represents Haskell expressions), rewrite rules
for Haskell expressions (evaluation steps) and one or more strategies that
combine rewrite rules to specify in which order sub-expressions are evalu-
ated.

To give users feedback, an exercise and a domain reasoner need to be de-
fined in the IDEAS framework. A domain reasoner specifies supported exer-
cises, services and script files that are used to generate user-defined feedback.
An exercise specifies the strategy, the parser, the pretty printer, a predicate
to determine if an expression is fully evaluated (a literal or a list of literals),
example expressions and two functions to determine if two expressions are
semantically and syntactically equivalent. The prototype contains two exer-
cises: one for the innermost evaluation strategy and one for the outermost
evaluation strategy.

24 research design

front-end The front-end is web-based and uses the front-end framework
Bootstrap. It is written in HTML and JavaScript and communicates through
JSON to the back-end. The front-end provides an interface for users of the
prototype to inspect the evaluation of a Haskell expression or to practice with
the evaluation of a Haskell expression. The prototype front-end can easily be
changed for another front-end and the purpose of this prototype front-end is
to give insight into what kind of IDEAS services can be accessed.

A screenshot of the practice part of the front-end is shown in figure 4.2.
A user can select an example Haskell expression by clicking on the ‘Select’
button or he can enter a Haskell expression. The prototype currently only
supports a subset of the Haskell syntax so it is possible that this operation
fails. After typing or selecting a Haskell expression the user can choose be-
tween the innermost evaluation strategy or the outermost evaluation strategy
(which internally results in the behaviour of selecting a certain exercise). If
the user clicks on the ’Evaluate’ button the derivation of the expression is
presented.

In the practice part of the prototype several standard IDEAS services are
available for giving students hints about how a certain expression is evaluated.
For instance, the prototype uses the services for calculating the number of
steps left, getting information about the next rule that should be applied, or
finding out what the expression looks like after applying this rule. The user
can fill in the next evaluation step, possibly with the help of the services, and
click on the button ‘Diagnose’ to see if the provided next step is the correct
step according to the strategy. The service ’do next step’ makes it possible to
step through the evaluation steps of a certain expression.

In the feedback service that gives information about the next rule that
should be applied, the string representation of a certain rule is used. The
string representation of a rule can be modified in a script file where rule
identifiers are mapped to a textual representation. All rewrite rules have an
identifier, for example, the identifier of the ’foldl’ rewrite rule is ’eval.foldl’.
This identifier is mapped to the string ’Apply the fold left rule to process a list
using an operator that associates to the left’ in the script file. This script file
can be changed without recompiling the evaluator, which makes it possible to
easily adapt the information, for example to support another language. Sev-
eral IDEAS services are slightly modified to return this string representation
instead of the rule identifier. For instance, the service that returns all appli-
cable rules independent of the chosen strategy and the service to diagnose a
student step.

To determine if a provided step follows the evaluation strategy, the IDEAS
framework needs to determine if the provided expression is equal to the ex-
pected expression. The evaluator therefore needs to implement two functions:
one function to determine if two expressions are semantically equivalent, and
one function to determine if two expressions are syntactically equivalent. Syn-

4.2 research method 25

Figure 4.2: Practice with evaluation steps

tactic equivalence is obtained by deriving an instance of the Eq (equivalence)
type class for the data type that represents Haskell expressions (Expr data
type). Semantic equivalence is more subtle because a student may provide
a step that is syntactically different from the expected step, but semantically
the same. It is defined by using a function that calculates a final answer for
the two expressions and returns True if both results are the same.

5
R E W R I T E R U L E S A N D S T R AT E G I E S

This chapter discusses the main parts to construct a domain reasoner. The
first paragraph discusses the data type that represents Haskell expressions
(the domain). The second paragraph discusses the rewrite rules (evaluation
steps) and the third paragraph discusses the rewrite strategies that define
the order in which to apply a certain evaluation step. The rewrite rules and
strategies will be explained by using the example expression sum ([] ++ [5]).
All rewrite rules for this example expression will be given in this chapter.

5.1 definition of the domain

An expression that a user enters in the front-end will be received by the
back-end and parsed by the Helium compiler into an abstract syntax tree that
is defined within Helium to represent an expression. The defined abstract
syntax tree for an expression in Helium is complex and will therefore be
simplified (converted) to the data type that is shown in figure 5.1. The reason
for this simplification is to keep the rewrite rules and strategy readable. A
disadvantage of this decision is that a translation is needed to convert the
Helium expression data type to the expression data type and a translation is
needed to convert the data types the other way around. However, readability
is more important than not having this translation part.

The data type for an expression consists of the literal integer (’Con Int’),
variables (’Var String’) that are used to represent function names and to rep-
resent data type constructors, application (’App Expr Expr’) and lambda
abstractions (’Abs String Expr’). Lambda abstractions are anonymous func-
tions that are typically used when a function is only needed once [26]. Some
smart constructors (helper functions) are defined for constructing expressions.
These smart constructors are given in figure 5.2. If a user enters an expression
with the list notation (for example [3, 5]), this list notation will be rewritten
to the core syntax notation for lists (3:5:[]). The list notation in Haskell is
actually syntactic sugar that provides an alternative way of writing code. De-
sugaring is the translation of syntactic sugar back to the core language [32].
The data type for expressions only supports the core syntax for lists.

Because the IDEAS framework is a generic framework it only operates on
generic terms. Therefore, a function must be defined that translates the de-
fined data type to the generic terms that are used by IDEAS. To accomplish
the translation and the other way around, all constructors of the expression
data type get a symbol name. IDEAS has already defined translation func-

27

28 rewrite rules and strategies

data Expr = App Expr Expr — Binary application
| Abs String Expr — Lambda abstraction
| Var String — Variable
| Con Int — Literal Integer

Figure 5.1: Data type for expressions

bin :: String → Expr → Expr → Expr
bin s x y = App (App (Var s) x) y — binary function

nil :: Expr
nil = Var "[]" — empty list

cons :: Expr → Expr → Expr
cons = bin ":" — list constructor

appN :: Expr → [Expr] → Expr — function with
appN = foldl App — multiple parameters

Figure 5.2: Smart constructors for expression data type

tions for the primitive data types Int and String. For example an Int is en-
coded as a TNum value. To translate the data type to a generic term the
function ’toTerm’ is called. This function encodes the symbol name and will
translate parameters recursively. The function ’fromTerm’ is called to trans-
late a generic term to the data type. In this function the original data type can
easily be reconstructed based on the symbol names.

Conceptually, IDEAS contains a tree structure of an expression. To visit and
modify a node in the tree data structure (tree traversal) the zipper technique
[18] is used. The tree representation of the example expression sum([]++[5]) is
depicted in figure 5.3. Notice that by calling the smart constructor cons with
cons (Con 5) (Var "[]") the right part of the tree is constructed.

5.2 rewrite rules

IDEAS uses rewrite rules to rewrite a certain term into another term. After
the expression has been entered by a user, successfully parsed, translated to
the defined data type and finally translated to a generic term, IDEAS tries to
apply a rewrite rule on this term. For every supported function (and operator)
from the prelude a rewrite rule has been introduced.

5.2 rewrite rules 29

Figure 5.3: Internal structure of ’sum ([] ++ [5])’

There are two approaches to define rewrite rules: the extensional approach
and the intensional approach [38]. In the extensional approach, rewrite rules
are encoded as Haskell functions. Pattern matching is used to check if the
argument matches the left-hand side of the rule. If the argument matches
then the right-hand side of the rule is returned and if not the rule fails and
nothing will be altered. An example of this approach is shown in figure 5.4
which contains the rule to add two numbers. Each rule has an identifier, and
optionally also a description that is used for explaining the rewrite step. The
descriptions of the prelude functions are taken from the appendix of Hutton’s
textbook [19].

Rules encoded as functions are straightforward but have some disadvan-
tages [38]. The first disadvantage is that the rules cannot be encoded as one-
line definitions because we have to provide a catch-all case for if the rule can-
not be applied. This is needed to avoid run-time pattern matching failures.
The second disadvantage is that pattern guards are needed if the left-hand
side of the rewrite rule contains multiple occurrences of the same variable.
The use of pattern guards makes the function less readable. The third dis-
advantage is that because Haskell lacks first-class pattern matching it is not
easily possible to abstract common structures in the left-hand sides of the
rewrite rules. Finally, rules can also not easily be analyzed since it is hard to
inspect functions.

In the intensional approach, rewrite rules are encoded as values of a data
type. Datatype-generic rewriting technology [38] is used to encode rules with
the intensional approach. Rules are constructed with operator 7→, which

30 rewrite rules and strategies

addRule :: Rule Expr
addRule = describe "Add two numbers" $ makeRule "add" f

where
f :: Expr → Maybe Expr
f (App (App (Var "+")) (Con x)) (Con y)) =Just $ Con (x + y)
f _ = Nothing

Figure 5.4: Extensional rewrite rule for (+)

sumRule :: Rule Expr
sumRule = describe "Calculate the sum of a list of numbers" $

rewriteRule "sum" $ Var "sum" 7→ appN (Var "foldl") [Var "+", 0]

Figure 5.5: Intensional rewrite rule for sum

takes an expression (a value of the Expr data type) at the left-hand side and
the right-hand side. An example of this approach is given in figure 5.5 which
contains the rewrite rule for the function definition sum. As soon as an expres-
sion is detected with the function name sum the expression can be rewritten
to the equivalent foldl function. The datatype-generic rewriting technology
contains generic rewrite functionality that attempts to apply rules to a certain
expression type. If the rule cannot be applied the expression will not be al-
tered. This intensional approach has some advantages. The first advantage is
that rules can be encoded as one-line definitions. The second advantage is that
it is possible to alter the matching algorithm for the rule’s left-hand side to
take associativity of certain operators into account. Other advantages are that
it is possible to take the inverse of the rule and to generate documentation for
the rule.

