

 1

Master Thesis

A Pre-Processing Method for Software Synthesis of
Synchronous Dataflow Networks

A.C.M. van den Berg

836856321

June 2009

Open Universiteit Nederland

Department of Computer Science - Master Opleiding Technische Informatica

Thesis committee Open Universiteit
Prof. dr. A. Bijlsma
 Dr. B.J. Heeren

Thales Nederland
Dr. ir. H. Schurer
Ir. T.S. Schilder

P1

fa,2

P2

P3

P5

P6

P4

f b

f a

fc

f d

f a,1

f a,2

f b,1

fc

f d,1

f b,2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Open Universiteit Nederland

https://core.ac.uk/display/55535521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Acknowledgements

It took quite some years to finish this thesis. For this reason, the people involved have changed over the
years.

In this acknowledgement I would like to thank Maarten te Boekhorst, my first Open University advisor, for
his critical view on the problem definition and valuable feedback during the first phase of this thesis.

I also would like to thank professor Johan Jeuring for his supervision, guidance and help. Johan was
involved from the beginning until February 2008 when he became educational director at the University of
Utrecht.

At this moment, professor Lex Bijlsma and supervisor Bastiaan Heeren became involved. Although they
weren’t involved during the execution phase, I would like to thank Bastiaan for his detailed and valuable
comments on the draft and final versions of this thesis.

I am also grateful to my tutors from Thales, Hans Schurer and Theo Schilder, for their guidance and
support during the execution phase of this thesis.

Last, but not least, I would like to thank my family and friends who encouraged me to finish this last and
important part of my study.

 3

Summary

This thesis describes the progress that has been realized on the software synthesis of functional
specifications of real-time signal processing applications that run on multi-processor architectures. It has
been a challenge for years to bridge the gap between the abstract functional specification and the
hardware dependent target code in an automatic way. Although commercial solutions exist for a limited
set of hardware platforms, this thesis focuses on a generic approach.

The thesis defines a three-layered approach for the software synthesis process. The most abstract layer,
the top layer, exploits the data parallelism in the functional specification and it increases the function
granularity in the specification. The middle layer schedules the functions to a hardware architecture and
the bottom layer generates the target code for each individual processing node. At each lower layer more
hardware details are necessary. This thesis describes the implementation of the hardware independent
top layer of the software synthesis process.

In the first part of the thesis an appropriate specification language for signal processing applications is
defined. For this purpose, the Synchronous Data Flow (SDF) formalism, that is often used to describe
signal processing applications, is extended. In the extension data particles, which are communicated
between functions, are not considered atomic. Data particles can carry dimensions that specify the
memory organisation of data. The dimensions are used to explore the data parallelism in the functional
specification.
Latency and throughput are typical requirements of a real-time signal processing application that need to
be optimised. Characteristics that determine latency are modelled in an abstract, hardware independent
way. The characteristics are computation complexity and communication delay.

The next part of the thesis describes the design and implementation of a compiler that exploits the data
parallelism in the functional specification. The compiler finds function iteration in the functional
specification based on the data dimensions. Where appropriate, the compiler creates extra instances of
iterated functions and re-distributes the data to the functions accordingly. The result is that the granularity
of the functions in the specification will be increased and that latency will be reduced.

The results of the extended formalism are tested with a prototype of a Network Expansion Compiler and a
typical signal processing application. The results are successful to a certain extent. An accurate latency
reduction cannot be given, but the compiler can determine which functions contribute significantly to the
total network latency. These functions are to be dealt with first.
Further improvements should be carried out on the prototype of the compiler to become of practical use.

 4

Samenvatting

Deze scriptie beschrijft de voortgang die is geboekt bij de vertaling van functionele specificaties van real-
time signaalverwerkende applicaties naar een software-implementatie die op multi-processorarchitecturen
executeren. Dit proces wordt softwaresynthese genoemd. Het is al jaren een uitdaging om het gat tussen
de abstracte functionele specificatie en de hardware afhankelijke softwarecode automatisch te dichten.
Hoewel er voor een beperkt aantal hardware platformen commerciële oplossingen bestaan, richt deze
scriptie zich op een algemene aanpak.

De scriptie definieert een aanpak van drie lagen voor het softwaresynthese proces. De meest abstracte
laag, de bovenste laag, maakt gebruik van het in de specificatie aanwezige dataparallellisme en verhoogt
de granulariteit van de functies in de specificatie. De middelste laag beeldt de functies af op de hardware
architectuur en de onderste laag genereert de softwarecode voor elke afzonderlijke processor. Bij elke
laag is er meer kennis nodig van de hardware. De scriptie beschrijft de implementatie van de bovenste
laag van het softwaresynthese proces.

In het eerste gedeelte van de scriptie wordt een geschikte specificatietaal voor signaalverwerkende
applicaties gedefinieerd. Hiervoor wordt het Synchrone Data Flow formalisme, dat vaak wordt gebruikt om
dergelijke applicaties te specificeren, uitgebreid. In de uitbreiding worden datadeeltjes, die tussen de
functies worden gecommuniceerd, niet als ondeelbaar beschouwd. De datadeeltjes kunnen dimensies
hebben die de organisatie van de data in het geheugen specificeren. De dimensies worden gebruikt om
de aanwezige dataparallelliteit in de specificatie te ontdekken.
Doorlooptijd en verwerkingscapaciteit zijn typische eisen die aan een real-time signaalverwerkende
applicatie worden gesteld. De karakteristieken die de doorlooptijd bepalen, worden op een abstracte,
hardwareonafhankelijke wijze gemodelleerd. Deze karakteristieken zijn de rekencomplexiteit en de
vertraging veroorzaakt door communicatie.

Het tweede gedeelte van de scriptie beschrijft het ontwerp en implementatie van een compiler die de
dataparallelliteit in de specificatie uitbuit. De compiler zoekt naar iteratie van functies in de specificatie
gebaseerd op de data dimensies. De compiler creëert waar mogelijk extra instantiaties van functies die
herhaald worden en herverdeelt de data overeenkomstig naar de nieuwe en bestaande functies. Het
resultaat is dat de granulariteit van de functies in de specificatie wordt vergroot en dat de doorlooptijd
wordt verkleind.

De resultaten van de uitgebreide specificatietaal zijn getest met een prototype van een Network
Expansion Compiler en een typische signaalverwerkende applicatie. De resultaten zijn tot op zekere
hoogte succesvol. Een nauwkeurige reductie van de doorlooptijd kan niet worden gegeven, maar de
compiler is in staat om de functies te vinden die een significante bijdrage leveren aan de totale
doorlooptijd van het netwerk. Deze functies moeten als eerste worden aangepakt.
Het prototype van de compiler behoeft nog een aantal verbeteringen om praktisch bruikbaar te worden.

 5

Table of Contents
1. Introduction....................................... ... 8

1.1. Scope and context .. 8

1.2. Process context .. 11

1.3. Thesis’ structure.. 12

2. Definitions and background aspects 13

2.1. Introduction... 13

2.2. Level of parallelism ... 13

2.3. Architectures of high performance computers.. 13

2.4. Memory organization... 14

2.5. Network topologies ... 14

2.6. Software synthesis .. 16

2.7. Common parallel processing techniques ... 18

2.8. Expansion and scheduling .. 22

3. Problem definition 24

4. Hardware independent modelling formalism........... ... 25

4.1. Modelling aspects ... 25

4.2. Specification language of function networks .. 29

4.3. Execution rate... 36

4.4. Distributor and Aggregator functions ... 38

4.5. Summary .. 40

5. Network Expansion Compiler......................... ... 41

5.1. Global design Network Expansion Compiler .. 41

5.2. Parser... 41

5.3. Analyse network.. 43

5.4. Expand network .. 46

5.5. Generate output .. 47

5.6. Implementation ... 47

6. Results 48

6.1. Software synthesis framework... 48

6.2. Testing Network Expansion Compiler .. 49

6.3. Shortcomings prototype Network Expansion Compiler... 55

6.4. Scheduler and code generator .. 56

6.5. Visualisation.. 58

7. Conclusions and recommendations 59

7.1. Conclusions .. 59

7.2. Recommendations Network Expansion Compiler .. 60

7.3. General recommendations .. 61

 6

8. Abbreviations...................................... ... 62

9. References 63

APPENDIX A Specifications..................................... ... 64

A.1 Functional Network Specification in Backus-Naur For m ... 64

A.2 DOT-file radar application demo 66

A.3 ENDF radar application demo 68

A.4 FDF radar application demo 71

A.5 ADF radar application demo......................... ... 75

 7

Table of Figures
Figure 1-1 Sensor system .. 8

Figure 1-2 Mapping of functions to a processor architecture... 9

Figure 1-3 Layered method of software synthesis process ... 11

Figure 2-1 Network topologies.. 15

Figure 2-2 Data flow diagrams ... 17

Figure 2-3 Definition latency and throughput .. 19

Figure 2-4 Increased throughput with a pipeline ... 20

Figure 2-5 Task parallelism .. 21

Figure 2-6 Data parallelism .. 22

Figure 2-7 Mapping of SDF-network on a physical multiprocessor architecture................................... 23

Figure 4-1 DF-diagram of typical radar SP-application.. 25

Figure 4-2 Homogeneous SDF-diagram of typical radar SP-application.. 26

Figure 4-3 Multi-rate SDF-diagram of typical radar application.. 26

Figure 4-4 Multi-rate SDF-diagram with exploited data parallelism.. 27

Figure 4-5 Extended dataflow diagram of the typical radar SP-application .. 28

Figure 4-6 Distribution overlap ... 32

Figure 4-7 Function with scalar inputs and outputs ... 35

Figure 4-8 Function with multiple dimensions input and output ... 35

Figure 4-9 Execution rate of 1 .. 36

Figure 4-10 Execution rate larger than 1 ... 37

Figure 4-11 Inconsistent context ... 37

Figure 4-12 Exception on execution rate dimensions .. 37

Figure 4-13 Functional dataflow network without parallelisation .. 38

Figure 4-14 Distribution and aggregation .. 39

Figure 4-15 Path optimisation ... 40

Figure 5-1 Processing flow Network Expansion Compiler ... 41

Figure 5-2 Class diagram Network Expansion Compiler ... 42

Figure 5-3 Path selection ... 43

Figure 6-1 Software synthesis framework... 48

Figure 6-2 Unprocessed specification of radar demo application .. 50

Figure 6-3 Processed radar demo application reference (without expansion)...................................... 51

Figure 6-4 Expanded radar demo application ... 54

Figure 6-5 Expanded function network allocated to hexagonal processing architecture....................... 57

Figure 6-6 Alternative specification dimension parameters (1) .. 58

Figure 6-7 Alternative specification dimension parameters (2) .. 58

Figure 9-1 Hexagonal processor architecture ... 75

 8

1. Introduction

1.1. Scope and context

The Thales Business Unit “Surface Radar” (SR) develops and produces radar and optronic sensor
systems, mainly for military customers. These sensor systems are used for surveillance (object search) or
fire control (target engagement) purposes.

Figure 1-1 shows the architecture of a modern (pulsed) radar system and is explained below.

Figure 1-1 Sensor system

The Antenna Control System (ACS) sends control & synchronisation data to the Radar Signal Generator
(RSG). The control & synchronisation data defines the exact waveform and frequency of the radar pulses
to be generated by the RSG and determines the exact timing when the waveform is to be transmitted. The
pulse frequency, the pulse repetition frequency and the number of pulses are import parameters of the
control data. The transmitter (Tx) amplifies the waveform signal and sends the Radio Frequency (RF)
energy to the antenna aperture. The antenna aperture has the right geometry to transfer RF-energy into
free space. As soon as the amplified waveform has been transmitted, the radar system will switch to the
listening mode.

When the RF-energy encounters an object, a part of the RF-energy is reflected back to the antenna as an
echo signal. The reflected energy is routed to the receiver (Rx) where the echo signal is transformed to a
lower frequency and sampled by an Analogue to Digital Converter (ADC). The ADC in the receiver
generates a digital video stream that is processed by the Signal Processing (SP). The SP reduces the
video stream significantly to detections (hits). Hits are detections that have (almost) equal bearing, but are
ambiguous in range and speed. The Data Processing (DP) reduces the ambiguous hits to plots (clusters
of hits with identical range, bearing and elevation). Plots are correlated with previous transmissions in the
same direction and finally, stable plot and track data (plots and tracks) are transferred to the Sensor
Management (SM). In most cases the SM acts as a gateway to the Command & Control (C&C) system.
C&C is not a part of the radar system. It provides all kind of tasks and platform data to the sensor. Tracks
are reported back to the C&C system.

Within the Business Unit Surface Radar, the Technical Unit Processing (TUP) is responsible for the
implementation of the Signal Processing, Data Processing and Sensor Management, as indicated in
Figure 1-1. “Implementation” stands for the definition of processing architectures and the development of
hardware and software functions to implement the functional specifications.

When we zoom in on the Signal Processing, a functional model often specifies the signal processing
application. The number of functions in the functional model is relatively small and the data dependencies

Scope TUP

Transmitted
signal

Tx

Echo signal

control &
sy nchronisation

ref erence signal control &
sy nchronisation

control

control

DP SM

digital
video

hits plots &
tracks

C&C

Rx

wav ef orm

echo signal

ACS

SP

RSG

RF-energy

control

tracks
tasks &
platf orm

data

Antenna

 9

between the functions are rather straightforward. The challenge though is to process data streams up to
hundreds of MB/s and produce hard real-time results within tens of milliseconds to the Data Processing.
Although an optronic sensor system has a different sensor architecture than a radar, Signal Processing is
part of this architecture as well and faces similar challenges.

Hard real-time signal applications demand powerful parallel processing architectures and may be
implemented by dedicated programmable hardware, multiprocessor architectures, or a combination of
both.

Processing architectures built with (programmable) hardware devices like Application Specific Integrated
Circuits (ASIC’s) or Field Programmable Gate Arrays (FPGA’s) offer the ability to develop application
dependent processing architectures, i.e. the hardware architecture is mapped to the application’s
functions. In some cases this is inevitable, e.g. when a generic architecture is not feasible from a technical
or economical point of view.

With generic multi processor architectures a mapping must be created between the functions and the
processor architecture as illustrated in Figure 1-2.

Figure 1-2 Mapping of functions to a processor arch itecture

As can be seen from the rather simple example in Figure 1-2, the granularity from the function network is
smaller than the granularity of the processor architecture. With real-time signal processing applications,
this is usually the case. The hardware architecture cannot be used in an optimal way, unless the
granularity of the network is increased. This may be possible if the granularity of the data dependencies is
further exploited.

Finally, application source code has to be developed and target code has to be allocated to one of the
processors. The process of allocating target code to the processing architecture is called scheduling. The
schedule has to be optimised with respect to the real-time requirements of the application. The whole
process of transferring the functional specifications or models into target code is called software synthesis.

If one of the elements in the software synthesis process is changed, the whole process has to be
repeated. For a long time the software synthesis has been a manual process. It is a fact that the hardware
of the multiprocessor hardware evolves more rapidly than the functional specification. Hence, software
synthesis has to be performed each time the hardware architecture changes.

As manual software synthesis of the functional specifications is time consuming and a major cost driver,
the Technical Unit Processing (TUP) works on a method to automate the software synthesis process. A
layered approach seems to be the best approach to decouple the rapid hardware evolvement from the
functional specifications.

The method that has been chosen has three layers: a top layer exploits the parallelism in the functional
specification and increases the granularity of the function network, the middle layer executes the
scheduling and the bottom layer is responsible for the target code generation.

fb

fa

fc

fd

P1

fa,2

P2 P3

P5 P6 P4

?

functions processor architecture

 10

Progress has already been made on target code generation and scheduling where the number of
functions is larger than the number of processors. The Thales tool MODERN (Modelling and Design
Environment for Relational Networks) was originally developed to support the method, but a commercial
tool has replaced it. The commercial tool, however, does not cover the top layer.

Therefore, this thesis focuses on the top layer, where the parallelism of the functional specification will be
exploited in order to increase the granularity of the function network, i.e. the functional specification is pre-
processed for the scheduler.

Functional models of signal processing applications are often specified by the “Synchronous Data Flow”
(SDF) formalism. The formalism is further explained in 2.6.2, but, in short, it defines a network of nodes
connected by edges. The nodes represent the functions in the network and the edges the data
dependencies between the functions. This thesis extends the data flow formalism to further exploit the
data parallelism and to enable the generation of intermediate specifications or models as input for the
middle layer.

To summarize: the top layer pre-processes the functional specification before scheduling, hence the title
of the thesis: “A Pre-Processing Method For The Software Synthesis Of Synchronous Data Flow
Networks”.

 11

1.2. Process context

As described in the previous paragraph, this thesis deals with the top layer of the software synthesis
process of real-time signal processing applications on multiprocessor architectures.

Figure 1-3 shows the complete process of the software synthesis in relation to the thesis’ scope.

Figure 1-3 Layered method of software synthesis pro cess

For the sake of completeness and as background information the complete process is described
hereafter.

The top layer deals with the pre-processing of the functional specification, the Function Network. The
Function Network specifies a network of functions in an extended data flow notation that will be described
in chapter 4. Each function in the network has a Function Specification and may be implemented (coded)
for different target processors.

Code analysis or target benchmarking determines the scheduling metrics (e.g. number of operations) and
are stored in a Function Code & Metrics Library. The function specifications are used in every layer of the
process. In particular, the input and output specification are relevant for the pre-processing, as will
become clear in chapter 4 and 5.

