
JD4 Functional prototype for metadata tools and
concepts

1/32

ECP 2005 EDU 038098

MACE

Joint Deliverable "Functional prototype for
metadata tools and concepts"

Deliverable number D3.2, D4.3, D5.2, D6.3 (joint deliverable)

Dissemination level Public

Delivery date 30 November 2007

Status Final

Author(s) FIT, KUL, OUNL, FHP

eContentplus

This project is funded under the eContentplus programme1,

a multi-annual Community programme to make digital content in Europe more accessible, usable and exploitable

1 OJ L 79, 24.3.2005, p. 1.

JD4 Functional prototype for metadata tools and
concepts

2/32

Table of Contents

Purpose of this deliverable .. 3
Introduction .. 3
Functional Prototype for usage metadata (WP3).. 4

Objective... 4
Prototype Description .. 5

Technical description ... 6
Usage Metadata Repository ... 6
Usage Metadata Services ... 7

Integration into MACE Infrastructure ... 7
Ranking Metrics Description ... 8
Obtain Ranking Metrics Calculation.. 8

Further plans.. 9
Functional Prototype for contextual metadata (WP4).. 10

Introduction.. 10
System design questions... 11

Prototype development... 13
Business logic layer.. 14
Database backend... 16
The web service interface... 16

Future work .. 17
Use of MACE services by ContextBlogger... 18

Available web services... 20
Future work .. 20

Functional prototype for competence & process metadata.. 21
The rationale behind .. 21
How the system works .. 21
System overview ... 22
Use cases .. 22
Metadata generation .. 23
Integration with other MACE components and services.. 23

Functional Prototype for content and domain metadata (WP6) 25
Objective... 25
MACE application profile .. 25
Prototype description ... 25
Integration into MACE infrastructure.. 29
Further plans.. 29

Conclusion and outlook ... 31

JD4 Functional prototype for metadata tools and
concepts

3/32

Purpose of this deliverable
This deliverable describes concepts and functional prototypes developed in MACE. Its goal is

to describe the prototypes for metadata enrichment developed in the MACE project so far.

As a joint deliverable, it is a collection of the following deliverables listed in the Description

of Work:

- D3.2 Functional Prototype for usage metadata

- D4.3 Functional Prototype for contextual metadata

- D5.2 Functional Prototype for competence and process metadata

- D6.3 Functional Prototype for content and domain metadata

For each deliverable, a separate chapter is included so that references to the planned

deliverables can be derived easily.

In addition, this deliverable is strongly connected to Joint Deliverable JD5: "MACE toolset

and infrastructure, prototype", also due in M15.

Introduction
The project set out to enrich digital contents with metadata. In the project description, we

decided to use four specific types of metadata. These types are 1) content and domain

metadata, 2) usage metadata, 3) competence metadata and 4) contextual metadata. Put

together, they cover a wide range of areas and provide a basis for further interesting tools and

solutions.

The work is based on previous steps done in MACE, as were requirements analysis and

several fruitful discussions among project partners to understand the scope of the project

domain, which resulted in the creation of a joint deliverable titled "Metadata taxonomy and

their integration in MACE" in month M9. Also developed were first versions of the “Analysis

framework” (D2.1.1), the “Validation framework” (D2.2.1) and an accompanying “Quality

control plan” (D2.3.1).

Based on this work as well as work package internal discussions and proposals, we were able

to develop prototypes for each of the different types of metadata. The development done so

far, including the technical infrastructure to setup and maintain gathering and storage of

metadata is described in the next chapters of this deliverable, followed by a conclusion and an

outlook.

JD4 Functional prototype for metadata tools and
concepts

4/32

Functional Prototype for usage metadata (WP3)

Objective

The prototype enables the capturing and processing of events that occur within the MACE

infrastructure. Such events are called usage metadata; as such data describes the usage of

learning objects within MACE.

Usage related metadata include

- Attention metadata that capture what users actually do with learning objects by way of

evaluating log files,

- Annotations that capture explicit feedback from users, including Blog and Wiki comments,

- Folksonomy metadata that capture simple search terms users deploy to describe content

that they publish or that they are looking for, and

- Social recommendations that users make to explicitly share content with peers, learners

(friend of a friend – FOAF1 or the “related items” principle from Amazon).

The prototype will enable the usage related metadata functionalities within the MACE

infrastructure such as recommendations, guidance on appropriate use, popularity, etc.

Winds Repository
Logdata

Dynamo Repository
Logdata

IRB Repository ICONDA
Logdata

MACE Usage MD
Repository

HTTPS

HTTPS

HTTPS

CAM via
RSS

Xquery via
Secure

Webservices

CAM via
RSS

CAM via
RSS

Application/Widget

Secure
Webservice

Access Management

Figure 1 - Usage metadata infrastructure

1 http://en.wikipedia.org/wiki/Friend_of_a_friend

JD4 Functional prototype for metadata tools and
concepts

5/32

Prototype Description
Usage metadata sources provide access to the user activities within the MACE infrastructure.

