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Abstract 

Complex perceptual tasks, like clinical reasoning based on visual observations of patients, 

require not only conceptual knowledge about diagnostic classes but also the skills to visually 

search for symptoms and interpret these observations. However, medical education so far has 

focused very little on how visual observation skills can be efficiently conveyed to novices. 

The current study applied a novel instructional method to teach these skills by showing the 

learners how an expert model visually searches and interprets symptoms (i.e., eye-movement 

modelling examples; EMMEs). Case videos of patients were verbally explained by a model 

(control condition) and presented to students. In the experimental conditions, the participants 

received a recording of the model’s eye movements superimposed on the case videos. The eye 

movements were displayed by either highlighting the features the model focused on with a 

circle (the circle condition) or by blurring the features the model did not focus on (the 

spotlight condition). Compared to the other two conditions, results show that a spotlight on 

the case videos better guides the students’ attention towards the relevant features. Moreover, 

when testing the students’ clinical reasoning skills with videos of new patient cases without 

any guidance, participants studying EMMEs with a spotlight showed improved their visual 

search and enhanced interpretation performance of the symptoms in contrast to participants in 

either the circle or the control condition. These findings show that a spotlight EMME can 

successfully convey clinical reasoning based on visual observations. 

 

Keywords: example-based learning, eye tracking, expertise, attention, medical education 
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In clinical practice, physicians often need to detect and diagnose disorders based upon 

visual observations of patients’ symptomatic behaviour, such as occasionally occurring ictal 

(i.e., seizure induced) movement patterns of infants’ epileptic seizures. In such cases, it is 

crucial to carefully observe which parts of the infant body are involved and how and when 

these body parts move, and to assess the level of consciousness of the infant (i.e., diagnosis 

based on the semiology of ictal events, cf. International League Against Epilepsy 2010; 

Lüders et al. 1998). According to Nordli et al. (1997), infantile seizures are often so subtle 

that even skilled observers may fail to identify the seizures correctly. Moreover, some of these 

movement patterns occur only occasionally, are short-term and subtle, and therefore not 

salient compared to other movements or characteristics of the infant (Hansen and Balslev 

2009). As a result, an infant’s epileptic seizures may easily be mistaken for normal behaviour 

(Egger et al. 2003; Hansen and Balslev 2009) or attributed to other disorders (Nordli 2002). 

Clinical reasoning based on visually observing a patient can be seen as a knowledge-

rich (Van Lehn 1989) and highly perceptual task (Chi 2006) that requires thorough and 

intensive processing of the visual input. Hence, such a task requires prior knowledge that 

needs to be acquired through training. Importantly, this task requires not only conceptual 

knowledge about diagnostic classes but also skills related to visually searching for symptoms 

and to correctly interpreting these observations (cf. Krupinski 2010). These skills that are the 

focus of this paper will be termed visual observation skills hereafter. 

Role of visual observations in clinical reasoning 

Many studies have been conducted to determine what skills are required for 

accomplishing complex visual tasks which distinguish experts from novices. These studies 

showed that experts possess sophisticated visual observation skills which enable them to 

visually search relevant features of a stimulus within irrelevant features and to interpret these 

observations correctly (e.g., Antes and Kristjanson 1991; Charness et al. 2001; Jarodzka et al. 

2010a; Underwood et al. 2003). Novices, however, get easily distracted by salient, but 

potentially irrelevant, elements of a visual stimulus, whilst missing relevant information 

(Jarodzka et al. 2010a; Lowe 1999). 

These effects have also been demonstrated in the medical domain, for instance, in 

clinical reasoning and diagnostic classification based on static and rather abstract stimuli, such 

as X-rays, microscopic slides, and mammograms (e.g., Krupinski 2005; Krupinski et al. 2006; 

Kundel et al. 2008; Lesgold et al. 1988) as well as based on realistic static stimuli, such as 

photographs of patients (Brooks et al. 2000). Although no studies have yet investigated which 
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differences in visual observation skills exist between experts and novices when processing 

dynamic stimuli in the medical domain such as patient video cases, expertise differences in 

visual observation skills have been shown for dynamic, realistic stimuli in other domains, 

such as biological classification of motion patterns (Jarodzka et al. 2010a) or car driving 

(Underwood et al. 2003). 

