

Language Technologies for Lifelong
Learning

LTfLL -2008-212578

Project Deliverable Report

Deliverable D2.1 – Services Approach & Overview General Tools
and Resources

Work Package WP Infrastructure

Task 2.1, 2.2, 2.4, 2.5

Date of delivery Contractual: 31-10-2008 Actual: 15-12-2008

Code name D2.1 Version: 1.0 Draft Final

Type of deliverable Report

Security
(distribution level)

Public

Contributors Reinhard Dietl (WUW), Fridolin Wild (WUW), Bernhard Hoisl
(WUW), Christian Buchta (WUW), David Meyer (WUW), Kurt
Hornik (WUW), Stefan Sobernig (WUW), Felix Mödritscher (WUW),
Berit Richter (BIT MEDIA), Markus Essl (BIT MEDIA), Gerhard
Doppler (BIT MEDIA)

Authors (Partner) Reinhard Dietl (WUW), Bernhard Hoisl (WUW), Fridolin Wild
(WUW), Berit Richter (BIT MEDIA), Markus Essl (BIT MEDIA),
Gerhard Doppler (BIT MEDIA)

Contact Person Fridolin Wild (WUW)

WP/Task responsible WUW

EC Project Officer Mr. M. Májek

Abstract
(for dissemination)

The contents of this deliverable are split into three groups.
Following an introduction, a concept and vision is sketched on how
to establish the necessary natural language processing (NLP)
services including the integration of existing resources. Therefore,
an overview on the state-of-the-art is given, incorporating
technologies developed by the consortium partners and beyond,
followed by the service approach and a practical example. Second,
a concept and vision on how to create interoperability for the
envisioned learning tools to allow for a quick and painless
integration into existing learning environment(s) is elaborated.
Third, generic paradigms and guidelines for service integration are
provided.

Keywords List Service Concept, NLP, Educational Mash-Ups

LTfLL Project Coordination at: Open University of the Netherlands
Valkenburgerweg 177, 6419 AT Heerlen, The Netherlands

Tel: +31 45 5762624 – Fax: +31 45 5762800

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

1

Table of Contents

Executive Summary .. 3
1. Interoperability .. 4
2. Interoperability for Natural Language Processing .. 7

2.1 State of the Art .. 7
2.1.1 General Architecture for Text Engineering (GATE)... 7
2.1.2 Unstructured Information Management Architecture (UIMA) 9
2.1.3 The Language and Environment R ... 10
2.1.4 Architecture and Tools for Linguistic Analysis Systems (ATLAS)................. 13
1.1.5. Summary ... 14

2.2 Service Approach.. 15
2.2.1 Layer View... 15
2.2.2 Data Flow View... 16
2.2.3 Component Interaction and Distribution View.. 17

2.3 Example: Classroom Widget for Essay Scoring ... 18
2.3.1 Tutor’s view: Corpus and Topic Administration ... 18
2.3.2 Student’s View: Essay Scoring... 20
2.3.3 Technologies used in Prototype .. 21

3. Interoperability for Learning Tools.. 23
3.1 Data Gathering .. 24
3.2 Widgetising.. 25
3.3 Runtime Environment: Glueing and Executing .. 29
3.4 Authorisation and Authentication .. 31

3. Development Guidelines... 32
3.1 Server Specifications .. 32

Learning Tool Infrastructure .. 32
Natural Language Processing Infrastructure ... 33

3.2 Software Development and Release Process... 34
3.3 Documentation .. 35
3.4 Software Testing ... 36
3.5 Compliance.. 36

References.. 37
Appendix 1: Consortium Resources... 41
Glossary.. 43

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

2

List of Figures

Fig. 6: Architectural layers. .. 5
Fig. 7: Architecture Overview. ... 6
Fig. 1: Layer decomposition of a possible NLP system.. 15
Fig. 2: Data flow during a typical NLP process. ... 16
Fig. 3: Component Interaction and Distribution View.. 17
Fig. 4: Screenshot of the PHP-based tutor GUI... 20
Fig. 5: Screenshot of student’s GUI based on the Yahoo! User Interface library. 21
Fig. 8: Conceptual Model (Example). .. 24
Fig. 9: Conceptual Model (Example). .. 24
Fig. 10: Example of Common Widget Structures. .. 26
Fig. 11: Gadget settings... 28
Fig. 12: Possible Environments. ... 31
Fig. 13: Workflow Server Setup... 32
Fig. 14: SVN repository tree... 35

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

3

Executive Summary

Together with WP3 on scenarios, this horizontal work package aims at guiding and
supporting research and development within the project. Work within the work package
is organised along two groups of tasks: the first being targeted towards the natural
language processing (NLP) services, whereas the second serves the set-up, maintenance,
and further development of the learning tool (LT) infrastructure (which deploys the
natural language processing services).

In a way, one could say that the overall goal of this infrastructure work package is to
create interoperability – and the break-down into two lines of tasks (plus the final
roadmap) is merely the realisation of interoperability with the two facettes natural
language processing services and learning tools.

Task T2.1 covers the development of a concept and the basic set-up of the infrastructure
including a definition of guidelines for the services and technical validation criteria.

Task T2.4 relates to designing, developing, and/or enabling access to general utilities and
services to support the language technologies.

Interoperability can be defined a property that emerges, when distinctive information
systems (subsystems) cooperatively exchange data in such a way that they facilitate the
successful accomplishment of an overarching task (Wild & Sobernig, 2006).

Naturally, as this deliverable has to outline the service approach and to give a general
overview on existing tools and resources, it has to follow two research lines on how
interoperability can be realised within the project.

First, a concept and vision is sketched on how to establish the necessary NLP services
including the integration of existing resources. Therefore, an overview on the state-of-
the-art is given, incorporating technologies developed by the consortium partners and
beyond, followed by the service approach and a practical example.
Second, a concept and vision on how to create interoperability for the envisioned learning
tools to allow for a quick and painless integration into existing learning environment(s) is
elaborated.

The concepts proposed are generic enough to integrate the background brought in by
partners into the work packages 4 to 6 – and beyond. Still, it will ensure their
interoperability and will provide a solid infrastructure to build the next showcases as well
as, subsequently, the services on. How this can be achieved is especially illustrated with
the practical example in 2.3 which is a simplification (distorted but understandable!)
closely related to a service envisioned for T5.2 of WP5 on assessing student writings.

To round up this deliverable, generic guidelines for the service integration are provided
within the last section.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

4

1. Interoperability

A change in perspective can be certified in the recent years to technology-enhanced
learning research and development: More and more learning applications on the web are
putting the learner centre stage, not the organisation. They empower learners with
capabilities to customise and even construct their own personal learning environments
(PLEs). These PLEs typically consist of distributed web-applications and services that
support system-spanning collaborative and individual learning activities in formal as well
as informal settings.

Technologically speaking, this shift manifests in a learning web – where information is
distributed across sites and activities can easily encompass the use of a greater number of
pages and services offered through web-based learning applications. Mash-ups, the
'frankensteining' of software artefacts and data (Hartmann et. al., 2008), have emerged to
be the software development approach for these long-tail and perpetual-beta niche
markets. Core technologies facilitating this paradigm shift are Ajax, JavaScript-based
widget-collections, and micro formats that help to glue together public web APIs in
individual applications.

Interoperability is the necessary precondition for this service concept. Interoperability is a
property that emerges, when distinctive information systems (subsystems) cooperatively
exchange data in such a way that they facilitate the successful accomplishment of an
overarching task (Wild & Sobernig, 2006).

Interoperability, for the scope of this project, has to be achieved on three layers (see
Figure 6). First, data collection and management has to be enabled by establishing a set of
light-weight data formats and data access methods. Second, services have to be
established (e.g., LSA-based natural language processing services) that allow for remote
access of all crucial processing services. Third, the application front-ends have to be
turned into widgets and portlets in order to allow 'google-maps-style', convenient re-use
of logically coherent components. By achieving interoperability on these three layers, an
architecture can be realised that maximises re-usability while at the same time allowing
for heterogeneity in the implementation processes.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

5

Figure 1. Architectural layers.

Learners produce data in various ways during their learning activities. Digital traces left,
for example, can be a document, postings in a forum, and utterances in a chat: any tool
involved in the learning process can hold valuable input data to the analysis services
envisioned in LTfLL. This scattered data have to be transported to the point where they
are needed in order to allow the analytical data processing serves to perform their
calculatory duty. To allow for data gathering from multiple sources, feeds provide an
established and simple solution (Wild et. al., 2008b). Enriched with microformats, they
provide an expressiveness that may suffice for most of the applications faced within the
project.
How data is processed in the aggregating system depends on the services of the different
work packages 4, 5, and 6 enriched by generic services provided from within the
infrastructure work package. For most services, REST style services will provide –
through their simplicity – advantages over more complex alternatives like SOAP or
XML-RPC.

Most of these tools have some output that has to be visualised to the user. Some tools
work as standalone applications, others are embedded into a more complex web
application, often a kind of learning management system (LMS) or content management
system (CMS). To encapsulate the logical user interface units, i.e. dialogue-sized visual
appearances with a particular, use-case sized behaviour, and to enable them for direct re-
use across several systems, the use of widgets is recommended.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

6

Figure 2. Architecture Overview.

Put into practice, a potentially complex system results. Widgets, services, and data
storage facilities are distributed across a heterogeneous set of web applications and
servers:

 Services can be hosted on one LTfLL server or on multiple servers.
 Services can also be hosted on any other application server.
 Output can be displayed in widgets embedded in a frontend.
 Output can be displayed in any stand-alone solution.
 Data can be stored in a central database on one or many LTfLL server.
 Simple data exchange between components can be realised with feeds.
 Complex data exchange is encapsulated in services.