The rewrite rule for the definition of foldl, that is depicted in figure 5.6, is
more involved since it uses pattern matching. The pattern variables in the
definition of foldl are turned into meta-variables of the rewrite rule by intro-
ducing these variables in a lambda abstraction.

5.3 strategies

Rules are combined into a strategy to determine in which order certain rules
must be applied. The embedded domain-specific language for specifying
rewrite strategies in IDEAS defines several generic combinators to combine
rewrite rules into a strategy [16]. Rewrite rules are the basic building block
for composing rewrite strategies. All combinators are lifted by means of over-
loading and take rules or strategies as arguments. Labels can be added at any

5.3 strategies 31

foldlRule :: Rule Expr
foldlRule = describe "Process a list using an operator that associates to the left" $

rewriteRules "foldl"
[\ op e x xs → appN (Var "foldl") [op, e, nil] 7→ e
, \ op e x xs → appN (Var "foldl") [op, e, cons x xs]
7→ appN (Var "foldl") [op, appN op [e, x], xs]

]

Figure 5.6: Intensional rewrite rule for foldl

appendRule :: Rule Expr
appendRule = describe "Append two lists" $ rewriteRules "append"

[\ _ _ ys → appN (Var "++") [nil, ys] 7→ ys
, \ x xs ys → AppN (Var "++") [cons x xs, ys]
7→ cons x (appN (Var "++") [xs, ys])

]

Figure 5.7: Intensional rewrite rule for (++)

position in the strategy to specialize the feedback that is generated. Table 5.1
summarizes the generic combinators that are used by the strategy.

Traversal strategies are recursive procedures that specify how and where
a given transformation has to be applied [16]. There are multiple variations
possible in these traversal strategies. For example, a full traversal (strategy is
applied everywhere) versus a single location traversal, a top-down traversal
versus a bottom-up traversal and a left-to-right traversal versus a right-to-left
traversal. Navigation is needed to determine where a given transformation
has to be applied. From a current location in the expression we can navigate
for example to left, right, up or down. Several minor navigation rules have
been defined to navigate through the data type structure. Minor rules are just
ordinary rules but the difference with normal rules is that minor rules are
not reported as an evaluation step. The navigation rules are used in ’apply’
functions that takes a strategy and apply this strategy to for example the first
child (argument) of the current node (function). These ’apply’ functions are
listed in figure 5.8.

An evaluation strategy defines in which order sub-expressions are reduced.
Multiple evaluation strategies can be supported by encoding a different rewrite
strategy per evaluation strategy. There is one rewrite strategy defined for the
innermost (call-by-value) evaluation strategy and one rewrite strategy for the
outermost (call-by-name) evaluation strategy.

32 rewrite rules and strategies

Name Notation Description

Sequence s <*> q The sequence combinator specifies the se-
quential application of the strategies s
and q.

Choice s <|> q The choice combinator defines that either
the first strategy (s) or the second strat-
egy (q) is applied.

Or else s |> q The or-else combinator defines that strat-
egy s is applied or else strategy q is ap-
plied.

Alternatives alternatives The alternatives combinator generalizes
the choice combinator to lists.

Conditional check p The check combinator takes a predicate p
and only succeeds if the predicate holds.

Repetition repeatS s The repeatS combinator is used for repe-
tition and will apply its argument strat-
egy s as often as possible.

Recursion fix f The fixed point combinator is used to ex-
plicitly model recursion in the strategy. It
takes as argument a function f that maps
a strategy to a new strategy.

Succeed succeed The always succeeding strategy

Table 5.1: Generic strategy combinators

type Strat =Strategy (Context Expr)

applyToFirstChild :: IsStrategy f => f (Context Expr) → Strat
applyToFirstChild s =goDown <*> s <*> goUp

applyToSecondChild :: IsStrategy f => f (Context Expr) → Strat
applyToSecondChild s =goDown <*> goRight <*> s <*> goUp

Figure 5.8: Navigation functions

5.3 strategies 33

innerMostStrategy :: LabeledStrategy (Context Expr)
innerMostStrategy = (repeatS . leftmostbu) ruleCombinationS

Figure 5.9: Innermost evaluation strategy

Figure 5.10: Internal structure of ’foldl (+) 0 ([] ++ [5])’

5.3.1 Innermost strategy

The innermost evaluation strategy is shown in figure 5.9. The innermost strat-
egy uses ruleCombinationS, which is just a combination of all defined rewrite
rules. It uses the traversal function leftmostbu that is defined within IDEAS
and will try to apply this traversal function as often as possible. The leftmostbu
traversal function traverses to the left most node position from bottom to top
and tries to apply a defined rewrite rule on the term that is in focus. Note that
the Context type is used as a zipper [18] data type for traversing expressions.
Hence, we have to lift the rules to the Context type. From the tree represen-
tation of the expression sum([]++[5]) in figure 5.3 it is easy to observer that
the left most node is ’Var sum’. The innermost strategy will therefore apply
the sum rule immediately to this node. The result of this rewrite step can be
observed in figure 5.10. The rewrite rule for the sum definition uses the smart
constructor appN to construct foldl (+) 0.

34 rewrite rules and strategies

outerMostStrategy :: LabeledStrategy (Context Expr)
outerMostStrategy = evalList $ fix $ \ whnf →

repeatS (spinebu (liftToContext betaReduction
<|> alternatives (map ($ whnf) env)))

where
env =[foldlS, appendS, sumS, addS]

Figure 5.11: Outermost evaluation strategy

5.3.2 Outermost strategy

Expressions that are evaluated with the outermost evaluation strategy are
not evaluated until they are required. Therefore the evaluator will try to use
a rewrite rule on the outermost part of an expression. In the example ex-
pression of figure 5.10 the evaluator will try to apply a rewrite rule on the
foldl function. From the function definition of foldl (see chapter 2) it can be
observed that the third argument must be equal to the empty list or not the
empty list before a decision can be made of which line in the function defini-
tion must be used. In other words the third argument must be evaluated to
the outermost data constructor to determine which line in the function defini-
tion must be used. If the outermost part of an expression is a data constructor
or a lambda abstraction it is called to be in weak head normal form [28]. Sub-
expressions may or may not have been evaluated. In contrast, an expression
is in normal form if it is fully evaluated and no sub-expressions could be
evaluated further. Every expression that is in normal form is also in weak
head normal form. For example the expression 3 : ([9, 4]++[10, 20]) is in weak
head normal form because the outermost part is the data constructor :. And
the expression 10+10 is not in weak head normal form because the outermost
part is the function application (+). So to determine if a certain rewrite rule
can be applied it is sometimes (depending on the function definition) needed
to evaluate an argument to weak head normal form.

The outermost strategy that is shown in figure 5.11 can be divided into
several parts: functions that inspect the value of a certain node, strategies
that navigate through the tree structure, evaluation strategies for functions
definitions and a strategy to evaluate data structures completely. Currently
the list is the only supported data structure in the prototype. The list env in
figure 5.11 contains all evaluation strategies for function definitions. For rea-
sons of space only the evaluation strategies of foldlS, appendS, sumS and addS
are shown. Notice that these functions get the lambda abstraction whnf as an
argument (through the map function that applies a function to all elements
of a list).

5.3 strategies 35

node inspection In this section the helper functions that are responsible
for inspecting a node value are explained. There are two helper functions for
inspecting a node value: isFun and isApp. These helper functions are shown
in figure 5.12.

The function isFun will verify if the current node in focus equals the func-
tion name that is given as the first argument and the number of parameters
that is given as second argument. The function currentInContext is defined
within the IDEAS framework and will return the current node in focus. It
will return a Maybe type to indicate the possibility that there isn’t any node
in focus. The Maybe type is used in Haskell to represent the possibility of
an error [32]. If the operation has failed the Nothing constructor is returned
otherwise the expression (Expr), wrapped in the Just constructor is returned.
The maybe function from the prelude takes a default value, a function and a
Maybe type. If currentInContext returns a Nothing constructor the default value
is returned (in this case the Boolean value False) otherwise the result of the
function rec is returned. The rec function will return the Boolean value True if
the isFun function is called with 0 as the number of arguments and the node
in focus corresponds to a ’Var’ node that has the same function name as the
function name that was provided as the first argument. The other case that
rec will return the Boolean value True is the case that the isFun function is
called with x as the number of arguments, the node in focus corresponds to
an ’App’ node and unwrapping that node x times will result in the reach of
a ’Var’ node that has the same function name as the function name that was
provided as the first argument. For example the expression isFun "foldl" 3 will
return True in figure 5.10 if the node in focus is the root node.

The function isApp will return the Boolean value True if the node in fo-
cus corresponds with an ’App’ node, otherwise the Boolean value False is
returned.

node navigation strategies In this section sub-strategies are explained
that are responsible for changing the focus in the tree. These sub-strategies
uses the earlier mentioned navigation functions in figure 5.8. There are two
node navigation strategies: arg and spinebu. These strategies are shown in fig-
ure 5.13.