Two types of sources exist: content repositories that provide learning objects and the MACE

user interfaces. A simple hook into the MACE middle layer provides access to all activities

within the MACE system. For redundancy and evaluation purposes, we also capture the usage

metadata directly from the repositories.

Based on the collected usage data, we enable ranking and statistics services that provide an

improved access to suitable learning objects through an appropriate ranking showed on the

user interfaces.

The usage metadata infrastructure is based on the concise application of the Contextualized

Attention Metadata (CAM) Schema. This schema describes activities in relation to the

learning objects and the users, thus allowing us to enable advanced (personalized) ranking

metrics.

All user activities are captured in the MACE infrastructure, expressed as CAM instances, and

stored in the central CAM store using the Simple Publishing Interface (SPI.) This push

technology enables the MACE system to take all, even the most recent, activities into account

when providing ranking metrics for personalized search results.

The content repositories provide their usage data through a RSS stream, one per repository.

The RSS streams are read once every 24h from the usage metadata capture engine via secured

http connections and stored in the CAM store. The schedule is setup so that the recent RSS

streams are read before they are replaced with streams with the new events. The read streams

are not deleted but renamed and stored for backup purposes.

The ranking metrics are provided through web services. Depending on the nature of the

ranking metrics, they are either pre-calculated in specific indices to enable fast responses, or

are calculated at runtime to take the most recent user events into account. The ranking

services provide three metrics at the moment:

- Number of downloads

- Number of downloads per user

- Timeline of usage per learning object

JD4 Functional prototype for metadata tools and
concepts

6/32

Technical description

The prototype enables capturing the user activities from different environments in order to

provide new functionality, such as recommendation, guidance on appropriate use, popularity

ranking, etc. The prototype is based on two major components (Figure 1): the usage metadata

repository and the usage metadata services.

Usage Metadata
Services

hsqldb

PostgreSQL

Usage Metadata
Repository OAI

SPISQI (XQuery)

IBM DB2 –
XML

Figure 2 - Usage metadata architecture

Usage Metadata Repository

Based upon the AriadneNext Metadata Store, this central repository stores, from different

sources, all the user activities described in the Contextual Metadata Schema (CAM1). The

repository provides 3 services:

- Simple Publishing Interface (SPI2), used to insert XML instances in the repository.

- Simple Query Language (SQI3), used to query the repository using the ProLearn Query

Language (PLQL4).

- Open Archives Initiative Protocol (OAI-PMH5), used to expose the CAM instances to a

harvester.

The Metadata Store uses XML-enabled database IBM DB2. The inserted XML instances are

stored without any pre-processing. Currently, the prototype for usage metadata makes use of

the SPI and the OAI services.

1 http://ariadne.cs.kuleuven.be/hmdb/index.php?option=com_content&task=view&id=28&Itemid=56
2 http://ariadne.cs.kuleuven.be/lomi/index.php/SimplePublishingInterface
3 http://ariadne.cs.kuleuven.be/lomi/index.php/LorInteroperability
4 http://ariadne.cs.kuleuven.be/lomi/index.php/QueryLanguages_v1.0
5 http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

JD4 Functional prototype for metadata tools and
concepts

7/32

Providers of usage metadata use the SPI protocol to push CAM instances into de repository.

The OAI services are used by the usage metadata services component to obtain the required

metadata instances.

Usage Metadata Services

The services component has been developed in order to calculate and provide ranking and

statistics services that can be used by any authorized client application through web services.

Currently we use Apache Axis 2 as the core engine to create the web services interfaces and

the Apache Tomcat 5 as the application server.

Internally the component uses two databases (Figure 1): the normal (non-embedded) database

PostgreSQL and the HSQLDB as embedded database to the application.

The non-embedded database duplicates the user activities information in the usage metadata

repository and translates them into the relational paradigm. The database is also responsible

for the support of the statistic services offered that do not require big calculation times.

The usage metadata component has an internal job scheduling system that manages the update

of the non-embedded database. By using OAI Protocol, this component can be configured to

automatically harvest new metadata from the repository and insert it into the non-embedded

database.

The embedded database is specifically used to enable fast response times to service requests.

It stores pre-calculated (complex) ranking metrics supported as service features. The database

is pre-populated during the web application loading, by using the non-embedded database to

obtain the necessary data to calculate the ranking metrics. All calculations obtained for a

single ranking metric are stored in a table of the database; meaning that when one service is

required, the component uses this table and quickly responds to the needs of the user

application.

All the rankings metrics are calculated again after an automatic harvest has been done to keep

the embedded database up to date.

Integration into MACE Infrastructure
Integration into the MACE infrastructure is based on the MACE web service infrastructure.

