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a b s t r a c t

This study examined the effects of scripting learners’ use of two types of representational tools (i.e., cau-
sal and simulation) on their online collaborative problem-solving. Scripting sequenced the phase-related
part-task demands and made them explicit. This entailed (1) defining the problem and proposing multi-
ple solutions (i.e., problem-solution) and (2) evaluating solutions and coming to a definitive solution (i.e.,
solution-evaluation). The causal tool was hypothesized to be best suited for problem solution and the
simulation tool for solution evaluation. Teams of learners in four experimental conditions carried out
the part-tasks in a predefined order, but differed in the tools they received. Teams in the causal-only
and simulation-only conditions received either a causal or a simulation tool for both part-tasks. Teams
in the causal-simulation and simulation-causal conditions received both tools in suited and unsuited
order respectively. Results revealed that teams using the tool suited to each part-task constructed more
task appropriate representations and were better able to share and negotiate knowledge. As a conse-
quence, they performed better on the complex learning-task. Although all learners individually gained
more domain knowledge, no differences were obtained between conditions.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

There has been a recent surge in the interest of educational
researchers for studying the effects of computer supported tools
for fostering complex learning (Lazakidou & Retalis, 2010; Sharples,
2010; Slof, Erkens, Kirschner, Jaspers, & Janssen, 2010; Zydney,
2010). Complex learning is often regarded as necessary to carry
out the activities endemic to modern real-life tasks which are com-
plex because they (1) cannot be described in full detail, (2) give no
certainty about what the best solution is, and (3) require different
perspectives on the problem and the problem-solving strategy for
their solution (Jonassen, 2003; Spector, 2008). To this end, educa-
tional approaches such as collaborative problem-solving are
increasingly incorporated into training programs and curricula.
The premise underlying this approach is that externalizing one’s
knowledge, discussing it with peers, and establishing and refining
(e.g., specifying and correcting) a team’s shared understanding of
the problem and problem-domain beneficially affects learning
(Hmelo-Silver, Duncan, & Chinn, 2007; Johnson & Johnson, 2009;
Kirschner, Paas, & Kirschner, 2009). That is, teams and individuals
may acquire knowledge and skills which can be effectively

transferred to and applied in different situations. Prior research
has shown that collaboratively constructing, adjusting and discuss-
ing (domain-specific) representations may beneficially affect
complex learning-task performance (Nesbit & Adesope, 2006; Van
Meter & Garner, 2005; Vekiri, 2002). Due to a representational tools’
ontology (i.e., its objects, relations, and rules for combining objects
and relations) each tool provides a specific sort of representational
guidance making certain concepts and/or interrelationships (e.g.,
causal or mathematical) more salient than others (Fischer, Bruhn,
Gräsel, & Mandl, 2002; Suthers, 2006). Using such tools could foster
understanding and learning-task performance because learners are
stimulated to carry out learning activities such as (1) selecting
relevant information, (2) organizing concepts into coherent struc-
tures, (3) relating information to prior understanding, (4) determin-
ing knowledge and comprehension gaps, and (5) generating new
ideas, questions and plans (Ainsworth, 2006; Hilbert & Renkl,
2008; Stull & Mayer, 2007). Furthermore, a shared representation
represents learners’ current conceptions and ideas about the do-
main content and the learning-task. In their discussions, learners
can easily refer to the representation enabling learners to create
shared understanding of these different viewpoints and negotiate
about them (Erkens & Janssen, 2008; Mercer, Littleton, & Wegerif,
2004; Mühlpfordt & Stahl, 2007).

Although the educational benefits of representational tools are
widely recognized, some studies report mixed or even negative
findings and, thus, question how and why such tools might foster
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complex learning (Bera & Liu, 2006; Elen & Clarebout, 2007; Lee &
Nelson, 2005; Leutner, Leopold, & Sumfleth, 2009). The research re-
ported on here addresses this by first describing several pitfalls
regarding the design of representational tools aimed at fostering
complex learning. Thereafter an instructional approach – represen-
tational scripting – is introduced and its effects on the collabora-
tive problem-solving process and learning in business-economics
are examined.

2. Pitfalls in designing representational tools to foster complex
learning

When solving complex problems learners usually have to carry
out the following activities: (1) determining what the problem to
be solved is, (2) proposing possible multiple solutions to the deter-
mined problem, (3) judging the suitability of the different solutions
and (4) reaching the solution (Bigelow, 2004; Van Bruggen, Boshu-
izen, & Kirschner, 2003). To do all of this, multiple perspectives of
the problem domain are required because different representa-
tions initiate different kinds of operators which act to produce
new information supporting problem solvers in coming to suitable
solutions to problems (Frederiksen & White, 2002; Jonassen, 2003;
Kozma, 2003). Qualitative representations represent the concepts
underlying a particular domain and the inference rules which
interrelate them and, thus, give them meaning. These representa-
tions stimulate reasoning about the concepts, their underlying cau-
sal principles, and the circumstances under which those principles
can legitimately be applied, enabling problem solvers to effectively
define the problem and propose multiple solutions for solving it
(Jonassen & Ionas, 2008; Löhner, Van Joolingen, & Savelsbergh,
2003). Quantitative representations represent the formalism(s)
underlying a particular domain to describe the definitions of con-
cepts and their functional relationships, for example via algebraic
equations in the domain of business-economics. Such representa-
tions stimulate reasoning about the concepts and their mathemat-
ical relationships, enabling evaluation of the effects of proposed
solutions and, thus, reaching a solution (Kollöffel, Eysink, & De
Jong, 2010; Ploetzner, Fehse, Kneser, & Spada, 1999).