Novices experience difficulties in tasks such as clinical reasoning based on visual 

observation of static medical images as well as in other domains using dynamic stimuli, 

whereas experts seem to possess rather sophisticated visual observation skills that enable 

them to perform these tasks. Thus, it can be assumed that these expertise differences will also 

hold true for a medical task based on dynamic stimuli, namely, diagnostic classification of 

infants’ epileptic seizures. Thus, it is proposed that novices will require training in clinical 

reasoning skills based on visual observations to appropriately perform this diagnostic task. 

The next section addresses the question of how to convey these skills. 

Teaching clinical reasoning based on visual observations 

Although clinical reasoning based on visual observations is likely to require not only 

knowledge about diagnostic classes but also the skills to visually search for symptoms and 

interpret these observations (Krupinski 2010), the focus in medical education does not 

specifically lie in teaching such skills (for first exceptions in microscopy, see Helle et al. in 

press). Instead, motion patterns of epilepsy are often described in text accompanied by static 

pictures (e.g., Schmidt and Schachter 2000). However, written text is not adequate for 

teaching the skills of clinical reasoning based on visual observation (Balslev et al. 2009). To 

overcome the drawbacks of static representations, medical education often makes use of so-

called patient video cases (PVCs; e.g., Dequeker and Jaspaert 1998). PVCs show patients who 

are video-recorded whilst displaying movement which is potentially abnormal. Using PVCs 

for educational purposes has been shown to improve clinical reasoning compared to 

traditional written descriptions of patient cases (Balslev et al. 2009; De Leng et al. 2007; 

Kamin et al. 2003). However, based on the research described in the last section, one may 

have serious doubts whether novices would be able to perceive relevant features and interpret 

them correctly when inspecting PVCs without any further guidance.  

Hence, in this study we wanted to explore whether visually cueing relevant information 

in PVCs in different modes with eye-movement modelling examples could improve clinical 

reasoning based on visual observations.  
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Teaching visual observation skills via eye-movement modelling examples 

Eye-movement modelling examples (EMMEs) have been developed to teach 

performance on perceptual tasks (Jarodzka et al. 2010b; Van Gog et al. 2009). EMMEs are 

worked-out examples of how an expert model performs a perceptual task, where a video case 

(e.g., an infant with ictal movements) is augmented with two types of procedural information. 

This information is gained from asking an expert to explain verbally how he or she performs 

the task based on watching the video case as well as from recording his or her eye movements 

whilst performing the task. The actual instructional examples shown to the learners consist of 

a video augmented with the expert model’s verbal explanation (i.e., modelling of cognitive 

processes) as well as the model’s eye movements superimposed onto the video (i.e., 

modelling of perceptual processes). The potential of EMMEs is based on three features, 

namely, the fact that they (a) are grounded in research on learning from examples, (b) allow 

covert cognitive and perceptual processes to be made accessible for learners, and (c) provide 

guidance in how to process the visual input. We take up each of these aspects in turn in the 

following. 

The rationale for developing EMMEs is derived from research on learning from 

worked-out examples showing that example-based learning is a powerful method for early 

skill acquisition. Examples demonstrate a problem solution to the learner, either by presenting 

a written, worked-out solution procedure of a problem (i.e., worked-out examples; see, 

Atkinson et al. 2000; Sweller et al. 1998) or by having the learner directly observe an expert 

model performing the task live or on video (i.e., modelling examples; Bandura 1977; Collins 

et al. 1989). For cognitive aspects of a task, where covert cognitive processes are crucial, the 

model verbalises his or her cognitive processes by explaining why and how certain solution 

steps were chosen, i.e., cognitive modelling (Collins et al. 1989) and process-oriented 

worked-out examples (Van Gog et al. 2006). 

For perceptual aspects of a task which require the inspection of a visual stimulus (Chi 

2006), it is crucial that the learner can see the stimulus the expert is looking at. To actually 

learn from such examples, however, learners have to attend to the relevant features of the 

modelled behaviour (Bandura 1977). Otherwise, the learners may miss those visual features 

relevant for understanding and learning from the example. However, as indicated by the 

research presented above, novices experience difficulties when dealing with complex visual 

stimuli. Thus, when learning from examples which involve visual stimuli, novices might need 

attention guidance to those features that the model is focusing on. 
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One common form of attention guidance in instructional design is cueing. Although 

many studies on cueing exist, these studies have often failed to find positive effects on 

learning (for a review, De Koning et al. 2009). One reason might be that the cues used are 

usually based on what area an instructional designer or domain expert thinks a novice learner 

at a particular moment should be looking at. Experts, however, may not necessarily know 

what the most important feature for novices is, since experts often have difficulties in 

correctly assessing the knowledge state of novices (Hinds 1999; Nückles et al. 2006). 