We expect that the ranking metrics are not called directly by the user interfaces. Instead, we

expect the MACE middleware to use the metrics service, e.g. for ranking the search result

sets. The interfaces can be accessed at this URL:

JD4 Functional prototype for metadata tools and
concepts

8/32

http://ariadne.cs.kuleuven.be/MetricServiceInterface/services/RankingMetrics?wsdl

Ranking Metrics Description

You can use the generalGetRankingMetricsDescriptions function to obtain a list of the

available metrics. The response will show the identifier of all the available metrics, a

description of the calculation that is performed, and the parameters needed for their

calculation.

Function Name: generalGetRankingMetricsDescriptions
Parameters: None
Return type: String

Obtain Ranking Metrics Calculation

To obtain a list of the top-k (k) objects ranked according to the specified metric (metricId) on

the last n period (timePeriod), you should use the generalGetRankingMetricValues function,

described below.

Function Name: generalGetRankingMetricValues
Parameters: Name Type

k Integer
metricId String
params String[]
timePeriod Integer

The parameters for the metrics can be found analyzing the result of the call to

generalGetRankingMetricsDescriptions function, described above. The time period can be

specified with the following values:

JD4 Functional prototype for metadata tools and
concepts

9/32

Value Meaning
1 1 day
2 1 week
3 1 month
4 1 year
5 Since recorded history

Further plans
The MACE usage metadata infrastructure at present provides basic functionality. It will be

extended with additional and advanced metrics for ranking purposes and recommendation

functionality. Such extensions need to take the specific nature of the activities of users within

the MACE system into account. Therefore, a rather large effort will be necessary to adapt

existing solutions to the requirements of MACE.

In addition, usage metadata will be applied to generate a number of statistics, e.g. number of

learning objects used, time and date of usage, etc. The statistic information serves as a base

for recommendation features like “users who read this also read…”

JD4 Functional prototype for metadata tools and
concepts

10/32

Functional Prototype for contextual metadata (WP4)

Introduction
Contextual metadata are used to describe a situation or connections between seemingly

unrelated contents. In the architectural education domain concerned by the MACE project,

they can be used to enable students to learn about connections that were not visible before.

We hope to find out that students can learn more effectively when being empowered to search

in repositories they did not even know about before.

Figure 3 - ContextService prototype (system view)

The prototype for contextual metadata works on a specific problem: relating contents to a

location they are describing. For example, a building created by Renzo Piano, the famous

architect, is described as being located in Berne, Switzerland. By employing some clever

mechanisms to match contents against geo-coordinates, we can pinpoint that content on a map

and also show other contents mentioning Berne next to it. These contents do not necessarily

be about Renzo Piano, too. In fact they can be anything else, from regulations to travel

information, and come from different repositories. We “simply” use the physical location

context to connect them to each other. While this does not make sense in all situations, for a

great number of cases the use of location context as “glue” between (learning) contents will

provide new and interesting insights to the student.

JD4 Functional prototype for metadata tools and
concepts

11/32

System design questions

For the prototype being able to handle these tasks, some problems needed to be addressed:

1. How to get location information (context metadata) from contents and repositories?

2. How to translate this information into geo-coordinates?

3. How to display these coordinates on a map?

4. How to design user interaction, so users can actively update context information, i.e.

create new context metadata?

To solve the first two problems, we created a full text index of all contents and matched that

index against GeoNames1, an online geographical names database. GeoNames consists of

over six million locations and also provides alternate spellings for most of them, so searches

for “Florence”, “Florenz”, “Florència” and “Firenze” all lead to the same location record. This

is very useful because the content we indexed was in at least three different languages

(English, Italian and German). GeoNames also has become the basis for several other

projects2, which helps with adding new location information and correcting existing

information, thus making GeoNames even more valuable for us.

To create the full text index, we used Lucene3, a high performance index creation and

management utility. The index was created by feeding to Lucene all contents from the

WINDS database, a process which took about 30 minutes and resulted in a index with about

48400 non-duplicate entries (so called index-terms), each of them having between one and

eleven occurrences in actual documents. For example, the term “Barcelona” occurs in eight

WINDS contents. From GeoNames, we took the list of alternate location names (available for

download from their site4). This list after cleanup (duplicates and ignoring capitalisation)

contains 2.232.500 entries.

GeoNames
List

WINDS
Index Matching

Items

Figure 4 - Matching WINDS and GeoNames

1 http://geonames.org
2 http://www.geonames.org/users.html
3 http://lucene.apache.org/
4 http://download.geonames.org/export/dump/alternateNames.zip

JD4 Functional prototype for metadata tools and
concepts

12/32

As a result of the matching operation, we got a collection of about 3600 hits. Several of these

hits are not real locations but abbreviations, for example of people names. We needed to find

a way to deal with these mistakes, which will be explained in a moment. First, we want to

explain how to visualize the results.

To visualize items on a map, we choose the Google Maps API because it is mature, well

documented and used in many projects already, which eases development and also increases

chances that users might have seen and used similar tools already.