Problematic here is that specific representational tools, each with
its specific ontology, guide learners in constructing and discussing
specific representations of the domain and are, thus, not appropriate
for carrying out all aspects of a complex learning task (Ainsworth,
2006; Bodemer & Faust, 2006; Schnotz & Kürschner, 2008). When
the design of the tool is incongruent with the demands of one or
more part-tasks this should negatively affect the learner’s perfor-
mance of a complex learning-task (Slof et al., 2010; Van Bruggen
et al., 2003). To evoke elaborate and meaningful discussions about
the domain requires a representational tool that (1) is in line with
its users’ capabilities and intentions, and (2) makes clear what its
users can and should do with it (Kirschner, Martens, & Strijbos,
2004; Veldhuis-Diermanse, 2002). If this is not the case, then learn-
ers might experience at least two difficulties when using them.

First, part-task related difficulties may arise when learners do
not have a realistic idea of the concepts and relationships they
must use and how they should relate them to the problem. Due
to this, learners experience difficulties in constructing and inter-
preting their representations and, thus, in acquiring a well-devel-
oped understanding of the domain (Ainsworth, 2006; Bodemer &
Faust, 2006). Furthermore, learners might see constructing the rep-
resentation as an additional task-demand instead of as support.
When this is the case, after the concepts are interrelated in the rep-
resentation, learners pay no further attention to the representation
and, therefore, do not apply it to complete their learning-task (De
Simone, Schmid, & McEwan, 2001; Van Amelsvoort, Andriessen, &
Kanselaar, 2007).

Second, learners in CSCL-environments often use multiple tools
(e.g., chat tools, representational tools) in a non-sequential way
which complicates tracking each others’ knowledge, ideas, and ac-
tions (Mühlpfordt & Stahl, 2007; Suthers, Girardeau, & Hundhausen,
2003). When learners are unable to interpret conveyed messages
properly and relate them to each other, they are hindered in carrying
out their communicative activities (i.e., coordinating their collabora-
tion process; see Barron, 2003; Erkens & Janssen, 2008). Important
here is that the provided representational tools support learners in
coordinating their collaboration process by carrying out communi-
cative activities. That is, learners have to make their own knowledge
and ideas explicit to other team members. When made explicit,
learners must try to maintain a shared topic of discourse (i.e.,
achieve a common focus) and repair that focus if they notice focus
divergence. Understanding and relating the relevance of individual
messages may be hard when learners are simultaneously discussing
different topics. Learners should, therefore, coordinate their topic of
discourse by focusing (Clark & Brennan, 1991; Erkens & Janssen,
2008). Since not all concepts, principles, and procedures are relevant
for carrying out a specific part-task learners also must maintain the
coherence and consistency of their shared understanding by check-
ing (Van Amelsvoort et al., 2007; Van Boxtel, 2004). Furthermore,
learners must come to an agreement about relevant concepts, prin-
ciples and procedures. Through argumentation they can try to
change their partners’ viewpoint to arrive at the best way to carry
out a part-task or at a definition of concepts acceptable for all. In this
argumentation process they try to convince the other(s) by elaborat-
ing on their own point of view, and by explaining, justifying and
accounting (Ding, 2009; Jeong & Joung, 2007). When the tools do
not facilitate learners to properly coordinate their activities, this
hinders them from elaborating on and discussing the content of
the domain meaningfully. Whether learners can have such discus-
sions depends on how easily they can refer and relate their contribu-
tions to those of others. This ‘deictic referencing’ is hard when the
design of the representational tool is incongruent with the demands
and activities of a specific learning task (Slof et al., 2010; Van Brug-
gen et al., 2003).

3. Representational scripting

3.1. Design principles

To address the abovementioned pitfalls, it might be beneficial if
learners are provided with different representational tools for
which the representational guidance of each tool is congruent
(i.e., ontologically matched) with the demands of each part-task.
Integrating scripting with the availability of multiple representa-
tional tools – representational scripting – sequences the different
part-task demands, makes them explicit and tailors the congru-
ency of the tools’ representational guidance to the part-task
demands. Representational tools are meant to support learners in
gradually acquiring a well-developed understanding of the knowl-
edge domain by facilitating the construction of qualitative as well
as quantitative domain-specific representations. Scripting is em-
ployed to ensure proper alignment of the tool, its use, and the
part-task demands (Dillenbourg, 2002; Kollar, Fischer, & Slotta,
2007). According to Dillenbourg, a script is ‘‘a set of instructions
regarding how the team members should interact, how they
should collaborate and how they should solve the problem’’
(2002, p. 64). Such scripting entails the segmentation of a complex
problem in distinct phases with distinct purposes for each phase of
the problem-solving process. The script structures the complex
learning-task by dividing it into a sequence of ontologically distinct
problem phases so that they can be foreseen with representational
tools congruent to the part-task demands and activities required
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for each phase. This should actively engage learners in a process of
making sense of the domain in question by articulating and dis-
cussing multiple perspectives on the problem and of the prob-
lem-solving strategy (Hmelo-Silver et al., 2007; Ploetzner et al.,
1999).

3.2. Fostering complex learning in business-economics

In the research reported on here, learners collaborated on solv-
ing a case-based business-economics problem in which they had to
advise an entrepreneur about changing the business strategy to in-
crease profits. To gain insight into the part-tasks and their required
domain-specific representations, a learning-task analysis
(Anderson & Krathwohl, 2001) was conducted. Based on these in-
sights, the sequence and demands of the part-tasks were specified
and part-task congruent representational tools were developed
(see Table 1).