The arg strategy is responsible for setting the correct focus for sub-expressions
that must be brought into weak head normal form. This function is called
with three arguments. The first argument specifies the argument number that
must be brought into weak head normal form, the second argument specifies
the total amount of arguments and the third argument contains the strategy
that is responsible for actually bringing the sub-expression into weak head
normal form. The foldr function from the prelude takes a function, a starting
value and a list. The function is applied to all list arguments from right to left.
The enumeration notation [1 .. n-i] is used to construct a list [32]. The length

36 rewrite rules and strategies

isFun :: String → Int → Context Expr → Bool
isFun fn args = maybe False (rec args) . currentInContext

where
rec 0 (Var s) = fn == s
rec 0 _ = False
rec n (App f _) = rec (n-1) f
rec _ _ = False

isApp :: Context Expr → Bool
isApp = maybe False f . currentInContext

where
f (App _ _) = True
f _ = False

Figure 5.12: Node inspection

arg :: Int → Int → Strategy (Context Expr) → Strategy (Context Expr)
arg i n

|i < n =foldr (\ _ f → applyToFirstChild . f)
applyToSecondChild [1 .. n-i]

|otherwise =error ”invalid use of arg”

spinebu :: Strategy (Context Expr) → Strategy (Context Expr)
spinebu s = fix $ \ x → (check isApp <*> applyToFirstChild x) |> s

Figure 5.13: Node navigation

of this list is the number of times that the focus must be moved to the first
child node. After this focus change the strategy that was given as the third
argument is applied to the second child of the current node in focus.

The spinebu strategy specifies a recursive strategy (fixpoint). If the node in
focus (verified with the isApp function) is an ’App’ node the focus is changed
to the first child node. This process is a recursive process that will stop if
the node in focus is not an ’App’ node. On this node the strategy that was
received as the first argument is applied.

evaluate data structures The first step in the outermost evaluation
strategy is the evalList strategy that is shown in figure 5.14. Notice that the
argument of this function is the complete outermost evaluation strategy. The
strategy will first execute the argument strategy and will then verify if the

5.3 strategies 37

evalList :: Strategy (Context Expr) → Strategy (Context Expr)
evalList s = fix $ \ x → s <*> try (check (isFun ":" 2)

<*> arg 1 2 x <*> arg 2 2 x)

Figure 5.14: Evaluate data structures

sumS :: Strategy (Context Expr)
sumS _ = check (isFun "sum" 0)

<*> liftToContext sumRule

appendS :: Strategy (Context Expr)
appendS whnf = check (isFun "++" 2)

<*> arg 1 2 whnf
<*> liftToContext appendRule

foldlS :: Strategy (Context Expr)
foldS whnf = check (isFun "foldl" 3)

<*> arg 3 3 whnf
<*> liftToContext foldlRule

Figure 5.15: Evaluation strategies for the definitions

node in focus is the data constructor : with two arguments (verified with the
isFun function). If this is the case it will bring the first argument and then
the second argument into weak head normal form (with the help of the arg
function).

evaluation strategies For every supported function definition a rewrite
rule and an evaluation strategy has been constructed. The evaluation strate-
gies of foldlS, appendS, sumS and addS are shown in figure 5.15. The evaluation
strategy functions will first check if the evaluation strategy must be applied
on the node in focus (verified with the isFun function). If the evaluation strat-
egy must be applied on the node in focus it will bring the arguments that
need to be brought into weak head normal form into weak head normal form
(with the help of the arg function). If all relevant arguments (depending on the
function definition) are brought into weak head normal form the rewrite rule
is applied on the node in focus. Notice that the strategy to bring an argument
into weak head normal form is received by the outerMostStrategy function.

connecting everything together The outerMostStrategy strategy that
is shown in figure 5.11 connects all above functions together. The beta-reduction

38 rewrite rules and strategies

rewrite rule will rewrite lambda abstractions ’App (Abs x e) a’, where the
variable x is substituted by a in an expression e.

Evaluating an expression to weak head normal form is a fixed-point compu-
tation over the evaluation strategies for the definitions, since each definition
takes the whnf strategy as an argument. These strategies are combined with
the rewrite rule for beta-reduction. This strategy is applied to the left-spine
of an application (in a bottom-up way) and will be repeated until the strategy
can no longer be applied. To evaluate data structures completely (such as a
list), the strategy must be repeated for the sub-parts of a constructor.

example The operation of the outermost evaluation strategy can be ex-
plained by inspecting the tree structure of the example expression sum([]++[5]).
The tree structure of that expression is given in figure 5.3. The strategy will
first use the spinebu function. This function navigates to the first child node
using the function applyToFirstChild until the expression in focus does not
contain a function application (’App’). If a node has been found that is not
equal to an ’App’ node, the spinebu function will apply strategy s, which
is a fixed-point computation over the evaluation strategies. In the example,
applyToFirstChild is only called once because only the top node contains a
function application and the first child contains the ’Var sum’ node. Now
the evaluation strategies for the definitions are used. These strategies use the
function isFun to verify the function name and to verify if it is used with the
correct amount of arguments. The evaluation strategy for the sum definition
is a match and therefore the sum definition will be used to rewrite the expres-
sion into a foldl on the first child node (seen from the root node) as depicted
in 5.10.

Now the process is started over again, the strategy uses the spinebu strategy
to navigate to the node ’Var foldl’. The evaluation strategies for the definitions
will use the function isFun to determine if the expression in focus is a foldl
function with exactly three arguments. This function will fail for all defined
evaluation strategies for the definitions because there isn’t a function called
foldl with zero arguments. Because the strategy fails the focus will be changed
(by spinebu) to the node directly above the node in focus. All evaluation strate-
gies are tried again on that node but this will also fail. When the focus is at
the root node there is a match for the foldl function with three arguments.
The evaluation strategy for the definitions will now bring the third argument
in weak head normal form by first changing the focus to the second child
(third argument) and then calling the complete whnf strategy recursively. So
on the second child (seen from the root node) the complete strategy is re-
peated again. It will spine to the node ’Var ++’ and will apply the append
rewrite rule on the second child node (seen from the root node).

6
U S E R D E F I N E D F U N C T I O N D E F I N I T I O N S

From the conducted survey it became clear that there is a need to make the
function definitions visible in the front-end. If the function definitions are
visible, students can observe those definitions and can verify the evaluation
steps. This can help students in the understanding of a derivation. The survey
also showed that some teachers would like to add their own function defini-
tions in order to incorporate the prototype into their course on functional
programming. From an educational viewpoint it is interesting to experiment
with different function definitions for the same function to observe the impli-
cations. For example, the sum function can be defined with a foldl function,
foldr function or recursively.

It is possible to add multiple functions definitions by giving each defini-
tion an own name (for instance sum , sum′ and sum′′) and to manually add
rewrite rules and evaluation strategies for the definitions. However, this ap-
proach has some drawbacks. To define rewrite rules and evaluation strategies
the maintainer of the prototype (likely a teacher) needs to have knowledge of
the defined data type for Haskell expressions and of the internal implementa-
tion to construct those rules and evaluation strategies. It is also necessary to
recompile the prototype and therefore a maintainer would also need the com-
plete build environment (e.g. Haskell compiler and used libraries). Another
disadvantage is that the translation of function definitions to rewrite rules is
a manual process where mistakes can be made.

When the strategies are observed closely, some common code can be no-
ticed. Function definitions that have the same patterns have similar rewrite
rules and evaluation strategies for the definitions. Another approach is there-
fore to generate these rewrite rules and evaluation strategies for the defini-
tions from the function definitions. These function definitions can be defined
in a Haskell source file (just a text file with valid Haskell syntax). With an-
notations [13] it is possible to add a description to every function definition.
Annotations are multi-line comments with an identifier so the Haskell file
remains a valid Haskell source file. This identifier, for instance DESC for de-
scription, can be used by the prototype to interpret the string after DESC as
the rule description that is used in the front-end. The advantage of adding
a description to a function definition is that the script file that contains a
mapping of rule identifiers to rule descriptions as discussed in chapter 4 is
not needed anymore. With the introduction of a function definition file rule
identifiers are only used internally within the tool. With this approach there
is one file, located on the web server, which can contain function definitions

39

40 user defined function definitions

{-# DESC sum rule defined with a foldr to sum up all elements of a list. #-}
sum′ = foldr (+) 0

{-# DESC sum rule defined recursively to sum up all elements of a list. #-}
sum′′ [] = 0
sum′′ (x : xs) = x + sum′′ xs

{-# DESC double function to double a number. #-}
double x = x + x

Figure 6.1: Function definition file

that are supported by the prototype. An example of a function definition file
is shown in figure 6.1. Notice that primitive functions (such as the operator
+) cannot be defined in the function definition file. Primitive functions are
functions that cannot be implemented directly in Haskell and are provided
natively by the compiler.

There are various language constructs for defining functions in Haskell
such as conditional expressions, guarded equations, pattern matching, lambda
expressions and sections [19]. The function definitions that are depicted in
figure 6.1 use pattern matching and this is currently the only supported way
for defining functions. The left-hand side of the equal sign consists of a pat-
tern and if that pattern matches with a particular expression the expression
is rewritten to the expression at the right-hand side of the equal sign. The
right-hand side of the function definition is an expression. The functionality
for parsing an expression with the Helium compiler and converting this to
the data type for Haskell expressions (see figure 5.1) can therefore be re-used.
The pattern at the left-hand side of the function definition can also be parsed
with the help of the Helium compiler. After the parsing process has been
executed successfully a Helium data type for patterns is available. Because
this data type is huge and complex it is simplified (in a similar way as the
data type for expressions) to a data type for patterns that is shown in figure
6.2. In fact the complete function definition can be parsed by Helium. A FDef
data type is introduced to represent a function definition that combines the
pattern and expression parts. The FDef data type consists of two constructors:
pattern binding (PBinding) and function binding (FBinding).