Google Maps provides a highly customisable map that users can interact with in standard, but

now also in new and MACE-specific ways. She can select an appropriate section by panning

and zooming the map, thus getting the possibility to explore specific areas in more detail, or

acquiring an overview by zooming far out. Furthermore, we allowed the user to switch

between satellite (satellite and high-resolution aerial photographs) and map view (topographic

and street map), to provide different aspects of context to view and compare.

The Google Map API makes it easy to create own simple map applications. We have

embedded that map not only in some web page, but integrated it into our widget framework.

The MapWidget1 loads contents dynamically via Asynchronous JavaScript and XML

(AJAX2).

A main content can be displayed, with further related contents to be fetched, enabling the user

to not only view the location of the currently chosen content, but also to analyse the

environment and interesting contents in the vicinity. Besides this interaction mechanism, the

user can pick another area by zooming and panning, so the widget loads all contents to display

by passing the coordinates of the selected region.

For every single content on the map, further information can be requested. The user can

obtain these by simply clicking on one of the shown markers, so that a small popup window

with additional metadata appears. Furthermore, an authorised user may place a content object

on the map for the first time, re-place it if its prior location has been erroneous, or refine its

metadata in a shortly displayed detailed map, if the location was correct but not exact enough.

The new geo-coordinates then are sent to the ContextService for processing and storage.

1 http://interface.fh-potsdam.de/mace/widgets/mapWidget/
2 http://en.wikipedia.org/wiki/Ajax_(programming)

JD4 Functional prototype for metadata tools and
concepts

13/32

Figure 5 - MapWidget (screenshot)

With the user being able to see contents on a map, mistakes will be recognized quickly. As

explained above, a content object can be mistakenly placed or should not be placed at all

because it does not refer to a location but to a person’s name, for example. In this case, the

user is able to correct the placement or to remove the location metadata from the content

completely. The user, because of her background knowledge in the respective field, is much

better in recognizing these mistakes than any automated process.

Because of this, the ContextService offers methods to correct the location information and to

update the metadata associated with the content. While this is not exactly newly generated

metadata, it is manually updated and therefore can be ranked with higher credibility than

automatically generated context metadata.

Prototype development
The context prototype is developed as an AXIS web service, running in an Apache Tomcat

container. It can be accessed via this URL:

http://www.mace-project.eu/mace/services/ContextService?wsdl

JD4 Functional prototype for metadata tools and
concepts

14/32

Figure 6 - Use cases for contextual metadata prototype

As described above, the prototype version of the ContextService relates digital contents to

geographical positions. To achieve this, the service uses its own database. The crucial point is,

that the ContextService does not store digital contents in its database, but content identifiers

only, which are unique throughout the whole MACE system. The service implementation is

based on a three-tier architecture, where the presentation layer is realised by the Map Widget.

Business logic layer

In the prototype version of the ContextService, we used relations of type [1..n] to associate

geographic positions to digital contents. This means that a geographical position can be

associated to multiple contents, but each content object is related to a single position only.

This makes sense when buildings, cities or other physical objects with a fixed position are

considered. In a later version, also persons and other mobile objects will be considered in

JD4 Functional prototype for metadata tools and
concepts

15/32

MACE, thus we will replace the [1..n] relations by [n..n] relations, so that each object can

relate to multiple positions and vice versa.

The [1..n] relations between positions and contents is implemented as follows: For each

geographical position, an object of type 'Position' is created.

Figure 7 - Position class overview

The class 'Position' is shown in figure 2. Its fields can be classified into three categories:

1. Geographic information. With each Position object, latitude and longitude values are

stored. Additionally, each object has a unique identifier and a textual description.

2. Associated content Ids. These are represented by MACE-wide unique identifiers and

stored in a field of type HashSet.

3. GeoNames-related fields. As described above, we use the geonames.org database to

associate contents with positions. Geonames.org does not only provide

latitude/longitude values, but also additional information with a position. The most

important ones are stored by the ContextService, when positions are queried from the

geonames.org database. These are 'countryCode' and 'countryName', which store the

country (coded and full text), where an object is located, and 'fcode' and 'fcl' which

store a position's feature code classification. Geonames.org provides a so called

'feature code list' (http://www.geonames.org/export/codes.html), a kind of taxonomy,

that classifies positions according to their characteristics (Is a place populated? Is it a

city or a village etc?).

The ContextService provides public functions that are used for creating and manipulating

positions and their relations to contents. These can be called via the web service interface.

Beside these functions, the business logic layer also realises the integration of the

geonames.org database. Information from geonames.org is currently 'harvested' and stored

JD4 Functional prototype for metadata tools and
concepts

16/32

statically rather than dynamically linked to the ContextService database for speed reasons.