In the problem–solution phase learners, first, have to determine
what the problem is and what the most important factors are for
its solution. Then they have to formulate possible business-strategy

changes (i.e., interventions) and elucidate how the changes might
solve the problem (i.e., problem–solution) by describing how the
changes affect outcomes (i.e., company result). The representa-
tional tool should, thus, facilitate construction and discussion of a
causal problem-representation by causally relating the concepts
to each other and to possible interventions. Fig. 1 shows an expert’s
qualitative domain-specific representation. The causal representa-
tional tool facilitates representing the concepts, the interventions
and their causal interrelationships. Selecting relevant concepts
and interventions and causally relating them supports the effective
exploration of the solution space and, thus, of finding multiple solu-
tions to the problem. Learners receiving such a tool could, for exam-
ple, make explicit that an intervention such as ‘‘receiving a rebate
from a supplier’’ affects the ‘‘total variable costs’’ which in turn
via ‘‘actual sales’’ affects the ‘‘cost price’’. Through gradually
increasing learners’ understanding of the underlying qualitative
principles governing the domain, it should be easier for them to
come up with an intervention that will solve the problem.

In the solution-evaluation phase learners have to determine the
financial consequences of their proposed interventions and

Fig. 1. Expert’s qualitative domain-specific representation.
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formulate a definitive advice by discussing the suitability of the
different interventions with each other. The representational tool
must, therefore, facilitate construction and discussion of a quanti-
tative representation by specifying the relationships as algebraic
equations. Fig. 2 shows a quantitative domain-specific representa-
tion as seen by an expert. The simulation representational tool
facilitates representing the concepts and their mathematical inter-
relationships. Selecting relevant concepts and specifying the inter-
relationships as algebraic equations supports evaluating the effects
of the proposed interventions and, thus, in choosing a suitable ad-
vice. Learners receiving such a tool could, for example, construct a
representation to simulate how an intervention such as ‘‘receiving
a rebate from a supplier’’ affects the ‘‘total variable costs’’ and
whether this affects the ‘‘cost price’’. By manipulating the input
values, the values of all other related concepts are automatically
computed. Since such quantitative representations can only be

properly understood and applied when learners have a well-devel-
oped qualitative understanding of the domain, this kind of support
is only appropriate for carrying out this type of part-task.

4. Design and research questions

To study the effects of representational scripting, four experi-
mental conditions were defined by matching, partly matching or
mismatching the tool’s representational guidance to the demands
of each problem phase (Table 2).

Scripting the problem-solving process sequenced and made the
part-task demands explicit. These demands are (1) defining the
problem and proposing multiple solutions, and (2) determining
the suitability of the solutions and coming to a definitive solution.
Teams in all conditions had to carry out the part-tasks in this pre-
defined order, but differed in the representational tool they

Table 1
Matching the representational tools’ guidance to the task demands of each problem phase.

Problem phase Task demands Representational tool Representational guidance

Problem–solution (a) Defining the problem
(b) Proposing multiple solutions to the problem

Causal Representing and discussing causal relationships
between the concepts and the possible solutions

Solution-evaluation (a) Determining suitability of the solutions
(b) Coming to a definitive solution to the problem

Simulation Representing and discussing mathematical
relationships between the concepts and enabling
manipulation of their values

Fig. 2. Expert’s quantitative domain-specific representation.
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received. Teams in the matched (i.e., causal-simulation) and the
mismatched (i.e., simulation-causal) conditions received both rep-
resentational tools in a phased order. The difference between these
conditions was that the tools were part-task congruent or not. In
the simulation-causal condition the teams received both tools,
but in an order that was mismatched to the part-task demands
(i.e., simulation tool for the definition phase and causal tool for
the evaluation phase). In contrast, teams in the causal-simulation
condition received representational tools considered to be well-
suited to the part-task demands of each problem phase. In the
partly matched conditions (i.e., causal-only and simulation-only),
teams received either a causal or a simulation tool for carrying
out both part-tasks and for constructing the part-task related rep-
resentations. The tools’ representational guidance matched only
one of the part-task demands. Due to the presumed match be-
tween tools’ representational guidance and all part-tasks demands
(i.e., representational scripting), it was hypothesized that teams in
the matched condition, in comparison to teams in the other condi-
tions, would:

(H1) Demonstrate a qualitatively better problem solving
process, evidenced by
(a) Constructing representations that are more suited
for carrying out the part-tasks,
(b) Carrying out more communicative activities.

(H2) Acquire more individual and team learning gains,
evidenced by
(a) Scoring higher on the individual post-knowledge
test
(b) Proposing better solutions and a formulating a
better definitive advice to the team complex learning
task.

5. Method

5.1. Participants

Participants were students from six business-economics classes
in three secondary schools in the Netherlands. The total sample
consisted of 102 students (61 male, 41 female; mean age = 15.7 -
years; SD = .56, Min = 14, Max = 17). Since the collaborative prob-
lem solving task was developed in cooperation with their
teachers it is regarded as a suited pedagogical activity for the stu-
dents at that point in the curriculum. To examine the effects of rep-
resentational scripting students were, within classes, randomly
assigned to 34 teams; nine triads in the causal-only, simulation-
only and simulation-causal conditions and seven triads in the cau-
sal-simulation condition. By doing so, not only the value of
qualitative (i.e., causal-only condition) and quantitative represen-
tations (i.e., simulation-only condition) for carrying out complex
learning-tasks but also their interrelationship (i.e., simulation-
causal and causal-simulation conditions) can be examined. Fur-
thermore, through verifying the assumed beneficial effects of
representational scripting, proper support for carrying out complex
learning-tasks in business-economics might be established and
implemented in future educational programs.