The Architecture Description specifies the characteristics of the hardware architecture: the topology of
processors and memory, the processing capabilities of individual processors, the interface capabilities, the
amount of memory, etc.

bottom layer

top layer

middle layer

Scope
Thesis

Function Network Function
Specif ications

Expanded
Function Network

Pre-Processing
(increase granularity)

Coding and
Benchmarking

Function Code
& Metrics Library

Scheduling
and Allocation

Allocation
Description

Metrics Architecture
Description

Function Code

Target Code

Target Code
Generation

work product

process activ ity

legend

 12

In the middle layer, the Function Network specification, the Architecture Description and the Function
Code & Metrics Library are used as input for the Scheduling and Allocation process. The output of this
process is an Allocation Description that specifies which function is allocated to which node in the
processing architecture.

In the bottom layer, the Target Code Generation process takes the Allocation Description and the
Function Code Library as input and generates Target Code for each processor.

At the end of the software syntheses the real-time requirements are verified. If they are not met, one or
more work products in the process must be modified. When for example the pre-processor has exploited
the maximum degree of parallelism in the function network, the implementation of the functions or the
hardware architecture must be adjusted.

1.3. Thesis’ structure

Now the scope and context are clear, the structure of the rest of this thesis is defined as follows:

As the thesis’ scope is rather specialized, chapter 2 will define and explain some relevant background
aspects in order to better understand the problem description.

In chapter 3 the problem description of this thesis is defined.

In chapter 4 a modelling formalism is defined to describe functional networks in a formal way. In fact, it is
an extension of the Synchronous Data Flow formalism described in paragraph 2.6.2.The formalism is
needed for the implementation of a Network Expansion Compiler (NEC) that increases the granularity of
the network.

Chapter 5 discusses the design of the NEC that was developed to increase the granularity of the
functional network. Where applicable, the design choices will be explained.

In chapter 6 the obtained (test) results are presented and discussed.

In chapter 7 the conclusions and recommendations for further research and NEC improvements are
presented.

 13

2. Definitions and background aspects

2.1. Introduction

In this chapter relevant aspects are addressed that were studied during a literature survey and they
should help the reader to understand the scope of the thesis’ problem that is defined in chapter 3.

First, the level op level of parallelism, or the granularity of parallel tasks, will be addressed in paragraph
2.2.

Although scheduling and the hardware structure of the computer system are outside the scope of this
thesis, some background information is given on processor architectures (paragraph 2.3), memory
organisations (paragraph 2.4) and processor network topologies (paragraph 2.5). It helps to understand
the context of the scheduling aspects as explained in 2.8.

A lot of literature has been published on software synthesis of signal processing applications. Some
programming standards have evolved and these are addressed shortly in 2.6.1. The data flow formalism
has been used quite often in the literature for the software synthesis of signal processing applications. The
data flow formalism will be explained in 2.6.2.

In paragraph 2.7 some common techniques to increase throughput and reduce latency are explained.

2.2. Level of parallelism

According to [1], the performance of a computer system is defined by three factors. The time to execute a
program (T) is the product of the number of instructions to execute (ni), the average number of clock
cycles required per instruction (CPI), and the clock cycle time (tc):

T = ni x CPI x tc

This thesis focuses on lowering the average number of clock cycles by exploiting program level
parallelism. A lower average number of clock cycles helps to decrease latency. With program level
parallelism a single program is broken down into parts where independent sections (tasks) and loop
iterations are candidates for exploiting parallelism. In [1] other levels of parallelism are classified as job
level parallelism, instruction level parallelism and arithmetic and bit level parallelism.

A concept related to the level of parallelism is the granularity of parallel tasks or operations. A large grain
system is one in which the operations that run in parallel are fairly large, in the order of entire programs.
Small grain parallel systems divide programs into very small pieces, in some cases only a few instructions.
Task level parallelism can be considered as medium grain parallelism and determines the level in this
thesis.

2.3. Architectures of high performance computers

The hardware architecture determines to a large extent the performance of a computer system. The
taxonomy of Flynn, as defined in [3], is often used for the classification of high-performance computers.
The classification is based on the way of manipulating of instruction and data streams and comprises four
main architectural classes: SISD, SIMD, MISD and MIMD machines. Van der Steen and Dongarra [3]
summarize Flynn’s taxonomy in the following way:

• SISD machines: Single Instruction Single Data stream machines are the conventional systems that
contain one CPU (Central Processing Unit) and hence can accommodate one instruction stream that
is executed serially.

• SIMD machines: Single Instruction Multiple Data stream machines often have a large number of
processing units that all may execute the same instruction on many data items in parallel. Vector or
array processors may be considered as a subclass of SIMD machines. They act on arrays of similar
data using specially structured CPUs. Today, Graphical Processing Units (GPU’s) are a good
example of SIMD machines

• MISD machines: Multiple Instruction Single Data stream machines act with multiple instructions on a
single stream of data. These kinds of machines are sometimes used in fault tolerance systems.

 14

• MIMD machines: Multiple Instruction Multiple Data stream machines execute several instruction
streams in parallel on different data. The difference with the multi-processor SISD machines lies in the
fact that instructions and data are related because they represent different parts of the same task to
be executed. There are a large variety of MIMD systems and especially in this class the Flynn
taxonomy proves to be not fully adequate for the classification of systems. In the MIMD category, all
arrays of processors are lumped together regardless of how they are connected and how they view
memory. Since these characteristics can have a dramatic effect on performance, it would be desirable
if the taxonomy reflected those differences.

Other types of taxonomies have been defined ([5], [6] and [7]), but no other has become as popular as the
Flynn taxonomy.

2.4. Memory organization

The memory organization of multiprocessor architectures is another relevant aspect of parallel systems.
According to [3], two memory organisations can be made: shared memory and distributed memory.

2.4.1. Shared memory

Shared memory systems have multiple CPU’s all of which share the same address space. This means
that the knowledge of where data is stored is of no concern to the user as there is only one memory
accessed by all CPU’s on an equal basis. The physical connections are quite simple. Most bus structures
allow an arbitrary (but not too large) number of devices to communicate over the bus. The problem with
shared memory systems is that processors must contend for access to the bus. Local cache memory at
each CPU can improve performance, but it also introduces an extra difficulty known as the cache
coherence problem.
Shared memory systems can be either SIMD or MIMD.

2.4.2. Distributed memory
In the case of distributed memory systems each CPU has its own associated memory. The CPU’s are
connected by some network and may exchange data between their respective memories when required.
In contrast to shared memory machines the user must be aware of the location of the data in the local
memories and will have to move or distribute these data explicitly when needed.
Distributed memory systems have several benefits compared to shared memory systems. First, there is
no bus or switch contention. Each processor can utilize the full bandwidth to its own local memory without
interference from other processors. Second, the lack of a common bus means there is no inherent limit to
the number of processors; the size of the system is now constrained only by the network used to connect
processors to each other. Third, there are no cache coherence problems. Each processor is in charge of
its own data, and it does not have to worry about putting copies of it in its own local cache and having
another processor reference the original.

The major drawback in the distributed memory design is that interprocessor communication is more
difficult. If a processor requires data from another processor's memory, it must exchange messages with
the other processor. This introduces two sources of overhead: it takes time to construct and send a
message from one processor to another, and a receiving processor must be interrupted in order to deal
with messages from other processors.

Again, distributed memory systems may be either SIMD or MIMD. Distributed memory systems exhibit a
large variety in their topology. A few examples will be discussed in the next paragraph.

2.5. Network topologies

In this paragraph some network topologies are described.

A major consideration in the design of parallel systems is the set of pathways over which the processors,
memories, and switches communicate with each other. These connections define the interconnection
network, or topology, of the machine. Besides the performance of the processors, memory and switches,
the topology has a major influence on the scheduling and mapping of the signal processing application
onto the network of the computer system. From [1] the most relevant aspects will be summarized.

The following discussion of the properties of interconnection networks is based on a collection of nodes
that communicate via links. In an actual system the nodes can be processors, memories, or switches. Two

 15

nodes are neighbours if there is a link connecting them. Figure 2-1 shows a few examples of network
topologies: ring, fully connected, hypercube, star, tree, mesh, crossbar switch and banyan switch.

Figure 2-1 Network topologies

The degree of a node is defined to be the number of its neighbours. In a ring topology each node is
connected to only two other nodes, while each node in a fully connected network is linked to every other
node. In practice the degree of a topology has an effect on cost, since the more links a node has the more
logic it takes to implement the connections.

When a node is not connected to every other node, messages may have to go through intervening nodes
to reach their final destination. The diameter of a network is the longest path between any two nodes.
Again the ring and fully connected network show two extremes. A ring of n nodes has diameter n/2, but a
fully connected network has a fixed diameter (1) no matter how many nodes there are.

The diameter of a ring grows as more nodes are added, but the diameter of a fully connected network
remains the same. On the other hand, a ring can expand indefinitely without changing the degree, but
each time a new node is added to a fully connected network a link has to be added to each existing node.
Scalability refers to the increase in the complexity of communication as more nodes are added. In a highly
scalable topology more nodes can be added without severely increasing the amount of logic required to
implement the topology and without increasing the diameter.

ring (n=6)
diameter = n/2

degree = 2

f ully connected
(n = 6)

diameter = 1
degree = n - 1

hy percube (n=8)
diameter = log2n = 3
degree = log2n = 3

star (n=5)
diameter = 2

degree = n - 1 (star node) or 1

tree (n = 7)
diameter = 4
degree = v ar.

mesh/torus
(n=9)

diameter = 3
degree = 4

crossbar switch bany an
switch

legend

processor node

memory module

switch element

 16

A scalable topology that has been used in several parallel processors is the hypercube. A communication
link between two nodes defines a 1-dimensional “cube”. A square with four nodes is a 2-dimensional
cube, and a 3D cube has eight nodes. This pattern reveals a rule for constructing an n-dimensional cube:
begin with a (n -1)-dimensional cube, make an identical copy, and add links from each node in the original
to the corresponding node in the copy. Doubling the number of nodes in a hypercube increases the
degree by only 1 link per node, and likewise increases the diameter by only 1.

Another desirable property of interconnection networks is node symmetry. A node symmetric network has
no distinguished node, that is, the “view” of the rest of the network is the same from any node. Rings, fully
connected networks, and hypercubes are all node symmetric. Tree and star topologies are not. A tree
topology has three different types of nodes, namely a root node, interior nodes, and leaf nodes, each with
a different degree. A star topology has a distinguished node in the centre that is connected to every other
node. When a topology is node asymmetric a distinguished node can become a communications
bottleneck.

Another common topology is a planar (2D) mesh. This network is basically a matrix of nodes, each with
connections to its nearest neighbours. Meshes usually have “wraparound” connections, e.g. the node at
the top of the grid has an “up” link that connects to the node at the bottom of the grid. A mesh topology
with wraparound connections is often referred to as a torus.

The two final interconnection networks discussed in this section are examples of multistage networks.
Systems built with these topologies have processors on one edge of the network, memories or processors
on another edge, and a series of switching elements at the interior nodes. In order to send information
from one edge to another, the interior switches are configured to form a path that connects nodes on the
edges. The information then goes from the sending node, through one or more switches, and out to the
receiving node. The size and number of interior nodes contributes to the path length for each
communication, and there is often a “set-up time” involved when a message arrives at an interior node
and the switch decides how to configure itself in order to pass the message through.

The first example of a multistage network is the crossbar switch. In a typical application there will be a
column of processors on one side and a row of memories on the other side. The switch configures itself
dynamically to connect a processor to a memory module. As long as each processor wants to
communicate with a different memory there will be no contention. If two or more processors need to
access the same memory, however, one will be blocked until the switch reconfigures itself. A crossbar has
a short diameter - information needs to pass through only one switching element on a path from one edge
to another - but poor scalability. If there are n processors and a like number of memories there are n2
interior switches. Adding another processor and memory means adding another 2n - 1 interior nodes.

A banyan network is a multistage switching network that has the same number of inputs as outputs and
interior nodes that are m x m switches. Examples of banyan networks are butterfly networks and omega
networks, which are both built from 2 x 2 switches. The diameter of a butterfly is log2 n, where n is the
number of inputs and outputs, and there are O(n x log2 n) switches, so these networks scale more
efficiently than a crossbar.

2.6. Software synthesis

The process of transferring a functional specification, model or algorithm of a signal processing application
into code that can be executed by the computer system is called software synthesis.

This process may take several intermediate steps from instruction level to functional specification level
that may be executed manually or automatically. Assemblers and compilers perform the lowest level steps
of the software synthesis. In general, the lower level steps are automated first. With parallel systems an
extra difficulty is allocating parts of the code to different processing units.

On instruction level and to a lesser extent on program level compilers already exist to automatically
allocate code to a specific processing unit. High Performance FORTRAN and Data Parallel C are
examples of programming languages that support parallelism at task level, i.e. independent program
sections.

To perform the software synthesis of a real-time application automatically it is crucial that the behaviour of
the application can be defined in a formal way. A model of computation is a formalism that exactly
specifies the behaviour of an application. The University of California at Berkeley has studied a lot of
models (Process Networks, Discrete Event, Finite State Machine, Synchronous/Reactive, etc.) and has

 17

developed a system engineering / rapid prototyping tool that supports these models: Ptolemy [8]. Data
Flow is a sub formalism of Process Networks and is very appropriate to express parallelism and will be
discussed in paragraph 2.6.2.

2.6.1. Standards

There are not many standards for programming parallel architectures. Over the last decade, parallel
programming standards like Message Passing Interface (MPI) [9] and OpenMP [10] have evolved to
support the portability of parallel programs.

MPI is intended for distributed memory architectures and is a library of functions and macros that can be
used in FORTRAN, C, and C++. MPI incorporates a limited set of communication primitives (e.g.
MPI_Send, MPI_Receive) and a set of reduction operations (MPI_Reduce, e.g. sum, product, min, max,
logical or/and, bit wise or/and, etc.). The real-time extension of MPI, MPI-RT, seems a good candidate for
the software synthesis of real-time signal processing applications.

OpenMP (MP stands for Multi Processing) is an API for writing parallel programs with portable shared
memory parallelism and makes it easy to write portable multi-threaded programs in FORTRAN, C and
C++. OpenMP is a set of compiler directives and library routines that, just like MPI, must be supported by
the target platform.

Software synthesis of signal processing applications running on specific hardware architecture is
performed automatically if the manufacturer of the architecture implements the MPI or OpenMP libraries.
This is a tremendous exercise and will only be done by vendors of processing architectures.

Unfortunately, a commercial solution cannot always be used for different reasons. For example the
heterogeneity with other hardware may be too limited or the harsh environment prohibits using a
commercial solution. Sometimes a company doesn’t want to be dependent on a vendor specific solution
or cannot afford the hardware costs.

In this case alternatives have to be developed, like the subject of this thesis.

2.6.2. Data flow
Data flow (DF) is a formalism that describes a network of parallel processes or functions that
communicate through unlimited First In First Out (FIFO)-buffers. A FIFO is a buffer where a message that
is received first, is handled first. Data flow is a light synchronized parallel model with no notion of global
time. The sequence of processes in the network is merely determined by data dependencies. It is an
appropriate formalism to describe signal processing applications.

A data flow application can be represented by a program where data is transferred from one function to
another by means of function calls. No control mechanisms (e.g. interrupts) are involved.

Data flow models are expressed in data flow diagrams, as shown in Figure 2-2.

Figure 2-2 Data flow diagrams

A dataflow diagram contains actors that are connected by edges. The actors represent the (parallel)
processes. The edges represent the FIFO-buffers where the arrow represents the direction of the data
flow.

f b

f a

fc

f d

f b

f a

fc

f d

1

2

1

4 1

1

2

1

regular DF sy nchronous DF

 18

Data particles or tokens are communicated from one actor to another. When sufficient input tokens are
present in the FIFO-buffers an actor “ fires”. At this moment, the input tokens are consumed and output
tokens are produced. In case an actor has no input edges, an actor fires spontaneously.

At the regular dataflow formalism the number of consumed and produced tokens is variable. Without
further specification, the token buffers are initially empty. Initial buffer tokens are often used to model
delay in the network.

Synchronous Data Flow (SDF) is a further specialization of regular data flow [11]. At each network
iteration the number of consumed and produced tokens at each actor is constant. An iteration of the
network is defined as the minimum number of firings (greater than zero) after which the initial state of the
buffers in the network is reached again.

When all tokens produced and consumed in the network are equal to one (or normalized to one), all
actors in the network have an equal firing rate. This particular case is referred to as homogeneous SDF.
When actors have different firing rates, the network is said to be multi-rate SDF.

Consider the right example in Figure 2-2. The numbers at the base of the arrow represent the number of
tokens produced at each firing, the numbers at the head of the arrow represent the number of tokens
consumed at each firing. With this simple example, it can easily be verified that at each network iteration
function fa fires four times, function fb fires two times and function fc and fd fire one time. All the buffers
have returned in their initial state after the network iteration.

When no network iteration exists, the application cannot be implemented with finite resources. Suppose fd
consumes 3 instead of 2 tokens at the upper edge. The buffer of the lower edge of fd will never return in its
initial state and will increase forever. Because of memory constraints on the FIFO-buffer, this situation is
not feasible.

Checking the existence of a network iteration in a SDF-network is decidable according to [12]. For this
reason the SDF-graph is represented by a matrix similar to the incidence matrix associated with directed
graphs in the graph theory. It is constructed by numbering each node and arc and assigning a column to
each node and a row to each arc. The (i,j)th entry in the matrix is the amount of data produced by node j
on arc i each time it is invoked. If node j consumes data from arc i, the number is negative, and if it is not
connected to arc i, then the number is zero.