Associating information from geonames.org to our contents is based on a list of terms that

occur in our digital contents as well as in the GeoNames database. If a term occurs in a

content object, this content is associated to all positions received from the geonames.org

database when initiating a full text search with the same term.

Database backend

We use Hibernate1 to persistently store Java objects in a database. The database consists of

two tables, one to store positions and one to store content-IDs. The position that a content

object is related to is stored in form of its identifier in the content-table.

The web service interface

The ContextService interface provides the below listed, self-explaining methods. Besides the

basic types xsd:string and xsd:double the complex data types 'Position', which is explained

above, and 'StringArray' are used for data exchange. The 'StringArray' type is a workaround

to exchange two-dimensional arrays of type 'String' over the web service interface. It is used

by the method 'getContentsOfMultiplePositions.

- String assignContentToPosition(String positionId, String contentId) assigns the content

with ID 'contentId' to the Position-object with ID 'positionId.

- String[] getAllPositions() lists all Position-objects that are stored in the database.

- Position[] getPositionsInArea(double nwLat, double nwLon, double seLat, double

seLon) returns all Position-objects that are located in an rectangular area specified by the

four parameters of type 'double'

- Position getPositionOfContent(String contentId) returns the Position-object that is

related to a given content.

- String removeAllContentsFromPosition(String positionId) removes all contents from the

ContextService's database that are associated to a given Position-object.

- Position[] getPositionsInRange(double lat, double lon, double range) is similar to

getPositionsInArea, the difference is that the area, to which the returned Position-objects

belong, is circular and specified by a centre/radius pair.

1 http://www.hibernate.org/

JD4 Functional prototype for metadata tools and
concepts

17/32

- StringArray[] getContentsOfMultiplePositions(Position[] positionIds) is a wrapper for

getContentsOfPosition. Multiple requests for getContentsOfPosition can be encapsulated

in a single request.

- Position[] getPositionsOfMultipleContents(String[] contentIds) is a wrapper for

getPositionOfContent to reduce the number of requests.

- createPosition(String positionId, double latitude, double longitude, String description,

String geonames_geonameId, String geonames_countryCode, String

geonames_countryName, String geonames_fcl, geonames_fcode) creates a Position-

object. The GeoNames-related fields are optional.

- String removeContentFromPosition(String positionId, String contentId) removes a single

content associated to the Position-object with ID 'positionId'.

- String removePostion(String positionId) removes a Position-object and all associated

contents.

- String getContentShortInfo(String positionId) provides a short information about the

content with ID 'contentId'. This method is not implemented yet.

- String[] getContentsOfPosition(String positionId) returns all contents' Ids that are related

to the Position-object with ID 'positionId'.

Future work
Although the only currently planned client will be the widgets also developed in the MACE

project, the service is in principle open to anyone interested. By connecting to the above URL

with a code generation tool, client interface classes for a lot of programming languages can be

created automatically. The ContextService WSDL is WS-I1 compliant.

Automatically associating contents to geographical context does not always lead to the

aspired goal. As already mentioned above, we have to evaluate, how usable the full text

matching method is and how it can be adapted to yield better results. A second goal for the

future is to include other than geographical contextual information in our metadata.

If the current prototype turns out to work satisfactorily, we will analyse other context settings

potentially helpful in architectural education and create additional (web) services to exploit

these situations to gather and use contextual metadata in them.

1 http://en.wikipedia.org/wiki/WS-I

JD4 Functional prototype for metadata tools and
concepts

18/32

Use of MACE services by ContextBlogger
The ContextBlogger toolset is being developed at OUNL and has already been described in

papers1,2. It aims to provide mobile and contextualised information access to the MACE

services. With the addition of a mobile infrastructure to the already existing services,

ContextBlogger provides a way to instantly create and enrich content in a specific real-world

context.

Instant access to information with mobile devices is extended by adding information about the

user’s current situation or context. For example, a picture of a building can be created by

using a mobile phone and at the same time enriched with GPS3 location metadata

corresponding to the location the picture was taken. Another way of relating information to a

user’s physical environment is the use of identification tags attached to physical objects. In

the system presented here we use a specific kind of data matrix symbols called semacodes

(machine-readable ISO/IEC 16022 data matrix symbols that encode Internet Uniform

Resource Locators (URLs). It is primarily aimed at being used with cellular phones, which

have built-in cameras)4. The available learning content can thus be related to physical objects

and in that way directly integrated in a learning process that involves those objects.

The ContextBlogger application combines mobile social software with information about the

context of a learner. Based on these underlying concepts and relations several use cases can

be developed.

1 http://dspace.ou.nl/handle/1820/828
2 http://dspace.ou.nl/handle/1820/1008
3 http://en.wikipedia.org/wiki/GPS
4 http://en.wikipedia.org/wiki/Semacode

JD4 Functional prototype for metadata tools and
concepts

19/32

Figure 8 - ContextBlogger use cases

These use cases have led to a technical framework, with the following three subsystems:

Figure 9 - ContextBlogger infrastructure

- a mobile client subsystem, that handles the interaction with the user in the real-world,

JD4 Functional prototype for metadata tools and
concepts

20/32

- a content subsystem, that stores the information that is used to enrich the interaction with

the real-world objects,

- a contextual metadata subsystem that stores contextual information that relates the context

tags with the content in the system.