Moreover, experts may not be able to report what they are looking at whilst performing a task, 

because their task performance has become highly automatised (Chi 2006). Thus, simply 

asking experts which information should be cued might not be the appropriate approach. One 

cueing technique which did prove successful is the one used by Grant and Spivey (2003), who 

showed that choosing a cue based on eye movements of successful problem-solvers enhanced 

the probability of correctly solving an insight problem. However, the task used by Grant and 

Spivey (2003) consisted of a very simple stimulus (a circle with a larger dot in it to represent 

Duncker’s radiation problem). Hence, it could be easily detected which feature the successful 

problem-solvers focused on in order to cue this clearly distinguishable feature (i.e., the circle). 

In the medical domain, however, the visual stimuli are far more complex. Visual features are 

not easily distinguishable, and more importantly, several visual features need to be inspected 

and compared. In this case, it might be important to cue an entire process and not only a 

single visual feature. In line with this reasoning, Litchfield et al. (2010) conveyed information 

regarding an expert model’s perceptual processes by displaying the model’s eye movements 

superimposed onto a complex medical image, namely X-rays. Results showed that this type of 

display improved other participants’ diagnostic performance based on these X-rays. Hence, it 

seems advisable to externalise a model’s covert perceptual processes as a means of improving 

task performance.  

The question remains, however, whether the effectiveness of attention guidance based 

on a model’s eye movements extends beyond improving the performance of the task at hand, 

by also enhancing learning. Here, learning refers to the robust change in a person’s skills that 

enable him or her to independently perform that task after practice with novel stimuli and 

without any instructional support (Simon 1983). EMMEs directly aim at investigating this 

research question by combining insights of example-based instruction for cognitive and 

perceptual aspects of the task. EMMEs do so by comprising three components: the problem 

(i.e., the to-be-inspected visual stimulus), the externalisations of cognitive processes (i.e., 
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verbal explanations), and the perceptual processes (i.e., eye movements) of the model, where 

in particular the latter provide attention guidance for how to process the visual stimulus.  

An unresolved issue so far is how to display the eye movements in modelling examples. 

Eye movements can be presented either by displaying them as additional information 

superimposed onto the stimulus (e.g., as a dot on the features the model focused on) or by 

reducing the existing visual information of the stimulus. In the latter case, the eye movements 

act like a spotlight, whereas the features that the expert model did NOT focus are blurred, 

thereby automatically highlighting the focused, non-blurred information. The first studies 

with EMMEs in relatively simple tasks (an isomorph of the Tower-of-Hanoi: Van Gog et al. 

2009; and a biological classification task: Jarodzka et al. 2010b) have provided interesting 

insights that may inform the design of EMMEs in that respect. However, displaying eye 

movements directly as additional information has been shown to impose such high cognitive 

demands on learners that the demands may even hamper task performance (Van Gog et al. 

2009). In contrast, a dot-like representation of eye movements has also been shown to 

increase skills related to the interpretation of relevant visual features, but without having a 

positive effect on visual search (Jarodzka et al. 2010b). Reducing existing information by 

blurring non-focused information instead has been shown to guide attention and to foster 

visual search, whereas no improvements in interpretation performance could be observed 

(Dorr et al. 2010; Jarodzka et al. 2010b). Moreover, blurring videos has been shown to guide 

the observers’ attention, without them even noticing it (Nyström 2008). Thus, no display type 

has yet proven to be superior with regard to all of the aforementioned performance aspects. 