If the functional names of the actors are allocated to a column (fa =1; fb = 2; fc = 3; fd = 4) and the arcs are
allocated to a row (fa -> fb = 1; fa -> fc = 2; fb -> fd = 3; fc -> fd = 4), the matrix for the SDF-graph in Figure
2-2 is constructed as follows:

1 -2 0 0
1 0 -4 0
0 1 0 -2
0 0 1 -1

Given the existence of an iteration of an SDF-application we are able to determine a schedule how to
distribute the processes across a multi-processor architecture. The schedule can be determined a priori,
i.e. at compile time.

According to [1], many scheduling algorithms for SDF-applications exist. As scheduling is a NP-hard
problem heuristics are applied to find a good schedule.

2.7. Common parallel processing techniques

In this paragraph some common parallel processing techniques are discussed that are used to increase
throughput and decrease latency: pipelines, task parallelism and data parallelism. These techniques can
be applied at all kinds of parallel levels as defined in 2.2.

First, the definition of iteration, iteration time, throughput and latency is given.

2.7.1. Latency and throughput
Consider an endlessly iterated program with four functions, fa to fd, in Figure 2-3.The program processes a
continuous data stream and is executed on a processing architecture with 6 processors (P1 to P6). The
lines between the processors represent the communication links.

In this first situation, the program is executed on a single processing unit (P1). Each program execution is
called an iteration.

 19

In this example we assume that the data particles to be consumed by fa are produced equidistant in time.
The iteration time of each function is depicted in the simple Gantt chart below. The colours of the
execution time correspond with the function colours. The width of a square box is a single time unit. The
execution time of function fa and fb is 2 units; the execution time of function fc and fd is 1 unit. The grey
boxes represent the (time equidistant) input data.

Figure 2-3 Definition latency and throughput

Latency (L) is defined as the time it takes to finish a single execution from the moment the input data is
available until output data is produced.

Throughput (T) is defined as the number of iterations per time unit.

In the example in Figure 2-3 the throughput is equal to 1/6 and latency is equal to 6. From the Gantt chart
we can clearly see that the usage of the processing resources is far from optimal.

2.7.2. Pipeline

Pipelines are used to increase throughput if resources are available. Latency is not reduced with a
pipeline. A common analogy for a pipeline is the assembly line used in manufacturing. The end goal is to
increase productivity - the number of instructions executed per second or the number of cars built per day
- by dividing a complex operation into pieces that can be performed in parallel. Separate “workers”
implement successive steps along the assembly line, and when an item finishes one step it is passed
down the line to the next step.

According to [1], the following requirements must be satisfied in a pipelined system:

• A system is a candidate for pipelined implementation if it repeatedly executes a basic function.

• A basic function must be divisible into independent stages that have minimal overlap.

• The complexity of the stages should be roughly similar

The example from Figure 2-3 fulfils the above-mentioned criteria. In the second situation, the program
from Figure 2-3 is split up into 3 independent sequential stages and distributed across 3 processors. The

P1 P2

P5 P6

f a

f b

fc

f d

L = 6

T = 1/6

P1

P2

data

P3

P4

P5

P6

P3

P4

 20

mapping and the results are shown in Figure 2-4. In the corresponding Gantt chart we can see that in this
second situation the throughput has doubled (T = 1/4), but that the total latency has not decreased (L = 6).

Figure 2-4 Increased throughput with a pipeline

2.7.3. Task parallelism

Task parallelism is defined as tasks or functions that operate on different data sets. The data sets are kept
intact and each dataset is processed by a unique task. In the third situation, consider the same program
as in Figure 2-4. In Figure 2-5 function fc is mapped on processor P5.

The Gantt chart of Figure 2-5 shows that, in addition to the pipeline, function fb and fc are performed in
parallel. When communication overhead is neglected (which is normally not the case) it can be verified
that latency in this third situation has been reduced (L = 5) and that throughput has been quadrupled (T =
1/2) compared to the first situation.

P1 P2

P5 P6

P3

P4

f a

f b

fc

f d

L = 6

T = 1/4

P1

P2

data

P3

P4

P5

P6

 21

Figure 2-5 Task parallelism

2.7.4. Data Parallelism

Data parallelism is defined as identical functions that operate on different parts of the same data set. In
Figure 2-6 we assume that the data is not atomic and we arbitrarily choose function fa and fb to be
instantiated twice. In this last situation, each instantiation is mapped on a different processor. Half of the
original data that was sent to fa is distributed to fa,1 and the other half to fa,2. The same distribution is
applicable for function fb. The processing time for fa,1, fa,2, fb,1 and fb,2 has also halved.

P1 P2

P5 P6

P3

P4

f a f b

fc

f d

L = 5

T = 1/2

P1

P2

data

P3

P4

P5

P6

 22

Figure 2-6 Data parallelism

As one can verify in the Gantt chart, the processing resources are used to their maximum. Of course, the
distribution and aggregation of data is not costless and will introduce overhead. Data has to be routed
through the architecture. When the communication overhead is neglected, it can be verified that the
latency has been further reduced (L = 3), and that throughput has been increased (T = 1).

In program code data parallelism can often be discovered in iteration loops. In nested iteration loops the
data parallelism can be even greater.

2.8. Expansion and scheduling

The scope of this thesis is in the field of real-time multiprocessor signal processing applications. Typical
for these kinds of applications is that the number of functions is relatively small compared to the number of
processors in the architecture, as opposed to data processing applications where the number of functions
is relatively large compared to the number of processors in the architecture.

We know that every function demands processing and communication bandwidth. To achieve a solution
with minimum latency and maximum throughput we generally try to use all processors in the architecture.

In the case that more functions than processors exists, functions must be clustered to achieve a solution
with respect to maximum network throughput and minimum network latency. Different clustering
algorithms exist to realize this. Earlier research at Thales has been performed on this subject and is
described in [1].

In the case that less functions than processors exists, the granularity of the function network can be raised
if data parallelism exists. In this situation multiple instances of a function are created, where each
instantiation of a function operates on a different part of the data set. Functions that expose data
parallelism and contribute the largest part of the latency should be selected first. The granularity of the
function network is to be increased to the granularity of the processor architecture. In this thesis the
increase of function network granularity is called expanding.

P1 P2

P5 P6

P3

P4

f a,1 f b,1

f a,2

L = 3

T = 1

P1

P2

data

P3

P4

P5

P6

fc

f d,1

f b,2

 23

The concept of clustering versus expanding is visualised in Figure 2-7: a simple functional network with
four non-identical functions is mapped on a processor-architecture with respectively two and six
processors. In the first situation functions are clustered and scheduled on the two processors. In the
second situation, the functional network is first expanded by duplicating function fa and fd and then
scheduled on six processors.

Figure 2-7 Mapping of SDF-network on a physical mul tiprocessor architecture

In fact, network expansion is all about exploiting the data parallelism in the function network. The
scheduler exploits the task parallelism to reduce latency and can create pipelines to increase throughput.

Of course, expansion is not without penalties. Data must be routed to and from each processor. Input data
of function fa must be distributed to processor P1 and P2, and output data of function fa must be
aggregated and sent to processor P3 and P4, etc. The extra overhead and scalability of the distribution
and aggregation depends on the memory architecture of the processor architecture.

f b

f a

fc

f d

f a,1

f a,2

f b,1 f d

P1 P2

f a

f b

fc

f d

Expanding

Clustering and
scheduling

Scheduling

P1 P3 P5

P4 P2 P6

f a,1

f a,2

f b,1

fc

f d

fc

f b,2

f b,2

 24

3. Problem definition

In chapter 1 of this thesis a three-layered method is defined for the software synthesis of functional
specifications of signal processing applications for multiprocessor architectures. The top layer will exploit
the data parallelism in the functional specification, the middle layer will schedule the expanded function
network and the bottom layer will generate the target code for the hardware architecture.

The main goal of this thesis is to implement the ha rdware independent top layer, the pre-processor
of the scheduler.

In paragraph 2.6.2 it was explained that data flow, and especially synchronous data flow, is an appropriate
formalism to specify signal processing applications. Task parallelism can be expressed very well and to
some extend data parallelism can be explored in the SDF-diagram, as will be explained in paragraph 4.1.
As data particles are considered atomic, nothing is said about the dimensions and memory organisation of
the data. When this knowledge is taken into account, it is expected that data parallelism can be further
exploited.

Another aspect is the modelling of characteristics that determine the latency in signal processing
applications: the number of operations to be performed by each function and communication delay,
especially with distributed memory organisations.

Taking the modelling aspects mentioned above into account (data dimensions, number of operations) the
SDF-formalism is not detailed enough and therefore, a formalism in the form of a specification language
will be defined in this thesis based on the synchronous data flow formalism.

Thesis questions to be answered are:

Q1 How should the nodes and data in the extended SDF-formalism be modelled or specified?

Q2 How should latency parameters like number of operations and communication delay be modelled
without hardware knowledge?

Q3 How will the top layer be tested?

Q4 How can task parallelism be exploited in the most optimal way for the middle layer, the scheduler?
In other words: how can the best granularity of the functional model be found?

Q5 How practical is the approach of the hardware independent top layer?

Questions Q1 and Q2 will be investigated in chapter 4 - Hardware independent modelling formalism.
The design of the compiler will be discussed in chapter 5 - Network Expansion Compiler.
Questions Q3 and Q4 will be considered in chapter 6 - Results.
Question Q5 will be answered in chapter 7 - Conclusions and recommendations.

 25

4. Hardware independent modelling formalism

In this chapter a hardware independent modelling formalism will be defined to specify synchronous
dataflow (SDF) applications. The major difference with the standard SDF-formalism is the modelling of
data dimensions to exploit the data parallelism in the function network. A specification language will be
defined to specify the functional models and a graphical notation is defined for visualisation purposes.

The specification language shows a lot of commonality with regular imperative languages, but the
expressive power of this specification language is limited to SDF-applications. In fact, the language
supports merely the assignment statements and iteration loops. Conditional statements (if-else, while,
etc.) are not supported.
The reason for the definition of a specific language is that the data dimension parameters will be used to
exploit the data parallelism in the model to raise the function granularity. No other languages support the
dimension parameters.

In paragraph 4.1 a global overview on the modelling aspects is given by means of a typical radar SP-
application. The major differences with the SDF-formalism will be explained.
Paragraph 4.2 deals with the details of the specification language. Each section of the specification
language will be explained.
Paragraph 4.3 explains the rules for the execution rate of the functions in the network.
The last paragraph of this chapter elaborates on the distribution and aggregation functions when the
network is expanded.

4.1. Modelling aspects

The data flow formalism (DF) can be used to describe small grain programs (e.g. instruction level) up to
large grain programs (e.g. job level). In this thesis we consider the granularity at task level (medium
granularity), i.e. the program is broken down into independent sections, functions or tasks that
communicate with each other through data paths.

Without a global notion of time, DF can express precedence of functions very well. Another strong feature
of DF is the expression of task parallelism (operations that are executed on different data sets).

In DF nothing is said about the dimensions or memory organisation of the data particles that flow along
the data paths. For small grain DF it may be sufficient to consider the data particles as atomic
(undividable), but for medium and large grain DF this is often not the case.

In Synchronous Data Flow (SDF) diagrams data parallelism can be exploited to some extend and this will
be discussed next.

Consider a typical radar signal processing (SP) application in Figure 4-1 that will be used throughout this
thesis. The application is specified in a DF diagram. The triangles represent the input sources and output
sinks.

Figure 4-1 DF-diagram of typical radar SP-applicati on

The application itself will not be discussed in detail here. For the reader it is sufficient to have a global
notion of the radar video data and what kind of operations the functions perform on the radar video data.

The radar video in this example is a continuous data stream of burst data, a two-dimensional matrix that
contains the sampled echoes of the radar transmissions in a particular direction. Multiple transmissions
(called sweeps) are sent in this particular direction and the echo of each transmission is sampled during a
certain time. The samples in the sweep are range cells that represent a certain range in distance. The first

WV TD

MN

FFT LM DT

 26

range cell in a sweep represents the nearest distance to the radar. To say something about the speed of
possible objects, the frequency spectrum across the range cells with identical range in the burst data is
analysed.

The actors in the diagram have the following functions:

• TC (Turn Corner) : transposes the range and sweep data in memory. All range cells with the same
range in the burst data will be written consecutively in memory.

• WV (Weigh Video) : performs a weighing function on the range data

• FFT (Fast Fourier Transformation) : performs a FFT function on the identical range data

• LM (Logarithmic Modulus) : Calculates the logarithmic modulus (logmod) of the frequency bins
generated by the FFT-function.

• MN (Mean Normalization) : estimates the background level of a logmod video from the neighbouring
cells.

• DT (Detect Target) : detects objects or targets in the logmod video when the value exceeds a certain
threshold level compared to the background level of the range cell.

If the burst data is considered as an atomic particle we can define the homogeneous SDF-diagram
illustrated in Figure 4-2 (if no number of tokens is specified at the arrow, it is equal to 1).

Figure 4-2 Homogeneous SDF-diagram of typical radar SP-application

The execution rate of all functions is equal to 1 and no data parallelism can be revealed.

From the description of the burst data as described before, one can determine that the data is not atomic.
With this knowledge we can construct the multi-rate SDF-diagram illustrated in Figure 4-3.

Figure 4-3 Multi-rate SDF-diagram of typical radar application

The TC-function produces nr (number of range cells) data particles that represent vectors of range cells
with identical range. The WV-function weighs the data elements in the vector and passes this vector to the
FFT-function. The FFT-function performs a n-points FFT on the range data and generates n frequency
bins. The number of sweeps is normally equal to the number of frequency bins. For each frequency bin
the LM-function calculates the logmod value. Finally, for each range the DT-function evaluates the logmod
video if a target can be detected above a certain threshold level, calculated by the MN-function.

The execution (or firing) rate of the different functions is decidable and can be determined from the
diagram: TC = 1, WV = nr, FFT = nr, LM = nr * n, MN = nr, DT = nr.

WV TC

MN

FFT LM DT
1 1 1 1 1 1 1 1 1 1

1

1

1

1

1

WV TC

MN

FFT LM DT
1 nr 1 1 1 n 1 1 1 n

1

1

1

n

1

 27

The multi-rate character of the SDF-diagram reveals data parallelism. The data parallelism is exploited to
a certain extent as is illustrated in the SDF-diagram of Figure 4-4. In this particular case, the output of
function TC was arbitrarily split up in two parts, but could have been split up in nr parts. The output of
function FFT was also split up in two parts, where it could also have been split up in n parts.

As can be seen the granularity of the diagram has been increased.

Figure 4-4 Multi-rate SDF-diagram with exploited da ta parallelism

Distributor nodes D1 and D2 have been added to the diagram to leave the original functions intact and not
to worry how the data particles should be distributed.
Suppose the distributor nodes distribute the data particles equally to the successor nodes, than the
execution rate of the WV- and FFT-functions has been reduced with a factor 2 and the execution rate of
the LM-, DT-, and MN-functions has been reduced with a factor 4.

Although data parallelism can be exploited in multi-rate SDF-diagrams, the type, dimensions and memory
organisation of the data cannot be revealed. To implement the functions without knowledge of their
context, it is essential to specify the memory organisation (by means of data dimensions).

From the previous examples one may conclude that to exploit data parallelism in data flow specifications it
is essential to have knowledge about the data particles (e.g. the burst data). In the thesis this is addressed
by the specification of the data interface of the nodes and data particles. When the data parallelism is
exploited, the data particles will also act as distributor or aggregator nodes in the network (see paragraph
4.4).

TC
1 nr

MN

LM DT
1 1 1 n

1

1

1

n

1

MN

LM DT
1 1 1 n

1

1

1

n

1

D2 WV FFT
1 1 1 n

MN

LM DT
1 1 1 n

1

1

1

n

1

MN

LM DT
1 1 1 n

1

1

1

n

1

D2 WV FFT
1 1 1 n

D1

 28

In Figure 4-5, a first impression of the extended dataflow diagram is given for the typical radar SP-
application. The blue printed text will be explained in paragraph 4.3 about the execution rate.

Figure 4-5 Extended dataflow diagram of the typical radar SP-application

To process the extended graph automatically, it will be represented by a specification language.
Furthermore, the specification language contains more details as the graphical notation. The graph would
become unreadable if all details were represented.

The specifications language and the graphical notation will be explained in detail in the next paragraph.

Squant

TC#1

[Nr, Ns] [Ns, Nr]

RSD#1 = 1

[Nr, Ns] [Ns, Nr]
FFT#1

[Ns] [N]

RFFT#1 = Nr

[Ns, Nr] [N, Nr]

Slogmod

[N, Nr]

Ln

[Nr] [Nr]

DT#1

RDT#1 = Nr

Hits

Nr

[N]

Tdet

quant turn
WV#1

Sturn

[Ns] [Ns]

RWV#1 = Nr

[Ns, Nr] [Ns, Nr]

Sweight
turn weight weight fft

LM#1

Sfft

RLM#1 = N * Nr

[N, Nr]

Lsb

LMOff set

fft logmod

lsb

lmoffset

MN#1

LMmeanCorr

[N]

RMN#1 = Nr

logmod ln

meancorr

logmod hits
tdet

ln

 29

4.2. Specification language of function networks

When a synchronous data flow graph needs to be processed automatically it is often represented by an
incidence matrix as described in 2.6.2. To process the extended graph automatically, an incidence matrix
carries too few parameters to support the necessary details for the pre-processor (e.g. the data
dimensions).