Available web services

The functionality of the server architecture is made available via a couple of web services,

each of which group a certain set of functionalities given by a server module. At this

moment, three different web services are available:

1. The ContextServerService, which provides the entry point for the mobile client and thus

provides all functionality for mobile access. The ContextServerService is located at:

http://145.20.177.33:8181//ContextServer/ContextServerService?wsdl

2. The metadata service that provides an API for querying all available locally stored metadata.

The metadata service is available at:

http://145.20.177.33:8181//ContextServer/MetadataServiceService?wsdl

3. The location service, which is a more specific version of the metadata service that enables

access to the locally stored location metadata; most of which are GPS locations. The location

service can be accessed at the following location:

http://145.20.177.33:8181//ContextServer/OUNLLocationServiceService?wsdl

Future work

At the moment of writing, the ContextBlogger software is still in beta stage and not all

functionality has been implemented yet. In the future, we will focus on the following:

- Further work on the integration of ContextBlogger with the MACE Context services,

- The integration of the software with the content repositories of MACE, so that content created with

the ContextBlogger can be inserted into MACE content repositories with an appropriate LOM

description. Moreover, the deliveries of content from within the MACE content repositories.

- Research in combining the map widget and the ContextBlogger for creating ubiquitous learning

scenarios.

JD4 Functional prototype for metadata tools and
concepts

21/32

Functional prototype for competence & process metadata

The rationale behind
Competences and learning processes are often implicitly used in training and education only

in the recent years, competences are more and more explicitly used to structure curricula, plan

personal development plans and other educational activities. To metatag learning objects with

information about competences is a difficult task and requires expert knowledge not only

about the domain but often also about the underlying pedagogy. In a first step for the

infrastructure for MACE in WP5 the consortium created a flexible set of applications to

collect and catalogue competence descriptions, manage and maintain those descriptions and

offer an open API to integrate services based on such a competence catalogue into different

end user tagging applications.

How the system works
The competence catalogue is a completely object oriented application written in Java and is

able to output the data in several output formats such as XML and JSON1. A web service

layer is developed on top of this application to provide access to the variety of methods in the

competence catalogue. This web service is deployed on a Glassfish2 v2 application server and

can be accessed using its SOAP3 API.

The latest version of the documentation is on the OU.nl MACE Wiki:

http://mace.ou.nl/doku.php?id=competenceserviceapi

1 http://json.org/json-de.html
2 https://glassfish.dev.java.net/
3 http://www.w3.org/TR/SOAP/

JD4 Functional prototype for metadata tools and
concepts

22/32

System overview

Figure 10 - System overview

Use cases

The MACE Competence Catalogue API makes it possible for a user to search for a

competence in different ways. You can search a competence using a full text search on the

title/description of the competence or you can search for competences in a specific domain of

just get the competence(s) for a certain resource, expert or evidence. If you just want to

browse the catalogue you can get a list of all the competences in the catalogue.

If you have found a competence you can start adding metadata to it, such as resources,

evidences and experts. The added metadata is weighted so you can see in how much it

contributes to that competence. After adding metadata a competence card can be obtained

from the web service, which will contain all relevant information combined into an easy to

understand XML document.

JD4 Functional prototype for metadata tools and
concepts

23/32

Metadata generation
The competence catalogue is providing competence metadata and usage metadata. The

metadata is generated and stored with the LOM sets, and the catalogue application is used as a

reference and vocabulary. The vocabulary service can maintain and manage different domains

and competence catalogue for those domains, furthermore it allows to stores relevant

resources, experts, and other information with a competence.

Integration with other MACE components and services
As the current prototype backend OUNL has developed a competence administration

application. This is a web-based application that supports the management, and administration

of different domains and competence descriptions for those domains. Furthermore it offers a

service API for manipulation and editing of this information and the use in metatagging.

The competence services are integrated with the MACE Enrichment Widget to quick-tag an

object with a competence. Basically user can switch to competence metatagging in the MACE

portal and get a tagging field the text in the field is then auto completed according to the

vocabulary that has been requested from the vocabulary service. In a next step the MACE

Competence Widget will be designed to connect the competence tagging with several other

services which will allow adding some granularity to the competences connected to an object

such as weighing and relation between competences. The consortium planes to evaluate

different approaches for competence tagging beginning 2008. Furthermore an independent

client application will be developed that enables competence tagging of arbitrary objects and

URIs even outside the MACE learning objects to integrate external references. To implement

support for the complex interconnection between the management, maintenance, and

description of competences the Competence Card Application is under development. The

competence card application gives an overview of a competence and all its related

information such as experts, evidences and resources and integrates those information

resources in one application.