5.2. CSCL-environment

The teams worked in a CSCL-environment called Virtual Collab-
orative Research Institute (VCRI; Jaspers, Broeken, & Erkens, 2005;
see Fig. 3), a groupware application for supporting the collabora-
tively carrying out problem-solving tasks. For this study, the tools
in VCRI were augmented with representational scripting. At the
start of the first lesson, all diagram boxes – representing the differ-
ent concepts/solutions – were placed on the left side of the Repre-
sentational tool so team members could select them when they
wanted to add a new causal or mathematical relationship. The
Model menu of the representational tool enabled team members to
construct and adjust their representations by adding or deleting
relationships. The Chat tool enabled synchronous communication
and supported team members in externalizing and discussing their
knowledge and ideas about the domain content and their problem-
solving strategy. The chat history is automatically stored and can
be re-read by the team members. The Co-writer is a shared text-
processor where team members could collaboratively formulate
and revise their decisions concerning the part-tasks. The Notes tool
is an individual notepad that allowed team members to store infor-
mation and structure their own knowledge and ideas before mak-
ing them explicit to the other members. In the Assignment menu,
team members can find the description of the task/part-tasks. Fur-
thermore, additional information sources such as a definition list,
formula list, and problem-solving clues were also available here.
The Status bar is an awareness tool that displayed which team
members were logged into the system and which tool a member
was using at any specific moment.

All teams had to carry out the part-tasks in a predefined order
namely starting with the problem–solution phase and ending with
the solution–evaluation phase. When the team members agreed
that the part-task demands of the first phase were completed, they
had to ‘close’ that phase in the assignment menu. This ‘opened’ the
second phase, which had two consequences for all team members,
namely they were instructed to carry out the part-task demands of
this phase and then revise their representation of the domain so it
concurred with the decisions they made when carrying out this
part-task. Teams in the causal-only and simulation-only conditions
were facilitated in elaborating on their previously constructed rep-
resentation. Since those teams kept the same representational tool,
all concepts and their relationships remained visible and could be
revised as the team members deemed appropriate for carrying out
the task demands of the following phase. Teams in the simulation-
causal and causal-simulation conditions were facilitated in acquir-
ing and applying a different qualitative or quantitative perspective
of the domain. Their previously selected concepts remained visible
and they were instructed to replace the relationships by specifying
them in either a causal manner (i.e., simulation-causal) or as alge-
braic equations (i.e., causal-simulation) with the aid of their new
tool.

5.3. Procedure

All 34 teams spent four, 45-min lessons solving the problem
during which learners worked on separate computers. Before the

Table 2
Overview of the experimental conditions.

Conditions Problem phases and provided representational tools Match/mismatch

Problem–solution Solution-evaluation
Causal-only Causal tool Causal tool Match for the solution phase only
Simulation-only Simulation tool Simulation tool Match for the evaluation phase only
Simulation-causal Simulation tool Causal tool Mismatch for all problem phases
Causal-simulation Causal tool Simulation tool Match for all problem phases
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first lesson, learners received an instruction about the team com-
position, the complex learning-task and the CSCL-environment.
The instruction made clear that their score on the post-knowledge
test and the complex learning-task would serve as a grade affecting
their GPA. Learners worked on the problem in the computer class-
room and all actions (e.g., contributions to the chat-discussion,
constructed representations, and decisions concerning the part-
tasks) were logged. During the lessons, the teacher was on stand-
by for task-related questions and a researcher was present for
technical support.

5.4. Variables and analyses

To gain insight in how and why the representational scripting
affects the collaborative problem-solving process and leaning in
CSCL an process oriented and an effect oriented research approach
were combined (Dennen, 2008; Fischer et al., 2002). Data on both
learning process (i.e., constructed representations and communica-
tive activities) and learning results (i.e., individual learning gains
and team learning-task performance) were collected and analyzed.
Since there were specific directions of the results expected all anal-
yses are one-tailed.

5.4.1. Constructed representations
A content analysis was conducted on the phase-related repre-

sentations to examine the quality of the constructed representa-
tions. To this end, the representations were selected at the end of
each problem phase just before a phase was ‘closed’, and trans-
ferred from the log-files using the Multiple Episode Protocol Anal-
ysis program (MEPA; Erkens, 2005). Then they were coded with
respect to how many concepts and relationships were represented
and whether they were represented correctly. It should be noted

that the (nine) possible interventions were also coded as concepts
since learners receiving the causal tool were facilitated in repre-
senting them. When a concept was related to multiple other con-
cepts, it received a code for each relationship and could, thus, be
coded several times. The coding was done automatically with a
MEPA-filter which makes use of 364 ‘if-then’ decision rules con-
taining explicit references to the concepts, the relationships and
its correctness (based on the expert’s domain-specific representa-
tions, see Figs. 1 and 2).

The quality of the visualizations was examined through conduct-
ing independent-samples t-tests concerning the number of con-
cepts and interrelationships that were represented in each of the
two problem phases and whether they were represented correctly.

5.4.2. Communicative activities
Measurement of the communicative activities was aimed at gain-

ing insight into how learners coordinated their collaborative prob-
lem-solving process. As can be seen in Table 3 each utterance was
coded with respect to the type of dialog act used. A dialog act was
regarded as a communicative action which is elicited for a specific
purpose representing a specific function in the dialog (Mercer
et al., 2004). Coding was based on the occurrence of characteristic
words or phrases (i.e., discourse markers; see Schiffrin, 1987) indi-
cating the communicative function of an utterance. This was done
automatically with a MEPA-filter using 1250 ‘if-then’ decision rules
using pattern matching to find typical words or phrases. When
compared to hand-coding, an overall agreement of 79% was
reached and a Cohen’s Kappa of .75 was found (Erkens & Janssen,
2008). The coordinating activities of focusing, checking and argu-
mentation are indicated by the occurrence of specific dialogs acts.