Research questions – Hypotheses 

Against the backdrop of the reported literature, the current study aimed to answer two 

questions, namely, can displaying an expert’s eye movements in modelling examples be 

beneficial for learning, and if so, which type of display is more effective in terms of 

attentional guidance and learning? To investigate these questions, a control condition, 

consisting of video examples augmented with verbal explanations of an expert model only, 

was compared to two experimental conditions, which additionally included the replay of an 

expert model’s eye movements superimposed on the video. Two different versions of 

EMMEs were implemented: a display that adds information (circle display) and one that 

reduces information (blurring display). Instead of the solid dot used in prior studies (Jarodzka 

et al. 2010b; Van Gog et al. 2009), the expert model’s eye movements were displayed as a 

circle so that the cue would not cover relevant information. For the spotlight display, we 
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decided to use a very subtle blurring so that an impression of the overall scene could be 

gained. The current study used a diagnostic classification task based on video cases of infant 

patients with a tentative diagnosis of an epileptic seizure as a domain.  

The following hypotheses were tested in this study:  

We assumed that a prerequisite for learning from EMMEs is to successfully guide 

learners’ attention to where the expert model focused on. Hence, Hypothesis 1 was as follows: 

a)  Participants’ learning with both types of EMMEs will be guided by the eye-

movement display, resulting in a scanpath that is highly similar to the expert model’s 

scanpath, whereas the scanpaths of participants in the control condition will be more diverse. 

b) It is not clear which type of EMME should guide learners’ visual attention better 

to where the expert model focused on. Since the spotlight display is hardly intrusive (cf. 

Nyström 2008), and the circle display does not obscure any elements, both should strongly 

guide attention in similar ways. 

Moreover, we assumed that EMMEs would foster clinical reasoning based on visual 

observation as measured by the efficiency of visual search during a test (by means of eye 

tracking), and the interpretation of the motion pattern observed (by means of a multiple-

choice questionnaire). Hence, Hypothesis 2 addressing the visual search variables was as 

follows: 

a) The EMMEs conditions will learn better what to focus on, thereby yielding a 

more efficient visual search than the control condition. Efficient visual search is indicated by 

focusing faster and longer on relevant areas, whilst ignoring irrelevant areas on novel test 

videos.  

b) Since both displays should guide learners’ attention equally well to the relevant 

features, it is unclear whether the two displays will differ with respect to visual search.  

Hypothesis 3 addressing the interpretation of test video cases was as follows: 

a)  EMMEs will result in an enhanced interpretation performance of the infant’s 

motion patterns compared to the control condition.  

b) Since the spotlight display had been improved compared to a prior study, the 

spotlight display is assumed to be at least equally well suited as the circle display for fostering 

interpretation of the performance. 
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Method 

Participants and design 

Participants were 60 medical students in their final year at the University of Aarhus (41 

women, 19 men, Mage = 26.57 years, SD = 2.03). All participants had no prior knowledge of 

the task and had normal or corrected-to-normal vision. They were randomly assigned to one 

of three conditions (n = 20 each), a control condition, an EMME condition with the spotlight 

display, and an EMME condition with the circle display. Participants were paid €10 for their 

participation. 

Apparatus and materials 

Eye-tracking equipment 

The model’s eye movements were recorded with an SMI High Speed eye-tracking 

system with a temporal resolution of 240 Hz on a 17” monitor and iView X 2.2 software. This 

eye-tracking system has a high accuracy of less than 0.5 degrees of visual angle and a high 

precision of less than 0.01 degrees. The model’s eye-tracking data were edited with BeGaze 

2.3 software (www.smivision.com) and self-programmed MatLab algorithms. The same 

system was used to record participants’ eye movements. The participants’ eye-tracking data 

were analysed with BeGaze 2.3 software (www.smivision.com) and self-programmed MatLab 

algorithms. All video material was presented to the participants via Experiment Center 2.2.  

Modelling examples 

Diagnosing infants’ epileptic seizures may result in many different diagnostic classes. 

This study, however, does not focus on the final diagnostic step, but rather on the clinical 

reasoning underlying this step. Hence, it was not the aim to train students to diagnose all 

possible seizure types, but rather to train them in the procedure of collecting observations of 

symptoms crucial for a diagnosis. Thus, for the purpose of the current study, two exemplary 

patient cases of focal seizures were chosen to train clinical reasoning based on visual 

observations. These modelling examples consisted of two digital PVCs in an audio interleave 

format (.avi), sized 720 * 576 pixels and presented in full screen on a 1280 * 1024 pixels 

resolution (corresponding to 17.07 * 13.65 inches). Each PVC depicted a single infant (3 

weeks and 7 months old, respectively). Both infants deployed a motion pattern corresponding 
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Figure 1: Screenshots from the three conditions used in the study. 