A pattern binding binds variables to values. Function definitions without
any explicit parameters (such as sum′) are pattern bindings. If the function
name of these functions are detected they can immediately be rewritten for
the right-hand side of the definition. The PBinding constructor consists of
a tuple of the pattern (left-hand side) and corresponding expression (right-
hand side). For example the sum′ definition is encoded as a PBinding with
pattern variable PVar "sum′" as pattern.

user defined function definitions 41

data Pat = PCon Pat [Pat] — Pattern constructor
| PVar String — Pattern variable
| PLit Int — Pattern literal

data FDef = PBinding (Pat, Expr) — Pattern Binding
| FBinding (String, [([Pat], Expr)]) — Function Binding

Figure 6.2: Pattern data type

A function binding binds a variable to a function value. Function defini-
tions with explicit parameters (such as double) are function bindings. The
FBinding constructor consists of a tuple of the function name and a list of
tuples (every line in the function definition corresponds to an element in this
list). The tuple consists of a list of patterns (every parameter corresponds to
an element in this list) and the corresponding expression. For example the
double definition is encoded as a FBinding with pattern variable PVar "x" and
function name double.

The FDef data type is combined with a String in a tuple. This string repre-
sents the rule identifier (and in future releases the rule description) that must
be used. This description (DESC) can be used in the front-end to describe
the generated rewrite rule and will be depicted if a user requests the next
applicable rule.

generate rules and strategies Take a look at the function definition
of sum′ in figure 6.1. The left-hand side of this function definition is just a
simple pattern that consists of the variable name. All function definitions
with only one variable name as pattern have the same rewrite rule structure.
The function to generate rewrite rules for this kind of patterns is shown in
figure 6.3. If there is a match with a pattern binding (PBinding) that contains
one pattern variable a rewrite rule is constructed.

The generation of rewrite rules for function bindings with one pattern
variable is also shown in figure 6.3. An example is the function definition
double x = x + x. Remember from chapter 5 that pattern variables are turned
into meta-variables of the rewrite rule by introducing these variables in a
lambda abstraction. For every detected pattern variable (here x) a meta-variable
must be introduced. This meta-variable must be substituted in the expression
at the right-hand side of the function definition otherwise the variables are
taken verbatim. This substitution is done with the function subst that substi-
tutes variable x by expression a in expression e.

42 user defined function definitions

type MRule = Maybe (Rule Expr)

genRule :: (String, FDef) → MRule
genRule (rId, PBinding (PVar f , e)) =

Just $ rewriteRule rId $ Var f 7→ e
genRule (rId, FBinding (f , [([PVar x], e)])) =

Just $ rewriteRule rId $ \ a → App (Var f) a 7→ subst x a e
genRule _ = Nothing

Figure 6.3: Generate rewrite rules

type Strat = Strategy (Context Expr)

evalStrat :: String → Int → Rule Expr → [Strat] → Strat
evalStrat f n r s = check (isFun f n)

<*> foldl (<*>) succeed s
<*> liftToContext r

Figure 6.4: Abstraction of evaluation strategies for the definitions

The evaluation strategies for the function definitions that are used in the
outermost evaluation strategy can be generalized. The function evalStrat that
is shown in figure 6.4 is an abstraction of these strategies. This function takes
the function name, number of arguments, the rewrite rule and a list of strate-
gies that contain optional steps to bring certain arguments into weak head
normal form. The evalStrat function will first check with the isFun function if
the function name and the number of arguments correspond with the current
node in focus. If there is a match all strategy steps to bring arguments into
weak head normal form will be applied. As a final step the rewrite rule will
be applied.

The functions to generate evaluation strategies are shown in figure 6.5.
The function genEvalStrat generates evaluation strategies. This function calls
the function genRule to generate a rewrite rule and then calls the function
conEvalStrat to construct an evaluation strategy. The function conEvalStrat
uses the function evalStrat to construct the strategy. The empty list is given
as the third argument because for these patterns there are no arguments that
must be brought into weak head normal form. Notice that these functions
currently only support pattern bindings and simple function bindings with
one pattern variable. Another limitation is that function definitions that have
multiple patterns are not supported.

user defined function definitions 43

type MStrat = Maybe (Strategy (Context Expr))

genEvalStrat :: (String, FDef) → Strat → Strat
genEvalStrat fdef whnf = fromJust $

conEvalStrat fdef (fromJust $ genRule fdef) whnf

conEvalStrat :: (String, FDef) → Rule Expr → Strat → MStrat
conEvalStrat (_ , PBinding (PVar f , e)) r whnf =

Just $ evalStrat f 0 r []
conEvalStrat (_ , FBinding (f , [([PVar x], e)])) r whnf =

Just $ evalStrat f 1 r []
conEvalStrat _ _ _ = Nothing

Figure 6.5: Generate evaluation strategies

more complex patterns The defined generate functions can be extended
in the future to support more complex patterns. An extension is to determine
the number of arguments from a function definition. The number of argu-
ments is used in the function isFun to determine if the evaluation strategy can
be applied. This can be accomplished by counting the number of elements in
the pattern list.

It is also possible to determine which argument(s) must be brought into
weak head normal form by taking multiple patterns into account. For exam-
ple, from the recursive definition of sum′′ it can be determined that the first
argument (the list) must be brought into weak head normal form. The list
must be in weak head normal form, otherwise it is not known which line in
the function definition must be used.

Notice that the complete support of user defined functions is future work
and therefore the presented data type and generate functions could be changed
due to new insights.

7
VA L I D AT I O N

To validate the research a small qualitative research study has been executed.
With this qualitative research approach it is possible to get a better under-
standing if a tool such as the developed prototype can support students in
the understanding of programming concepts and evaluation strategies. Quali-
tative research is mainly exploratory and preliminary in nature and its results
are only an indication of a possible generic conclusion [22]. In qualitative re-
search it is important to precisely depict all answers on questions. Usual qual-
itative research methods are the group discussion and the open interview.

design The decision was made to hold a survey with closed and open
questions among teachers and students that participate (or participated) in
a functional programming course. The purpose of the open questions is to
transform the survey more to an open interview than an ordinary survey. A
survey is actually a quantitative method because of the fixed question layout
and the inflexibility to ask and respond to questions. The reason to choose
for a survey and not for multiple personal open interviews is to keep the
participation accessible and to reduce the time to carry out the research. Also
notice that the approached teachers work on different geographic locations
and the approached students study at the Open Universiteit of the Nether-
lands (which is a distance learning university) which means that students
can be located anywhere in the Netherlands and Belgium. The disadvantage
of using a survey instead of an open interview is that the question layout is
fixed and it is not possible to anticipate on the response of a question. It is
also not possible to observe the non-verbal communication of a participant.

The complete survey, that can be found in appendix A, and the prototype
was made available online. Participants could follow the survey steps, explore
the prototype and enter their answers online. Eight teachers and twenty nine
students have been approached via e-mail to ask if they would join the sur-
vey. The teachers are involved in functional programming at the Open Univer-
siteit of the Netherlands, Utrecht University, Radboud University Nijmegen
or Chalmers University of Technology. The students are currently enrolled in,
or have just completed an introduction course in functional programming at
the Open Universiteit of the Netherlands. All participants were approached
on April 30, 2014 and all surveys that were filled in by May 12, 2014 have
been taken into account. An overview of all the answers on the survey can be
found in appendix B.

45

46 validation

results Seven teachers in functional programming and nine students (to-
tal of sixteen people) have participated in the survey. The participation rate
under teachers is 88% and the participation rate under students is 31%. Three
student participants have not filled in the open questions so the effective par-
ticipation rate under students is 21%. Almost every participant (fifteen of the
sixteen participants) has practical experience with an imperative program-
ming language and even eight participants are experts in an imperative pro-
gramming language. All teacher participants are experts in some functional
language. Two student participants have practical experience in a functional
language, five student participants have completed an introduction course in
functional programming and two student participants are currently enrolled
in an introduction course in functional programming. The three student par-
ticipants that have not filled in the open questions have various experience in
functional programming: one has practical experience, one has completed an
introduction course and one is currently enrolled in an introduction course.
These three student participants are further not taken into account.

All participants agree that it is useful for students following an introduc-
tion course in functional programming to inspect how an expression is eval-
uated exactly. However, one student participant argued that the examples
in Hutton’s textbook [19] are sufficient to get a good understanding of the
evaluation steps and another student participant argued that inspecting eval-
uation steps can also be confusing for those who just start programming for
the first time. Eleven participants agree that it is also useful to inspect multi-
ple evaluation strategies, but two participants think it might be confusing for
absolute beginners. Also one participant would like to see the multiple eval-
uation strategies side-by-side so the differences can easily be inspected. To
support this functionality, it must be possible to detect if an expression can
be evaluated according to a certain strategy so that the user can be notified
accordingly.

There is less consensus about the question if more evaluation strategies
should be supported. Four teacher participants convincingly argued that lazy
evaluation must be supported because the evaluation is very subtle, but two
other teacher participants argued that this is too much for the basic under-
standing of programming concepts. There is also a teacher participant who
says it would be nice to add lazy evaluation but is not sure if this is worth the
effort. One student participant does not know enough of the subject to answer
this question properly and all other student participants find the addition of
lazy evaluation useful.

Practicing with the evaluation steps was received well by all participants.
However, three participants argued that it is only useful in the very begin-
ning and students can quickly become boring by entering all evaluation steps.
Another remark is made by a teacher saying that the studying of evaluation

validation 47

steps is not the only way to reason about a program. A tool similar to the
prototype must therefore be seen as an additional tool for students.