The effect of condition on communicative activities was
examined through conducting multi-level analysis (MLA) which

Fig. 3. Screenshot of the VCRI-environment (simulation representational tool).
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addresses the statistical problem of non-independence often associ-
ated with CSCL research (Kenny, Kashy, & Cook, 2006). Many statis-
tical techniques (e.g., t-test, ANOVA) assume score-independence
and violating this assumption compromises interpretation of the
output of the analyses (e.g., t-value, standard error, p-value). Non-
independence was determined by computing the intraclass correla-
tion coefficient and its significance (Kenny et al., 2006) for all depen-
dent variables relating to learner interaction. Its value demonstrated
non-independence (a < .05) for all tests, justifying MLA use. MLA en-
tails comparing the deviance of an empty model and a model with
one or more predictor variables to compute a possible decrease in
deviance. The latter model is considered better when there is a sig-
nificant decrease in deviance from the empty model (tested with a
v2-test). Almost all reported v2-values were significant (a < .05)
and, therefore, the estimated parameters of these predictor vari-
ables (i.e., effects of condition) were tested for significance.

5.4.3. Individual leaning gains
Recall and understanding of the knowledge domain was mea-

sured with a pre-knowledge test (20 items, a = .60) and a post-

knowledge test (20 items, a = .65). The multiple-choice items in
both tests were drawn from a total pool of items and equally di-
vided across the three knowledge dimensions (i.e., factual, concep-
tual and procedural knowledge, see Anderson & Krathwohl, 2001).
Because of the low reliability of the scores on the subscales of both
knowledge tests (e.g., a 6 .50) learner recall and understanding of
the different knowledge dimensions was not tested. In the analy-
ses, thus, only the overall scores on the pre-knowledge test and
the post-knowledge test were used.

The effect of condition on individual learning gains was exam-
ined through conducting MLA.

5.4.4. Team complex learning-task performance
To examine performance quality, an assessment form for both

part-tasks and for the quality of the definitive advice was devel-
oped. Table 4 provides a description of the aspects on which the
decisions were evaluated, the number of items, and their internal
consistency scores (i.e., Cronbach’s alpha). All 28 items could be
coded as ‘‘0’’ (wrong), ‘‘1’’ (adequate) or ‘‘2’’ (good); the higher
the code, the higher the quality of the decision. Teams could, thus,
achieve a maximum score of 56 points for their complex learning-
task performance (28 items � 2 points) and a minimum of 0 points.
The internal consistency score for the whole complex learning-task
performance was .84.

The effect of condition was examined through conducting a
one-way ANOVA on the total performance score that the teams re-
ceived. Planned orthogonal contrasts were constructed to examine
whether a significant difference could be found between the (1)
partly matched conditions and the matched/mismatched condi-
tions), (2) matched condition (i.e., causal-simulation) and the mis-
matched condition (i.e., simulation-causal), and (3) two partly
matched conditions (i.e., causal-only and simulation-only).

6. Results

6.1. Constructed representations

The content analyses concerning the quality of the constructed
representations in relation to the task demands of the problem
phases revealed two different patterns (see Fig. 4). That is, teams
in the matched (i.e., causal-simulation) and non-matched (i.e., sim-

Table 3
Coding concerning learners’ communicative activities.

Activities Dialog act Description Example discourse
marker

Focusing Elicitative
proposal for
action

Proposition for
action

Let’s start with the
first part-task?

Elicitative
question open

Open question
with a lot of
alternatives

Shall we fist look at
the description of the
assignment or at the
description of the
part-tasks?

Imperative
action

Command to
perform an
action

Finish the decision to
the second part-task

Imperative
focus

Command for
attention

Look at the
representational tool!

Elicitative
question verify

Question that
can only be
answered with
yes or no

Do you refer to the
company result??

Checking Elicitative
question set

Question
where the
alternatives
are already
given (set)

Are you for or against
increasing sales?

Responsive
confirm

Confirming
answer

Yes, we indeed should
start a promotion-
campaign

Responsive
deny

Denying
answer

No, that is not a good
solution

Responsive
accept

Accepting
answer

Oh, Yes that OK

Argumentation Argumentative
reason

Reason Because this solution
does not affect our
costs

Argumentative
against

Objection But this would cost
more money

Argumentative
conditional

Condition If we increase the
selling price. . .

Argumentative
then

Consequence Then the cost price
decreases

Argumentative
disjunctive

Disjunctive We can increase the
actual sales through a
promotion-campaign
or by decreasing the
selling price or by. . .

Argumentative
conclusion

Conclusion Thus we can conclude
that the third solution
leads to the best
company result

Table 4
Items and reliability of complex learning-task performance.

Criteria Description Items a

Suitability Whether the teams’ decisions were suited to the
different part-tasks

6 .65

Elaboration Number of different business-economics
concepts or financial consequences incorporated
in the decisions to the different part-tasks

6 .47

Justification Whether the teams justified their decisions to
the different part-tasks

6 .51

Correctness Whether the teams used the business-
economics concepts and their interrelationships
correctly in their decisions to the different part-
tasks

6 .55

Continuity Whether the teams made proper use of the
decisions from the prior problem phase

1 –

Quality
advice

Whether the teams gave a proper definitive
advice

– Number of business-economics concepts
incorporated in the advice

– Number of financial consequences incorpo-
rated in the advice

– Whether the definitive advice conformed to
the guidelines provided

3 .71

Total score Overall score on the complex learning-task
performance

28 .84
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ulation-causal) conditions had a more diverse pattern in represent-
ing the domain content compared to teams in the partly matched
conditions (i.e., causal-only and simulation-only). The former
teams adjusted their domain-specific representations more often
when carrying out the part-tasks. To gain more insight into these
patterns, specific comparisons between conditions were made.
These analyses revealed several differences between conditions.
First, teams in the causal-simulation condition, compared to teams
in the simulation-causal condition, significantly represented (1)
more relationships during the problem–solution phase (t(14) =
2.77, p = .03) but made more errors in representing those relation-
ships (t(14) = 4.18, p = .00), (2) fewer relationships during the
solution–evaluation phase (t(14) = �2.29, p = .05) but made less
errors in representing the relationships (t(14) = �3.59, p = .00).
Second, teams in the partly matched conditions showed a stable
pattern in representing domain content, teams in the causal-only
condition overall represented significantly more concepts (t(16) =
2.56, p = .02) and relationships (t(16) = 4.24, p = .00) compared to
teams in the simulation-only condition.