In the following two chapters, the layered concepts for the natural language processing
services and for the learning tools will be developed against the background of the state
of the art. Both will be illustrated with an example.

This deliverable is rounded up by a chapter on guidelines.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

7

2. Interoperability for Natural Language Processing
Within each development cycle, the necessary tools and resources will be elaborated and
documented in subsequent deliverables. Here, the aim is on outlining a service oriented
framework that allows for the integration of heterogeneous natural language processing
services.

Added in the Annex 1, there is a listing of the language corpora currently available within
the consortium which can perform as data inputs for the software components still to be
developed. Additional information on existing services, tools, and resources in the
context of the first show cases can be found in D3.1.

This deliverable draws from D3.1 and D7.1 regarding the elaboration of the scenario-
driven design process. Reading them first is highly advised.

2.1 State of the Art
This section describes existing technologies – that means state-of-the-art frameworks and
their tools plus resources – available for text mining and natural language processing.
Thereby, the focus is set on available interfaces, used data formats, and support for
orchestration facilities.

2.1.1 General Architecture for Text Engineering (GATE)
GATE was developed in 1995 by the University of Sheffield and its first release was in
1996. GATE is an infrastructure for developing and deploying software components that
process human language. It specifies a software architecture for natural language
processing, a framework which implements the architecture and which can be used to
embed language processing capabilities in diverse applications, and a development
environment built on top of the framework made up of convenient graphical tools for
developing components.

GATE is open-source and distributed under the GNU Lesser General Public Licence
(LGPL)1. GATE is written in Java, which is also its preferred programming language,
although using JNI nearly every language can be used to deploy GATE applications.
GATE supports both Oracle and PostgreSQL databases.

GATE uses specialised types of Java Beans, and comes in three flavours (Cunningham,
Maynard, & Bontcheva, 2008):

 Language Resources (LRs): lexicons, corpora, ontologies
 Processing Resources (PRs): algorithmic (parsers, generators, modellers)
 Visual Resources (VRs): visualisation and editing components (components that

‘participate’ in graphical user interfaces)

GATE is able to read Unicode format (e.g. UTF-8), thus it has no problems with different
character-sets of languages. There exists GUK, the GATE Unicode Kit for developing
applications using Unicode support. Supported document formats are: XML, RTF,

1 That means that GATE can be embedded in commercial products if required.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

8

HTML, SGML, and plain text (there is also a basic support for PDFs and Microsoft Word
documents2). In all cases the format is analysed and converted into a single unified model
of annotation (Cunningham, Maynard, & Bontcheva, 2002, p. 3). The annotation format
is a modified form of the TIPSTER format, which has been made largely compatible with
the Atlas format (Bontcheva, Kiryakov, & Cunningham, 2003, p. 2). XML is used for
annotations. JAPE (Java Annotation Patterns Engine) provides regular-expression based
pattern/action rules over annotations.

GATE has a single model for information that describes documents, collections of
documents (corpora), and annotations on documents based on attribute/value pairs.
Attribute names are strings; values can be any Java object. The API for accessing this
feature data is Java’s Map interface (part of the Collections API).

A corpus in GATE is represented in Java as a Set interface whose members are
documents. Both corpora and documents are types of Language Resources (LR); all LRs
have a FeatureMap (an extended Java Map) associated with them that stores meta-data
(‘attribute + value’ style) about the resource (Cunningham, Maynard, & Bontcheva,
2008).

For information extraction (IE) tasks there exists ANNIE (A Nearly-New Information
Extraction system) which is a processing resource (PR) for language analysis. Some of
the features coming with ANNIE are: a tokeniser, a gazetteer, a sentence splitter, a part-
of-speech tagger, a semantic tagger, an orthographic co-reference tagger, and a
pronominal co-reference tagger (Wikipedia, 2008).

It is possible to combine GATE and UIMA (see next section) through UIMA’s SDK
(support for Java and C++). The two main parts needed for this integration are:

 A wrapper to allow a UIMA Text Analysis Engine (TAE), whether
primitive or aggregate, to be used within GATE as a processing
resource (PR).

 A wrapper to allow a GATE processing pipeline (specifically a
CorpusController) to be used within UIMA as a TAE.

The GATE structure is based on components: reusable chunks of software with well-
defined interfaces. The set of resources integrated with GATE is known as CREOLE
(Collection of REusable Objects for Language Engineering). All resources are packaged
as Java archives (JAR) and deploy XML configuration files (Cunningham, Maynard, &
Bontcheva, 2008). Therefore, a set of developed resources can be embedded in the target
client application through the GATE framework.

As GATE is entirely written in Java it can draw from many functionally rich libraries
available for this programming language. For example, providing GATE functionalities
as web-services can conveniently be realised with the help of ‘Metro’ (java.net
Community, 2008) which provides APIs and tools for generating web-services. Metro
itself consists of JAX-WS, a reference implementation for deploying web-services.

2 Only the text is extracted from the documents, no formatting information is preserved.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

9

Components of GATE are written as Java Beans, so they obey to certain conventions
regarding method naming, construction, and behaviour.
As for the idea of orchestration facilities, numerous orchestration servers exist for the
Java programming language, where the BPEL and WS-BPEL standards are implemented.
An extended BPEL definition called BPELJ also provides the possibility to include Java
code (called Java Snippets) in BPEL process definitions.

2.1.2 Unstructured Information Management Architecture (UIMA)
UIMA was first developed at IBM and is now an Apache Software Foundation project. It
is open source and distributed under the Apache License. The Apache UIMA framework
includes an all-Java SDK implementation of the UIMA framework. It also includes a
C++ version of the framework (not contained in the core distribution) and enablement’s
for annotators built in Perl, Python, and TCL (IBM, 2006).

In analysing unstructured content, UIM applications make use of a variety of analysis
technologies including those from statistical and rule-based natural language processing,
information retrieval, machine learning, ontologies, automated reasoning, and a diverse
set of semantic resources (e.g., CYC, WordNet, FrameNet)3 (IBM, 2006, p. 24).
Unstructured content is not limited to purely plain text, but can be an audio or video
stream, an HTML page or similar – all of them called artefact. Each representation of an
artefact is called a ‘Subject of Analysis’ (Sofa), for which the corresponding data types
can be Java Unicode strings, feature structure arrays of primitive types (special objects of
byte or float arrays), or a URI.
UIMA defines a Common Analysis Structure (CAS) for annotators to represent and share
their analysis results. It is an object-based data structure that allows representation of
objects, properties, and values. UIMA provides an implementation of the CAS with
multiple programming languages. Through these interfaces, the annotator developer
interacts with the document, and reads and writes analysis results. For Java annotator
developers, UIMA provides the JCas, a Java based interface to CAS objects. Each type
declared in the system appears as a Java class.

For every component specified in UIMA, there are two parts:

 The declarative part (metadata describing the document, structure
and behaviour; XML)

 The code part (algorithm implementation; mainly Java)

The UIMA framework can handle tightly-coupled (running in the same process) or
loosely-coupled (running in separate processes or even on different machines) analysis
engines (software objects which do the computation parts). The framework supports a
number of remote protocols for loosely coupled deployments, including SOAP – the
standard web service protocol (IBM, 2006, p. 33). The other important communication
protocol is called Vinci, which is a lightweight version of SOAP, included as a part of
Apache UIMA. An existing component is the Vinci directory, known as VNS (Vinci

3 A semantic search engine from IBM’s alphaWorks is also provided (IBM, 2008).

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

10

Naming Service), which provides information about the different available services
(name of the host machine, name of the service).
The UIMA framework can make use of these services in two different ways:

 An Analysis Engine can create a proxy to a remote service; this proxy acts like a
local component, but connects to the remote. The proxy has limited error handling
and retry capabilities. Both Vinci and SOAP are supported.

 A Collection Processing Engine (CPE) can specify non-Integrated mode. The
CPE provides more extensive error recovery capabilities. This mode only supports
the Vinci communication protocol (IBM, 2006, p. 147).

To deploy a UIMA component as a SOAP service one has to install the following
software components: Apache Tomcat (Java Servlet and JSP implementation) and
Apache Axis (SOAP implementation).

With the UIMA framework it is possible to increase performance using parallelism. This
can be done with additional threads within one Java virtual machine on one host or by
deploying different analysis engines on a set of remote machines (IBM, 2006, p. 156).
Monitoring performances can be done via the Java Management Extensions (JMX), e.g.
CASs per second.

Another component of the UIMA framework is the so-called Flow Controller, which
plugs into an Aggregate Analysis Engine and determines the order in which the
components of that aggregate are invoked.

For distribution and re-use of developed components within the UIMA framework, it is
possible to generate a PEAR (Processing Engine ARchive) file, which is a standard
package for UIMA components.

As the UIMA framework has a Java programming language interface, it can benefit from
the already existing software components, toolkits and frameworks described in the
chapter before.

2.1.3 The Language and Environment R
R is an integrated suite of software facilities for data manipulation, calculation and
graphical display (Venables & Smith, 2008, p. 2). It consists of a programming language
plus a run-time environment with graphics, a debugger, access to system functions, and
the ability to run programs stored in script files. R claims to be a fully coherent system,
not a collection of different tools merged together. R can be regarded as an
implementation of the S language which was developed originally at the Bell
Laboratories by John Chambers and colleagues. The main focus of R can be seen as to
serve as a statistic computing system (but it is not only limited to statistical computing).
Many modern statistical techniques have been implemented. There are about 25 core
packages supplied with R and – as R is an open-source GNU project – many more are
available as extensions (more than 1.300).