JD4 Functional prototype for metadata tools and
concepts

24/32

Figure 11 - Infrastructure design overview

A detailed description of the implementation and all APIs can be found at:

http://mace.ou.nl/doku.php?id=competenceconceptions

Furthermore in the next version of the competence catalogue will have:

- full competence maps: support for combining competences in weighted maps and

competence profiles which are often associated to job profiles and educational profiles.

- full support for importing competences (HR-XML and RDCEO)

- full support for exporting competences (HR-XML and RDCEO)

- CAM RSS usage metadata interface to track information about usage and social annotation

of competences.

JD4 Functional prototype for metadata tools and
concepts

25/32

Functional Prototype for content and domain metadata
(WP6)

Objective
The prototype will deliver a stable infrastructure for metadata and content gathering and

access, management and provision within MACE. The infrastructure will enable content

enrichment of existing contents with keywords and ontologies from different domains using

the MACE application profile.

MACE application profile
The MACE application profile is described in Deliverable 3-6.1. While the categories and

metadata fields of the MACE application profile are agreed upon, the MACE consortium is

still working on the formalization of the values for several metadata fields. A focus is, for the

moment, on the classification values of the MACE application profile. The update of the

MACE application profile is reported in the half-yearly progress reports of the MACE project.

Prototype description
The prototype is a distributed, services oriented architecture with software both on the content

provider side as on the metadata “manager” side.

On the content provider side, software is installed to perform two operations. It provides a

mapping from the provider metadata format to the IEEE LOM format following the MACE

application profile. Secondly, it allows the content providers to provide an OAI-PMH target,

which complies with the OAI-PMH 2.0 specifications1.

The central “metadata manager” sets up a central harvester. This service has several purposes.

The main purpose is of course to harvest all the content metadata from the different content

providers and storing it in a central database, called the metadata store. The metadata store’s

primary database is an XML database, so no transformations have to be performed to store or

retrieve the XML metadata.

Additionally, the harvester adds global unique identifiers (see appendix A) for both the

metadata and the learning objects described by the metadata set. This ensures that the

metadata identifier is unique throughout the whole MACE system and thus identifies the

metadata easily. The harvester also adds the time stamp of the point in time when harvesting

1 http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

JD4 Functional prototype for metadata tools and
concepts

26/32

took place along with the repository form where the metadata set has been harvested. With

this information it is easy to trace back the origin of the metadata.

When the metadata is stored into one metadata store for backup reasons, it is also copied to

the second metadata store that provides the actual MACE metadata store. In the MACE

metadata store, the metadata is merged with new or enriched metadata, without losing the

original harvested metadata (as it is stored in the backup store.)

To increase performance of serving incoming queries, the MACE metadata store is enhanced

with a Lucene1 index that complements the XML database. Lucene has been widely

recognized for its utility in the implementation of Internet search engines and local, single-site

searching. Lucene itself is just an indexing and search library and does not contain crawling

and HTML parsing functionality. When metadata is inserted, the metadata is both stored in

the XML database as well as parsed and transformed into a Lucene document. The Lucene

index then enables direct PLQL2 level 0 and PLQL level 1 queries so that the bottleneck of

XQuery translation (needed to enable PLQL level 0 and level 1 on XML databases) is

avoided.

The Figure 14 illustrates the technical setup. The metadata is harvested into the Harvested

Metadata Store and duplicated in the MACE metadata store. All metadata present in the

MACE Metadata Store can be queried through SQI. When metadata is enriched, it can be

pushed into the Enriched Metadata Store using SPI. This metadata is then again duplicated to

the MACE Metadata Store. This infrastructure preserves all harvested and enriched metadata

separately, but also allows for a unified search through the metadata.

Figure 14 describes specific implementations of the different metadata stores and how the

insertions and queries work. Compared to the previous figure, the Harvested MetadataStore

consists of the “mace-harvest” web service and the database table “HARVESTED”. Analogue

to this, the Enriched Metadata Store contains the “mace-enrich” web service and the database

table “ENRICHED”. Finally the MACE Metadata Store covers the “mace-ws” web service,

the database table “METADATASTORE” and the Lucene index. The communication

between the web services and the xml database happens through a JDBC connection. The

metadata inserts are translated to SQL insert statements and the high level PLQL queries to

XQuery statements. Communication to the Lucene index happens through the Lucene API for

both the lower level PLQL queries as the insertions of the metadata.

1 http://lucene.apache.org/
2 http://ariadne.cs.kuleuven.be/lomi/index.php/QueryLanguages_v1.0

JD4 Functional prototype for metadata tools and
concepts

27/32

The MACE content and domain metadata infrastructure is situated within the ARIADNE

infrastructure. The ARIADNE architecture is a modular service-oriented architecture built on

the principle that interoperability and extensibility is best achieved by the integration of

different interfaces as clearly defined modules. These interfaces interoperate based on a

formal definition that is independent of the underlying platform. This definition hides the

implementation of a language-specific service.