There was division among participants whether or not it is useful to skip
certain evaluation steps. Five teacher participants and one student participant
argued that it should not be possible to skip steps to keep students aware that
each step is necessary. But the other participants would like to see this feature
into the prototype because entering in all steps can be boring especially with
larger exercises. This problem can be solved by using a student model in the
tool as has been done in the Web-Based Haskell Adaptive Tutor [27]. With
this feature students must log into the tool to get a proper exercise based
on their own progress. For example, in the very beginning students must fill
in all evaluation steps and later on several evaluation steps may be skipped.
Another advantage of having a student model is that students facing some
difficulties with a certain concept (for example higher-order functions) can
get more exercises based on that topic.

All participants agree that a tool similar to the prototype is useful for the
understanding of programming concepts that are important in functional lan-
guages. One participant remarked that the concepts of guards and conditional
expressions can also be explained by using a tool similar to the prototype.
Another remark that is made is that a tool similar to the prototype is only
suitable for beginners.

Twelve participants would use or consider to use the tool if they were learn-
ing a functional language for the first time. One participant remarked that he
had never had problems with understanding the concepts, but other partici-
pants would use the tool or would advise the tool to their students.

Four participants find it useful to add their own function definitions and
to adjust function definitions to inspect the behavior of their change on the
evaluation of the expression. Five participants find this functionality possi-
bly useful. Three participant find this functionality not useful and find the
support of prelude functions sufficient.

Some participants suggested that it would be a nice improvement to see
the actual function definitions. This could help students in understanding the
evaluation steps.

conclusions The conclusion of the survey is that most participants ap-
preciate the prototype. They find it useful for students participating in an
introduction course on functional programming and think it can help those
students with understanding some programming concepts. However, some
students face more difficulties with the understanding of those concepts than
others and therefore some students will benefit more from a tool similar the
prototype than others.

The participants also suggested some advisable improvements. Examples
of these improvements are to detect if an expression cannot be evaluated

48 validation

according to the innermost strategy and notify the user accordingly, add sup-
port for the lazy evaluation strategy, make supported function definitions
visible and add user-defined function definitions.

Another conclusion is that there is not always consensus among teachers
about features. One such example is the feature for skipping certain evalua-
tion steps. Therefore it is important that those features are configurable for
the teacher so the teacher can adapt the tool to its course.

8
C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter an answer to the research questions is given in the ’conclusion’
section. The section ’maturity’ describes which Haskell language features are
currently supported and which language features are useful to add in the
future to the prototype. The section ’lazy evaluation’ describes several ap-
proaches for expressing sharing. Suggested future work is discussed in the
’future work’ section.

conclusions The inspection of the stepwise evaluation steps of Haskell
expressions can be used by students to get a better understanding of impor-
tant programming concepts such as recursion, higher-order functions, pattern
matching and lazy evaluation. Chapter 2 describes how the stepwise evalu-
ation of expressions can be used to explain those concepts. Practicing with
these evaluation steps can motivate students to think thoroughly about how
these concepts work exactly. Practicing and inspecting evaluation steps is es-
pecially useful for students that follow an introduction course in functional
programming without any prior experience in functional programming.

The presented prototype uses rewrite rules and rewrite strategies to show
the evaluations steps of a Haskell expression according to a certain evaluation
strategy. A domain reasoner in the IDEAS framework has been developed for
rewriting expressions. The evaluation process does not only depend on the
evaluation strategy that is used, but also on the function definitions. For the
outermost evaluation strategy different arguments (depending on the func-
tion definition) must be brought into weak head normal form before a certain
rewrite rule can be applied.

The IDEAS framework contains standard services that can be used to diag-
nose an evaluation step and to give several hints about the next evaluation
step. For instance, one service returns all rules that can be applied without
considering the strategy and another service gives the number of steps left
in the derivation. A script file, that contains a mapping of rewrite rule identi-
fiers to rewrite rule strings, can be used to modify the description of rewrite
rules and therefore the specific feedback messages for a student. A web front-
end has been developed to depict the derivation of a certain expression. The
front-end calls feedback services and made it possible to conduct a small
qualitative research among teachers and students involved in an introduction
course in functional programming. The qualitative research (survey) supports
the hypothesis that the prototype can help students in a better understanding

49

50 conclusions and future work

of programming concepts such as recursion, higher-order functions, pattern
matching and lazy evaluation.

Multiple evaluation strategies can be supported to define a rewrite strat-
egy for every evaluation strategy. Currently, the innermost and outermost
evaluation strategies are supported by the prototype. User defined function
definitions can be defined by introducing a file with function definitions that
the prototype can parse. Rewrite rules and evaluation strategies can then be
generated from those function definitions.

The overall conclusion is that the prototype can support students to under-
stand evaluation strategies and programming concepts. However, it is impor-
tant to make the tool configurable for teachers so they can adapt the tool to
their courses. Also further experimental research is necessary to investigate
the extent to which the prototype will support students in the understanding
of these concepts.

maturity The prototype can be used to support an introduction course
in functional programming. Several introductory concepts from for example
Hutton’s textbook [19] are currently supported:

• Pattern matching that is described in chapter 4

• Recursive functions that is described in chapter 6

• Higher-order functions that is described in chapter 7

• Evaluation strategies that are described in chapter 12

To make the prototype more mature it is useful to also support lazy evaluation
(chapter 12), conditional expressions, guarded equations (chapter 4) and list
comprehensions (chapter 5).

lazy evaluation The lazy evaluation strategy that is used by Haskell
combines the outermost evaluation strategy with sharing. If an expression is
evaluated according to the lazy evaluation strategy an argument is only re-
duced if the value of the corresponding formal parameter is needed for the
evaluation of the function body. After reducing the argument, the resulting
value will be saved for future references to that formal parameter [2]. Cur-
rently, sharing is not supported in the prototype and therefore does not give
the student any insight in which terms are used for sharing. There are differ-
ent approaches for expressing sharing [4].

One approach is to use graphs to make sharing visible by drawing one
physical variable representation with pointers to the locations of where phys-
ical parameters are accessed. To automatically construct such graphs, a struc-
ture to represent binding or variable renaming must be defined.

conclusions and future work 51

Another approach is called extraction [4]. This approach uses a transfor-
mation that extracts all free variables from a function and everything that
remains of the function is replaced by a symbol called the supercombinator.
To handle the new symbols, new reduction rules are added.

It is also possible to formalize the operational semantics. There are two
styles: by using natural semantics (also called big-step semantics) or by using
reduction semantics (also called small-step semantics) [31]. In natural seman-
tics a term is directly related to its result and the behavior of a term is ex-
pressed in terms of the behavior of its sub terms [9]. In reduction semantics
a subterm is reduced step by step and these transitions are reflected at the
top level. Natural semantics is used by Launchbury where let expressions are
introduced to name the arguments and then put these arguments in a heap
[25]. If the content of a variable is needed, the corresponding expression in
the heap is evaluated, and the heap is updated with the obtained result. The
heap can be seen as an unordered set of pairs of variables and expressions
that binds variable names to expressions. Reduction semantics is used by Ar-
iola e.a. where let expressions are introduced as closures [2]. A closure is a
function or reference to a function together with a referencing environment.
This referencing environment contains a table that stores a reference to each
of the non-local (free) variables of that function. Another example of using
reduction semantics is to express sharing by using explicit substitutions [6].

Another principle to express sharing is to use sharing via labelling [4]. In
this approach every symbol in a term gets a label. Two sub terms with the
same label are supposed to be equal.

At first sight extending the prototype along the lines of Launchbury’s natu-
ral semantics for lazy evaluation, and by making the heap explicit seems the
best option. This corresponds with the explanation of lazy evaluation in Hut-
ton’s textbook [19]. To indicate sharing, arguments can get a name that refers
to a formal parameter. A separate column in the front-end can then depict the
heap with the current values of that formal parameter.

future work The purpose of the prototype is to investigate if a tool such
as the prototype can support students in the understanding of programming
concepts. Several improvements are suggested to make the tool more mature.
An important improvement is to make all function definitions that can be
used in the tool visible for the user. This can be done by parsing a function
definition file (which contains all supported function definitions) and present
the function definitions in the front-end. For example, the front-end can have
a pop-up window so that the user can place the function definitions next to a
expression derivation.

Another improvement is to fully support the possibility to use user-defined
function definitions. This is especially useful if all kind of example derivations
must be supported. For example, Hutton [19] redefines the prelude functions

52 conclusions and future work

product and length on page 50 to explain recursive functions. To fully support
this functionality, the prototype needs to be extended to generate rules and
generate evaluation strategies for all kind of function definitions. Currently,
the prototype only supports single line function definitions and function def-
initions may contain only one pattern variable. A first step could be to sup-
port all patterns that are used in the function definitions that are currently
supported. All supported functions, except primitive functions (such as the
operator +), can then be defined in the function definition file. This file can
be used for the visualization of these function definitions in the front-end.

Because entering every evaluation step multiple times can be boring after
some time, it is also desirable to configure the granularity (step size) of a
certain step. Currently the prototype only supports a step size of one. Step
size is the number of steps that the evaluator will use to rewrite a certain
expression. For example, the expression 3 + (4 + 7) will be evaluated in two
steps, although most students will typically combine these steps. The step
size of the evaluation steps can be altered by extending certain rewrite rules
to accept different step sizes. The description of the function definitions and
the step size of a function definition can be configured, for example with an-
notations in the function definition file. More research must be carried out to
automatically derive or configure a certain step size that suits most students.