Dependent variables  

The dependent variables were divided into measures obtained during the learning phase 

and measures obtained during the subsequent test phase, where participants had to apply their 

learnt visual observation skills to novel test videos. 

Learning phase. In order to estimate whether participants had been able to follow the 

attention guidance, their eye movements were recorded during watching the instructional 

videos (i.e., during the learning process). Based on these recordings, the degree of similarity 

of the participants’ eye movements to the eye movements of the model displayed on the 

EMME videos was determined. This was done by calculating the Euclidean distance in pixels 

between simultaneous gaze points of the model and the participant over time (cf. Rao et al. 

2002). Subsequently, the mean Euclidean distance was calculated for each participant. The 

smaller the distance, the better the learner’s eye movements were synchronised with those of 

the expert. 

Test phase. To test learning effects, participants were shown three new PVCs without 

verbal explanations or eye-movement replays for a mean duration of 29.67 s each (SD = 

17.79). These PVCs depicted different children each displaying a particular seizure. The 

duration of the test videos depended on the duration of the seizure. Whilst the participants 

watched the test videos, participants’ eye movements were recorded to determine the 

participants’ visual search behaviour. Afterwards, their interpretation performance was 

assessed by asking them to answer multiple-choice questions.  

Control Circle display Spotlight display 
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Three different measures of learning were obtained, whereby two of them related to the 

efficiency of visual search, and the third one assessed the ability to interpret areas important 

for the diagnosis of epileptic seizures.  

From the eye-tracking recordings, two different eye-movement measures were obtained 

as indicators of visual search efficiency. First, time spent until participants had looked at all 

relevant areas of interest (AOIs) on the test videos was recorded. The relevant areas were 

determined a priori with the help of a domain expert (cf. Antes and Kristjanson 1991; 

Charness et al. 2001). Each video included several AOIs that had to be looked at to describe 

the infant’s disorder exhaustively. To obtain the time it took participants to have focused on 

all of the relevant AOIs, only the time that participants spent “outside” of the relevant AOIs 

until finally each AOI had been looked at was taken into account. Thus, this measure was 

determined by subtracting the time until all relevant AOIs were looked at for the first time by 

the time spent looking at other relevant AOIs in the meantime. 

Second, the time spent looking at the relevant areas on the test videos (total dwell time) 

was recorded. Since the testing videos were of different durations, both eye-tracking measures 

were normalised by the video length. 

The participants’ interpretation performance was assessed by asking them to answer 

each of the three PVCs five multiple-choice questions relevant to the interpretation of the 

infant’s behaviour as being symptomatic or not. The test was developed with the help of 

domain experts. In particular, the learners had decide (a) which body parts move, (b) how 

these body parts move, (c) whether touching the infant would change these movements, (d) 

whether and how the infant’s face is involved and what this means in terms of a diagnosis, 

and (e) what the infant’s state of consciousness was. Participants were assigned 1 credit for 

each question in the case of a correct answer, yielding a maximum of 5 credits for each test 

video (15 credits in total). The performance of each participant was transformed into a 

percentage score for ease of interpretation.  

Procedure 

Students were tested in individual sessions of approximately 30 minutes each. At the 

beginning, participants filled in a questionnaire on their prior knowledge of paediatric 

epilepsy and their demographic data. Then the participants received a short introduction to the 

topic, stating very general information on seizures. And finally the learning phase started. The 

eye-tracking system was adjusted to the individual features of the participant based on a 13-

point calibration. Participants were told that they would subsequently be shown videos of the 
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to-be-learned disorder, in which a model explains the disorder shown in the video. Depending 

on the condition, the participants were also told that they would see where the model looked 

at on the video. Before watching the instructional videos, participants received information on 

the age and gender and a short problem description of the patient. Whilst the participants 

watched the corresponding instructional video, their eye movements were tracked. 

In the test phase, participants watched three novel PVCs without verbal explanations or 

eye-movement replay. A fixation cross appeared for two seconds followed by the test video, 

which was replayed once. Participants watched the video whilst their eye movements were 

recorded. Afterwards, the video disappeared, followed by a blank screen. Then, the 

participants had to answer the multiple-choice questions. This procedure was repeated for the 

remaining two patient video cases in the test. 