The interfaces that are specified in this document can be implemented in several bindings,

among which are

- WSDL binding for making web service implementations of the API.

- Binding for standalone applications, in several programming languages or platforms

among which are Java and C#. We provide WSDL bindings1 that implement the different

interfaces.

The ARIADNE architecture is depicted in Figure 12 and supports three types of services:

repository, core and support services. Repository services contain

- insert and obtain services for both metadata and content,

- an identifier service that provides capabilities to request new identifiers, and

- a value space service that enables the description of vocabularies and its terms.

Besides repository services, core services are defined that enable:

- to enrich content with automatically generated metadata (SAmgI),

- to disaggregate content into its components (DisAgg),

- to make content available through a standardized interface (FedSearch), and

- to collect metadata from various repositories (Harvesting).

Finally, support services are specified that provide, among others, session management and

management of Contextualized Attention Metadata (CAM) which is used in the MACE usage

metadata architecture.

The repository architecture consists of the bottom layer of Figure 12, i.e. the MetadataStore,

the ContentStore, the IdentifierGenerator and the ValueSpaceStore. These interfaces use the

support services that are described above.

The modules in Figure 12 that are surrounded with a black rectangle enable users to query the

repository architecture by using the Query Service, for instance, but they can also use the

recommendation component to find relevant material.

1 http://ariadne.cs.kuleuven.be/lomi/index.php/SpecificationIndex

JD4 Functional prototype for metadata tools and
concepts

28/32

Figure 12 - The ARIADNE architecture

Figure 13 - MACE Content metadata infrastructure

JD4 Functional prototype for metadata tools and
concepts

29/32

Figure 14 - Technical implementation

Integration into MACE infrastructure
The integration of the above described infrastructure into the MACE architecture bases

completely on the usage of web services. These web services are subject to change. Therefore,

instead of presenting them here, the reader is referred to the appendix in this document.

Furthermore, the MACE deliverable 7.1-7.3 provides more details on the MACE

infrastructure.

Further plans
Apart from the issues to be solved outlined in the MACE deliverable 7.1-7.3, we will continue

to integrate further repositories by providing the respective interfaces, support providers in the

JD4 Functional prototype for metadata tools and
concepts

30/32

implementation of the MACE application profile and respective mapping and harvesting

software as well as improve performance.

Furthermore, work will also concentrate on the integration of new systems, e.g. the social

community system Aloe1 to enable advanced tagging and community building approaches in

MACE.

In the context of performance improvements, work will concentrate on better support for

PLQL queries, improved storage through reduced injection times of MACE application

profile metadata sets, improved interfaces between the stores and other MACE metadata

stores, etc.

Last but not least, work will contribute to the issues of MACE user management, user

profiling and privacy and security issues respectively.

1 http://aloe-project.de

JD4 Functional prototype for metadata tools and
concepts

31/32

Conclusion and outlook
This deliverable has shown the prototypes for each enrichment work package. An integration

of each prototype into the whole system – the MACE infrastructure as described in joint

deliverable JD5 – can be seen now, too. Most of the components will show their full potential

when working together to answer requests from end users, which in turn requires the whole

consortium to work together on further developing the components and streamlining the

interfaces between then. It now also pays that we set on using open standards (AXIS, Web

services, XML, SOAP, SQI, SPI) as this will make further work easy.

The next steps are now as follows: We will have the prototypes evaluated, the results being

described in joint deliverable JD6 - "Evaluation of functional prototype for metadata tools and

concepts".

The evaluation will be followed by a next iteration of requirements (both from the evaluation

as well as user requests that did not make it in the first prototype version). After that, the

prototypes will be refined and developed further, with a production version planned for M30,

to be described in deliverable JD9: "Production version for metadata tools and concepts".

JD4 Functional prototype for metadata tools and
concepts

32/32

Appendix A: Technology

Widgets

We are planning to implement Widgets for integration into websites to enable MACE Search
from different sites.

MACE global identifiers

In order to create unique identifiers across different repositories, we use the OAI identifier
schema.
This section explains how to create such identifiers.

NOTE: Both the learning objects as the metadata have MACE GUID's. Be careful what local
identifier you use!

OAI identifier specification

See here: http://www.openarchives.org/OAI/2.0/guidelines-oai-identifier.htm

creating MACE GUID's

To create a MACE GUID you need a local identifier (from within a repository) and a
repository identifier.
The basic scheme looks like this : oai:<repositoryIdentifier>:<local_Identifier>

example

Here you can find an example from the WINDS repository.

- local identifier : 1008.1
- repositoryIdentifier : winds.gmd.de

--> MACE GUID = oai:winds.gmd.de:1008.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