Another improvement is to add more Haskell language constructs such as
conditional expressions and guarded equations and to add support for the
lazy evaluation strategy. Lazy evaluation can be supported by introducing let
expressions to label the arguments, to put these arguments in a heap and to
make the heap explicit in the front-end.

The long-term goal is to integrate the functionality of the prototype in
the Ask-Elle programming tutor, which then results in a complete tutor plat-
form to help students learn programming. This tutor platform also supports
distance-learning. Another long-term goal is to combine the prototype with
QuickCheck properties [11]: when QuickCheck finds a minimal counter-example
that falsifies a function definition (for example for a simple programming ex-
ercise), then the prototype can be used to explain more precisely why the
result was not as expected.

A
S U RV E Y

1. Are you a teacher or student?

a) Student

b) Teacher

2. Do you have any experience with an imperative programming language?
(For example C, C++ or Java)

a) No experience

b) Participating in an introduction course

c) Completed an introduction course

d) Practical experience

e) Expert

3. Do you have any experience with an functional programming language?
(For example Haskell, Clean or ML)

a) No experience

b) Participating in an introduction course

c) Completed an introduction course

d) Practical experience

e) Expert

4. At the time that you were learning a programming language; did you
ever face difficulties with understanding how an expression was evalu-
ated?

a) Never

b) Only with my first programming language

c) Only with a language in a new paradigm (imperative/functional/-
logic)

d) With every new language

e) Even with languages I already know

5. Do you know that various programming languages use a different strat-
egy to calculate expressions like the innermost (call-by-value) evalua-
tion strategy and the outermost (call-by-name) evaluation strategy?

53

54 survey

a) Yes

b) Yes, but I do not know the evaluation strategies mentioned

c) No

A prototype has been developed to depict the evaluation steps of a Haskell
expression. The purpose is to give students insight in how expressions are
evaluated exactly.

A screenshot that explains the various buttons is depicted below. Notice
that the prototype currently only supports a limited set of Haskell expres-
sions and evaluation rules. Currently two evaluation strategies are supported:
the outermost (call-by-name) evaluation strategy and the innermost (call-by-
value) evaluation strategy.

Follow the following steps to evaluate a Haskell expression:

• Open the prototype: http://ideas.cs.uu.nl/HEE/

• Push the ’Select’ button to view some example Haskell expressions that
are supported by the evaluator.

• Select the expression sum([3, 7]++[5])

• Click on the ’Evaluate’ button to view the evaluation steps.

survey 55

• Modify the evaluation strategy by clicking on ’Innermost evaluation
strategy’ (call-by-value).

• Click on the evaluate button to view the evaluation steps of the same
Haskell expression according to a different strategy. Notice the differ-
ences between the outermost (call-by name) evaluation strategy where
the steps for ++ and foldl are interleaved and the additions are calcu-
lated at the end and the innermost (call-by-value) evaluation strategy
which fully evaluates the sub-expression [3,7]++[5] before using foldl’s
definition.

6. Do you think it is useful for students following an introduction course
in functional programming to view how the expression was evaluated
exactly?
Why do you think this is useful or not useful?

Another nice example where the differences between the different evalua-
tion strategies is made clear is the Haskell expression ’head (tail (take 3 ([5,8]
++ [80,40,120])))’ (available via the ’Select’ button).

7. Do you think it is useful for students following an introduction course
in functional programming to view how expressions are evaluated ac-
cording to different evaluation strategies?
Why do you think this is useful or not useful?

8. Do you find it useful to add more evaluation strategies? For example
combining the outermost evaluation strategy with sharing (lazy evalua-
tion strategy)?
Are there any other evaluation strategies that you find useful to add to
this prototype?

It is also possible to practice with the evaluation steps of a Haskell ex-
pression. Below a screenshot is depicted of the practice part of the evaluator.
Follow the following steps to practice with a Haskell expression:

56 survey

• Open the prototype: http://ideas.cs.uu.nl/HEE/

• On the navigation bar (top, black bar) click on ’Practice’.

• Click on the ’Select’ button to select the expression ’sum([3,7]++[5])’

• Click on the ’Start’ button

• You can fill in the next evaluation step under section ’Next step’ and
push the ’Diagnose’ button to verify the input step.

• If you like to view a hint you can click on a button under the section
’Hints’. You can view for example how many steps there are left, the
next rule that should be applied and the next derivation step.

9. Do you think it is useful, for students following an introduction course
in functional programming, to practice with the evaluation steps of a
Haskell expression?
Why do you think this is useful or not useful?

10. Currently it is not possible to add evaluation rules to the prototype by
yourself. Do you find it useful to add your own evaluation rules?

a) No, just support the prelude

b) Maybe

survey 57

c) Useful

d) Very useful

11. Currently the prototype depicts every evaluation step and in the prac-
tice part every evaluation step must be provided by the student. For
example the expression ’(3+4)+7’ is evaluated to ’7+7’. Most students
might write the final answer (14) immediately.

Do you think it is useful to skip certain evaluation steps? And to config-
ure this for example for some evaluation rules?

12. A tool like the prototype can also help with the understanding of certain
programming concepts. Like recursion (for example ++), higher-order
functions (for example foldl) and pattern matching.

Do you think it is useful, for students following an introduction course
in functional programming, to practice with the evaluation steps of an
expression and to view the derivation of an expression to understand
these concepts?
Do you know other programming concepts where a tool like this could
help students in understanding this concept?

13. Do you think that if you had a tool like this available when you learned
a functional language that it helped you with the understanding of how
expressions are calculated?
And would you use a tool like this?

14. Remarks

B
S U RV E Y R E S U LT S

matrix of closed questions

Sixteen people have filled in the survey. The questions with a fixed answer
are encoded with numbers (see appendix A) and presented in a matrix that
is depicted below.

Question 1 2 3 4 5 10

Respondent 1 b e e e a d

Respondent 2 a d d e a -

Respondent 3 a e c a a a

Respondent 4 a e b c a -

Respondent 5 a d c b a -

Respondent 6 a e c c a b

Respondent 7 a d d d b b

Respondent 8 b e e c a b

Respondent 9 a d c b a c

Respondent 10 b e e d a c

Respondent 11 b d e e a b

Respondent 12 b e e c a a

Respondent 13 a e c c a a

Respondent 14 b d e c a -

Respondent 15 b d e c a b

Respondent 16 a b b b a c

graphical view of closed questions

59

60 survey results

survey results 61

open questions

In this section all answers from the open questions are depicted. Notice that
not all respondents have answered all open questions.

• Question 6: Do you think it is useful for students following an introduc-
tion course in functional programming to view how the expression was
evaluated exactly?

62 survey results

Respondent Answer

1 This is certainly useful. It can help to understand evaluation
mechanisms. However, using this tool may give the student the
idea that studying evaluation orders is the *only* way to reason
about a program. Applying induction and substitution are also
very good ways to understand a program.

3 Seeing a step by step evaluation of the expression makes it easier
to understand

6 It is useful, in the sense that more is better. Hutton and the work-
book also contain lots (in my opinion enough) of samples. I don’t
think that it would have made a difference in my understanding
of Haskell. It might have saved me some time though, because I
could have skipped some of the tedious work of writing down
the evaluations of the Haskell expressions.

7 Yes, it provides more insight.

8 Yes, I think so. High-level programming languages tend to be
more abstract, so any concreteness is appreciated. However, look-
ing through a student evaluation of my FP course, the students
never complain that this information is provided.

9 Yes, very useful. Breaking down in steps explains a lot.

10 This is useful for two reasons: (1) seeing different evaluation
strategies at work helps students to get rid of the ’impera-
tive’ view that programs specify how something must be com-
puted instead of what must be computed (the declarative view)
(2) practicing with performing evaluation steps themselves in-
creases their accuracy at equational reasoning, which is neces-
sary for doing (induction) proofs

11 I think it’s useful to illustrate the difference between non-strict
and strict languages (see question 7).

12 Yes it is useful because students see how it works and will re-
member it easier. They can also try with own expressions

13 This shows what is really happening, which allows better under-
standing of the code.

14 I certainly think it is useful.

15 Yes, it helps understanding how functions ‘work. It is nice to see
a higher order function in action.

16 It’s important to understand the underlying evaluation tech-
niques used by the two approaches. Although it can be confus-
ing. First of all functional programming is different from impera-
tive/OO programming. The latter are mostly the first languages
learned. So I think the tool is not suitable for beginners in pro-
gramming. Secondly it would be more clear what the differences
between the two approaches are, it they where presented next to
each other on the same page.

survey results 63

• Question 7: Do you think it is useful for students following an intro-
duction course in functional programming to view how expressions are
evaluated according to different evaluation strategies?

Respondent Answer

1 This is certainly useful. It can help to understand evaluation
mechanisms. However, using this tool may give the student the
idea that studying evaluation orders is the *only* way to reason
about a program. Applying induction and substitution are also
very good ways to understand a program.

3 I think it is useful to follow an introduction course in functional
programming, but evaluation expression is not the biggest differ-
ence.

6 The understanding of innermost and outermost evaluations is
quite natural. Hutton is enough to grasp the concepts.

7 Maybe, it depends on why you would want to teach this. It might
be confusing to absolute beginners.

8 again, I think so, particularly if one of these explains how it
works in a situation that they are used to (by value), and the
other how it is when you use Haskell (lazy).