This is the reason why the extended data flow graphs are represented by a specification language in this
thesis. Another advantage of the specification language is that it contains more details than the graphical
notation.

In the previous paragraph the graphical notation of the functional model was introduced by means of the
radar SP-application example. The text specification of this example is given below. It doesn’t have to be
studied in detail, it will be explained after the example code.

NETWORK demo

/* type definitions */

TYPES:

QUANT_VIDEO = 2 * float;
CORNER_TURN_VIDEO = 2 * float;
WEIGHTED_VIDEO = 2 * float;
FFT_VIDEO = 2 * float;
LSB = float;
LOGMOD_VIDEO = float;
LOGMOD_OFFSET = float;
LM_MEAN_CORRECTION = float;
LN = float;
THRESHOLD_DET = float;
HITS = (float + 2 * float + float);

/* dimension declarations */

DIMENSIONS:

Nr = 1024 : 2 : 1;
Ns = 16 : 2;
N = 16 : 2;

/* data declarations */

INPUTS:

QUANT_VIDEO Squant[Nr, Ns];
LOGMOD_OFFSET LMOffset;
LSB Lsb;
LM_MEAN_CORRECTION LMMeanCorr;
THRESHOLD_DET Tdet;

OUTPUTS:

HITS Hits;

LOCALS:

CORNER_TURN_VIDEO Sturn;
WEIGHTED_VIDEO Sweight;
FFT_VIDEO Sfft;
LOGMOD_VIDEO Slogmod;
LN Ln;

/* used functions */

FUNCTIONS:

TC
(
 INPUTS:
 QUANT_VIDEO quant[Nr, Ns];
 OUTPUTS:

 30

 CORNER_TURN_VIDEO turn[Ns, Nr];
) : OPS (4 * Ns * Nr);

WV
(
 INPUTS:
 CORNER_TURN_VIDEO turn[Ns];
 OUTPUTS:
 WEIGHTED_VIDEO weight[Ns];
) : OPS (Ns);

FFT
(
 INPUTS:
 WEIGHTED_VIDEO weight[Ns];
 OUTPUTS:
 FFT_VIDEO fft[Ns];
) : OPS (Ns * log(Ns));

LM
(
 INPUTS:
 FFT_VIDEO fft,
 LSB lsb,
 LOGMOD_OFFSET lmoffset;
 OUTPUTS:
 LOGMOD_VIDEO logmod;
) : OPS (100.0);

MN
(
 INPUTS:
 LOGMOD_VIDEO logmod[Ns],
 LM_MEAN_CORRECTION meancorr;
 OUTPUTS:
 LN ln;
) : OPS (Ns);

DT
(
 INPUTS:
 LN ln,
 LOGMOD_VIDEO logmod,
 THRESHOLD_DET tdet;
 OUTPUTS:
 HITS hits;
) : OPS(100);

INTERCONNECTIONS:

/* TurnCorner */

Squant -> TC#1(quant[Nr, Ns]);
TC#1(turn[Ns, Nr]) -> Sturn;

/* WeightFFT */

Sturn -> WV#1(turn[Ns]);
WV#1(weight[Ns]) -> Sweight;

/* FFTVideo */

Sweight -> FFT#1(weight[Ns]);
FFT#1(fft[N]) -> Sfft;

/* LogMod */

Sfft -> LM#1(fft);
LMOffset -> LM#1(lmoffset);
Lsb -> LM#1(lsb);
LM#1(logmod) -> Slogmod;

/* MeasureNoise */

 31

Slogmod -> MN#1(logmod[N]);
LMMeanCorr -> MN#1(meancorr);
MN#1(ln) -> Ln;

/* DetectTarget */

Slogmod -> DT#1(logmod[N]);
Ln -> DT#1(ln);
Tdet -> DT#1(tdet);
DT#1(hits) -> Hits;

A quick look at the radar example above shows that the specification is divided in 5 global parts: type
definitions (TYPES), dimension definitions (DIMENSIONS), data declarations (INPUTS, OUTPUTS,
LOCALS), function specifications (FUNCTIONS) and the interconnections (INTERCONNECTIONS).

The specification format was derived from the input specification of the scheduler. The new elements are:
DIMENSIONS, INPUTS, OUTPUTS and LOCALS. Furthermore, the syntax of the FUNCTIONS and
INTERCONNECTIONS part was modified. The main reason was to model the data and their dimensions.

In the next sub paragraphs the details of these sections will be discussed, but first a global overview on
the specification language will be given hereafter.

The functional model is a function network description where functions are interconnected by data
elements. The interconnections are defined in the INTERCONNECTIONS section of the function network
specification.

The data elements are specified in the INPUTS, OUTPUTS and LOCALS sections. Data elements have a
type definition declared in the TYPES section. Data elements and types can have dimension parameters
that define the size of the dimensions and whether the dimensions can be split up in smaller parts. The
dimensions are declared in the DIMENSIONS section.

In the software synthesis method defined in Figure 1-3, the interface of the functions is pre-defined in a
library and is re-used in the function network specification. Types and dimensions of the data interfaces of
the inputs and outputs are part of the function interface specification. The function interfaces or formal
functions used in the network are specified in the FUNCTIONS section of the function network
specification. Also part of the formal function specification is the number of operations (OPS) parameter. It
is one of the thesis questions (Q2) that needs to be answered and will be described in 4.2.5.

Next, the sections of the specification language will be discussed in detail. As can be seen in the example,
comments are enclosed between /* and */ markers.

The exact syntax of the language is specified in Backus-Naur Form (BNF), but will not be discussed in
detail in this thesis. Where applicable, part of the BNF specification will be used to explain certain
examples. For the sake of completeness the BNF-specification is given in APPENDIX A, paragraph A.1.

4.2.1. Network definition

The function network specification starts with the NETWORK keyword followed by the network name (fN
in this case). One can imagine that the network may be represented as a function with the same name on
a higher hierarchical level, but in this thesis no network hierarchy is assumed. The functions are said to be
primitive, i.e. they cannot be decomposed into smaller functions in the functional model.

4.2.2. Types section

Data elements and the input and output connections of a function have data types that are declared in the
type declaration section that starts with the keyword TYPES. A data type is declared by means of a
unique identifier and a type expression. The main purpose of the type specification is to enable type
checking and to determine the memory size and organisation of the data.

The type expression is a construction of floats and integers according to the following BNF-specification

TypeExpression:
 Factor
 | Factor '+' TypeExpression

Factor:

 32

 NUMBER '*' Factor
 | Term

Term:
 IDENTIFIER
 | '(' TypeExpression ')'

Examples

QUANT_VIDEO = 2 * float;
TYPE1 = (integer + 2 * float);

Note that the terms float and integer are not reserved key words.

The type information is not shown in the graphical representation.

4.2.3. Dimensions section
The dimension section starts with the keyword DIMENSIONS: each declaration defines the dimension
parameters of a global dimension. Global implies that it has a global scope in the network specification
and that it can be used throughout the network specification.

A dimension is declared by means of a unique identifier and a dimension expression. The dimension
expression contains three parameters separated by colons. The first parameter specifies the size of a
vector. The second value specifies the number of segments in which the vector may be subdivided. The
third parameter specifies the number of elements that consecutive segments must have in overlap when
the segments are distributed to separate functions. The overlap property is used quite often in SP-
applications when streaming data must be cut into segments, e.g. for performance reasons. To reduce the
boundary effects the neighbour elements are taken into account.

The value of the parameter specifies how many elements must be taken into account. When the third
value is omitted, the distribution overlap is assumed to be zero.

In Figure 4-6 the distribution overlap is visualized. Dimension D1 specifies a vector of 8 elements that is
subdivided in 4 parts of two elements (as shown by the four different colours). The overlap parameter
specifies the number of elements at each neighbouring side of a part that should be taken into account
when the part is processed. The total length of the part and neighbouring elements are called segments.
At the boundaries of the vector no overlap element is available. Therefore, the first and last segment will
have a shorter length. In the example the length of the segments is 4 and 3.

Examples

DIMENSIONS:
Nr = 8:2;
D1 = 8:4:1;

Figure 4-6 Distribution overlap

The dimension identifiers are specified at the function symbol and near the data elements. The values of
dimensions are not represented in the graphical representation.

1 2 3 4 5 6 7 8

segment 1

segment 2

segment 3

segment 4

D1

 33

4.2.4. Data element sections

The data elements in the function network are declared in three sub-sections: INPUTS, OUTPUTS and
LOCALS. Input data elements define the start of the data flow within the network, output data elements
define the end. Local data elements have predecessor and successor functions in the data flow network.

A data element is declared by means of a type and a unique identifier. In the graphical notation a data
element is a black dot connected to a function input or output. For example, data elements in Figure 4-5
are Squant, Sturn, Sweight, etc.
The data elements and their dimensions determine the context of the function. From the context the
execution rate of the function is determined. This will be explained in paragraph 4.3.

The type of data elements is not represented in the graphical representation.

Examples

INPUTS:

QUANT_VIDEO Squant[Nr, Ns];
LOGMOD_OFFSET LMOffset;
LSB Lsb;
LM_MEAN_CORRECTION LMMeanCorr;
THRESHOLD_DET Tdet[N, Nr];

OUTPUTS:

HITS Hits;

LOCALS:

CORNER_TURN_VIDEO Sturn;
WEIGHTED_VIDEO Sweight;
FFT_VIDEO Sfft;
LOGMOD_VIDEO Slogmod;
LN Ln;

A remark on the data elements is appropriate here. The target code generator will implement the data
elements as distributor or aggregator functions. In a shared memory situation it will be a memory location
and introduces no extra communication overhead. On distributed memory architectures it will be
implemented as a send- or receive primitive or function and introduces extra latency. This will be further
discussed in paragraph 4.4.

4.2.5. Functions section
The FUNCTIONS section declares the formal functions, or function interfaces, used in the function
network. The formal function specifies the interfaces of a function and the number of operations; its
internal behaviour is determined by the implementation of the function. The formal function is instantiated
in the INTERCONNECTION section. An instantiation of a formal function is called an actual function.

Below the example of the TC-function is given.

TC
(
 INPUTS:
 QUANT_VIDEO quant[Nr, Ns];
 OUTPUTS:
 CORNER_TURN_VIDEO turn[Ns, Nr];
) : OPS (4 * Ns * Nr);

The given layout is arbitrary; the declaration can also be specified on a single line.

Connections

The data interface of a function is defined by connections. A connection is the specification of an input or
output of the function. The type and dimensions of the connection are also specified. The order of the
dimension identifiers specifies the memory organisation of the data. If a connection has no dimensions,
the data interface is considered as a scalar.

 34

Dimensions

The dimensions of the inputs and outputs in the formal function are instantiated by the global dimensions
as defined in the network specification (in this example Nr resp. Ns). One has to realize that the
implementation of the function has to deal with variable dimension parameters.

Number of operations

The formal function also specifies a “number of operations” (OPS) parameter. It specifies the number of
operations on the basis of the dimension parameters.

One of the questions to be answered in this thesis (Q2) is how latency determinant characteristics can be
modelled in a hardware independent way.

The idea is to use the order of computational complexity known from the complexity theory. It says that if n
is the size of the input, the complexity to solve the problem can be expressed in n. An exact expression
can be used (e.g. n2 - 3n + 7) or an order of complexity, where the most dominant term will be used to
express the complexity when n becomes very large (e.g. n2). The “big O” notation is often used to express
the order of complexity. Common orders of complexity are O(1), O(n), O(n2), O(n3), O(n4), O(2n), O(log.n),
O(n.log.n).

The BNF-syntax of the OPS parameter is as follows:

Operations:
 OPS '(' DimensionExpression ')' ;

DimensionExpression:
 MathExpression
 | DimensionExpression '*' DimensionExpression
 | DimensionExpression '/' DimensionExpression
 | DimensionExpression '+' DimensionExpression
 | DimensionExpression '-' DimensionExpression
 | '(' DimensionExpression ')'
;

MathExpression:
 NUMBER
 | FLOAT
 | DimName
 | LOG '(' DimName ')'
 | POW '(' NUMBER ',' DimName ')'
 | POW '(' DimName ',' NUMBER ')' ;

Examples

1
2.5 * N
N * N + 2 * N * log(N)
pow(2, N)
pow(N, 3)
(N + M) / (N * M)

Graphical notation of functions

The graphical notation was defined in this thesis as an extension to the regular SDF-diagrams. A function
in an SDF-diagram is denoted as a circle. In the extended graphical notation, the name of the function is
specified in the circle with a suffix to indicate the instantiation number (e.g. #1). Inputs of a function appear
per default on the left half of the circumference and are denoted as a black dot. Outputs of a function are
also denoted as a black dot and appear per default on the right half of the circumference.

Dimensions of connections are defined by a white dot on the circumference. Multi-dimensional data is
specified by a sequence of dimension identifiers separated by commas and enclosed by brackets.

The type specification and OPS parameter are not visualised in the graphical representation.

In Figure 4-7 the example of function LM#1 is given. The LM-function operates on 3 scalar inputs and
produces a scalar output. The number of operations is fixed (100.0 in this case) and does not depend on
any dimension.

 35

Figure 4-7 Function with scalar inputs and outputs

In Figure 4-8 function TC#1 operates on an input matrix with dimension [Nr, Ns] and produces an output
matrix with reversed dimension [Ns, Nr].

The number of operations depends on dimension 4 times Ns times Nr.

Figure 4-8 Function with multiple dimensions input and output

4.2.6. Interconnections section

The interconnection section starts with the keyword INTERCONNECTIONS and instantiates functions by
allocating the input and output interfaces of each function to data elements. Instantiated functions are
referred to as actual functions and are identified with their formal function name and an instantiation
sequence number separated by a hash sign. In this way a data flow is created between functions and an
SDF application is created. Also the data dimensions are allocated to the interfaces of the functions.
During compilation of the network, a check must be performed if the data flow is valid and if the global
dimensions match within the network.

In the INTERCONNECTIONS section a list of global dimension identifiers is allocated to a list of
dimension identifiers of function interconnections. In Figure 4-8 the dimension inputs are illustrated as an
open dot at the function circle. Multiple dimension identifiers specify multi-dimensional data. The order of
the identifiers specifies how the data is organized in memory.

Examples

INTERCONNECTIONS:
…
Sturn -> WV#1(turn[Ns]);
WV#1(weight[Ns]) -> Sweight;

When the function specification has been compiled (to be discussed in chapter 5), an interconnection in
the INTERCONNECTIONS section may have been attributed with distribution parameters as illustrated
below:

INTERCONNECTIONS:
…
Sturn -> WV#1(turn[Ns]) [Nr#1] ;
WV#1(weight[Ns]) -> Sweight [Nr#1] ;

LM
(
 INPUTS:
 FFT_VIDEO fft,
 LSB lsb,
 LOGMOD_OFFSET lmoffset;
 OUTPUTS:
 LOGMOD_VIDEO logmod;
) : OPS (100.0);

LM#1
fft logmod

lsb

lmoffset

TC
(
 INPUTS:
 QUANT_VIDEO quant[Nr, Ns];
 OUTPUTS:
 CORNER_TURN_VIDEO turn[Ns, Nr];
) : OPS (4 * Ns * Nr);

TC#1

[Nr, Ns] [Ns, Nr]

quant turn

 36

Distribution text [Nr#1] has been attributed to the connection. This optional parameter is part of the syntax
specification:

Interconnection:
 NodeEdgeNode ';'
 | NodeEdgeNode '[' Dimensions ']' ';' ;

4.3. Execution rate

Each function in a functional dataflow network has a context determined by the data elements it is
connected to. The context determines the execution rate of the function, i.e. the number of times the
function is iterated during a single execution of the network. When functions in a particular network have
different execution rates, it is called a multi-rate network.

Let us define the list of dimensions of connection c of function f as LDf,c and the list of dimensions of the
data element d it is connected to as LDd. LDf,c has n elements and LDd has m elements.

The execution rate of function f can be determined from its context if three requirements are met:

1. The length of the dimension list of all function input connections shall be smaller or equal to the length
of the dimension list of the data element the function connection is connected to;

2. When LDf,c has n elements and LDd has m elements, the first n elements of both lists are equal;

3. The connection execution rate list LRf,c of all function input connections shall be equal1.

The function connection execution rate list LRf is defined as the LDd – LDf,c , and contains the elements of
LDd with index n + 1 to m.

The execution rate list LRf of function f is equal to all LRf,c. The execution rate rf of the function f is defined
as the product of the dimension size of all elements in LRf. The function imposes a dimension list to the
data elements connected to the output connections of the function and is the union of LDf,c and LRf, where
LRf determines the last elements. An empty function dimension list results in an execution rate of one (1).

To illustrate this, let us consider the execution rate functions in different contexts.

In Figure 4-9, function WV depends on an input vector with Ns elements and produces also an output
vector with Ns elements. In the context Ns is defined as 16.

Figure 4-9 Execution rate of 1

In this example it can be verified that LDWV#1,turn = [Ns] and LDSturn = [Ns]. The dimension lists comply with
the three requirements as stated above. The connection execution rate list LRWV#1 is LDSturn - LDWV#1,turn =
∅ and therefore function WV#1 has an execution rate rWV#1 = 1.

The dimension list of output connection weight is LDWV#1,turn = [Ns]. The imposed dimension list LDSweight is
∅ U [Nr] = [Ns] = [16].

The deduced execution rate and output dimension list have been attributed in the example in blue text.

1 There is an exception to this rule, to be discussed at Figure 4-12

WV#1

Sturn

[Ns] [Ns]

RWV#1 = 1

[Ns] [Ns]

Sweight
turn weight

DIMENSIONS:
Nr = 1024:2;
Ns = 16:2;
N = 16:2;

 37

In Figure 4-10 we consider the same function, but now with a different context.