Overall, these analyses show that teams using multiple repre-
sentational tools, in contrast to teams using a single tool, varied
more in representing the domain content. This was, however, only
beneficial for teams in the causal-simulation condition since they
became more selective in representing the concepts and specifying
their relationships as algebraic equations.

6.2. Communicative activities

Inspection of the means and standard deviations revealed dif-
ferences between conditions (see Table 5). MLAs revealed that con-
dition was a significant predictor for how learners coordinated
their collaborative problem-solving process when comparing
learners in the causal-simulation condition to learners in the cau-
sal-only (b = 79.35, p < .05), simulation-only (b = 71.96, p < .05) and
simulation-causal (b = 100.59, p < .05) conditions (see Table 6).
When analyzing the communicative activities separately, several
category effects were obtained. First, a significant category effect
was found for checking; learners in the causal-simulation condition
attended more to guarding the coherence and consistency of their
shared understanding of the domain than learners in the causal-
only (b = 43.69, p < .05), simulation-only (b = 38.24, p < .05) and
simulation-causal (b = 49.11, p < .01) conditions. Second, a signifi-
cant category effect was found for argumentation; learners in the
causal-simulation condition exhibited more argumentative activi-
ties than learners in the causal-only (b = 24.92, p < .05), simula-
tion-only (b = 24.28, p < .05) and simulation-causal (b = 32.97,
p < .05) conditions. Finally, a significant category effect was found
for focusing; learners in the causal-simulation condition devoted
more attention to coordinate what their topic of discourse was
than learners in the simulation-causal condition (b = 18.60,
p < .05).

Fig. 4. Content analyses for effects of condition concerning representational tool use.

Table 5
Means and standard deviations for differences between conditions concerning communicative activities.

Causal-only condition
(nlearner = 27)

Simulation-only condition
(nlearner = 27)

Simulation-causal condition
(nlearner = 27)

Causal-simulation condition
(nlearner = 21)

M (SD) M (SD) M (SD) M (SD)

Coordination 108.86 (70.44) 122.52 (78.84) 92.62 (56.44) 194.48 (120.67)
Focusing 25.14 (17.73) 27.70 (19.23) 18.23 (13.19) 37.14 (22.86)
Checking 49.45 (30.99) 57.67 (38.60) 46.04 (28.18) 95.90 (62.88)
Argumentation 34.27 (27.92) 37.15 (26.48) 28.35 (20.52) 61.43 (40.60)

Table 6
Estimates for random intercept model for differences between conditions concerning communicative activities.

Coordination Focusing Checking Argumentation

b SE b SE b SE b SE

c00 = Intercept 194.48 27.54 37.14 6.03 95.90 13.15 61.43 9.18
b1 = causal-only vs. causal-simulation 79.35⁄ 37.90 11.27 8.30 43.69⁄ 18.12 24.92⁄ 12.66
b2 = simulation-only vs. causal-simulation 71.96⁄ 36.72 9.44 8.04 38.24⁄ 17.53 24.28⁄ 12.24
b3 = simulation-causal vs. causal-simulation 100.59⁄ 36.80 18.60⁄ 8.05 49.11⁄⁄ 17.58 32.97⁄ 12.27

Variance
Team level 3052.03 149.33 887.11 463.24
Individual level 4290.99 204.58 914.14 435.48

Deviance 1059.00 780.80 938.34 876.60
Decrease in deviance 34.04⁄⁄ 22.53⁄⁄ 30.46⁄⁄ 27.15⁄⁄

* p < .05.
** p < .01.
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Overall, these analyses show that learners in the causal-simula-
tion condition were better able to establish and maintain shared
understanding of the domain and also to argue about it than learn-
ers in the other conditions.

6.3. Individual learning gains

Inspection of the means and standard deviations revealed dif-
ferences between conditions (see Table 7). A one-way ANOVA
showed no significant differences between conditions on the pre-
knowlegde test score (F(3, 92) = 0.56, p > .05). This means that
learners did not significantly differ in the amount of prior knowl-
edge and it was, therefore, not necessary to correct for this. A
paired-samples t-test showed that the overall post-knowledge test
score of 96 learners (not all 102 learners were present when both
knowledge tests were administered) was significantly higher than
the overall pre-knowledge test score (t(96) = 1.89, p = .00).
Although there were individual learning gains MLAs, however, re-
vealed no significant differences between learners in the causal-
simulation condition and learners in the causal-only (b = 0.11,
p > .05), simulation-only (b = 0.22, p > .05) and simulation-causal
(b = 0.20, p > .05) conditions. Nor were there differences between
other conditions.

Overall, these results are not completely in line with the expec-
tations; there were individual learning gains, however, no signifi-
cant differences between conditions were obtained.