9 Yes, very useful. Breaking down in steps explains a lot

10 This is useful because this gives the insight that there is always
a ’safe’ strategy, but it might not always be the most efficient
strategy.

11 Yes it is useful. But only on small examples to illustrate how
non-strict evaluation works.

12 For very long evaluations it is difficult to keep concentrated. You
could add a button for evaluation step by step

13 Same reason as before

14 It is good to know there are different evaluation strategies.

15 Yes.

16 See previous answer. Particularly the presentation of the evalua-
tion.

64 survey results

• Question 8: Do you find it useful to add more evaluation strategies?

Respondent Answer

1 If you really want to understand effects of evaluation orders, this
may be useful. For the basic programming understanding this
may be too much.

3 Lazy evaluation is important, because this normally doesn’t exist
in imperative languages

6 More is better

7 Yes.

8 Well, lazy evaluation is important, because I teach students
Haskell. So yes, I certainly would like that then. Otherwise, it
makes little sense to use the tool in the setting of my course. No
others are necessary as far as I can tell. However, it would be
really nice to see the influence of something like seq in evalu-
ating expressions. I tried using seq but it only evaluated seq’s
arguments, not seq itself.

9 For me showing different type of strategies will explain a lot

10 Although sharing is fundamental to obtain efficient evaluation,
the idea is easy to get across. Not certain whether it is worth
the effort to add to the prototype. The influence of strictness
annotations (Haskell seq or Clean !) could be interesting.

11 Yes. Lazyness! Reasoning about lazy evaluation is super subtle.
Visualizing this nicely would be very useful indeed.

12 For a beginning student it is not useful. After trying they know
that there are different strategy and they only have to remember
the strategy for their programming language.

13 I don’t know enough of the subject to answer this question.

14 Lazy evaluation would be interesting.

15 Lazy would be really nice.

16 Sure they could be useful, but presentation is impor-
tant. Put them lazy evaluation, next to eager evaluation
on the same page when showing the evaluation strate-
gies. I think it applies to all know strategies: https :
//en.wikipedia.org/wiki/Evaluationstrategy

survey results 65

• Question 9: Do you think it is useful, for students following an introduc-
tion course in functional programming, to practice with the evaluation
steps of a Haskell expression?

Respondent Answer

1 This is certainly useful. It can help to understand evaluation
mechanisms. However, using this tool may give the student the
idea that studying evaluation orders is the *only* way to reason
about a program. Applying induction and substitution are also
very good ways to understand a program. However, I could not
find a way to define new functions myself nor could I find which
functions were available in the tool.

3 Yes, hands-on practice is always useful

6 It has added value, but pen and paper and thinking hard tends
to stick more than pressing a button on the screen I think

7 Yes, it forces a student to think about what happens when apply-
ing certain functions.

8 I am not sure at this point whether that is helpful. I’d like them
to understand, and providing input by them would help them
understand it more thoroughly. But I am not sure it is worth the
effort.

9 Useful, it gives a better insight.

10 This is useful because the tool can be used for self-study to give
feedback whether or not the student is applying the correct rules.

11 A little. Perhaps on very small examples.

12 Yes, this is very useful. Student have time to think about the next
step and keep concentrated.

13 Yes, to give a deeper understanding.

14 Yes, I can image a student needs to predict the next step in the
evaluation.

15 Yes, I think it is useful. They learn a bit to reason with programs.

16 It will be useful in the very beginning. I think very quickly the
step based approach will be boring, because it takes too long to
step though all the steps. Furthermore the tool is intended to
give an understanding of the steps performed by the language
"underwater". Writing the steps down is no goal.

66 survey results

• Question 11: Do you think it is useful to skip certain evaluation steps?
And to configure this for example for some evaluation rules?

Respondent Answer

1 Since the goal is to understand the evaluation, you need to show
the full evaluation, all the steps so that you understand that the
answer 14 is not reached in one step.

3 Yes, the user should be able to skip steps, when (3+4)+7 is ex-
pected as answer, (3+4)+7, 7+7 and 14 should all be accepted as
correct.

6 No,a detailed evaluation adds to the understanding of the lan-
guage

7 Yes.

8 I think that will be necessary for larger programs. But does it
make sense to do this for larger programs? I am not so sure. The
concepts should be clear from smaller ones as well.

9 Yes

10 It don’t think evaluation steps should be skipped. Keep the ex-
amples small. Students must be aware that each step is necessary
and need to think in what order these occur.

11 If you want to force them to be explicit about every step, do so.
Otherwise students may end up skipping steps, without really
understanding what’s going on.

12 It seems better not to skip some parts because students will take
too many steps at a time.

13 When starting to study the language it will be nice to see all the
details, but later it should be possible to skip this.

15 That is a good feature to have, especially when the exercises
grow larger.

16 Yes, see previous answers

survey results 67

• Question 12: Do you think it is useful, for students following an intro-
duction course in functional programming, to practice with the evalua-
tion steps of an expression and to view the derivation of an expression
to understand these concepts? Do you know other programming con-
cepts where a tool like this could help students in understanding this
concept?

Respondent Answer

1 In particular for recursion, pattern matching and higher order
aspects, evaluation order can surprise you. Try e.g. the following
5 expressions and study their evaluation behaviour: twice inc 0

; twice twice inc 0 ; twice twice twice inc 0 ; twice twice twice
twice inc 0 ; twice twice twice twice twice inc 0

3 True/false evaluations in conditions

6 I think it adds value for every programming concept or algoritm,
especially when the course lacks good examples and exercises

7 Yes. I think for absolute beginners the understanding of the pro-
gramming concepts might even be more important than know-
ing different evaluation strategies.

8 Yes, I think it is useful. Students in my class have a hard time
understanding monads so if you can contribute to that... The
rest they seem to be quite okay with.

9 working with datatypes

10 It is useful to get a feeling for the operational behavior of these
concepts. A risk is that you lose the level of abstraction: solving
problems with recursion and/or higher-order functions is not
the same as attempting to do that with the operational behavior
of these concepts. In other words: concentrating too much on the
operational behavior may trap students back into the ’imperative’
mind set.

11 Perhaps if you’re learning about folds for the first time, for ex-
ample.

12 Yes, it is useful, for students following an introduction course
in functional programming, to practice with the evaluation steps
of an expression and to view the derivation of an expression
to understand these concepts. Conditional expressions is also a
concept that students should practice.

15 Yes, like I mentioned before.

16 As outlined before. I think the tool is only useful for very begin-
ners to get an understanding of what is going on.

68 survey results

• Question 13: Do you think that if you had a tool like this available
when you learned a functional language that it helped you with the
understanding of how expressions are calculated? And would you use
a tool like this?

Respondent Answer

1 Yes, I do. As an experienced user, I do not think that I would still
use it a lot.

3 Yes, and I certainly would have used the tool

6 I would have taken a look at it, but because Hutton and the
workbook have plenty examples and excercises I don’t think that
it would have make a difference.

7 Probably.

8 I do not think so, but then again, I never had a problem under-
standing it. I would not use it myself now, but I think I would
like to offer it to students to improve their understanding. I guess
I would also use it in explaining the concept of laziness (if that
was supported) during the lecture. Since making slides to show
this in animated form of some kind is way too much work.

9 I have used the tool

10 Yes, it would have helped. I wouldn’t use it myself, but my stu-
dents can certainly benefit from it.

11 Maybe. It’s hard to say. I’ve been programming with functional
languages for too long now. I wouldn’t use it myself, but I can
imagine it being useful to students trying to understand very
basic concepts like folds/maps/filters etc.

12 Yes, it would be nice.

13 I would probably use it just to experiment a bit, not to support
the study. Unless the usage of the tool would be encouraged in
the study materials.

15 Yes.

16 See answer question 12

survey results 69

• Question 14: Remarks?

Respondent Answer

1 Good work!

8 In all, I am hoping to see lazy evaluation in your system, in some
way. If that happens for before, say September, when my course
starts again, I’d certainly consider employing it to illustrate the
different between by-value and lazy evaluation. I was not sure
about what to answer under 10. since I do not really know what
I would gain from having new rules, and how much work it
would be to come up with them. Hence the "maybe". For take 3

(repeat 2) it would be nice if you could somehow signal explicitly
that innermost evaluation fails. Also, having the code on hand
for the expression that are evaluated would be a great help to
students.

10 Nice tool! In the tool it would be useful if the actual function
definitions can be visualized as well. This makes it easier to see
which options are available and how the definition is applied
to the term that is rewritten. Bug report: at some point I could
no longer select the expression ’take 3 (repeat 2)’; instead it re-
acted with the first expression ’((8 * 8) + 7) - (3 + 4)’. Also, the
innermost evaluation of ’take 3 (repeat 2)’ simply doesn’t react
because it doesn’t terminate. It is more instructive to show the
steps that lead to this non-terminating behavior.

12 Good looking tool!

13 Nice tool. Nice that it also works on mobile!

15 Nice tool!

B I B L I O G R A P H Y

[1] Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy.
Explicit substitutions. In Proceedings of the 17th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’90, pages 31–
46, New York, NY, USA, 1990. ACM. (Cited on page 3.)

[2] Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and
Philip Wadler. A call-by-need lambda calculus. In Proceedings of the
22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’95, pages 233–246, New York, NY, USA, 1995. ACM.
(Cited on pages 50 and 51.)

[3] Adam Bakewell and Colin Runciman. The space usage problem: An eval-
uation kit for graph reduction semantics. In Selected papers from the 2nd
Scottish Functional Programming Workshop (SFP00), pages 115–128, Exeter,
UK, 2000. Intellect Books. (Cited on page 1.)