Figure 4-10 Execution rate larger than 1

In this example it can again be verified that LDWV#1,turn = [Ns], but now LDSturn = [Ns, Nr]. The dimension
lists again comply with the three requirements. The connection execution rate list LRWV#1 is LDSturn -
LDWV#1,turn = [Nr], and therefore function WV#1 has an execution rate rWV#1 = Nr = 1024.

The dimension list of output connection weight is LDWV#1,turn = [Ns], but now the imposed dimension list
LDSweight is [Ns] U [Nr] = [Ns, Nr] = [16, 1024].

In the examples above, the execution rate could be determined in an unambiguous way.

In Figure 4-11, we consider the same example, but now the context is inconsistent.

Figure 4-11 Inconsistent context

It can be verified that LDSturn = [Ns, Nr] and LDWV#1,turn = [Nr]. The first elements of the lists are not equal
(Ns ≠ Nr), and thus the second requirement is not met. Therefore, The execution rate rWV#1 cannot be
determined.

There is an exception on inconsistent contexts when some input connections have an empty execution
rate list while other input connections don’t. Figure 4-12 shows such an example.

Figure 4-12 Exception on execution rate dimensions

In this example LRMN#1,logmod = [Nr] and LRMN#1,meancorr = ∅ , but still the LRMN#1 is [Nr] and RMN#1 = Nr.

WV#1

Sturn

[Ns] [Ns]

RWV#1 = Nr

[Ns, Nr] [Ns, Nr]

Sweight
turn weight

DIMENSIONS:
Nr = 1024:2;
Ns = 16:2;
N = 16:2;

LMmeanCorr

MN#1

[N]

RMN#1 = Nr

logmod ln

meancorr

Slogmod Ln

[N, Nr] [Nr]

DIMENSIONS:
Nr = 1024:2;
Ns = 16:2;
N = 16:2;

WV#1

Sturn

[Nr] [Nr]

RWV#1 = ?

[Ns, Nr]

Sweight
turn weight

DIMENSIONS:
Nr = 1024:2;
Ns = 16:2;
N = 16:2;

 38

The reason for this exception is to model the situation that the value of these particular input connections
remain constant during multiple executions of the function. During each execution of the function the old
value is retrieved.

This exception gives the opportunity to instantiate a constant in the function.

4.4. Distributor and Aggregator functions

4.4.1. Parallelisation
Each function that has an execution rate greater than one represents an iteration loop in the network. An
iteration loop can be unfolded by multiple instantiations of the same function and let them operate in
parallel on different parts of the data set. The different parts of the data set need to be distributed to each
instantiation and the results must be aggregated again. The results must be aggregated in the correct
order, otherwise the functionality of the expanded network might differ from the original network.

Let us consider the functional dataflow network of Figure 4-13. In this example actual function fB#1 has an
execution rate of D2 * D1, and is a candidate to be split up.

Figure 4-13 Functional dataflow network without par allelisation

In Figure 4-14 the granularity is increased. Extra instances have been created of function fB and fC.

s0 s1
fA#1

i1 o1

[D1,D2]

[D1,D2]

rfA1 = 1

fB#1
i1 o1

rfB1 = D1 * D2

[D1,D2]

s3

[D2]

[D1]

fC#1
i1 o1

rfC1 = D2

s2

[D1,D2] [D1,D2]

DIMENSIONS:
D1 = 16:4;
D2 = 8:2;

 39

Figure 4-14 Distribution and aggregation

In Figure 4-14, data elements s1 operates as data distributor. Because the distribution parameter of
dimension D1 is 4 (D1 = 16:4), the data of data element s1 is distributed to 4 instances of function fB.

Data element s2 first aggregates data from the instances of function fB and then distributes data to two
instances of function fC (distribution parameter of D2 is 2).

In Figure 4-15 the data paths are optimised, i.e. aggregation and distribution is reduced, with the creation
of an extra instance of data element s2.

s0 [D1,D2]
fA#1

i1 o1

[D1,D2]

rfA1 = 1

s3
[D2#1]

rfC1 = D2 / 2

[D1]

fC#1
i1 o1

[D1]

fC#2
i1 o1

rfC2 = D2 / 2

[D1,D2#1]

[D1,D2#2] [D2#2]

s1

fB#2
i1 o1

rfB2 = (D1 / 2) * (D2 / 2)

[D1#2,D2#1]
s2

fB#3
i1 o1

rfB3 = (D1 / 2) * (D2 / 2)

[D1#1,D2#2]

[D1#2,D2#1]

[D1#1,D2#2]

fB#1
i1 o1

rfB1 = (D1 / 2) * (D2 / 2)

fB#4
i1 o1

rfB4= (D1 / 2) * (D2 / 2)

[D1#1,D2#1]

[D1#2,D2#2]

[D1#1,D2#1]

[D1#2,D2#2]

DIMENSIONS:
D1 = 16:4;
D2 = 8:2;

 40

Figure 4-15 Path optimisation

Data element s3 aggregates the output data of function fC again.

With path optimisation the order in which the elements are distributed and aggregated should be
considered carefully, as the order of the data might be of relevance in a different part of the network.

For example, the data of s2 is aggregated over the first dimension (D1) first and not over the second (D2)
as function fC needs to operate on the first dimension.

The pre-processor must handle this administration. This could be handled by keeping track of the
distribution numbers.

4.5. Summary

This chapter explained the rationale of the specification language.

Thesis question Q1 was answered by the way the data elements and data dimensions are modelled in the
specification language.

Thesis question Q2 was partly answered by the modelling the OPS parameter. The computation
complexity can be expressed with an exact calculation or a order of magnitude. The communication delay
will be discussed in paragraph 5.3.3.

The execution rates of each function can be determined from the context. Functions with an execution
rate greater than one can be selected to be instantiated multiple times. Data is re-distributed accordingly
and execution rates will be updated.

s0
fA#1

i1 o1

d1,d2

[D1,D2]

[D1,D2]

rfA1 = 1

s3

[D2#1]

[D1]

fC#1
i1 o1

d1

rfC1 = D2 / 2

[D1]

fC#2
i1 o1

d1

rfC2 = D2 / 2

[D1,D2#1]

[D1,D2#2]

[D2#2]
s2#2

s1

fB#2
i1 o1

rfB2 = (D1 / 2) * (D2 / 2)

[D1#2,D2#1]

fB#3
i1 o1

rfB3 = (D1 / 2) * (D2 / 2)

[D1#1,D2#2]

[D1#2,D2#1]

[D1#1,D2#2]

fB#1
i1 o1

rfB1 = (D1 / 2) * (D2 / 2)

fB#4

i1 o1

rfB4= (D1 / 2) * (D2 / 2)

[D1#1,D2#1]

[D1#2,D2#2]

[D1#1,D2#1]

[D1#2,D2#2]

s2#1

DIMENSIONS:
D1 = 16:4;
D2 = 8:2;

 41

5. Network Expansion Compiler

To implement the pre-processor of the software synthesis process defined in Figure 1-3, a Network
Expansion Compiler (NEC) was developed. The design will be discussed in this chapter.

Paragraph 5.1 will describe the global design of the NEC. The major phases during the compilation
(parser phase, analysis phase, expansion phase and output generation phase) will be explained in
paragraph 5.2 to 5.5. Paragraph 5.6 will address the implementation of the compiler shortly.

5.1. Global design Network Expansion Compiler

In this paragraph the global design of the Network Expansion Compiler (NEC) is presented.

The design of the NEC can be explained from the processing flow as depicted in Figure 5-1.

Figure 5-1 Processing flow Network Expansion Compil er

In the first process step the NEC parses the function network specification as discussed in chapter 3 and
builds up an object structure of the network. The syntax of the specification is checked and also type
checking is performed in the FUNCTIONS and INTERCONNECTION section. On errors the parsing
process is stopped.

In the next phase the network is analysed. First, the paths in the network are determined. Then, the
context of the functions in the paths is verified. If it is valid, the execution rate parameters of the function
will be set. Once the execution rate is determined, the latency can be determined from the OPS parameter
and the communication delay.

In the next process phase, the network will be expanded. The granularity will be enlarged by adding extra
instances of functions with execution rates greater than one. After this action the distribution parameters
of the functions and data elements must be updated.

Next, a second analysis is performed to re-establish the paths, execution rates and latencies in the
expanded network.

Finally, in the last phase of the process, the output is generated: an attributed function network
specification of the expanded function network. The generated output is input for the middle layer of the
software synthesis method, the scheduler.

In the next paragraphs each process step will explained in more detail.

5.2. Parser

In the first process step the function network description is parsed. The input is a Network Description File
(NDF).

A parser for the NDF was constructed with the tools Lex and Yacc. Lex and Yacc are common open
source tools to generate lexical scanners and parsers (see [13]).
In APPENDIX A paragraph A.1 the complete grammar for the parser is given. Some elements have

Parse NDF

Check types
and

declarations

Check
syntax

Build up
object

structure

Analyse
network

Determine
paths

Determine
execution

rates

Determine
latency

Expand
network

Generate
output

Determine
paths

Determine
execution

rates

Determine
latency

Generate
ENDF

Generate
FDF

Generate
DOT

Analyse
network

Duplicate
functions

Adapt
distribution

 42

already been discussed in paragraph 4.2. The grammar is not very complex and is left for the interested
reader to interpret it in its whole.

While parsing the NDF, the syntax is checked and an object structure of the network is build up according
to the class diagram of Figure 5-2.

Figure 5-2 Class diagram Network Expansion Compiler

The numbers at the relations specify the multiplicity of the relation.

The class diagram shows the following properties:

• A network is associated with one or more dimensions, types and nodes

• A network has one or more paths.

• A path has one or more nodes

• A node can be either a data element or function.

• A node can have successor and predecessor nodes.

• A node can have dimensions.

• A data element has a type and can have dimensions.

• A data element has a link with one or more connections.

• A function has one or more connections.

• A connection has a type, can have dimensions and always has a link with data element.

• A type is always associated with one ore more data elements and one ore more connections.

• A dimension is always associated with one or more nodes

• A dimension may be associated with one or more connections

When parsing the TYPES section, types are added to the network object. This also applies to the
DIMENSIONS section where dimensions are added. When the INPUTS, OUTPUTS and LOCALS
sections are parsed the types of the data elements are verified against the earlier type declarations in the
TYPES section and added to the Network object.

When the FUNCTIONS section is parsed the functions are added to the network object. Connections are
added to the corresponding function object. The types of the connections are checked against the earlier
type declarations in the TYPES section.

Node Dimension

Path Network

Type Data
Element Connection Function

1 1..n

0..n 1..n

1 1 1..n 1 1..n

1 1..n

0..n

0..n

1..n

0..n

1..n

1
0..1

1..n

1

1 1

0..n 1..n

composed of
relation

“has a” rel ation

associ ation

 43

Finally, when the INTERCONNECTIONS section is parsed, data elements are connected to the
corresponding function connection. First, the existence of the formal function is verified, then the identical
type of the data element and the function connection.

For each new object type the parser checks if the identifier is unique.

After the NDF has been parsed correctly, the first analysis phase will be executed. This will be discussed
in the next paragraph.

On errors, the parser is abandoned and the NEC exits with an appropriate error report.

5.3. Analyse network

In the second process step, the network is analysed. The functions must have a consistent context. As
long this is true, the execution parameters of the functions and dimension parameters of the local data
elements will be set. This will be explained in sub paragraphs 5.3.1 and 5.3.3.

To do this, all the paths in the function network are determined first and will be discussed in the next sub
paragraph.

5.3.1. Path creation

The INTERCONNECTIONS section in the function network specification defines edges between a
function connection and a data element or vice versa. From these edges, a directed graph can be
constructed. A data flow graph may contain cycles. When it does, the cycle should have delay nodes, but
for reasons of simplicity it is not taken into account in this thesis. That makes the graph a Directed Acyclic
Graph (DAG). No cycle check will be performed.

Paths in the network are constructed from the edge specifications to be able to determine the latency in
the network.

The design of the NEC defines a network path as a linked list of nodes. If a path branches, a new path is
created.

Figure 5-3 Path selection

In the example in Figure 5-3 diamonds and ovals represent nodes. The yellow ovals represent functions,
orange diamonds represent input data elements, red diamonds represent output data elements and green
diamonds represent local data elements.

The paths that can be discriminated are:

I1 – fA – L1 – fB – L2 – fC – O1
I1 – fA – L3 – fD – L4 – fC – O1
I1 – fA – L3 – fD – L5 – fE – O2
I2 – fD – L4 – fC – O1
I2 – fD – L5 – fE – O2

The recursive algorithm to find and create the paths is specified below:

fA L1 I1 L2 fB

fD

I2

L5

L3

O1 fC

fE O2

L4

 44

/* find all node paths in network */
find all input nodes
for each input node do
 new current path
 append_path (current path, input node)
end

append_path (current path, node)
 append node to current path

find successor nodes
 if output node found then

/* end of path found */
 add current path to network
 else

 /* successor nodes found, append first successor n ode to current path */
 append_path (current path, first successor node)

 for other successor nodes do
 /* path branches */
 copy current path to new path

 append_path (new path, successor node)
 end
end

end

Because each input data element determines the start of a path (and they are identified after the parsing
of the function network specification), the algorithm starts with the input nodes.

First, the input node is added to a new path and then the algorithm searches for its successor nodes. If an
output node is found, the path-end has been found and this path is added to the network.
If there are successors, the first successor node found is added to the path. When there are more
successor nodes, the path branches, apparently. For each branch the current path is copied and the
algorithm continues by appending the corresponding successor node to the path.
The recursion enters each time a node is appended to the path. The recursion ends when a path-end is
found.

The number of paths can become fairly large, especially in the expanded network. This can have
significant impact in the performance of the NEC. A smarter algorithm could be implemented to filter out
the most critical paths

5.3.2. Determine execution rates

When the paths have been determined, the execution rate of each function along each path is
determined. A function can be selected when all input nodes have been processed. If this condition is not
true, the input node will be processed first. This is done in a recursive way. By default, the input data
element nodes have the status processed.

The function execution rate depends on the dimensions of the input data elements. The dimensions of the
input data elements are specified by the NDF. The execution rate of the functions and the dimensions of
their output connections determine the dimensions of the local and output data elements. In this method,
the nodes are processed in a flow that moves from input to output.

As explained in paragraph 4.3, the context of each function must remain valid at all times.

For each input connection of a function a dimension list LDf,i is determined from the NDF. The connection
is linked with a data element that has dimension list LDd. Let us assume that LDf,i has n elements and LDd
has m elements. In a valid context m must be greater or equal to n and the first n elements of LDf,c and
LDd must be equal. The remaining elements of LDd, elements n + 1 to m, determine the connection rate
list LRf,i.

If all input connections have an identical LRf, i the function execution rate list LRf is consistent and equal to
LRf,i. The function execution rate rf is determined by the product of all dimensions sizes defined in LRf. If
LRf is empty, rf is equal to 1.

If the function execution rate list LRf is determined, the dimension list LDd of the data element connected
to an output connection is defined as the conjunction of the output connection dimension list LRf,o and LRf,
where LRf determines the highest elements. If LDd is already defined by a previous function, a check is
performed whether both definitions are equal.

 45

The algorithm is defined below.

/* determine function execution rates within networ k */
for all network paths do
 for all nodes in path do
 if predecessors not processed
 determine execution rate list of predecessors
 calculate execution rate of predecessors
 end
 calculate execution rates of input connections
 if execution rates of input connections differ
 report invalid context and exit
 end
 calculate function execution rate and determine f unction execution rate dimension list
 for all output connections do
 if successor is processed then
 if dimensions of successor node differs then
 report invalid context and exit
 end
 else
 set dimension list of successor nodes
 end
 end
 end
end

calculate execution rates of input connections
{
 for all function input connections do
 if dimension list of connection is larger than di mension list of connected data

element then
 report invalid context and exit

end
for all dimensions of connection do

 if dimension is not equal to corresponding dimensi on of connected data element
 then

 report invalid context and exit
 end
 end
 connection execution rate = multiply remaining di mensions of connected data
 element
 end
 if input connections have different execution rate then
 report invalid context and exit
 end
}

5.3.3. Calculate latency

After the rates have been determined the path latencies are calculated. The network latency is the path
with the largest latency.

Each node adds latency to the path due to its calculation time expressed by the number of operations and
communication with other functions. To have a generic approach we assume that data is transferred to
other functions by message passing.

The number of operations is estimated from the computation complexity as specified in 4.2.5. Although
the exact number can be calculated, an order of magnitude is assumed to be sufficient. The big O notation
is used to specify the number of operations.

The communication delay is calculated from the number of elements to be received and/or sent by the
function. The function starts when all input data elements are available. If all data is received and sent
through the same channel, the communication latency will be larger than when each input and output
have their own communication channel. The NEC assumes that the number of channels is not a
bottleneck and that communication delay depends linearly on the largest number of data to be sent or
received by a channel.

Furthermore, it is assumed that the data elements add no latency when they act as data distributor or
aggregator.

 46

Taking the remarks above into account, the latency is calculated from the operations parameter specified
by the formal function and the communication delay by the following algorithm:

latency = operations_latency * execution_rate + com munication_latency

/* calculate communication delay */
for all connections do
 for all dimensions

 calculate product of dimension sizes and element t ype size
end
communication_latency = find maximum product

end

The number of operations is calculated while the OPS parameter is parsed.