R has an object oriented programming language implementation, providing a number of
specialised data structures to access data stored in memory. For data storage, the most

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

11

important are vectors, lists, factors, matrices, and data frames. Vectors can be thought of
as contiguous cells containing data. R has six basic vector types: logical, integer, real,
complex, string (or character), and raw. Contrarily, lists have elements, each of which can
contain any type of R object, i.e. the elements of a list do not have to be of the same type.
Factors are used to describe items that can have a finite number of values (gender, titles,
etc.). Data frames are generally speaking matrices of data. A data frame is a list of
vectors, factors and/or matrices all having the same length (R Development Core Team,
2008c, p. 3ff).

As for data import and export there exists several interfaces. The easiest is importing data
from a text file. Data can also be stored using XML (provided that the necessary package
has been installed). In addition, there exists a package which has the ability to import data
from other statistical software, like SAS, SPSS, S-PLUS etc. But there are limitations on
the types of data that R handles well. R is not well suited to extremely large data sets,
since all data being manipulated by R reside in memory. Though there are extension
packages for R that help with the manipulation of high volume data. Furthermore, R does
not easily support concurrent access to data. For the purpose of managing data, there
exists much better solutions like (R)DBMSs. Available packages support on the one side
MySQL, SQLite, and Oracle directly and on the other side there is a package for
interacting with DBMSs through the ODBC standard interface. Tested DBMSs are
Microsoft SQL Server, Access, MySQL, PostgreSQL, Oracle and SQLite (R
Development Core Team, 2008a, p. 2ff).

R supports a variety of connection types, including file connections, text connections4,
pipes5, URLs, and sockets. By looking at the ability of R for network interactions, there
are interfaces for (D)COM, CORBA, SOAP, and others (R Development Core Team,
2008a, p. 20ff).

In R there exist interface functions for compiled C and FORTRAN code. Therefore, it is
possible to pass R objects to compiled code. Additionally, the C function can be used
with other languages which can generate C interfaces, for example C++. It is also
possible to use R from C code (and in a limited way from FORTRAN code, as well). As
R can be built as a shared library, it can be used to run R from alternative front-end
programs. This means, a GUI or any other application that has the ability to submit
commands to R and perhaps receive results back.
Concerning web interfaces and orchestration abilities of R, there exist packages, for
example, for running R scripts through the CGI interface, allowing submissions of data
using both GET and POST methods. Moreover, there is an R/Apache integration, which
consists of an Apache module that embeds the R interpreter inside the web server.
Another package has implemented a TCP/IP server which allows other programs to use
facilities of R from various languages. Additional packages for the R environment
enables R to be used with other programming/scripting languages than C/C++ and
FORTRAN, for example Java, Tcl/Tk (in core distribution), Perl, Python, XLisp, or PHP,
for which some of them are highly suited to handle shared network interactions.

4 Allow R character vectors to be read as if the lines were being read from a text file.
5 A special form of file that connects to another process.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

12

Furthermore, support for web services are enabled through a package using
Java/Axis/Apache as underlying technologies. Hence, there exist implementations for
using XML based documents and the SOAP protocol for exchanging these
documents/messages over a network (Hornik, 2008).
For the distribution of self-developed software, it is very easy to create an extension to R
bundled in one single package, which is able to run on all operating system platforms
where the R program can be installed on6. If a binary package is deployed and made
available on the Internet, any user can download and install it either through the R GUI or
with an install-package-command from the R console. In either case the installation is
straight-forward and does not need any in-depth knowledge of the underlying software
system.

An R package consists of a special subfolder structure and may contain files for
information and configuration of the package as well as license and copyright
descriptions. Additionally, there may be a news, change log or readme file (R
Development Core Team, 2008d, p. 2). Furthermore, help files are describing the
functionalities of the package in detail, while demonstration programs can present them.
For internationalisation purposes one can set the encoding type of the description files so
that non-ASCII characters of different languages can be displayed (R Development Core
Team, 2008d, p. 42).

There is an established development process for engineering new packages that involves
versioning, packaging, consistence checking, testing, profiling, documenting, and the
like. Through the comprehensive R archive network (CRAN), R distributions and
packages are made available in a worldwide network of mirrors. One of the success
factors of R and CRAN may lie in the tradition to accompany a package release with the
publication of so-called ‘vignettes’, i.e. papers which document the aim of the software
released and explain its usage with code samples. By using LaTeX, these vignettes can
even contain executable R code which again is used in the testing routines executed for a
package release to check for errors.

Among its vast amount of extension packages, there also are several ones dedicated to
natural language processing and text mining. To develop this area and help developers
align their agenda, a so-called R task view has been introduced for natural language
processing (Feinerer & Wild, 2008). Here, a quick overview of the most important
extension packages is given:

 Natural Language Processing
o openNLP: An interface to openNLP, a collection of natural language

processing tools including a sentence detector, tokeniser, pos-tagger,
shallow and full syntactic parser, and named-entity detector, using the
Maxent Java package for training and using maximum entropy models.

6 Packages may be distributed in source form or compiled binary form. Installing source packages requires
that compilers and tools be installed. Binary packages are platform-specific and generally need no special
tools to install (R Development Core Team, 2008b, S. 15).

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

13

o openNLPmodels: English and Spanish trained models for the package
openNLP.

o RWeka: is an interface to Weka which is a collection of machine learning
algorithms for data mining tasks written in Java, containing tools for data
pre-processing, classification, regression, clustering, association rules, and
visualisation.

o Snowball: provides the Snowball stemmers which contain the Porter
stemmer and several other stemmers for different languages.

 Text Mining
o tm: a comprehensive text mining framework including count-based

analysis methods, text clustering, text classification and string kernels.
o lsa: provides routines for performing a latent semantic analysis.
o corpora: offers utility functions for the statistical analysis of corpus

frequency data.
o languageR: provides data sets and functions exemplifying statistical

methods.
o zipfR: offers some statistical models for word frequency distributions. The

utilities include functions for loading, manipulating and visualising word
frequency data and vocabulary growth curves. The package also
implements several statistical models for the distribution of word
frequencies in a population.

 Keyword Extraction and General String Manipulation
o RKEA: provides an R interface to KEA (Keyphrase Extraction Algorithm),

which allows for extracting key phrases from text documents. It can be
either used for free indexing or for indexing with a controlled vocabulary.

o gsubfn: can be used for certain parsing tasks such as extracting words from
strings by content rather than by delimiters.

 String Kernels
o kernlab: allows to create and compute with string kernels, like full string,

spectrum, or bounded range string kernels.
 Lexical Database

o wordnet: provides an R interface to WordNet, an on-line lexical reference
system7.

2.1.4 Architecture and Tools for Linguistic Analysis Systems (ATLAS)
ATLAS addresses an array of applications needs encompassing corpus construction, an
evaluation infrastructure, and multi-modal visualisation (Cover, 2000). The ATLAS

7 In WordNet English nouns, verbs, adjectives and adverbs are organized into synonym sets, each
representing one underlying lexical concept. Different relations link the synonym sets.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

14

framework provides an architecture targeted at facilitating the development of linguistic
applications. It is made of four main components: an annotation ontology, an API, an
interchange format for linguistic data, and MAIA, a type definition infrastructure
(Laprun, Fiscus, & Garofolo, 2002, p. 264).
The annotation ontology at ATLAS' core provides the abstractions on which the rest of
the framework is built. These abstractions can be implemented using diverse
programming languages. A Java instantiation of the data model is available (jATLAS)
and provides an API to the core objects allowing their easy manipulation (jATLAS
Development Team, 2003). jATLAS supports some basic low-level services, like data
import/export, management utilities, definition of a Service Provider Interface (SPI) and
automatic validation services via MAIA. jATLAS is open source and freely available, but
only in a beta version, yet.
Moreover, linguistic data expressed using ATLAS abstractions can be serialised to XML
using the ATLAS Interchange Format (AIF) to facilitate their exchange and reuse. For
physical storage the AIF or a RDBMS system (accessible from ODBC-compliant calls)
can be used.

The ATLAS approach separates logical and physical levels from application-specific
levels (Bird, Day, & Garofolo, 2000, p. 1700f):

 The logical layer consists of a linguistic formalism and an API. The formalism is
the annotation graph model and it’s generalisation to higher-dimensional cases.
The API defines a set of procedures for creating, modifying, searching and storing
well-formed annotation sets.

 The physical layer where API specification will allow various physical storage
implementations that applications are free to access in multiple ways. As
mentioned earlier, the two dominant storage strategies are AIF and RDBMS.

 The application layer, which is left up to the developer. Any application that can
read, manipulate, or annotate ATLAS data would fall under this category.

The Atlas project is no longer developed (since 2003).

1.1.5. Summary

Regarding their potential, the frameworks GATE, UIMA, and R express a comparably
rich architecture that allows for the integration of heterogeneous natural language
processing services. As, however, important core components are already available for R,
most notably the text mining framework tm and the package for latent semantic analysis
lsa both developed by consortium partners (and not to forget the big set of SNA
packages), there is a strong favour for R. Through R’s capabilities to interface with other
environments, this seems to be a good starting point for the interoperability work within
LTfLL. Future integration work will show whether this initial favour has to be revised.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

15

2.2 Service Approach
Although a unified definition of a service oriented architecture has not yet been agreed
on, this section will try to describe the service-oriented architecture (SOA) of a natural
language processing system using a reference model based on software patterns as
suggested in (Avgeriou & Zdun, 2005)Reference_Zdun2005 by looking at the
architecture of the services and the logic behind them from different points of view.