[4] Thibaut Balabonski. A unified approach to fully lazy sharing. In Proceed-
ings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’12, pages 469–480, New York, NY, USA,
2012. ACM. (Cited on pages 50 and 51.)

[5] Henk Barendregt and Erik Barendsen. Introduction to lambda calcu-
lus. ftp://ftp.cs.ru.nl/pub/CompMath.Found/lambda.pdf, 2000. [On-
line; accessed 19-October-2013]. (Cited on page 9.)

[6] Zine-El-Abidine Benaissa, Pierre Lescanne, and Kristoffer Høgsbro Rose.
Modeling sharing and recursion for weak reduction strategies using ex-
plicit substitution. In Proceedings of the 8th International Symposium on
Programming Languages: Implementations, Logics, and Programs, PLILP ’96,
pages 393–407, London, UK, 1996. Springer-Verlag. (Cited on page 51.)

[7] Richard S. Bird and P. Wadler. Introduction to functional programming using
Haskell. Prentice-Hall, 1998. (Cited on page 1.)

[8] Manuel M.T. Chakravarty and Gabriele Keller. The risks and benefits
of teaching purely functional programming in first year. Journal of Func-
tional Programming, 14(1):113–123, 2004. (Cited on pages 1 and 6.)

[9] Arthur Charguéraud. Pretty-big-step semantics. In Proceedings of
the 22Nd European Conference on Programming Languages and Systems,
ESOP’13, pages 41–60, Berlin, Heidelberg, 2013. Springer-Verlag. (Cited
on page 51.)

71

ftp://ftp.cs.ru.nl/pub/CompMath.Found/lambda.pdf

72 bibliography

[10] Olaf Chitil, Colin Runciman, and Malcolm Wallace. Transforming
Haskell for Tracing. In Proceedings of the 14th International Conference on
Implementation of Functional Languages, IFL’02, pages 165–181, Berlin, Hei-
delberg, 2003. Springer-Verlag. (Cited on page 18.)

[11] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming, ICFP ’00,
pages 268–279, New York, NY, USA, 2000. ACM. (Cited on page 52.)

[12] Zoltán Csörnyei and Gergely Dévai. Central European Functional Pro-
gramming School. chapter An Introduction to the Lambda Calcu-
lus, pages 87–111. Springer-Verlag, Berlin, Heidelberg, 2008. (Cited on
page 9.)

[13] Alex Gerdes. Ask-Elle: a Haskell Tutor. PhD thesis, Open Universiteit
Nederland, 2012. (Cited on pages 20, 22, and 39.)

[14] Alex Gerdes, Bastiaan Heeren, and Johan Jeuring. Teachers and students
in charge: using annotated model solutions in a functional programming
tutor. In Proceedings of the 7th European conference on Technology Enhanced
Learning, EC-TEL’12, pages 383–388, Berlin, Heidelberg, 2012. Springer-
Verlag. (Cited on page 19.)

[15] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for
learning Haskell. In Proceedings of the 2003 ACM SIGPLAN workshop on
Haskell, Haskell ’03, pages 62–71, New York, NY, USA, 2003. ACM. (Cited
on page 22.)

[16] Bastiaan Heeren, Johan Jeuring, and Alex Gerdes. Specifying rewrite
strategies for interactive exercises. Mathematics in Computer Science, 3(3):
349–370, 2010. (Cited on pages 22, 30, and 31.)

[17] Paul Hudak. The Haskell school of expression: learning functional program-
ming through multimedia. Cambridge University Press, 2000. (Cited on
page 1.)

[18] Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554,
September 1997. (Cited on pages 28 and 33.)

[19] Graham Hutton. Programming in Haskell. Cambridge University Press,
2007. (Cited on pages 1, 5, 7, 9, 11, 12, 17, 29, 40, 46, 50, and 51.)

[20] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Jones Cordy,
Hall Kevin, Will Partain, and Phil Wadler. The Glasgow Haskell
compiler: a technical overview. http://www.research.microsoft.com/

Users/simonpj/Papers/grasp-jfit.ps.Z, 1992. [Online; accessed 19-
October-2013]. (Cited on page 17.)

http://www.research.microsoft.com/Users/simonpj/Papers/grasp-jfit.ps.Z
http://www.research.microsoft.com/Users/simonpj/Papers/grasp-jfit.ps.Z

bibliography 73

[21] Stef Joosten, Klaas Van Den Berg, and Gerrit Van Der Hoeven. Teach-
ing functional programming to first-year students. Journal of Functional
Programming, 3:49–65, January 1993. (Cited on page 1.)

[22] Roelof Kooiker. Marktonderzoek. Wolters-Noordhoff, 1997. (Cited on
page 45.)

[23] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of
the difficulties of novice programmers. In Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Edu-
cation, ITiCSE ’05, pages 14–18, New York, NY, USA, 2005. ACM. (Cited
on pages 1, 6, and 19.)

[24] Konstantin Laufer and George K. Thiruvathukal. Scientific program-
ming: The promises of typed, pure, and lazy functional programming:
Part ii. Computing in Science and Engineering, 11(5):68–75, September 2009.
(Cited on page 5.)

[25] John Launchbury. A natural semantics for lazy evaluation. In Proceedings
of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’93, pages 144–154, New York, NY, USA, 1993.
ACM. (Cited on pages 3 and 51.)

[26] Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide.
No Starch Press, 1st edition, 2011. (Cited on pages 1, 5, 6, 7, 8, 11, 12,
and 27.)

[27] Natalia López, Manuel Núñez, Ismael Rodríguez, and Fernando Rubio.
WHAT: Web-based Haskell adaptive tutor. Lecture Notes in Computer
Science, 2443:71–80, 2002. (Cited on pages 19 and 47.)

[28] Simon Marlow. Parallel and Concurrent Programming in Haskell. O’Reilly
Media, Inc., 2013. (Cited on page 34.)

[29] Greg Michaelson. An introduction to Functional Programming Through
Lambda Calculus. Dover Publications, Inc., 1st edition, 2011. (Cited on
pages 5 and 6.)

[30] Ben Millwood. stepeval library: Evaluating a haskell expression step-by-
step. https://github.com/bmillwood/stepeval, 2011. [Online; accessed
25-January-2014]. (Cited on page 18.)

[31] Keiko Nakata and Masahito Hasegawa. Small-step and big-step seman-
tics for call-by-need. Journal of Functional Programming, 19(6):699–722,
November 2009. (Cited on page 51.)

https://github.com/bmillwood/stepeval

74 bibliography

[32] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell.
O’Reilly Media, Inc., 1st edition, 2008. (Cited on pages 1, 2, 22, 27,
and 35.)

[33] Cristóbal Pareja-Flores, Jamie Urquiza-Fuentes, and J. Ángel Velázquez-
Iturbide. WinHIPE: an IDE for functional programming based on rewrit-
ing and visualization. SIGPLAN Not., 42(3):14–23, March 2007. (Cited on
pages 6 and 18.)

[34] Roly Perera, Umut A. Acar, James Cheney, and Paul Blain Levy. Func-
tional programs that explain their work. In Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’12,
pages 365–376, New York, NY, USA, 2012. ACM. (Cited on page 1.)

[35] Jan Rochel. The very lazy λ-calculus and the stec machine. In Proceed-
ings of the 21st International Conference on Implementation and Application
of Functional Languages, IFL’09, pages 198–217, Berlin, Heidelberg, 2010.
Springer-Verlag. (Cited on page 3.)

[36] Peter Sestoft. The essence of computation. chapter Demonstrating
Lambda Calculus Reduction, pages 420–435. Springer-Verlag New York,
Inc., New York, NY, USA, 2002. (Cited on page 3.)

[37] Jan Sparud and Colin Runciman. Tracing lazy functional computations
using redex trails. In Proceedings of the 9th International Symposium on
Programming Languages: Implementations, Logics, and Programs: Including a
Special Trach on Declarative Programming Languages in Education, PLILP ’97,
pages 291–308, London, UK, 1997. Springer-Verlag. (Cited on pages 1, 6,
and 18.)

[38] Thomas van Noort, Alexey Rodriguez Yakushev, Stefan Holdermans, Jo-
han Jeuring, Bastiaan Heeren, and José Pedro Magalhães. A lightweight
approach to datatype-generic rewriting. Journal of Functional Program-
ming, 20:375–413, 7 2010. (Cited on page 29.)

[39] Arto Vihavainen, Matti Paksula, and Matti Luukkainen. Extreme ap-
prenticeship method in teaching programming for beginners. In Proceed-
ings of the 42Nd ACM Technical Symposium on Computer Science Education,
SIGCSE ’11, pages 93–98, New York, NY, USA, 2011. ACM. (Cited on
page 19.)

[40] David A. Watt. Programming Language Design Concepts. John Wiley &
Sons, 2004. (Cited on pages 9 and 10.)

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research question
	1.2 Contributions and scope
	1.3 Thesis overview

	2 Background
	2.1 Functional Programming
	2.2 Functional Programming in Education
	2.3 Programming concepts
	2.4 Evaluation strategies

	3 Related work
	3.1 Inspection of evaluation steps
	3.2 Intelligent Tutoring Systems

	4 Research Design
	4.1 Research questions
	4.2 Research method

	5 Rewrite rules and Strategies
	5.1 Definition of the domain
	5.2 Rewrite rules
	5.3 Strategies
	5.3.1 Innermost strategy
	5.3.2 Outermost strategy

	6 User defined function definitions
	7 Validation
	8 Conclusions and Future work
	A Survey
	B Survey Results
	Bibliography