Example

In the Network Description File (NDF) of the radar application demo the operations parameter (OPS) of
the function TurnCorner is (4 * Nr * Ns).

Nr stands for “Number of range quants” and Ns stands for “Number of sweeps”.

In the network dimension Nr is equal to 1024. Dimension Ns is equal to 16. The function TurnCorner
operates on 4 * Nr * Ns = 4 * 1024 * 16 = 65536 elements. In the current implementation of the NEC, the
communication delay is equal to the size of the input data. Therefore, the communication delay of the
TurnCorner function is Nr * Ns * typesize = 1024 *16 * 2 = 32768. As the execution rate of the function TC
is 1, the total latency of the function TC = 65536 * 1 + 32768 = 98304.

5.4. Expand network

If the network has been analysed the NEC starts to explore the expansion possibilities based on the
distribution parameters defined in the dimension declaration in the NDF.

DIMENSIONS:

DimA = 16 : 8;
DimB = 32 : 4 : 2;

In the example define above, dimension DimA has a size 16 and allows 8 distributions, i.e. the data can
be split up in 8 distributions, each distribution has 2 consecutive elements.

DimB has a size of 32 that allows 4 distributions and each distribution has 10 consecutive elements,
because the third parameter defines an overlap of 2 elements. In the NEC the overlap feature has not
been implemented.

After the analysis of the function network, the function execution rate parameters, declared in the list LRf,
contains dimensions as defined in the DIMENSIONS section.

If the distribution parameter of the first dimension definition allows n distributions (Rf(1) = n), the function f
will be instantiated n times, including the original instantiation. The input and output data has to be
distributed accordingly, where the first part of the data is distributed to the first instantiation, the second
part to the second instantiation, etc.

If multiple execution rate parameters are defined in Rf, the number of instantiations will be the product of
the distribution parameters.

The NEC traverses the list of functions in the network and instantiates new functions according to the
execution rate parameters. New instantiated functions inherit the properties of the original function and are
connected to the original input and output data elements. A distribution parameter list is allocated to each
connection. The list element defines the dimension identifier, the dimension size, the maximum number of
distributions and the overlap parameter.

After this expansion phase the network is analyzed for the second time. During the second analysis, the
distribution parameter list is updated. The maximum number of distributions in the DISTRIBUTION section
will be set to one (1), because maximum allowed expansion will have been reached. The dimension size
of all distributions is the division of the original size by the original maximum number of distributions. The
remainder part is allocated to the last distribution.

 47

In the INTERCONNECTION section, each interconnection will be attributed with the distribution list.

5.5. Generate output

The last step of the NEC is the generation of the output, i.e. the Expanded Network Description File
(ENDF), the Function Description File (FDF) and the visualisation file (DOT). For each output file the NEC
traverses the object structure and generates the text files.

The ENDF is the processed NDF and has the same syntax as the NDF. Execution rates, estimated
latency and local dimensions and distributions are attributed to the INTERCONNECTION section.

In the next chapter the results of the NEC will be discussed.

5.6. Implementation

The NEC was implemented in C++ using the Together 4.0 tool environment. There were various reasons
for this choice:

• An object oriented language supports the implementation of the object oriented design of the NEC
very well;

• The C++ Standard Template Library (STL) can be used, which offers a lot of functions ready to use
(e.g. linked list container, iterators, etc.);

• The existing framework was developed in C++;

• For future maintenance at Thales the C++ language was preferred.

• The free Together 4.0 design environment (TogetherSoft Corporation) supports C++ (and Java).

The source code of the NEC is archived at Thales and will not be elaborated on in this thesis.

 48

6. Results

In this chapter the results of this thesis will be discussed.

In paragraph 6.1 the software synthesis framework, which was used as a test environment, is described
globally. It answers thesis question Q3 (test the top layer).
Paragraph 6.2 answers thesis question Q4 (exploit the level of task parallelism).
Paragraph 6.3 will address some shortcomings of the NEC prototype.
Finally, in paragraph 6.5 the visualisation tool is discussed shortly.

6.1. Software synthesis framework

In Figure 6-1 the software synthesis framework is depicted and represents the implementation of the
method described in Figure 1-3. The framework will be used to test the design and implementation of the
compiler. The typical radar application used throughout this thesis will be used to evaluate the results.

Figure 6-1 Software synthesis framework

The input of the Network Expansion Compiler (NEC) is a text file that specifies the network, the Network
Description File (NDF). The main output of the NEC is a text file that specifies the expanded network, the
Expanded Network Description File (ENDF).

The ENDF has the same syntax as the NDF, but the degree of parallelisation has been extended and the
data distribution is specified in the INTERCONNECTION section. Execution rates, local dimensions and
distributions have been attributed to the description.

The NEC generates two side products: the Function Definition File (FDF) and a visualisation file (DOT).

NDF Function
Specif ications

NEC Coding and
Benchmarking

Function Code
& Metrics Library

scheduler

MAP

Metrics

ADF

Function Code

Target Code

code generator

work product

process activ ity

legend

top layer

middle layer

bottom layer

DOT

DOT

FDF ENDF

 49

The FDF describes the same function network as the ENDF, but has a different syntax (without data
elements, data distribution and dimension properties).

The FDF is generated to be able to use the existing allocation tool (“scheduler”) that has been developed
under [1]. Together with the Architecture Description File (ADF) and the metrics library the scheduler
allocates, or maps, the expanded network to a physical processor architecture. The output of the
scheduler is a map-file (MAP).

The MAP-file is used as input for the code generator. Together with the function code from the library the
source code for each processor in the hardware architecture is generated.

For visualization purposes, several DOT files are generated during the process. The reason why the
layout engine dot ([14]) has been used will be explained in paragraph 6.5.

First, the results of the NEC will be addressed. For the sake of completeness, some results of the
scheduler will also be addressed to evaluate the quality of the generated FDF.

6.2. Testing Network Expansion Compiler

The development of the NEC was one of the main goals of this thesis. In this paragraph the results of the
NEC are discussed. In paragraph 6.2.1 the exploitation of the data parallelism will be evaluated and
answers thesis question Q4.

6.2.1. Exploiting data parallelism
Figure 6-2 shows our radar application demo example (generated by the dot layout engine). Although it is
less detailed as the graphical specification in Figure 4-5 it gives a good overview of the data flow in the
function network.

The functions are represented as yellow ovals. Input data elements are represented as orange diamond
shapes, local data elements as green diamond shapes and output data elements as red diamond shapes.

In this figure the network has not yet been processed and this explains why the dimensions parameters
are only mentioned at the input data elements. The figure complies exactly with the NDF specification of
the typical radar application as defined in paragraph 4.2.

In the next step the NEC processes the NDF. To set a network latency reference to compare the
expansion results, the NDF is processed first with the distribution parameters set to 1 for all dimensions,
as shown below:

DIMENSIONS:

Nr = 1024 : 1 : 1;
Ns = 16 : 1;
N = 16 : 1;

With these parameters, no expansion will occur.

After the NEC has processed the NDF successfully, the ENDF is generated. The reference ENDF is
visualised in Figure 6-3.

For each function three basic parameters have been added in the yellow oval: execution rate, number of
operations per execution and total latency. The latter is calculated by:

function latency = OPS * execution rate + communication latency.

The communication delay is determined by the input or output that has the largest data size, which is
determined by (number of elements) * (the size of the data type)

At the bottom of the diagram, the total network latency has been added. It is calculated from the path with
the largest latency. In this particular case it is equal to 1904738. This is the latency without expansion and
will be compared later with the latency of the expanded network.

 50

Figure 6-2 Unprocessed specification of radar demo application

 51

Figure 6-3 Processed radar demo application referen ce (without expansion)

 52

In Figure 6-3 all arcs have been attributed with dimension and distribution parameters according to the
ENDF-syntax. Dimensions that map on the dimension(s) of the function input connections do not have a
distribution number (the number after the hash). Dimensions with a distribution number determine the
execution rate of the function as explained in paragraph 4.3. If the distribution number is equal to 0 (zero),
it implies that it is the single distribution.

The following example will explain this in more detail. Let’s consider the TC and WV function in the ENDF:

NETWORK demo

TYPES:

QUANT_VIDEO = 2 * float;
CORNER_TURN_VIDEO = 2 * float;
WEIGHTED_VIDEO = 2 * float;
…

DIMENSIONS:

Nr = 1024 : 1 : 1;
Ns = 16 : 1 : 0;
N = 16 : 1 : 0;
…

FUNCTIONS:

TC
(
 INPUTS:
 QUANT_VIDEO quant[Nr, Ns];
 OUTPUTS:
 CORNER_TURN_VIDEO turn[Ns, Nr];
) : OPS (65536);

WV
(
 INPUTS:
 CORNER_TURN_VIDEO turn[Ns];
 OUTPUTS:
 WEIGHTED_VIDEO weight[Ns];
) : OPS (16);
…

INTERCONNECTIONS:

/* TC#1
 * operations : 65536
 * latency : 98304
 * rate : 1
 */

Squant -> TC#1(quant[Nr, Ns]);
TC#1(turn[Ns, Nr]) -> Sturn;

/* WV#1
 * operations : 16
 * latency : 16416
 * rate : 1024 [Nr]
 */

Sturn -> WV#1(turn[Ns]) [Nr];
WV#1(weight[Ns]) -> Sweight [Nr];

The data dimensions of the Squant input data element (Nr and Ns) map on the dimensions of the input
connection quant of the function TC#1. As the function connection execution rate list of the quant input
(LRTC#1,squant) is empty, TC#1 has an execution rate of 1. At each execution, TC#1 produces a matrix turn
with Ns x Nr elements, stored in the local data element Sturn.

 53

The number of operations of TC#1 is 4 * Nr * Ns. During the parsing of the NDF, the NEC calculates the
number of operations of which the value is exported to the ENDF.
OPS = 4 * 1024 * 16 = 65536.

The communication delay is the maximum data size to be sent or received by function TC#1. It is equal to
Nr * Ns * type size = 1024 * 16 * 2 = 32768.

The total latency of TC#1 is equal to OPS * execution rate + communication delay = 65536 * 1 + 32768 =
98304.

The execution rate, the number of operations per execution and the total latency are annotated in the
ENDF at the INTERCONNECTIONS section.

An equal derivation can be applied to function WV#1. The input connection turn of the function WV#1 has
a single dimension (Ns) and maps on the first dimension of the local data element Sturn. Therefore, no
distribution number is added to Ns. The dimension Nr is not mapped on the input connection dimension.
As no distribution of segments is allowed, it is attributed with distribution number 0 (zero). Therefore,
dimension Nr determines the execution rate of function WV#1 and is equal to 1024. The number of
operation is Ns and is equal to 16.

The communication delay is Ns * type size = 16 * 2 = 32.

The total latency of WV#1 is 16 * 1024 + 32 = 16416.

After this explanation the other functions speak for themselves.

Next, the DIMENSIONS section in the NDF is modified as below:

DIMENSIONS:

Nr = 1024 : 2 : 1;
Ns = 16 : 2;
N = 16 : 2;

Now, the dimensions Nr, Ns and N are allowed to split up in 2 parts.

After the NEC has processed the NDF successfully, the expanded NDF (ENDF) is generated. The ENDF
is visualised in the same manner as in the previous examples.

As can be seen in Figure 6-4, extra functions of WV, FFT, LM and MN have been instantiated. The
execution rates and latency of these functions have been reduced as a result of the data distribution.
Where dimensions have been split up, a distribution number is added to the dimension, e.g. Nr#2 at
function WV#2.

As can be seen at the bottom of Figure 6-4, the total network latency has been reduced to 591970.
Compared to the reference latency in Figure 6-3 of 1904738 this is a reduction of

(1 – 591970 / 1904738) * 100% = 69%

From this example we can conclude that the network expansion can lead to significant reduction of the
network latency. The most significant reduction is caused by extra instances of function LM. If the other
functions remain unexpanded, the reduction would still be significant: a total network latency of

1904738 – 1638402 + 409602 = 675936 is still a reduction of 65%.

The feature to find the most significant reduction has not been implemented in the prototype.

A remark should be made about function LM in the network. The dimension parameters of N and Nr allow
the data to this function to be distributed over 2 dimensions. With dimension N and Nr distributed in 2
parts, 4 instances of LM should have been created, but this is not implemented in the NEC.

The full ENDF description of this example can be found in APPENDIX A, paragraph A.3.

 54

Figure 6-4 Expanded radar demo application

 55

6.3. Shortcomings prototype Network Expansion Compi ler

Due to time constraints not all planned features of the compiler have been implemented in the NEC. The
shortcomings relate to the communication latency model, distribution and aggregation, path optimisation
and data overlap. Also the strict type checking can be considered as a shortcoming.

Communication latency

A simple approach for communication latency is modelled. Each element to be received or sent adds a
delay unit (1 operation). It is assumed that send and receive operations can be performed simultaneously.
The input or output that receives or sends the largest data size, determines the worst-case communication
latency. This simple model works quit well for unexpanded networks, but the overhead created by
distribution, aggregation and forwarding of data is not taken into account by the NEC prototype.

Distribution and aggregation

As we have seen in the example of Figure 6-5, distribution/expansion over multiple dimensions is not
implemented correctly.

Path optimisation

Path optimisation, as discussed in paragraph 4.4, has not been implemented. In particular, the
administration for the path optimisation is to be addressed.

Data overlap

The specification of data overlap as described in 4.2.3 has not been implemented due to time constraints.

 56

6.4. Scheduler and code generator

Not much will be said about the scheduler and the code generator in this thesis, as they were already
developed and are outside the scope of the thesis. The reason that the scheduler is mentioned is because
the NEC has to interface with the scheduler. The interface is realized by means of the Function
Description File (FDF) that already existed as input file for the scheduler. For further information on this
subject, the reader is referred to [1].

The Function Description File (FDF) describes the same function network as the ENDF, but has a different
syntax. Data elements, dimensions and distribution properties are not part of this syntax. The FDF is
generated to use the existing allocation tool.

The function metrics should be imported from the Function Code & Metrics library, but at the time of
writing, they are generated from the ENDF for testing purposes. Data elements (inputs, local and outputs)
are modelled as distribution and aggregation functions that have no latency, but this should to be adapted
in the final implementation.

For information only, the FDF of the expanded radar application demo is given in APPENDIX A,
paragraph A.4.

Although the Architecture Description File (ADF) is out of the scope of the thesis, for the sake of
completeness an example is given in APPENDIX A, paragraph A.5.

Allocation graph

The scheduler maps the (expanded) function network to the hardware architecture. It also generates a
DOT-file to visualize the result. The result of the expanded radar application demo is given in Figure 6-5.
The rectangles represent the processors, the ovals the functions and data elements.

A few remarks should be made here:

1. To overcome the differences between the ENDF and FDF, data elements are specified as functions
that have no operations;

2. As there are more functions (11 “real” functions) than processors (6), the scheduler has to cluster
multiple functions to the same processor. Some functions that were expanded by the compiler (e.g.
WV, FFT, MN and DT) are scheduled on the same processor. In this case the expansion did not
contribute to a reduction of the latency;

3. A BEGIN and END function have been added. Although not strictly necessary, the developer of the
scheduler considered it to be convenient to have a single entry and exit point for the application to
minimize the interface with the host environment;

4. The numbers at the directed arrows represent the size of the data. The scheduler uses the size of
the data (in bytes) that is transferred between the functions to find a good mapping on the hardware
architecture. When functions reside on the same processor the communication delay is ignored;

5. The number of operations of functions that reside on the same processor are added and displayed
for each processor.

6. The BEGIN and END function add no extra performance;

7. The scheduler has difficulties to find a schedule when the number of processors is larger than 6.
This prevents to show a good example where the number of functions is equal ore close to the
number of processors. Due to time constraints, it could not be investigated what the cause of this
restriction is.

 57

Figure 6-5 Expanded function network allocated to h exagonal processing architecture

 58

6.5. Visualisation

In this paragraph a few short remarks will be made about the visualisation of the function networks. The
graphical notation as described in chapter 4 will be evaluated first.

The graphical notation helps to visualise the most important characteristics of the network. The dimension
parameters of the function are visualised as a open dot on the circumference of the network and mapped
with an arc on the function input and output connections. Although data dimensions can be recognized
very quickly, it is quite laborious to draw them manually. In retrospect, this could also have been specified
as shown at the right side of Figure 6-6:

Figure 6-6 Alternative specification dimension para meters (1)

In this situation dimension parameters are specified as text at every input and output. The dimension list
of the data element maps at the dimension list at the function connection.

However, the following drawback can be recognized already: the space available in the function circles is
rather small to host all the names and dimension lists for the function, inputs and outputs.

To overcome this issue only the global or actual dimensions are specified at the arcs between the data
element and the function. The actual dimensions that don’t have a mapping on the function’s formal
dimensions have a postfix that represents the distribution number. When the distribution number is 0
(zero), there is only one distribution.

Figure 6-7 Alternative specification dimension para meters (2)

With this convention the layout engine dot ([14]) can be used to visualise the function networks. Regular
SDF-diagrams are represented very well by dot as it is particularly suitable for the representation of
Directed Graphs.

All kind of attributes can be specified for the graph, nodes and edges (e.g. labels, colours, ranks, sub
clusters, etc.).

When the dot engine is run, a graphical output format is generated. Multiple graphical formats can be
generated (gif, jpg, png, etc.).

f A#1
i1 o1[D2] s2 s3 [D2,D1]

rf A1 = D1

[D1]
f A#1

i1 o1 s2 s3

[D2]

[D2,D1]

rf A1 = D1

[D1]

f A#1
[D1#0]

s2 s3 [D2,D1#0] [D1#0]
f A#1

i1 o1[d1] s2 s3 [D2,D1]

rf A1 = D1

[D1]

 59

7. Conclusions and recommendations

In this chapter the conclusions of this thesis and recommendations for future work will be discussed.