2.2.1 Layer View
Figure 3 shows how the components of a typical NLP system can be split into different
layers. The suggested 4-tier-architecture comprises the layers typical for a client-server-
architecture, augmented with an indirection layer, represented by the services.

Figure 3. Layer decomposition of a possible NLP system.

Starting with the highest-level components on the left side, the client layer contains all
software used to interface with NLP services. In this context, a ‘semantics provider’ is
any client serving text data or other semantic information to the system that is used to
build reusable objects like spaces; an ‘NLP user’ is a client used to provide semantic data
to the system that is used to perform semantic calculations utilizing the reusable objects
on the server, using the NLP service.

The service layer exposes the key functionality of the system to the clients. It serves as an
indirection layer, as it can expose the functionality from the application logic layer in a
condensed form if necessary. Note that the “topics administration” functionality is used to
create, modify and delete reusable objects that are stored on the server for later use
(“topic” refers to the context of LSA, where a semantic space represents a specific topic)
It is also responsible for handling any connection-related issues in the client-server
communication process. In Figure 3, the dotted line between the two frontends implies
that multiple NLP tasks can be wrapped this way, the essay scoring and the synonym
search being only examples.

The application logic layer holds any infrastructure responsible for the actual
calculations. The space maintainer is a routine capable of creating, modifying (‘fold-in’)
and dropping actual latent-semantic spaces, and therefore encapsulates the core NLP
logic. Furthermore, this layer comprises any task-specific logic used to serve NLP user

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

16

requests. A more extensive description of latent semantic analysis and the corresponding
application logic is contained in the deliverables D4.1 and D5.1.
The storage layer represents a supporting sub-system, serving the application logic layer.
The space object storage is able to hold generated spaces in a highly accessible way. If
transfer of spaces is chosen to be avoided in favour of a reference-driven communication,
the storage must be able to serve a space identification token (‘space ID’) for every space
provided, and vice versa. The user data storage holds parameter data provided by the
user, possibly on a per-session or a per-account basis.

2.2.2 Data Flow View
Figure 4 shows how data is moved within an NLP system during the two key processes:
space generation and NLP task execution. It also shows the key input and output data
types at each stage, which is important for realisation of a pipes-and-filters-architecture.

Figure 4. Data flow during a typical NLP process.

For the space generation, a text corpus is put into the process, where it is transformed into
a computable object and then transformed into a space (Figure 4 shows this process for an
LSA-based computation). Note that this model suggests, that the actual space is not
returned to the requestor, but rather, a reference to the space’s location. This is due to the
fact that LSA spaces are large, complex, and non-sparse objects that actually have to be
available on a fast medium, which suggests handling the actual space data internally and
only exposing a ‘space ID’ to other functions.

During a typical NLP task, the service interface receives a user request holding the
execution parameters, one of which must be the space (again, space handling via space
locators is only a suggestion). After pre-processing the user parameters and data, an
internal LSA logic is invoked, returning a result object to the communication controller.
Note that the typical NLP task allows a parallel execution of space retrieval and user data
pre-processing, while the space generation is a pipelined operation.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

17

2.2.3 Component Interaction and Distribution View
This view augments the layered view by looking closer at the interface structure as
depicted in Figure 5.

Figure 5. Component Interaction and Distribution View.

Again, a 4-tier-layering has been chosen. The grey annotations on the far right show that
this model adheres to a typical 3-tier-client-server-architecture, with the application logic
layer comprising the higher-granular services layer that holds the logic and interfaces of
the task-specific calculations, and the spaces layer that holds the logic and interfaces for
space maintenance and retrieval. This view describes the space object storage as a
‘backend’, which again emphasises the support function of this layer.

Component interaction is depicted with the invocation types next to the interfaces.
Starting at the least-granular layer, the space warehouse holds objects, which are essential
for the execution of the accessing components’ logic and therefore, retrieval of the space
blocks the accessing component until completion.

Space generation and modification (the latter relying on the component of space retrieval)
are a time consuming task, and most likely no client will want to wait for its completion.
Therefore, together with the topic administration logic (addressed, e.g., using a web
service) a store-and-forward-messaging architecture is suggested. The topic administrator
client sends a request object (including parameters and data) to a queue managed by the
topic administrator logic, and receives nothing but a confirmation of receipt at the queue.
The topic administrator logic then retrieves the topmost element in the queue as soon as
processing capacity is available and forwards it to the space generation/modification

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

18

logic, using a ‘fire and forget’ invocation. At any time of this process, the topic
administrator client can access information about the progress by accessing the space
retrieval logic via the modification logic.

Finally, the clients of the NLP tasks (depicted by a stack in Figure 5, as there can be
many different tasks, addressed by different specific clients) access their underlying logic
via their respective service interfaces, using arbitrary remote invocation methods, most
likely, (a)synchronous explicit invocations. The respective logic components then access
the space retrieval component using a blocking call, as again, the spaces are vital for the
calculations.

From the distribution view, Figure 5 shows the different remoting approaches used for
the topic administration on the one hand and the NLP task execution on the other. The
topic administration uses a message queuing remoting pattern, for the reasons described
in the component interaction view above. The invocation of task logic is realised using
the remote procedure calls remoting pattern.

From the user interaction view, the relevant layers ‘clients’ and ‘services’ interact
utilising a model-view-controller (MVC) pattern, the model being the NLP task logic or
the space maintainer, respectively, the view being the client software which sends request
to the service interface, and the controller being the infrastructure used to provide this
interface (e.g. an XML or SOAP service).

2.3 Example: Classroom Widget for Essay Scoring
The following scenario has been created as a prototype, with the aim of discovering a
first set of technologies that may be used to realise the service architecture concept of
Section 2.2.

Essay scoring is a process in which a topic is defined by a tutor using text corpora
specific to this topic, and essays written by students can then be rated using a scoring
mechanism. This prototype uses LSA to generate a space for the topic and to fold in a
student’s essay, finding the score using Pearson correlation as a proximity measure.

On the server machine, an Apache server is listening for REST-style requests for *.rws
scripts, which are R scripts that can be executed by an Apache module called Rapache.
These scripts execute the request and return custom XML data as a result.

2.3.1 Tutor’s view: Corpus and Topic Administration
Corpus and topic administration is realised using a PHP-based frontend to generate the
requests. Using a PHP command as shown in Listing 1, PHP generates a request like in
Listing 2 at runtime. The server will return a list of existing corpora as in Listing 3:

$requestURL = 'http://host.com/webservice/corpus_list.rws';
$xml_response = file_get_contents($requestURL);

Listing 1: PHP instructions used to generate a request

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

19

GET /webservice/corpus_list.rws HTTP/1.1
User-Agent: PHP/5.2.4-pl2-gentoo
Host: host.com
Accept: */*

Listing 2: HTTP request for a list of existing corpora

HTTP/1.1 200 OK
Date: Wed, 29 Oct 2008 12:55:27 GMT
Server: Apache
Transfer-Encoding: chunked
Content-Type: text/xml

358
<WSR:webServiceResponse xmlns:WSR="http://www.w3c.org/WSR"
xmlns:ltfll="http://www.ltfll.org/">
<ltfll:corpus id="1">
<ltfll:title>Medical Texts</ltfll:title>
<ltfll:original_filename>med.all</ltfll:original_filename>
<ltfll:textsize>1114373</ltfll:textsize>
</ltfll:corpus>

<ltfll:corpus id="2">
<ltfll:title>CISI Test Texts</ltfll:title>
<ltfll:original_filename>cisi.all</ltfll:original_filename>
<ltfll:textsize>2561998</ltfll:textsize>
</ltfll:corpus>
</WSR:webServiceResponse>

Listing 3: XML response from the server

This XML data is then processed using PHP to generate a GUI for topic administration.
Upload of a corpus is done using HTTP POST utilising the RFC 1867, which is
commonly used by browser-based forms. The form itself has been generated by the PHP
script and is then utilised by the client browser.

POST /webservice/corpus_upload.rws HTTP/1.1
Host: host.com
Content-Type: multipart/form-data; boundary=---------------------cc1b3257ba
Content-Length: 309

-----------------------cc1b3257ba
Content-Disposition: form-data; name="corpus[1]"; filename="test.txt"
Content-Type: text/plain

This is a simple text corpus.

-----------------------cc1b3257ba
Content-Disposition: form-data; name="title[1]"

Title of the test
-----------------------cc1b3257ba--

Listing 4: HTTP request for upload of a new corpus

HTTP/1.1 200 OK
Date: Wed, 29 Oct 2008 13:10:22 GMT

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

20

Server: Apache
Transfer-Encoding: chunked
Content-Type: text/xml

9a
<webServiceResponse xmlns="WSR" xmlns:ltfll="LTfLL"><ltfll:success>The file
test.txt has successfully been saved.</ltfll:success></webServiceResponse>

Listing 5: XML response upon upload

Using these technologies (REST-style requests for a small set of parameters, RFC 1867
style POST-upload for corpora), all functionality from the tutor’s view is implemented,
providing a GUI for the topic management.

Figure 6. Screenshot of the PHP-based tutor GUI.