6.4. Team complex learning-task performance

Inspection of the means and standard deviations revealed dif-
ferences between conditions (see Table 8). A one-way ANOVA re-
vealed there was a significant effect of condition on team
complex learning-task performance, F(3, 21.50) = 7.00, p < .01,
x2 = .33 (Brown-Forsythe because homogeneity of variance
assumption was violated). The constructed planned orthogonal
contrasts revealed that teams in the (1) multiple tool conditions
significantly outperformed the teams in the single tool conditions,
t(21.61) = 3.97, p < .01 (equal variances not assumed), r = .65 (2)
matched causal-simulation condition significantly outperformed
teams in non-matched simulation-causal condition, t(15.40) =
7.24, p < .01 (equal variances not assumed), r = .88. No significant
difference was found between teams in the causal-only and simu-
lation-only conditions, t(30) = 1.50, p > .05, r = .26. To examine the

differences between the non-matched condition and the partly
matched conditions, post-hoc tests (Games–Howell) were carried
out, revealing no significant differences, t(16) = 1.01, p > .05,
r = .24, and t(16) = 1.36, p > .05, r = .32, respectively. This indicates
that team complex learning-task performance in the non-matched
simulation-causal condition did not differ from performance in the
partly matched causal-only or simulation-only conditions.

Overall, the results show that constructing different kinds of
representations is beneficial to constructing only one kind of repre-
sentation, but that this advantage is only significant when a tools’
representational guidance is matched to the task demands of each
problem phase.

7. Discussion

This study examined how and why scripting learners’ use of
representational tools (i.e., representational scripting) affects the
collaborative problem-solving process and learning in CSCL. The
obtained results revealed that teams of learners receiving repre-
sentational tools that were completely matched to the part-task
demands of the problem phases, (i.e., a causal tool followed by a
simulation tool) performed better on the complex learning task.
That is, those teams formulated better decisions with respect to
the part-tasks and came up with better definitive solutions to the
problem than teams receiving (1) only a causal or a simulation tool
and (2) simulation tool followed by a causal tool. Furthermore, all
learners acquired a better understanding of the domain (i.e., differ-
ences post-knowledge test and pre-knowledge test), although no
significant differences concerning received tools were obtained.
Two differences concerning the quality of the learning process
were found that might explain how and why representational
scripting beneficially affected team complex learning.

First, teams receiving both tools (i.e., causal and simulation
tool) adjusted their domain-specific representations to the part-
task demands of the problem phases. However, this was only ben-
eficial for teams receiving tools that were matched to the part-task
demands (i.e., receiving the causal tool before the simulation tool);
they started with the construction of a broad representation and
gradually became more selective in representing the concepts
and specifying their relationships as algebraic equations. This
might have fostered learning, since this is (1) the way that solving
such a problem should theoretically be carried out (Van Merriënb-
oer & Kirschner, 2007) and (2) consistent with prior research

Table 8
Means and standard deviations for differences between conditions concerning complex learning-task performance.

Criteria Causal-only
condition (nteam = 9)

Simulation-only
condition (nteam = 9)

Simulation-causal
condition (nteam = 9)

Causal-simulation
condition (nteam = 7)

M (SD) M (SD) M (SD) M (SD)

Suitability 9.89 (2.62) 9.89 (1.83) 10.00 (2.24) 12.00 (0.00)
Elaboration 6.22 (2.33) 6.33 (1.87) 7.22 (2.59) 9.00 (0.58)
Justification 3.00 (1.50) 3.11 (1.36) 4.00(1.73) 5.14 (1.46)
Correctness 4.44 (1.67) 4.22 (1.20) 5.11 (1.54) 6.14 (0.38)
Continuity 1.44 (0.73) 1.56 (0.53) 1.56 (0.73) 2.00 (0.00)
Quality advice 3.22 (1.39) 2.89 (1.27) 3.67 (1.12) 4.86 (0.90)
Total score 28.22 (7.50) 28.00 (4.44) 31.56 (6.46) 39.14 (1.22)

Table 7
Means and standard deviations for differences between conditions concerning the pre-test and post-test scores.

Test Causal-only condition
(nlearner = 25)

Simulation-only
condition (nlearner = 25)

Simulation-causal
condition (nlearner = 26)

Causal-simulation
condition (nlearner = 20)

Overall conditions
(Nlearner = 96)

M (SD) M (SD) M (SD) M (SD) M (SD)

Pre-test 10.63 (2.95) 11.20 (2.04) 11.44 (2.58) 10.72 (2.27) 11.02 (2.48)
Post-test 13.22 (2.56) 12.92 (2.65) 13.00 (2.64) 13.25 (2.38) 13.11 (2.54)
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indicating that there is a strong relationship between the quality of
constructed representations and task performance (Greene, 1989;
Van Meter & Garner, 2005). In contrast, teams who had access to
only one of the representational tools (i.e., causal or simulation
tool) showed a stable pattern in representing the domain content.
Those teams either represented many concepts and relationships
(i.e., causal tool) or they did not (i.e., simulation tool) and were,
thus, less occupied with fine-tuning their representations to the
different part-task demands.

Second, receiving part-task congruent representational tools in-
duced teams of learners to exhibit more communicative activities
(i.e., focusing, checking and argumentation) than teams of learners
receiving representational tools that were partly or not congruent
for the part-task demands. Since carrying out such activities is re-
garded as a prerequisite for establishing and maintaining a shared
understanding of the domain and to argue about it, this might have
fostered learning (Clark & Brennan, 1991; Erkens & Janssen, 2008).
This result is consistent with studies on CSCL indicating that the
computer tools provided by the environment must enable learners
to easily refer to and relate their contributions to those of others
(Mühlpfordt & Stahl, 2007; Suthers et al., 2003).