A Network Expansion Compiler (NEC) was developed. The NEC implements the pre-processor of the
software synthesis method for synchronous data flow networks and exploits the data parallelism in the
function network.

First the conclusions of this thesis will be drawn in paragraph 7.1. In paragraph 7.2 further
recommendations for the NEC will be given and paragraph 7.3 some general recommendations for further
study.

7.1. Conclusions

At the time the thesis started, a study was performed on the status of parallel programming standards and
(commercial) tools that support the software synthesis of real-time signal processing applications on
multiprocessor architectures. Today, mature tools exist that support parallel programming standards like
MPI and OpenMP, but they are often dedicated to and optimised for specific hardware architectures.

To support random hardware architectures a three-layer software synthesis method was set-up. The top
layer exploits the data parallelism in the function network and increases the granularity of the function
network. It has no knowledge about the hardware architecture. The middle layer schedules the expanded
function network to the hardware architecture and the bottom layer finally generates the target code for
each processor. The method was tested using an existing framework and a limited number of applications
and architectures. A typical radar application was chosen to test and evaluate the approach. The
conclusion can be drawn that the chosen approach is a good approach to decouple the functional models
from the hardware layer, which changes more rapidly than the models. This answers thesis questions Q3
and Q5.

To specify the functional models a specification language was defined. The language extends the
principles of the Synchronous Data Flow (SDF) formalism with data dimension parameters and data
types. The dimension parameters enable the exploration of data parallelism in the network and have
shown to be an enrichment of the SDF-formalism. In another context the specification language extends
the current develop environment at Thales quite well, and this can be considered as a major benefit.
A graphical notation for the specification language was also defined for visualisation purposes. After some
small adoptions in the original notation the diagrams can be generated automatically with the dot layout
engine.
The overall conclusion of thesis question Q1 is that the chosen method is successful.

A Network Expansion Compiler (NEC) was developed to implement the pre-processor. The overall
conclusion of thesis question Q4 is that the NEC is successful in exploiting data parallelism. A few
shortcomings in the prototype of the NEC should be addressed to become of practical use.

Thesis question Q2 asks whether latency determinant parameters can be modelled in an abstract manner,
independent from the hardware architecture. The number of operations and the communication delay of
the functions in the critical path determine the total network latency. For the estimation of the number of
operations an exact number can be calculated or an order of magnitude. The latter method is less
accurate than an exact calculation, but if the input size of the problem is relatively large, the calculation
can give a good impression in which part of the network the granularity should be increased to have a
significant reduction of the total latency. Therefore, it is concluded that latency determinant parameters
can be specified in a hardware independent manner and are useful for the defined software synthesis
method.

Thesis question Q4 is about how the NEC can generate the optimal granularity for the scheduler. The
simplest approach is to exploit maximum data parallelism and thereby create maximum granularity. The
scheduler will have to cluster the functions again to the number of processor nodes. This approach is not
very efficient. It is concluded that optimum granularity can’t be determined without having some
knowledge about the number of processor nodes. In the implementation this was realized by setting the
distribution parameters in the NDF to the right level. Optimal granularity is achieved when the number of
functions is close or equal to the total number of processors, provided that the functions that contribute the
largest part of the latency are expanded first.

 60

7.2. Recommendations Network Expansion Compiler

In paragraph 6.3 some shortcomings of the prototype of the NEC were discussed. Besides the fact that
some features were not implemented due to time constraints, this paragraph will give some
recommendations for further improvement of the NEC.

7.2.1. Network paths

A few NEC-improvements can be made in relation to network paths, e.g. the determination of the critical
path can be implemented in a more efficient way, the implementation of path optimisation and cycle
detection.

Determine critical path

The current implementation to find the path with the largest latency after expansion is not very efficient.
After expansion, every path is traced again to determine the critical path, while all the expanded paths
have equal latency. To overcome this, it is sufficient to trace the original paths. The original paths have
been attributed with distribution #1 or #0 if it has no distribution. This way the performance to determine
the critical path after expansion is equal to the unexpanded network.

Another solution is to connect all input data element to a dummy node BEGIN and all outputs to dummy
node END. A standard method or algorithm known from literature could be used to calculate the longest
path. Linear algebra can calculate the critical path efficiently.

A useful feature that might save unnecessary or inefficient expansion of functions that don’t contribute to
the network latency significantly is to address the latency determinant function first.

Path optimisation

To implement path optimisation, the distribution administration can be used. Paths with the same
distribution number are eligible for optimisation. Extra instances of data elements must be created in the
network to create the optimised paths.

Cycles

From the beginning it was a goal to compile SDF-networks. To a certain extent this has been achieved,
but the path finding algorithm of the NEC doesn’t take cycles into account. With cycles delay loops can be
modelled. When it is implemented, care should be taken that cycles are detected and that the path finding
algorithm does not end up in an endless loop.

7.2.2. Hierarchy
As explained in 4.2.1, a node or function in a function network may be atomic, or may represent a function
network at a lower hierarchy level. This type of hierarchy is not taken into account in the current
implementation. One can imagine that the granularity and parallelism of the network could be enlarged if
this lower level granularity is taken into account.

7.2.3. Types
In the current implementation, the NEC is abandoned when conflicting types are found on an
interconnection, i.e. between a data element and a function connection. Although this rule can be
maintained, it is quite strict.

The conflict between the type of a data element and a function connection can be avoided if the data
element has no type. In fact, the data element represents only memory that can hold any kind of data
type. If this approach were chosen, the check on the data type would shift to the interconnection of a
function input and output and doesn’t really solve the problem.

For example, the type QUANT_VIDEO, CORNER_TURN_VIDEO, WEIGHTED_VIDEO and FFT_VIDEO
have exactly the same data structure (2 * float), but different functional names. In this case, the FFT
function cannot be connected to the TC function, as the CORNER_TURN_VIDEO and FFT_VIDEO have
a different name. Of course, the data types in this example can be renamed to a more general name in
the network specification, but the idea is to reuse the function specifications in multiple function network
specifications.

 61

Therefore, data types should be defined on a global level, e.g. in a central library. This would also support
the standardisation of type definitions.

One can imagine that type conflicts can still occur, while two types differ only in name. A type alias might
be implemented in the NEC to overcome these kinds of conflicts. The type alias declares that the types
are equal.

7.3. General recommendations

The implementation of the compiler was rather laborious. Due to time constraints not all functionality was
implemented in the prototype of the NEC: path optimisation, implementation of distribution and
aggregation functions and multi dimension expansion were not realized.

Perhaps other solutions could have been chosen to implement the pre-processor. For example: a solution
using linear algebra, genetic algorithms or loop unfolding methods. Also the use of a standard parallel
programming language might have lead to faster results.

Some general remarks will be made here as recommendations for future work.

MPI, OpenMP and OpenCL

From the literature study in this thesis it was concluded that parallel programming standards like MPI and
OpenMP are interesting standards to be followed up.

Recently (2008), the open standard for heterogeneous parallel programming OpenCL (Open Computing
Language) has been released. It is an efficient C-based parallel programming model that abstracts the
specifics of underlying hardware.

The results of this thesis can be reused in such a development environment, e.g. the NEC could generate
output formats for MPI, OpenMP or OpenCL.

Nested Loop Programs

In retrospect, the definition of a specific specification language and graphical language was rather a large
effort. Instead, an existing imperative language could have been used to express the function network.
After all, expressions of an SDF application are limited to assignment statements and (nested) loops.

Suppose the source code of functions was instantiated in a network program. The compiler could search
for iteration loops and unfold them to increase granularity.

In literature these kinds of applications are known as Nested Loop Programs (NLP). All kind of techniques
like loop unfolding and index skewing can be used for NLP. For further information on this subject, the
reader is referred to [15].

Genetic algorithm for expansion and scheduling

Some steps have been performed to explore an implementation of the pre-processor with a genetic
algorithm. The layered approach could be applied again for expansion and scheduling.

Use of the incidence matrix and linear algebra

The use of linear algebra might help to implement the cost functions in an efficient manner. Linear algebra
offers a lot of solutions to common problems like critical path finding, path counting, etc. For this purpose,
the incidence matrix that is often used to model SDF-diagrams (as described in 2.6.2) can be extended
with dimension parameters.

 62

8. Abbreviations

ACS Antenna Control System
ADF Architecture Description File
ASIC Application Specific Integrated Circuit
BNF Backus-Naur Form
C&C Command & Control
CPI Clock cycles Per Instruction
CPU Central Processing Unit
DAG Directed Acyclic Graph
DF Data Flow
DP Data Processing
ENDF Expanded Network Description File
FDF Function Description File
FIFO First In First Out
FPGA Field Programmable Gate Array
MIMD Multiple Instruction Multiple Data
MISD Multiple Instruction Single Data
MODERN Modelling and Design Environment for Relational Networks
MP MultiProcessing
MPI Message Passing Interface
NDF Network Description File
NEC Network Expansion Compiler
OPS Number of Operations
RSG Radar Signal Generator
Rx Receiver
SDF Synchronous Data Flow
SISD Single Instruction Multiple Data
SIMD Single Instruction Multiple Data
SM Sensor Management
SP Signal Processing
TUP Technical Unit Processing
Tx Transmitter

 63

9. References

[1] J. van Bemmel, Static Multi-Processor Scheduling on Generic Architectures, afstudeerverslag
Universiteit Twente, November 2000

[2] High Performance Computer Architecture,
http://www.ipp.mpg.de/~rfs/comas/Helsinki/helsinki04/CompScience/csep/csep1.phy.ornl.gov/ca/ca.
html

[3] A. van der Steen and Jack J. Dongarra, Overview Of Recent Supercomputers, 15th edition, June
2002

[4] M.J. Flynn, Some computer organisations and their effectiveness, IEEE Trans. on computers, Vol.
C-21, 9, 1972

[5] J.E. Shore, Second thoughts on parallel processing, Comput. Elect. Eng., 1973

[6] R. Hockney and C. Jesshope, Parallel Computers 2, 1988

[7] K. Hwang, Advanced Computer Architecture, 1993

[8] S. Bhattacharyya et al., The Ptolemy Almagest User Manual, EECS Dept., University of California,
Berkeley, 1990 – 1997

[9] P.S. Pacheco, A users guide to MPI, Department of Mathematics, University of San Francisco, San
Francisco, 1998

[10] OpenMP C and C++, Application Program Interface, version 2.0, March 2002

[11] E.A. Lee and D.G. Messerschmitt, Synchronous Data Flow, Proceedings of the IEEE, Vol. 75, No.
9, pp.1235-1245, September 1987

[12] E.A. Lee and D.G. Messerschmitt, Static scheduling of synchronous data flow programs for digital
signal processing, IEEE Trans. Comput., Vol. C-36, No. 2, pp. 24-35, January 1987

[13] Thomas Nieman, A compact guide to Lex and Yacc, http://epaperpress.com/lexandyacc/

[14] Emden Gansner and Eleftherios Koutsofios and Stephen North, Drawing graphs with dot, February
4, 2002

[15] Todor Stefanov, Bart Kienhuis, Ed Deprettere, Algorithmic Transformation Techniques for Efficient
Exploration of Alternative Application Instance, Proc. 10th Int. Symposium on Hardware/Software
Codesign, Estes Park, Colorado, USA, May 6–8, 2002

 64

APPENDIX A Specifications

A.1 Functional Network Specification in Backus-Naur Form

Network:
 NETWORK NetworkName
 TYPES TypeDeclarations
 DIMENSIONS DimensionDeclarations
 INPUTS DataElements
 OUTPUTS DataElements
 LOCALS DataElements
 FUNCTIONS Functions
 INTERCONNECTIONS Interconnections ;

TypeDeclarations:
 /* empty */
 | TypeDeclaration TypeDeclarations ;

TypeDeclaration:
 TypeName '=' TypeExpression ';' ;

TypeExpression:
 Factor
 | Factor '+' TypeExpression ;

Factor:
 NUMBER '*' Factor
 | Term ;

Term:
 IDENTIFIER
 | '(' TypeExpression ')' ;

DimensionDeclarations:
 /* empty */
 | DimensionDeclaration DimensionDeclarations ;

DimensionDeclaration:
 DimensionName '=' NUMBER ':' NUMBER ';' ;
 | DimensionName '=' NUMBER ':' NUMBER ':' NUMBE R ';' ;

DataElements:
 /* empty */
 | DataElement DataElements ;

DataElement:
 TypeName DataElementName ';'
 | TypeName DataElementName '[' Dimensions ']' ' ;' ;

Functions:
 FunctionPrototype ';'
 | FunctionPrototype ';' Functions ;

FunctionPrototype:
 FunctionName '(' INPUTS Connections ';' OUTPUTS Connections ';' ')' ':' Operations ;

Connections:
 Connection
 | Connection ',' Connections ;

Connection:
 ConnectionTypeName
 | ConnectionTypeName '[' Dimensions ']' ;

ConnectionTypeName:
 TypeName ConnectionName ;

Dimensions:
 Dimension
 | Dimension ',' Dimensions ;

Dimension:
 DimensionName
 | DimensionName '#' NUMBER

 65

 | DimensionName '*' ;

DimensionName:
 IDENTIFIER ;

DimName:
 IDENTIFIER ;

Operations:
 OPS '(' DimensionExpression ')' ;

DimensionExpression:
 MathExpression
 | DimensionExpression '*' DimensionExpression
 | DimensionExpression '/' DimensionExpression
 | DimensionExpression '+' DimensionExpression
 | DimensionExpression '-' DimensionExpression
 | '(' DimensionExpression ')'
;

MathExpression:
 NUMBER
 | FLOAT
 | DimName
 | LOG '(' DimName ')'
 | POW '(' NUMBER ',' DimName ')'
 | POW '(' DimName ',' NUMBER ')' ;

Interconnections:
 Interconnection
 | Interconnection Interconnections ;

Interconnection:
 NodeEdgeNode ';'
 | NodeEdgeNode '[' Dimensions ']' ';' ;

NodeEdgeNode:
 Node
 EDGE Node ;

Node:
 DataElementName
 | FunctionConnection ;

FunctionConnection:
 FunctionName '#' NUMBER '(' ConnectionName ')'
 | FunctionName '#' NUMBER '(' ConnectionName '[' Dimensions ']' ')' ;

NetworkName:
 IDENTIFIER ;

TypeName:
 IDENTIFIER ;

DataElementName:
 IDENTIFIER ;

FunctionName:
 IDENTIFIER ;

ConnectionName:
 IDENTIFIER ;

 66

A.2 DOT-file radar application demo

digraph G {

/* graph attributes */

rankdir = TB
ratio = 1.3
size = "12,16"
rank = max
fontname = Helvetica
fontsize = 10
label = "network latency = 591970"

/* default function attributes */
node [shape = ellipse, height = 0.5, width = 0.75, fontname = Helvetica, fontsize = 10, style =
filled, color = "yellow2"];

/* function nodes */

TC_1 [label = "TC\#1\n(1, 65536, 98304)"];
WV_1 [label = "WV\#1\n(512, 16, 8224)"];
FFT_1 [label = "FFT\#1\n(512, 32, 16416)"];
LM_1 [label = "LM\#1\n(4096, 100, 409602)"];
MN_1 [label = "MN\#1\n(512, 16, 8208)"];
DT_1 [label = "DT\#1\n(512, 100, 51216)"];
WV_2 [label = "WV\#2\n(512, 16, 8224)"];
FFT_2 [label = "FFT\#2\n(512, 32, 16416)"];
LM_2 [label = "LM\#2\n(4096, 100, 409602)"];
MN_2 [label = "MN\#2\n(512, 16, 8208)"];
DT_2 [label = "DT\#2\n(512, 100, 51216)"];

/* data elements */

/* default data elements attributes */
node [shape = diamond, height = 0.2, width = 0.2, f ontname = Helvetica, fontsize = 10, style =
filled, color = "green2"];

Squant[color = "orange1"];
LMOffset[color = "orange1"];
Lsb[color = "orange1"];
LMMeanCorr[color = "orange1"];
Tdet[color = "orange1"];
Hits[color = "red2"];
Sturn;
Sweight;
Sfft;
Slogmod;
Ln;

/* edges */

/* default interconnection attributes */
edge [fontname = Helvetica, fontsize = 10, dir = fo rward];

/* edges */

Squant -> TC_1 [label = "[Nr, Ns]"];
TC_1 -> Sturn [label = "[Ns, Nr]"];
Sturn -> WV_1 [label = "[Ns, Nr#1]"];
WV_1 -> Sweight [label = "[Ns, Nr#1]"];
Sweight -> FFT_1 [label = "[Ns, Nr#1]"];
FFT_1 -> Sfft [label = "[N, Nr#1]"];
Sfft -> LM_1 [label = "[N#1, Nr#1]"];
Lsb -> LM_1;
LMOffset -> LM_1;
LM_1 -> Slogmod [label = "[N#1, Nr#1]"];
Slogmod -> MN_1 [label = "[N, Nr#1]"];
LMMeanCorr -> MN_1;
MN_1 -> Ln [label = "[Nr#1]"];
Ln -> DT_1 [label = "[Nr#1]"];
Slogmod -> DT_1 [label = "[N, Nr#1]"];
Tdet -> DT_1;
DT_1 -> Hits [label = "[Nr#1]"];