Space generation jobs are passed to the server using the message queuing mechanism
outlined earlier. A GET request states the IDs of the corpora to be put into the space, and
an R script on the server generates the space as soon as computation capacity is available,
utilising the library ‘lsa’ (Wild, 2008). The spaces are then stored in a persistent R
instance (using Rserve) that acts as the space object storage outlined in section 2.2.
Therefore, the spaces are held in RAM and are highly available. The status of generation
can be monitored using the GUI (see the bottom of Figure 6).

2.3.2 Student’s View: Essay Scoring
For the student’s side, an AJAX based GUI has been developed. It utilises the same
technologies as the tutor’s side. Creation of GET and POST requests is handled using the
“Yahoo! User Interface” library (Yahoo, 2008b) module “connection”, which allows for
asynchronous invocation of the R services.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

21

Figure 7. Screenshot of student’s GUI based on the Yahoo! User Interface library.

2.3.3 Technologies used in Prototype
The technologies used for the prototype in 2.3. have been chosen for the following
reasons:

HTTP 1.1
This protocol is very common for text transmissions over carrier media like the Internet.
It has been preferred over different or even custom-tailored IP-based protocols for its
wide distribution, the broad base of communication middleware and the openness of the
standard, which results in better accessibility of the service.

GET/POST based RESTful requests
This technique has been chosen over alternatives like XML-RPC or SOAP for its
simplicity. The communication features required for this prototype could easily be
handled by HTTP utilising the custom syntax used here. XML-RPC would have allowed
for a more programmatic approach to service interaction, but would have imposed the
overhead of strict parameter typing in an environment that is not too sensitive for data
types. SOAP would have imposed even more overhead, actually wrapping the current
XML structure into just another structure that does actually not yield any benefit for this
prototype. For the corpus management, both techniques would have lead to the problem
of encapsulating text corpora in an XML structure. There are techniques for achieving
this like soap-attachment, but for the reason of simplicity, the widely used RFC 1867 has
been chosen here.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

22

Custom XML responses
This method of encoding the results using a custom XML scheme has been chosen over
serialisation of the result object using WDDX or JSON since the result objects R returns
might not be easily converted to the data type used by the client software. The method
chosen allows for easy communication using a simple, understandable response syntax
that can be parsed in almost every software framework.

Persistent R instance as space object storage
This method has been chosen over storage of spaces on the hard disk for the almost
instant availability of the spaces (as they are kept in RAM). It has been chosen over
transfer of space objects to the client for reasons of data size (spaces are large, complex
objects), potential serialisation problems, and again, availability (transfer of data over
remote carrier vs. RAM access).

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

23

3. Interoperability for Learning Tools
To meet the needs of a Scenario Driven Design Progress in a heterogeneous system it can
help to find an overall conceptual model to create a more general approach. A conceptual
model is a model that describes a system in a common way. It serves to specify the
design by the needs of the user.

In the PALETTE project a very interesting advance has been made base on a model
called 3A. The three As stand for Actors, Activities and Assets. An Actor is producing an
Asset being within an Activity. An Actor is a person, a software agent or any other
intelligent object. An asset is a document or a collection of documents or items:
discussion thread, wiki page, image album, and the like. An activity describes a
formalisation of a common objective to be archived by a group of actors: representation
of a tangible or abstract space: classroom or project management environment. The
structure is similar to a graph: nodes (AAA, so called entities) are connected with several
directed or undirected links with a specific type and weight (Bogdanov, 2008).

A different approach has been developed in the context of the iCamp project. At the core
of this approach stands learning environment design which manifests in a learner
interactions scripting language (LISL) and a prototypical implementation, called Mash-
UP Personal Learning Environment (MUPPLE). LISL gives end-users the possibility to
direct manipulate the composition of their personal learning environment. A simple
learner interaction model has been deduced to describe the physical and social
environment of learners. The activities, an actor is engaged in, are composed of actions
that include tools, artefacts (objects), and other actors. A learning situation is represented
by an activity that consists of actions that refers to objects and requires tools. With the
help of LISL, learners manipulate actions, artefacts, and tools. Each action is bound to an
artefact and at least one tool and produces one tangible or intangible outcome. Triples of
actions, artefacts, and tools across activities and actors form learning networks within the
MUPPLE platform (Wild, Mödritscher, and Sigurdarson, 2008).

For the LTfLL environment, these two models have been adapted to a more suitable one
that serves as a real interface between development and scenarios. For sure actors need to
be defined as well, but as one actor can be acting in different roles it seems to be obvious
to use roles instead. The role defines which kinds of users are needed. Learners and
educators do not use the tool the same way. Input and Output vary. There are two main
activities, independent of the functionality of the tool. An actor produces input and
expects output. Actors produce data in various ways, as a document or paper, in a forum
or chat: anything provides input. Independent of how the input has been processed, the
output has to be visualised browser-friendly. So after having defined who is doing
something, it has to be defined, what the person is putting into the system, and what he
gets back. It can be seen as a mash-up of asset and activity. A third important point is the
environment. Some tools have special needs concerning the environment and the
embedding. There is the possibility to communicate and interact with tools that are
completely independent other services will be embedded in a frontend. Tools that are all
stand-alone at least have to share their interface specification.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

24

Exemplification:

Activity Role Input Output Widget
Feedback Learner Essay Score; Feedback APEX

Conceptual
Development

Facilitator Known mis-
understandings;
Learner Evidence
Material

Learner Progress
Report

Progress
Monitor

Figure 7. Conceptual Model (Example).

3.1 Data Gathering
Users generate, edit, or delete data that has to be processed. According to Tim O’Reilly,
RSS is one of the most significant advances in web architecture (O'Reilly, 2005).

So it seems obvious to use RSS for data transport to profit from its advantages. An RSS
feed is an XML file that contains text and additionally metadata like the author or a
description.

As it is necessary to delete data, RSS is not sufficient. It is strongly recommended to use
Atom Syndicate Format (Nottingham & Sayre, 2005) as well which goes along with the
Atom Publishing Protocol and supports all the core functionalities of the HTTP protocol
like GET, PUT and DELETE. All input data will be feeds.

 RSS 2.0 Atom

 No XML schema Contains XML schema

 Description tag can contain summary or
content

Separation between summary and
content

 Date can be any format Date has to comply with RFC 3339
format

 No mark if it’s plain text or HTML marked if it’s HTML or plain text

 No support for relative URIs Supports relative URIs

 No ID Every entry has a unique ID

 widely spread Not so popular yet

Figure 8. Conceptual Model (Example).

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

25

The use of Yahoo pipes (Yahoo, 2008a) could be reasonable to filter the RSS or Atom
Feeds before processing them. Yahoo Pipes is a web application from Yahoo that allows
combining, sorting, filtering and translating feeds.

To get all the available information, you have to be aware of new data. With the use of
Yahoo pipes you can update this information periodically. There is also the possibility to
use FeedBack (Wild & Sigurdarson, 2008). FeedBack is a specification on how to
support management processes for feeds, i.e. provides facilitates to manage the data flow
from sources to sinks.

3.2 Widgetising
A widget is a small program embedded in a graphical user interface. There is a need for
tools that are adapted so that language services developed by the different partners are fed
with data from the tools (e.g. forum or blog entries) and the services return feedback e.g.
in the form of a widget.

Widgets are small applications that are embedded in kind of a framework or widget
engine. There are two possibilities provided: Widgets that are able to communicate
directly with the server and are interactive or widgets that get their information
periodically with the help of feeds which are not interactive. To stay as flexible and as
open-ended as possible the output can be a pure RSS Feed (or Atom) as well. In this way,
information remains independent of any tool or widget. Furthermore this offers the
possibility to use feed output as input for other applications.

Most of the time, widgets are tools or some kind of help or service application. Widgets
first arose in operating systems such as Apple’s dashboard widgets. Parallel to this
development was the appearance of web widgets, mainly to serve as a container for
information from any external source. In the world of Web 2.0 widgets are often used to
embed photos or videos, as with Flickr or YouTube.

Widgets are written in HTML and JavaScript. A widget engine is needed to host a widget
in an environment. There are a lot of such environments already, the natural choice being
another web-page, an approach that, for example, iGoogle follows. But even modern
operating systems support widgets natively, for example Microsoft Window Vista
(‘SideBar’) and Apple’s Mac OS X (‘Dashboard’). On the World Wide Web there are
certain platforms that provide this functionality such as iGoogle, Facebook, netvibes,
pageflakes, and others.

For LTfLL, an LMS or CMS frontend is assumed to be the runtime container in which
widgets are executed. If the LMS or CMS doesn’t provide this functionality by itself, this
can be achieved with the help of DHTML, AJAX, Adobe Flash or Java-Applets.

It is also possible to use something similar on the server side. In that approach, the
HTML is dynamically put together by the web server instead of the client’s browser. That
approach is older, from the times when the client browsers were not that capable as they
are today. This approach is taken by Java Portlets and WSRP. WSRP can be used in
SharePoint Portal Server, amongst others. More suitable, however, is a widget-based
approach which is easily transportable so that it can be easily integrated in a broad range
of containers.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

26

Figure 9. Example of Common Widget Structures.

Most widgets have certain things in common:

 Manifest file: This is the configuration file. Here the name of the widget, the
author, the size, the ID, or anything else can be configured here.

 Media type
 Packaging format
 APIs
 Resources

o XML or HTML file: in any case an index.html (or xml) file is needed that
contains valid XML/HTML(see Listing 6).

o JavaScript (see Listing 7)
o Images
o CSS

A detailed specification will be provided for LTfLL widgets based on the widget 1.0
working draft (Caceres, 2008).