Results 

All dependent variables were tested for normal distribution with the Kolmogorov-

Smirnov test. Data for these variables which violated assumptions of normal distribution were 

logarithmised. Next, all statistical analyses were conducted using ANOVAs. For each 

dependent variable, an ANOVA was conducted with the condition (control vs. circle display 

vs. spotlight display) as the independent variable. To analyse differences between each 

condition, Bonferroni post-hoc tests were conducted. 

Eye-movement data during example study 

A Kolmogorov-Smirnov test revealed that the data for the Euclidean distance were not 

normally distributed (D(60) = .12, p = .03). Hence, these data were logarithmised. An 

ANOVA was conducted with mean Euclidean distance (logarithmised) as a dependent 

variable and condition (control vs. circle display vs. spotlight display) as an independent 

variable. The comparison of participants’ eye-movement data with the model’s eye-movement 

data during the example study showed a main effect of condition, F(2, 57) = 4.40, p = .02, ηp
2 

= .13. Bonferroni post-hoc tests revealed that the spotlight display condition guided the 

participants’ attention significantly more than in the control condition (p = .03) and than in the 

circle display condition (p = .04). The circle condition and the control condition did not differ 

significantly in their potential to guide attention, ns. Results are summarised in Figure 2. 
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Figure 2: Means and standard deviations for the Euclidean distance (not-logarithmised in pixel) between 

the model’s and participants’ gaze points over time during the example study. 

Learning outcomes 

Eye-movement data during testing 

A Kolmogorov-Smirnov test revealed that the data for the time before first having 

looked at all relevant AOIs were not normally distributed (D(60) = .13, p = .02). Hence, these 

data were logarithmised. An ANOVA was conducted with the time before first having looked 

at all relevant AOIs whilst watching the test videos (logarithmised) as a dependent variable 

and condition (control vs. circle display vs. spotlight display) as an independent variable. The 

conditions significantly differed in the time participants spent before having looked at all 

relevant AOIs once, F(2, 57) = 4.06, p = .02, ηp
2 = .13. Bonferroni post-hoc tests indicated 

that participants in the spotlight condition had looked significantly earlier at all relevant AOIs 

than in the control condition, p = .04 and marginally earlier than the circle condition, p = .06. 

The results for the participants in the circle condition and the control condition did not differ 

significantly, ns. Results are summarised in Figure 3. 
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Figure 3: Means and standard deviations for the time before having looked at all relevant AOIs (not-

logarithmised in ms) during testing. 

 

A Kolmogorov-Smirnov test revealed that the data for dwell time on relevant AOIs 

were normally distributed (D(60) = .07, p = .20). An ANOVA with dwell time on relevant 

AOIs as a dependent variable and condition (control vs. circle display vs. spotlight display) as 

an independent variable showed significant differences between the conditions in dwell time 

on relevant AOIs, F(2, 57) = 3.64, p = .03, ηp
2 = .11. Bonferroni post-hoc tests indicated that 

participants in the spotlight condition looked marginally longer at the relevant AOIs than 

participants in the control condition, p = .07, and than participants in the circle condition, p = 

.07. Results for the participants in the circle condition and the control condition did not differ 

significantly, ns. Results are summarised in Figure 4. 
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Figure 5: Means and standard deviations for interpretation performance (in percent correct) for the test 

videos. 

Discussion 

This study aimed at teaching clinical reasoning based on visual observations necessary 

for diagnosing infants’ epileptic seizures with EMMEs. The EMMEs used in this study were 

based on recordings of a domain expert model, who was instructed to act as if teaching 

novices. These EMMEs consisted of two components, firstly, the model’s verbal explanation 

of the symptoms accompanying the epileptic seizures he saw on PVCs (i.e., modelling of 

cognitive processes). Secondly, the EMMEs consisted of the model’s eye movements 

superimposed onto the PVC (i.e., modelling of perceptual processes). Moreover, two ways of 

displaying the model’s eye movements were implemented: a manufacturer-provided circle 

display (SMI) and a subtle spotlight display (cf. Nyström and Holmqvist 2008).  