 67

Sturn -> WV_2 [label = "[Ns, Nr#2]"];
WV_2 -> Sweight [label = "[Ns, Nr#2]"];
Sweight -> FFT_2 [label = "[Ns, Nr#2]"];
FFT_2 -> Sfft [label = "[N, Nr#2]"];
Sfft -> LM_2 [label = "[N#2, Nr#2]"];
Lsb -> LM_2;
LMOffset -> LM_2;
LM_2 -> Slogmod [label = "[N#2, Nr#2]"];
Slogmod -> MN_2 [label = "[N, Nr#2]"];
LMMeanCorr -> MN_2;
MN_2 -> Ln [label = "[Nr#2]"];
Ln -> DT_2 [label = "[Nr#2]"];
Slogmod -> DT_2 [label = "[N, Nr#2]"];
Tdet -> DT_2;
DT_2 -> Hits [label = "[Nr#2]"];

}

 68

A.3 ENDF radar application demo

NETWORK demo

/* type definitions */

TYPES:

QUANT_VIDEO = 2 * float;
CORNER_TURN_VIDEO = 2 * float;
WEIGHTED_VIDEO = 2 * float;
FFT_VIDEO = 2 * float;
LSB = float;
LOGMOD_VIDEO = float;
LOGMOD_OFFSET = float;
LM_MEAN_CORRECTION = float;
LN = float;
THRESHOLD_DET = float;
HITS = (float);

/* dimension declarations */

DIMENSIONS:

Nr = 1024 : 2 : 1;
Ns = 16 : 2 : 0;
N = 16 : 2 : 0;

/* data declarations */

INPUTS:

QUANT_VIDEO Squant[Nr, Ns];
LOGMOD_OFFSET LMOffset;
LSB Lsb;
LM_MEAN_CORRECTION LMMeanCorr;
THRESHOLD_DET Tdet;

OUTPUTS:

HITS Hits;

LOCALS:

CORNER_TURN_VIDEO Sturn;
WEIGHTED_VIDEO Sweight;
FFT_VIDEO Sfft;
LOGMOD_VIDEO Slogmod;
LN Ln;

/* used functions */

FUNCTIONS:

TC
(
 INPUTS:
 QUANT_VIDEO quant[Nr, Ns];
 OUTPUTS:
 CORNER_TURN_VIDEO turn[Ns, Nr];
) : OPS (65536);

WV
(
 INPUTS:
 CORNER_TURN_VIDEO turn[Ns];
 OUTPUTS:
 WEIGHTED_VIDEO weight[Ns];
) : OPS (16);

FFT
(
 INPUTS:
 WEIGHTED_VIDEO weight[Ns];

 69

 OUTPUTS:
 FFT_VIDEO fft[Ns];
) : OPS (32);

LM
(
 INPUTS:
 FFT_VIDEO fft,
 LSB lsb,
 LOGMOD_OFFSET lmoffset;
 OUTPUTS:
 LOGMOD_VIDEO logmod;
) : OPS (100);

MN
(
 INPUTS:
 LOGMOD_VIDEO logmod[Ns],
 LM_MEAN_CORRECTION meancorr;
 OUTPUTS:
 LN ln;
) : OPS (16);

DT
(
 INPUTS:
 LN ln,
 LOGMOD_VIDEO logmod,
 THRESHOLD_DET tdet;
 OUTPUTS:
 HITS hits;
) : OPS (100);

/* network connections */

INTERCONNECTIONS:

/* TC#1
 * operations : 65536
 * latency : 98304
 * rate : 1
 */

Squant -> TC#1(quant[Nr, Ns]);
TC#1(turn[Ns, Nr]) -> Sturn;

/* WV#1
 * operations : 16
 * latency : 8224
 * rate : 512 [Nr#1]
 */

Sturn -> WV#1(turn[Ns]) [Nr#1];
WV#1(weight[Ns]) -> Sweight [Nr#1];

/* FFT#1
 * operations : 32
 * latency : 16416
 * rate : 512 [Nr#1]
 */

Sweight -> FFT#1(weight[Ns]) [Nr#1];
FFT#1(fft[N]) -> Sfft [Nr#1];

/* LM#1
 * operations : 100
 * latency : 409602
 * rate : 4096 [N#1, Nr#1]
 */

Sfft -> LM#1(fft) [N#1, Nr#1];
Lsb -> LM#1(lsb);
LMOffset -> LM#1(lmoffset);

 70

LM#1(logmod) -> Slogmod [N#1, Nr#1];

/* MN#1
 * operations : 16
 * latency : 8208
 * rate : 512 [Nr#1]
 */

Slogmod -> MN#1(logmod[N]) [Nr#1];
LMMeanCorr -> MN#1(meancorr);
MN#1(ln) -> Ln [Nr#1];

/* DT#1
 * operations : 100
 * latency : 51216
 * rate : 512 [Nr#1]
 */

Ln -> DT#1(ln) [Nr#1];
Slogmod -> DT#1(logmod[N]) [Nr#1];
Tdet -> DT#1(tdet);
DT#1(hits) -> Hits [Nr#1];

/* WV#2
 * operations : 16
 * latency : 8224
 * rate : 512 [Nr#2]
 */

Sturn -> WV#2(turn[Ns]) [Nr#2];
WV#2(weight[Ns]) -> Sweight [Nr#2];

/* FFT#2
 * operations : 32
 * latency : 16416
 * rate : 512 [Nr#2]
 */

Sweight -> FFT#2(weight[Ns]) [Nr#2];
FFT#2(fft[N]) -> Sfft [Nr#2];

/* LM#2
 * operations : 100
 * latency : 409602
 * rate : 4096 [N#2, Nr#2]
 */

Sfft -> LM#2(fft) [N#2, Nr#2];
Lsb -> LM#2(lsb);
LMOffset -> LM#2(lmoffset);
LM#2(logmod) -> Slogmod [N#2, Nr#2];

/* MN#2
 * operations : 16
 * latency : 8208
 * rate : 512 [Nr#2]
 */

Slogmod -> MN#2(logmod[N]) [Nr#2];
LMMeanCorr -> MN#2(meancorr);
MN#2(ln) -> Ln [Nr#2];

/* DT#2
 * operations : 100
 * latency : 51216
 * rate : 512 [Nr#2]
 */

Ln -> DT#2(ln) [Nr#2];
Slogmod -> DT#2(logmod[N]) [Nr#2];
Tdet -> DT#2(tdet);
DT#2(hits) -> Hits [Nr#2];

 71

A.4 FDF radar application demo

LATENCY = 100 MS
RATE = 20 HZ

TYPES

QUANT_VIDEO_1024_16 = 1024 * 16 * 2 * float
CORNER_TURN_VIDEO_16_1024 = 16 * 1024 * 2 * float
CORNER_TURN_VIDEO_512_16 = 512 * 16 * 2 * float
WEIGHTED_VIDEO_512_16 = 512 * 16 * 2 * float
WEIGHTED_VIDEO_512_16 = 512 * 16 * 2 * float
FFT_VIDEO_512_16 = 512 * 16 * 2 * float
FFT_VIDEO_4096 = 4096 * 2 * float
LSB_4096 = 4096 * float
LOGMOD_OFFSET_4096 = 4096 * float
LOGMOD_VIDEO_4096 = 4096 * float
LOGMOD_VIDEO_512_16 = 512 * 16 * float
LM_MEAN_CORRECTION_512 = 512 * float
LN_512 = 512 * float
LN_512 = 512 * float
LOGMOD_VIDEO_512_16 = 512 * 16 * float
THRESHOLD_DET_512 = 512 * float
HITS_512 = 512 * (float)
CORNER_TURN_VIDEO_512_16 = 512 * 16 * 2 * float
WEIGHTED_VIDEO_512_16 = 512 * 16 * 2 * float
WEIGHTED_VIDEO_512_16 = 512 * 16 * 2 * float
FFT_VIDEO_512_16 = 512 * 16 * 2 * float
FFT_VIDEO_4096 = 4096 * 2 * float
LSB_4096 = 4096 * float
LOGMOD_OFFSET_4096 = 4096 * float
LOGMOD_VIDEO_4096 = 4096 * float
LOGMOD_VIDEO_512_16 = 512 * 16 * float
LM_MEAN_CORRECTION_512 = 512 * float
LN_512 = 512 * float
LN_512 = 512 * float
LOGMOD_VIDEO_512_16 = 512 * 16 * float
THRESHOLD_DET_512 = 512 * float
HITS_512 = 512 * (float)
QUANT_VIDEO = 2 * float
LOGMOD_OFFSET = float
LSB = float
LM_MEAN_CORRECTION = float
THRESHOLD_DET = float
HITS = (float)
CORNER_TURN_VIDEO = 2 * float
WEIGHTED_VIDEO = 2 * float
FFT_VIDEO = 2 * float
LOGMOD_VIDEO = float
LN = float

BASIC_FUNCTIONS

M_BEGIN
(
 OUTPUTS:
 QUANT_VIDEO Squant,
 LOGMOD_OFFSET LMOffset,
 LSB Lsb,
 LM_MEAN_CORRECTION LMMeanCorr,
 THRESHOLD_DET Tdet
) : 0 OPS

TC_1
(
 INPUTS:
 QUANT_VIDEO_1024_16 quant
 OUTPUTS:
 CORNER_TURN_VIDEO_16_1024 turn
) : 65536 OPS

WV_1
(
 INPUTS:

 72

 CORNER_TURN_VIDEO_512_16 turn
 OUTPUTS:
 WEIGHTED_VIDEO_512_16 weight
) : 8192 OPS

FFT_1
(
 INPUTS:
 WEIGHTED_VIDEO_512_16 weight
 OUTPUTS:
 FFT_VIDEO_512_16 fft
) : 16384 OPS

LM_1
(
 INPUTS:
 FFT_VIDEO_4096 fft,
 LSB_4096 lsb,
 LOGMOD_OFFSET_4096 lmoffset
 OUTPUTS:
 LOGMOD_VIDEO_4096 logmod
) : 409600 OPS

MN_1
(
 INPUTS:
 LOGMOD_VIDEO_512_16 logmod,
 LM_MEAN_CORRECTION_512 meancorr
 OUTPUTS:
 LN_512 ln
) : 8192 OPS

DT_1
(
 INPUTS:
 LN_512 ln,
 LOGMOD_VIDEO_512_16 logmod,
 THRESHOLD_DET_512 tdet
 OUTPUTS:
 HITS_512 hits
) : 51200 OPS

WV_2
(
 INPUTS:
 CORNER_TURN_VIDEO_512_16 turn
 OUTPUTS:
 WEIGHTED_VIDEO_512_16 weight
) : 8192 OPS

FFT_2
(
 INPUTS:
 WEIGHTED_VIDEO_512_16 weight
 OUTPUTS:
 FFT_VIDEO_512_16 fft
) : 16384 OPS

LM_2
(
 INPUTS:
 FFT_VIDEO_4096 fft,
 LSB_4096 lsb,
 LOGMOD_OFFSET_4096 lmoffset
 OUTPUTS:
 LOGMOD_VIDEO_4096 logmod
) : 409600 OPS

MN_2
(
 INPUTS:
 LOGMOD_VIDEO_512_16 logmod,
 LM_MEAN_CORRECTION_512 meancorr
 OUTPUTS:

 73

 LN_512 ln
) : 8192 OPS

DT_2
(
 INPUTS:
 LN_512 ln,
 LOGMOD_VIDEO_512_16 logmod,
 THRESHOLD_DET_512 tdet
 OUTPUTS:
 HITS_512 hits
) : 51200 OPS

M_END
(
 INPUTS:
 HITS Hits
) : 0 OPS

Squant
(
 INPUTS:
 QUANT_VIDEO M_BEGIN_Squant
 OUTPUTS:
 QUANT_VIDEO_1024_16 TC_1_quant
) : 0 OPS

LMOffset
(
 INPUTS:
 LOGMOD_OFFSET M_BEGIN_LMOffset
 OUTPUTS:
 LOGMOD_OFFSET_4096 LM_1_lmoffset,
 LOGMOD_OFFSET_4096 LM_2_lmoffset
) : 0 OPS

Lsb
(
 INPUTS:
 LSB M_BEGIN_Lsb
 OUTPUTS:
 LSB_4096 LM_1_lsb,
 LSB_4096 LM_2_lsb
) : 0 OPS

LMMeanCorr
(
 INPUTS:
 LM_MEAN_CORRECTION M_BEGIN_LMMeanCorr
 OUTPUTS:
 LM_MEAN_CORRECTION_512 MN_1_meancorr,
 LM_MEAN_CORRECTION_512 MN_2_meancorr
) : 0 OPS

Tdet
(
 INPUTS:
 THRESHOLD_DET M_BEGIN_Tdet
 OUTPUTS:
 THRESHOLD_DET_512 DT_1_tdet,
 THRESHOLD_DET_512 DT_2_tdet
) : 0 OPS

Hits
(
 INPUTS:
 HITS_512 DT_1_hits,
 HITS_512 DT_2_hits
 OUTPUTS:
 HITS M_END_Hits
) : 0 OPS

Sturn
(

 74

 INPUTS:
 CORNER_TURN_VIDEO_16_1024 TC_1_turn
 OUTPUTS:
 CORNER_TURN_VIDEO_512_16 WV_1_turn,
 CORNER_TURN_VIDEO_512_16 WV_2_turn
) : 0 OPS

Sweight
(
 INPUTS:
 WEIGHTED_VIDEO_512_16 WV_1_weight,
 WEIGHTED_VIDEO_512_16 WV_2_weight
 OUTPUTS:
 WEIGHTED_VIDEO_512_16 FFT_1_weight,
 WEIGHTED_VIDEO_512_16 FFT_2_weight
) : 0 OPS

Sfft
(
 INPUTS:
 FFT_VIDEO_512_16 FFT_1_fft,
 FFT_VIDEO_512_16 FFT_2_fft
 OUTPUTS:
 FFT_VIDEO_4096 LM_1_fft,
 FFT_VIDEO_4096 LM_2_fft
) : 0 OPS

Slogmod
(
 INPUTS:
 LOGMOD_VIDEO_4096 LM_1_logmod,
 LOGMOD_VIDEO_4096 LM_2_logmod
 OUTPUTS:
 LOGMOD_VIDEO_512_16 MN_1_logmod,
 LOGMOD_VIDEO_512_16 DT_1_logmod,
 LOGMOD_VIDEO_512_16 MN_2_logmod,
 LOGMOD_VIDEO_512_16 DT_2_logmod
) : 0 OPS

Ln
(
 INPUTS:
 LN_512 MN_1_ln,
 LN_512 MN_2_ln
 OUTPUTS:
 LN_512 DT_1_ln,
 LN_512 DT_2_ln
) : 0 OPS

CONNECTIONS

TC_1 -> [Squant[TC_1_quant]]
WV_1 -> [Sturn[WV_1_turn]]
FFT_1 -> [Sweight[FFT_1_weight]]
LM_1 -> [Sfft[LM_1_fft], Lsb[LM_1_lsb], LMOffset[L M_1_lmoffset]]
MN_1 -> [Slogmod[MN_1_logmod], LMMeanCorr[MN_1_mea ncorr]]
DT_1 -> [Ln[DT_1_ln], Slogmod[DT_1_logmod], Tdet[D T_1_tdet]]
WV_2 -> [Sturn[WV_2_turn]]
FFT_2 -> [Sweight[FFT_2_weight]]
LM_2 -> [Sfft[LM_2_fft], Lsb[LM_2_lsb], LMOffset[L M_2_lmoffset]]
MN_2 -> [Slogmod[MN_2_logmod], LMMeanCorr[MN_2_mea ncorr]]
DT_2 -> [Ln[DT_2_ln], Slogmod[DT_2_logmod], Tdet[D T_2_tdet]]
Squant -> [M_BEGIN[Squant]]
LMOffset -> [M_BEGIN[LMOffset]]
Lsb -> [M_BEGIN[Lsb]]
LMMeanCorr -> [M_BEGIN[LMMeanCorr]]
Tdet -> [M_BEGIN[Tdet]]
Hits -> [DT_1[hits], DT_2[hits]]
Sturn -> [TC_1[turn]]
Sweight -> [WV_1[weight], WV_2[weight]]
Sfft -> [FFT_1[fft], FFT_2[fft]]
Slogmod -> [LM_1[logmod], LM_2[logmod]]
Ln -> [MN_1[ln], MN_2[ln]]
M_END -> [Hits[DT_1_hits]]

 75

A.5 ADF radar application demo

PROCESSORSPEED = 500000000 -- NOPS/S

TYPES
 int = 4
 float = 4

COMPONENTS

HexC44 : [processor(1 MB): A,B,C,D,E,F]
{
 A <-> B = 160 -- bi-directional, 15 operations send_delay
 A <-> D = 160 -- bi-directional, 15 operations send_delay
 A <-> F = 160 -- bi-directional, 15 operations send_delay

 B <-> C = 160 -- bi-directional, 15 operations send_delay
 B <-> E = 160 -- bi-directional, 15 operations send_delay

 C <-> D = 160 -- bi-directional, 15 operations send_delay
 C <-> F = 160 -- bi-directional, 15 operations send_delay

 D <-> E = 160 -- bi-directional, 15 operations send_delay

 E <-> F = 160 -- bi-directional, 15 operations send_delay

 -- without these, mapping will not find a soluti on
 B <-> D = 160
 B <-> F = 160
}

This ADF example represents a processor architecture as shown in Figure 9-1.

Figure 9-1 Hexagonal processor architecture

The degree of every node is 3; the diameter of this hexagonal network is 2.

A B C

D E F