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

27

Example (Google Desktop gadget):

<view height="150" width="250">

 <div enabled="true" height="22" hitTest="htclient" width="111" x="126"
 y="26" onclick="div_onclick()" background="#000000">
 <combobox height="100" name="combobox" width="109" x="5" y="2"
background="#FFFFF1"
 itemHeight="20" itemOverColor="#CCFFCC" onchange="onChange();"
 maxDroplistItems="4" type="droplist">
 <item height="20">
 <label valign="middle">Berit
 </label>
 </item>
 <item height="20">
 <label valign="middle">Gerhard
 </label>
 </item>
 <item height="20">
 <label valign="middle">Martin
 </label>
 </item>
 </combobox>
 </div>
 <img height="100" name="imageControl" width="100" visible="false"
 x="18" y="13"/>
 <script src="main.js" />
</view>

Listing 6: Main.xml (kind of index.xml or index.html, varies from widget to widget)

var URL = null;
var imgRequest = null;

//On chaning the choice in comobox, the Index of the selected item gives the
needed URL
function onChange() {
 switch (combobox.selectedIndex) {
 case 0:
 var URL = "http://partners.ltfll-project.org/user/pix.php/60/f1.jpg";
 break;
 case 1:
 var URL = "http://partners.ltfll-project.org/user/pix.php/67/f1.jpg";
 break;
 case 2:
 var URL = "http://partners.ltfll-project.org/user/pix.php/33/f1.jpg";
 break;
 }

 try{
 imgRequest = new XMLHttpRequest();
 imgRequest.open("GET", URL, true);
 // Set the callback for when the downloading is completed (or
failed)
 imgRequest.onreadystatechange = loadImg;

 // Start the download

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

28

 imgRequest.send();

 // Obtain the stream of image data and set it as the image.
 imageControl.src = imgRequest.responseStream;
 imageControl.visible = true;

 // Destroy the XMLHttpRequest object since it isn't being used anymore
 imgRequest = null;
 }
 catch(e){
 // Catch errors sending the request
 imgRequest = null;
 return;
 }

}

function loadImg(){
 // Verify that the download completed
try{
 if(imgRequest.readyState !=4)
 return;
 // Verify that the download was successful
 if(imgRequest.status != 200)
 imgRequest = null;
 return;
}
catch(e){
}
}

Listing 7: Main.js

Fig. 10. Gadget settings.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

29

<gadget minimumGoogleDesktopVersion="5.1.0.0">
 <about>
 <name>&GADGET_NAME;</name>
 <description>&GADGET_DESCRIPTION;</description>
 <aboutText>&GADGET_ABOUT_TEXT;</aboutText>
 <smallIcon>icon_small.png</smallIcon>
 <icon>icon_large.png</icon>
 <version>1.0.0.0</version>
 <author>brichter</author>

 <authorWebsite>http://desktop.google.com/plugins.html</authorWebsite>
 <id>AD9F5FE2-77F7-46E5-BEFD-BF7E66520C1F</id>
 <copyright></copyright><authorEmail></authorEmail></about>
</gadget>

Listing 8. Gadget settings

3.3 Runtime Environment: Glueing and Executing
To specify the behaviour of the web services there has been the idea of using
BPELhttp://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (Business Process
Execution Language, see Jordan & Evdemon, 2007). BPEL is an XML based language
that is often used to orchestrate web services, so partners could configure the educational
tool landscape for a specific scenario e.g. by using Eclipse and the BPEL plug-in.
One major point is the integration of the existing learning tools (e.g. Wikis, Forums) into
the LTfLL learning environment. Generally there are various options available for doing
this:

a) Hard-wired by a configuration file or a scenario manager: e.g. a user selects a
scenario, manager service launches tools. A state-of-the art approach would be to
use web application frameworks, like Spring (SpringSource, 2008) or OpenACS
(OpenACS Community, 2008), probably also Apache/PHP-based frameworks.

b) Separate applications without any interactions.
c) Runtime orchestration of tools, connecting tools to background services on-the-fly

like Spring, Openwings, OpenACS, or even BPEL-based workflow engines like
ActiveBPEL or the YAWL-engine. There is also the option of using IMS-
Learning Design (IMS, 2008) to orchestrate learning services which can be
evaluated.

Regarding the requirements that have arisen until now, it seems to be sufficient to use a
hard-wired configuration with a configuration file on the server. This approach complies
very well with the idea of a scenario driven design process (Armitt et al., 2008). In a
configuration file there would also be the possibility to configure everything else that is
needed like the task scheduler frequency or the URL where the service are found.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

30

<xml>
<application>
< task scheduler run =”hourly” command=”$SVN/latestpost.php”/>
<administration group=”wp2”>
<title>Latest Posts</title>
</administration>
<widget url=”latestpostwidget”>
<title>Show Latest Post</title>
</widget>
<widget url=”topactivitywidget”>
<title>Top Activity</title>
</widget>
</application>
</xml>

Listing 9: Example configuration file

The different tools that are the results of the activities of work packages 4, 5 and 6 are
hosted on the server and executed there. The server must offer the option of getting the
data from the feeds and of generating feeds to give some output back. The configuration
file is committed over SVN, so there is no need for the project members to have direct
access to the server and other servers (VM images) can easily be configured too. In the
configuration file the producer of a tool has to provide the start URL of the application.
On the server a database is provided which makes all necessary information available to
the user - in this case the user will be the widgets – so only one database user is needed. It
is possible for the application to register to a task scheduler periodically: daily, hourly, or
user-defined.
For the different services, that are used by different users at the same time instances of
the services could be needed. There will be the possibility for administrators to create
new ones. Users will have this possibility as well. Every widget carries information about
the need for instances as a parameter.
The runtime environment represents a container that glues together the widgets. Certainly
there will be further demands that the platform will have to meet, but these requirements
will arise during the development of the tools and techniques and cannot be specified yet.
As frontend for the users a platform is needed that is easy to use, flexible and open-
ended. It must also have a clean API, support feeds and provide a forum, chat and blogs.
There are several open source platforms that comply with these requirements, LMS/CMS
systems like Moodle, Joomla, Ilias or weblog systems like WordPress.

Example:

Requirement Moodle Joomla Ilias WordPress

Feed support x x x x

Chat, Forums x Plug in x Plug in

Community management x x x -

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

31

Clean and well documented API x x x x

Open-ended x x x x

Fig. 11. Possible Environments.

At this point it makes no sense to choose one system as the most suitable one because not
all of the requirements are known. There is the need for a continuous evaluation of the
requirements to be able to choose the right system at the right time. The requirements are
expressed by the individual work packages and we have to evaluate whether a platform
suits these needs or not.

3.4 Authorisation and Authentication
There is the need for an API to identify the user. The user is granted access to a rather
personal environment where his activities are noted. To be able to log in at all services at
the same time the use of a single sign on system is recommended. There are several
different Single-Sign-On systems that have one thing in common: They provide a
possibility to have only one ID, or one password to sing-on to several systems. In
addition, some Single-Sign-On systems also provide a Single-Log-Off function that
automatically logs you off all services you have been logged in. After being authenticated
the next step is to be authorised. This can be depending to a role: learner, teacher, tutor,
admin, or anything else (Sams, 2008).

For Single-Sign-On there are several providers that offer systems. We have to consider
whether the Google API Open Social that uses OAuth (OAuth Community, 2008) could
help in this case. OAuth is an open protocol to allow secure API authorisation in a simple
and standard method (Google, 2008).

Another possibility would be the use of OpenID, a well known single sign-on system that
is open source. Open ID has been developed for the huge community of online users to
eliminate the need of multiple user-names and passwords. OpenID is easy to install and
widely spread. Because of the popularity of OpenID the support of this system is highly
recommended (OpenID Foundation, 2008).

Depending on the requirements of the project there could arise the need for a system like
Shibboleth. Shibboleth provides both, authentication and authorisation for web services
and web applications. It is based on an extension of the SAML (Security Assertion
Markup Language) standard. Shibboleth is a rather institution centric approach where one
institution acts as broker (OASIS, 2008).

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

32

3. Development Guidelines

An infrastructure serves as a framework to support both development and deployment
encompassing both hardware and software aspects. In this chapter, these hard- and
software specifications are outlined, the software development and release process is
sketched, and guidelines regarding testing and compliance are elaborated.

One of the tasks of work package two is to serve as kind of a service provider for the
other work packages. While it is our task to guide, it is the task of the other work
packages to communicate their requirements. While some of the needs will still arise,
some rather basic decisions can already be made: Server Specification, general Software
Development and Release Process, Documentation and Software Testing. For the
development of the other work packages, this information is the general set-up, the
development guidelines.

3.1 Server Specifications
There are two physically independent infrastructures needed within the project. One to
host classic web-applications, the other to equip the language processing services with the
computational power, big memory resources, and particular software or operating system
requirements needed.

Learning Tool Infrastructure
To set up the server on the basis of the requirements provided by the project partners, a
server setup documentation is created. Following the documentation it is possible for all
project members to get and run a virtual machine image of the staging server themselves
(provided by bit media).

Fig. 12. Workflow Server Setup.