Results of this study showed that learners’ attention can be guided by displaying the 

model’s eye movements in PVCs. Analyses of the participants’ eye movements during an 

example study indicated that the spotlight display of the model’s eye movements guided 

learners’ attention during learning more precisely than the circle display or no attention 

guidance (Hypothesis 1). Moreover, the results showed that this type of attention guidance 

fostered effective visual search (as measured with eye tracking; Hypothesis 2) and 

interpretation performance (as measured with a multiple-choice questionnaire; Hypothesis 3). 
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Participants in the spotlight condition outperformed participants in the circle display condition 

and the control condition with regard to both measures. Surprisingly, participants in the circle 

condition did not differ from the control condition in terms of either attention guidance or 

learning (i.e., efficiency of visual search and interpretation performance). In sum, this study 

was the first to show that EMMEs have the potential to promote clinical reasoning based on 

visual observation. In particular, blurring of irrelevant areas during learning may be the key to 

fostering learning.  

This leads to the question why the two presentation types of EMMEs resulted in such 

different effects. The reason for the failure of the circle condition might lie in the fact that the 

circle cue did not help learners in refraining from focusing on salient but irrelevant features. 

Another possible explanation is that the circle display might have tempted the learners to try 

to “look through'” the small circle instead of focusing on the entire body part that the circle 

pointed at. This may have hampered learners in getting a holistic overview of the entire body 

part and therefore may have hindered interpretation of the information, which is at least 

partially based on relating neighbouring areas to each other (e.g., to see whether the infant’s 

eyes are closed whilst the face is moving). In contrast, the spotlight display in this study did 

blur very subtly (in contrast to the one in the study by Jarodzka et al. 2010b); the spotlight 

guided the learners to the non-blurred areas but still allowed for an overview of the motion 

and shape of the entire object. This might have facilitated the understanding of the motion as 

explained by the model and, thus, enabled learning. 

Irrespective of the promising results of this study, its main limitation has to be 

acknowledged: the effects were based only on three test videos. This is because analysis of 

eye-tracking data on videos requires very time-consuming data preparations, thereby limiting 

the number of stimuli that can be potentially used. However, the fact that these effects could 

be found even for such a low number of items hints towards the fact that these effects may be 

quite strong. 

Implications for instructional practice 

This study underlines the need to effectively guide visual attention when teaching 

clinical reasoning based on visual observation. EMMEs seem to provide an appropriate 

instructional format to address this need, provided that the way of displaying eye movements 

is optimised with regard to the processing demands imposed on the learner. 

The question arises how to transfer the findings of this study into practice. What we 

have clearly seen is that some tasks (here: diagnosing infants’ epileptic seizures) require 
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visual observation skills, which so far are not the focus of teaching. The same is probably true 

for several other tasks that require substantial visual observation as well (e.g., clinical 

reasoning based on other types of medical images, sports judging, playing computer games, 

air traffic control, car driving, etc.). When instructors teach novices to execute these kinds of 

tasks, the instructors should consider teaching visual observation skills as well. EMMEs 

might be an appropriate way to do this for many tasks. Of course, it is not always possible to 

use eye-movement recordings of experts, because eye-trackers are not easily accessible. Still, 

if teachers are aware of the fact that visual observation skills play a crucial role in the task 

they are teaching, they could use videos of the task and make their visual observation explicit, 

that is, point to the relevant areas and explain how they should be interpreted. Moreover, 

teachers, researchers, and developers of educational software could start exploring the 

benefits of blurring techniques to guide the attention of the learners. Furthermore, EMMEs 

could be used in online teaching where pointing is not possible (e.g., during a surgery). An 

eye-tracking device from which the novices receive the recordings might help them to learn 

new perceptual tasks quickly. These recordings could later be re-used for offline teaching 

situations. 

In sum, this study showed that EMMEs might be helpful to better convey clinical 

reasoning based on visual observations in the task of diagnosing infants’ epileptic seizures. 

The effects of EMMEs, however, might strongly depend on the task under investigation and 

the presentation used of the model’s perceptual processes. This study suggests that the best 

effect – in terms of attention guidance during learning as well as visual search and 

interpretation performance during testing – might be achieved by an EMME that displays the 

perceptual processes of the expert model as a spotlight that subtly blurs the contrast of the 

areas the model did not focus on whilst the focused areas remain unaltered. 
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