In sum, the obtained results are in line with those of others who
stress the importance of sequencing and interrelating multiple (i.e.,
qualitative and quantitative) representations of the knowledge do-
main during the (collaborative) performance of a complex learning-
task (Frederiksen & White, 2002; Jonassen, 2003; Ploetzner et al.,
1999).These results also might have several implications for design-
ing learning-environments (e.g., CSCL-environments) aimed at fos-
tering complex learning. Combining the advantages of scripting and
using multiple presentational tools facilitates learners in construct-
ing and discussing different representations of the domain. When
properly matched to the part-task demands, the complementary
function of those representations can evoke elaborated and mean-
ingful discussion of the domain and foster complex learning-task
performance (Ainsworth, 2006; Slof et al., 2010).

8. Limitations and suggestions for future research

Although the results seem promising, there are multiple rea-
sons to assume that the design principles behind the representa-
tional scripting do not automatically apply to other domains,
learning tasks, and settings. To address this, several remarks and
suggestions for future research are provided.

The conducted study took place in the field of business-eco-
nomics. Although many domains (e.g., meteorology, physics, urban
planning, and science) require multiple problem representations,
the effects of a particular design depend on the characteristics of
the learning task and the involved knowledge domains (Kirschner
et al., 2004; Veldhuis-Diermanse, 2002). When designing tools
and/or learning environments, one should take this carefully into
account. The effect of the design of the representational scripting
does not automatically apply to all complex learning tasks and
knowledge domains. To address this, educators and instructional
designers should gain insight into the specifics of the learning tasks
by conducting a learning-task analysis (Anderson & Krathwohl,
2001). If analysis reveals that the entire task needs to be sequenced
in part-tasks, their required domain-specific perspectives need to
be determined. Based on these insights, the sequence and the de-
mands of the part-tasks can be specified and part-task congruent
(representational) tools can be developed.

All learners gained more domain knowledge indicating that col-
laboratively constructing, adjusting and discussing qualitative and/
or quantitative representations might foster individual learning.
However, whereas teams receiving part-task congruent tools per-
formed better on the complex learning-task, they, on average, did

not score significantly higher on the post-knowledge test. There
seem to be, at least, three explanations that might account for this.

First, the study reported on here was integrated into the curric-
ulum of participating schools and both post-test scores as well as
the complex learning-task performance affected the GPA. When
tailoring the measurement of the learning gains to the specifics
of the curriculum there were no suitable standardized measure-
ment instruments available. These instruments, therefore, had to
be developed in cooperation with the teachers, which made them
more ecologically valid for measuring individual and team learning
gains. Although this is how teachers usually work with and assess
their learners, this approach might have compromised the internal
consistency of the knowledge tests used. That is, several items
were deleted from the pre-knowledge test and the post-knowledge
test to, eventually, reach low but at least acceptable internal reli-
ability scores (i.e., Cronbach’s alpha’s). Reducing the number of
items in the knowledge tests might have restricted learners receiv-
ing part-task congruent representational tools in fully demonstrat-
ing gained declarative domain-knowledge. Using less restrictive
internal consistency tests (e.g., Kuder-Richardson test; see Kuder
& Richardson, 1937) when administering classroom developed
knowledge tests (Rudner & Schafer, 2002) would address this.
Those tests, however, are only suited for knowledge tests consist-
ing of dichotomous items (i.e., ‘‘0’’ for an incorrect answer and
‘‘1’’ for a correct answer). Since participants were students from
six business-economics classes in three secondary schools, the
more restricted test (i.e., Cronbach alpha) was used in this study.

Second, research on CSCL indicates that individual learners do
not always (equally) learn from participating in teams (Fischer
et al., 2002). What individual learners or teams of learners gain
from their collaboration strongly depends on the quality of the col-
laboration process (Barron, 2003; Ding, 2009; Van Boxtel, 2004).
Although coding and counting the number of exhibited communi-
cative activities might give some indication of the quality of collab-
oration (Erkens & Janssen, 2008), it, however, does not lead to fully
understanding the dynamics of collaborative learning (Hmelo-Sil-
ver, Chernobilsky, & Jordan, 2008). For example, it does not provide
insight into (1) the evolution of understanding and the correctness
of the domain-specific discussions and (2) how learners translate
information from and coordinate information between their con-
structed visualizations. One approach to address this in problem-
based learning is to determine how many errors (specific) learners
make in their discussion when interrelating the concepts to each
other per problem phase. Insight into the quality can be gained
by comparing the number and kinds of errors learners make in
each phase. Another approach might be to focus more on the qual-
ity of the knowledge-construction process, for example, by analyz-
ing whether and how learners elaborate on previous ideas and
statements (Schellens & Valcke, 2005).

Finally, the lack of differences in individual learning gains be-
tween conditions might be accounted for by how the effects of
complex learning were measured. That is, knowledge tests often
only measure recall and simple comprehension of the subject mat-
ter. The knowledge tests used in this study are a case in point here
in that they did not enable learners to demonstrate whether they
were better able to apply their understanding of the domain, which
also can be regarded as a form of learning gains. It might, thus, be
the case that the knowledge tests used were not sensitive enough
to gain insight into the possible learning gains in terms of complex
learning (Bigelow, 2004; Loyens & Gijbels, 2008). Examining the ef-
fects of complex learning in based on acquired declarative knowl-
edge of the domain could, thus, be questioned. Future research
might, therefore, take an interest in measuring deep understanding
of the domain content, collaboration skills, problem-solving skills
and the ability to apply the acquired knowledge and skills in other
situations (i.e., transfer). More concretely, instead of administering
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knowledge tests aimed at measuring learners’ recall (i.e., reproduc-
tion) of concepts, principles and procedures, new assessment
forms measuring learners application (i.e., production) of the con-
tent of the domain should be developed. For example, another but
related problem task might be used to measure whether individual
learners or teams of learners gained more skills to apply their do-
main knowledge or problem-solving skills. Again, the quality of the
decisions and solutions could be evaluated and insight into the
learning process could be measured by either observing or using
stimulated recall interviews afterwards.
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