There are two servers, one acting as the live (‘Mittelerde’), the other as the development
system (‘Elch’). The development system doesn’t only serve as test server for new code

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

33

or frameworks; it also helps to grant transferability, as it is not equal to the live system.
The specification of the servers is as follows, there will be some adaptations to be made
for LTfLL needs:

 Live System (‘Mittelerde’)
o Hardware

 Fujitsu Siemens Primecenter, 19“ architecture
 XEON Dual Processor, 2400MHz, 4GB Ram
 2 application servers, 2 database servers
 Data back-up: Grandfather-Father-Son Backup8
 Database back up
 Capacity: 2x32 GB in Raid 1 each server + SAN (Storage Area

Network): 2x2 64 GB in Raid1
o Software

 Application server
 Suse Linux
 Apache 1.3.29
 PHP 4.4.6

 Database server
 Suse Linux
 MySQL 4.1.13

 Development System (‘Elch’)
o Hardware

 Windows Server 2003
 Intel Core2 CPU (2,4 GHz)
 4 GB RAM
 2x 320 GB HDD

o Software
 IIS 6
 PHP 4.4.9
 MySQL 4.1.20
 MSSQL 2005
 Oracle 10g

Natural Language Processing Infrastructure
As there are several partners who are deploying NLP related software, a similar
developing infrastructure method is chosen like for the learning tool infrastructure part.
To ensure that testing takes place and interoperability standards are met throughout the
development process two separate systems exist, one acting as a development/test, the

8 One of the most popular methods: three sets of backups are defined, such as daily, weekly and monthly

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

34

other as a live system. For the implementation it was chosen to install two virtual servers
(using XEN virtualisation) running on one physical machine mainly for cost reasons. The
most important specifications are:

 Hardware
o 2x Quad-Core Xeon 2.8GHz: 1 Quad-Core for each VM
o 32 GB RAM (8x4GB dual rank DIMMs): 16 GB for each VM
o 1.8 TB HD (6 x 300 GB)

 Software
o Operating System: Debian Lenny (64bit)
o Apache httpd 2.2.10
o MySQL Community Server 5.0.51a-17 (Debian)
o PHP 5.2.6 featuring Zend Engine v2.2.0
o R 2.8.0 with GotoBLAS 1.26

3.2 Software Development and Release Process
To host the code during the development and to share it with other project members we
use SourceForge. A SourceForge project for LTfLL has been created and can be found
here:
 http://sourceforge.net/projects/ltfll/

To become a member of the project you just have mail with project admin (listed on the
start page) stating your SourceForge account name. It is also possible to authenticate
using OpenID.

SourceForge is the well-known open source web portal for distributed development. It
provides not only the possibility to host and share code, but also to manage the
development process offering functionalities such as message boards and bug tracking.
SourceForge supports version management handled by Concurrent Versions System
(CVS) or Subversion (SVN) For LTfLL the use of SVN is proposed for several reasons
as for example: lower traffic as only differences between the versions are transferred in
both directions, better client tools for cross-platform use, wide distribution and the use of
revision numbers; other solutions like Darcs, Git or Mercurial might be better suited, but
are not supported by SourceForge (CollabNet, 2006).

Every SVN project is divided into three folders: trunk, branches, and tags. In the ‘trunk’
you find the current code, ‘branches’ are stable copies of the trunk where further,
alternative, development can take place, and ‘tags’ are used in order to mark certain
versions. In ‘trunk’ every work package will have its own folder so that the developers
have the possibility to host their code and documents organised in the way they need it.
Every developer would have the option to use working branches that can be merged to a
stable branch, but with the separation in folders for every work package this was not
considered necessary. All code for the server and the configuration is located in the WP2
folder. In addition, there is a folder for work that is common to all WPs.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

35

Fig. 13. SVN repository tree.

SVN is used to support the internal software development process. For releasing software
components SourceForge offers functionalities for package releases. This means at a
certain point in time a stable version of the software in the SVN repository is packaged
and released to the public. Software releases within this project are defined to be done in
line with the submission of the deliverables of the different WPs. The release process will
be deployed internally to test the installations on the live servers.

3.3 Documentation
If any third party library is needed, this has to be announced via mail to the server
administrators to be added to the requirements and to the documentation. The same
procedure also applies to additional software or configuration needs. Software code
which arises from the LTfLL project must be well documented. Doxygen (van Heesch,
2008) could help here to auto-generate the documentation from the code. Doxygen is an
open source tool that uses in-code comments to create a well-structured documentation.
Doxygen runs on Linux, but there is also a windows version available. C/C++, Java,
Python, IDL, C#, Objective-C, and to some extent D and PHP sources are supported.
Online formats (HTML and UNIX man page) and off-line formats (LaTeX and RTF) are
available as output.

Technical documentation is required especially with respect to:

a) Installation Documentation (internal): what is installed on the server, how to
access it (inclusive of all passwords)

b) Installation Documentation (external): what is installed on the server, how to
access it (exclusive of all passwords)

c) Code Documentation: in code documentation, reference, vignette-like technical
documentation

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

36

3.4 Software Testing
A very important issue in software development is the use of unit tests. A unit test is a
small piece of code written by a developer to test the functionality of the code; in fact, it
tests the smallest testable part of the source code. Depending on the code structure this
could be a function, a method, or any other part of the program. With the use of unit tests
it is easy to prove the functionality of software very quickly and at any time.

Unit tests are usually written before the real code is implemented to specify what the real
code is intended to do. In addition, unit tests make debugging easier and behave as
executable documentation. Generally, every time a new function has been written or a
bug has been fixed unit tests have to be run. For LTfLL development, tools are tested by
their developers. The APIs, for example, are tested with unit tests, such as probing if an
API is available and returns any results.

A virtual machine of the server will be provided to all partners so that they are able to
work and test locally. Every time something new has been installed, it is a good idea to
test it on a virtual machine before doing so on the real one.

3.5 Compliance
To ensure transferability, i.e. to ensure that the developed software will run on all major
systems, minimum requirements on software and hardware components have to be
defined. As the developed learning tools are rendered using a web-browser, some generic
guidelines can be defined. By optimising user interfaces for Microsoft Internet Explorer
version 6 + 7 and for Mozilla Firefox, typically a range of clearly over 90% of all Internet
users is covered. Furthermore, over 95% of all users have JavaScript enabled (Refsnes
Data, 2008a). If web-based software is designed for a screen resolution of 1024x768
pixels and higher over 85% of the users are covered (Refsnes Data, 2008b). Regarding
operating systems, over 90% of the users are working on a Microsoft Windows system
(Vista, XP, 2000, 2003 or 98) (Refsnes Data, 2008c).

The XHTML and CSS standards can be validated using W3C’s validators (XHTML:
W3C, 2008b; CSS: W3C, 2008a). In the knowledge rich approaches, the standards
covered with the GRDDL specification (Gleaning Resource Descriptions from Dialects
of Languages) may serve useful. The GRDDL specification introduces mark-up based on
existing standards for declaring that an XML document includes data compatible with the
Resource Description Framework (RDF) and for linking to algorithms (typically
represented in XSLT), for extracting this data from the document (Connolly, 2008).

The tools need to be able to cooperatively exchange data in order to support the
successful accomplishment of the envisioned use cases. In several cases, ensuring this
interoperability may relate to providing RSS of Atom feeds or implementing the feed
management API FeedBack. The feed management API FeedBack can be validated using
(iCamp, 2008). Additional data gathering standards or service APIs may become
necessary during the project’s lifetime.

Each service deliverable will cover compliance issues in more detail.

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

37

References

Advanced Distributed Learning (2007). Advanced Distributed Learning - SCORM.
Retrieved November 24, 2008, from http://www.adlnet.gov/scorm/

Armitt, G., Braidman, I., Tim, D., Jan, H., Howard, S., Gaston, B., et al. (2008).
LTfLL_D71_Validation_design_final_version.doc.

Avgeriou, P., & Zdun, U. (2005). Architectural Patterns Revisited - A Pattern Language.
10th European Conference on Pattern Languages of Programs (EuroPlop 2005), (pp. 1-
39). Irsee.

Bird, S., Day, D., & Garofolo, J. (2000). ATLAS: A Flexible and Extensible Architecture
for Linguistic Annotation. Proceedings of the Second International Conference on
Language Resources and Evaluation (pp. 1699 - 1706). Paris: European Language
Resources Association.
Bontcheva, K., Kiryakov, A., & Cunningham, H. (2003). Semantic Web Enabled, Open
Source Language Technology. Proceedings Language Technology and the Semantic
Web, Workshop on NLP and XML (NLPXML-2003). Budapest: Advanced Knowledge
Technologies.

Caceres, M. (2008, April 14). Widgets 1.0: Packaging and Configuration - W3C Working
Draft. Retrieved November 24, 2008, from World Wide Web Consortium:
http://www.w3.org/TR/widgets/

CollabNet (2006). Subversion. Retrieved November 24, 2008, from
http://subversion.tigris.org/

Connolly, D. (2008, September 8). Gleaning Resource Descriptions from Dialects of
Languages (GRDDL). Retrieved November 25, 2008, from Wolrd Wide Web
Consortium: http://www.w3.org/2004/01/rdxh/spec
Cover, R. (2000, November 16). Architecture and Tools for Linguistic Analysis Systems
(ATLAS). Retrieved November 24, 2008, from The CoverPages:
http://xml.coverpages.org/atlasAnnotation.html

Cunningham, H., Maynard, D., & Bontcheva, K. (2008, November 11). Developing
Language Processing Components with GATE Version 5 (a User Guide). Retrieved
November 24, 2008, from GATE - General Architecture for Text Engineering:
http://www.gate.ac.uk/sale/tao/index.html

Cunningham, H., Maynard, D., & Bontcheva, K. (2002). GATE: an Architecture for
Development of Robust HLT Applications. Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics (pp. 168 - 175). Philadelphia: Association for
Computing Machinery.
Bogdanov, E., Salzmann, C., El Helou, S., Gillet, D. (2008). Social Software Modeling
and Mashup based on Actors, Activities and Assets. In: Wild, Kalz, Palmer (Eds.):

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

38

Proceedings of the First International Workshop on Mash-Up Personal Learning
Environments, Maastricht, The Netherlands, Retrieved November 26, 2008, from
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-388/bogdanov.pdf

Feinerer, I., & Wild, F. (2008, September 16). CRAN Task View: Natural Language
Processing. Retrieved November 24, 2008, from The Comprehensive R Archive
Network: http://cran.at.r-project.org/web/views/NaturalLanguageProcessing.html

Wikipedia (2008). General Architecture for Text Engineering. Retrieved November 24,
2008, from http://en.wikipedia.org/wiki/General_Architecture_for_Text_Engineering

Google. (2008). OpenSocial. Retrieved November 24, 2008, from Google Code:
http://code.google.com/apis/opensocial/

Hartmann, B., Doorley, S., Klemmer, S.R. (2008): Hacking, Mashing, Gluing:
Understanding Opportunistic Design. In: Pervasive Computing 7(3), pp.46-54, IEEE
Hornik, K. (2008). R FAQ - Frequently Asked Questions on R. Retrieved November 09,
2008, from The R Project for Statistical Computing: http://cran.r-project.org/doc/FAQ/R-
FAQ.html

IBM (2006). Unstructured Information Management Architecture (UIMA). SDK User's
Guide and Reference. New York.

IBM (2008). Unstructured Information Management Architecture. Retrieved November
24, 2008, from IBM alphaWorks: http://www.alphaworks.ibm.com/tech/uima

iCamp (2008). FeedBack Validator. Retrieved November 25, 2008, from
http://isdev.odg.cc/feedback/

IMS (2008). IMS Global Learning Consortium: Learning Design Specification. Retrieved
November 24, 2008, from IMS Global Learning Consortium, Inc.:
http://www.imsglobal.org/learningdesign/

jATLAS Development Team. (2003, October 15). jATLAS: a Java implementation of
ATLAS. Retrieved November 24, 2008, from ATLAS overview:
http://jatlas.sourceforge.net/index.html

java.net Community. (2008, November 04). Metro Users Guide. Retrieved November 24,
2008, from GlassFish - Open Source Application Server: https://metro.dev.java.net/guide/

Jordan, D., & Evdemon, J. (2007, April 11). Web Services Business Process Execution
Language Version 2.0 - OASIS Standard. Retrieved November 24, 2008, from OASIS:
Advancing open standards for the global information society: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Laprun, C., Fiscus, J., & Garofolo, J. (2002). Recent Improvements to the ATLAS
Architecture. Proceedings of the second international conference on Human Language
Technology Research (pp. 263 - 268). San Diego: Morgan Kaufmann Publishers Inc.

Lim, J. (2004). ADOdb Database Abstraction Library for PHP (and Python). Retrieved
November 24, 2008, from http://adodb.sourceforge.net/

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

39

Nottingham, N., & Sayre, R. (2005, December). RFC 4287 - The Atom Syndication
Format. Retrieved November 24, 2008, from The Internet Engineering Task Force:
http://tools.ietf.org/html/rfc4287

OASIS (2008). OASIS Security Services (SAML) TC. Retrieved November 24, 2008, from
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

OAuth Community (2008). OAuth. Retrieved November 24, 2008, from http://oauth.net/

OpenACS Community (2008). OpenACS Home. Retrieved November 24, 2008, from
http://openacs.org/

OpenID Foundation (2008). OpenID. Retrieved November 24, 2008, from
http://openid.net/

O'Reilly, T. (2005). What Is Web 2.0. Retrieved November 26, 2008, from
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

R Development Core Team (2008a). R Data Import/Export. Retrieved December 1, 2008,
from http://cran.r-project.org/doc/manuals/R-data.pdf

R Development Core Team (2008b). R Installation and Administration. Retrieved
December 1, 2008, from http://cran.r-project.org/doc/manuals/R-admin.pdf
R Development Core Team (2008c). R Language Definition. Retrieved December 1,
2008, from http://cran.r-project.org/doc/manuals/R-lang.pdf

R Development Core Team (2008d). Writing R Extensions. Retrieved December 1, 2008,
from http://cran.r-project.org/doc/manuals/R-exts.pdf

Refsnes Data. (2008a). Browser Statistics. Retrieved December 17, 2008, from
W3Schools Online Web Tutorials:
http://www.w3schools.com/browsers/browsers_stats.asp

Refsnes Data. (2008b). Browser Display Statistics. Retrieved December 17, 2008, from
W3Schools Online Web Tutorials:
http://www.w3schools.com/browsers/browsers_display.asp
Refsnes Data. (2008c). OS Platform Statistics. Retrieved December 17, 2008, from
W3Schools Online Web Tutorials: http://www.w3schools.com/browsers/browsers_os.asp

Sams, B. (2008). Single-Sign-On-Systeme - Eine Übersicht. Retrieved November 24,
2008, from IT-Republik: http://it-republik.de/jaxenter/artikel/Single-Sign-On-Systeme-
1499.html

SpringSource (2008). Spring Framework. Retrieved November 24, 2008, from
http://www.springframework.org/

van Heesch, D. (2008). Doxygen. Retrieved November 24, 2008, from
http://www.stack.nl/~dimitri/doxygen/

Venables, W. N., & Smith, D. M. (2008). An Introduction to R. Network Theory.
Retrieved December 1, 2008, from http://cran.r-project.org/doc/manuals/R-intro.pdf

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

40

W3C (2008a). The W3C CSS Validation Service. Retrieved November 25, 2008, from
http://jigsaw.w3.org/css-validator/
W3C (2008b). The W3C Markup Validation Service. Retrieved November 25, 2008, from
http://validator.w3.org/

Wild, Fridolin; Mödritscher, Felix, Sigurdarson, Steinn (2008). Designing for Change. In:
eLearning Papers 2008(9), http://www.elearningeuropa.info/files/media/media15972.pdf

Wild, Fridolin, Sigurdarson, Steinn (2008). Distributed Feed Network for Learning. In:
Upgrade IX(3), CEPIS/ATI.

Wild, Fridolin, Sporer, Thomas, Chrzaszcz, Agnieszka, Sigurdarson, Steinn E., Metscher,
Johannes (2008): Distributed e-Portfolios to Recognise Informal Learning. In: ED-
MEDIA 2008, Proceedings of the 20th World Conference on Educational Multimedia,
Hypermedia & Telecommunications, July, 2008
Wild, Fridolin (2008): lsa: Latent Semantic Analysis. R package version 0.61. Retrieved
November 24, 2008 from http://cran.r-project.org/web/packages/lsa

Wild, Fridolin, Sobernig, Stefan (2006): Interoperability Framework Draft for the
Distributed Open Virtual Learning Environment. Deliverable D3.1 of the iCamp Project,
iCamp Consortium, Retrieved on November 30, 2008 from http://www.icamp.eu/wp-
content/uploads/2007/05/d31___icamp___interoperability-framework-draft.pdf

Yahoo (2008a). Pipes: Rewire the web. Retrieved November 24, 2008, from
http://pipes.yahoo.com/pipes/

Yahoo (2008b). The Yahoo! User Interface Library (YUI). Retrieved November 24, 2008,
from Yahoo! Developer Network: http://developer.yahoo.com/yui/

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

41

Appendix 1: Consortium Resources

 English
o Chat protocols
o Texts from student portfolios
o Texts from WebCT discussion groups
o Corpora in the field of psychology
o WordNet
o Stop words

 Romanian
o Chat protocols
o Blogs
o Forum messages

 Dutch
o Corpus from computing domain (200.000 items)
o Cornetto lexical semantic database (40.000 items)
o Spoken Dutch corpus (10.000.000 words)
o D-Coi written Dutch corpus (500.000.000 words)
o Stop words

 Bulgarian
o Text archive (70.000.000 words)
o TreeBank syntactic description (15.000 sentences)
o Morphological lexicon (> 100.000 lemmas)
o Gazetteer (> 15.000 nouns: person, location, organisation, other)
o Bulgarian CLEF corpus
o LT4eL Bulgarian corpus and lexicon

 German
o Forum messages (> 100.000)
o WordNet alike
o Parsed Wikipedia version
o German learning objects in the field of computer science (linguistically

analysed)
o LT4eL lexicon
o Linguistically analysed reference corpus
o Stop words
o Collection of Essays and Human Scores

 French

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

42

o Adult French Corpus (13.000.000 words), composed of
 Children tales (3.300.000 words)
 Newspaper articles (5.000.000 words)
 Novels (5.000.000 words)

 Multi-language
o Ontology (computing sector) from LT4eL
o Term-concept lexicons in eight languages
o English and German learning objects of course material (approx. 15.000)
o Stemmer for many languages

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

43

Glossary

AIF ATLAS Interchange Format
AJAX Asynchronous JavaScript and XML
ANNIE A Nearly-New Information Extraction system
API Application Programming Interface
ASCII American Standard Code for Information Interchange
ATLAS Architecture and Tools for Linguistic Analysis Systems
CAS Common Analysis Structure
CMS Content Management System
CORBA Common Object Request Broker Architecture
CPE Collection Processing Engine
CPU Central Processing Unit
CRAN Comprehensive R Archive Network
CREOLE Collection of Reusable Objects for Language Engineering
CSS Cascading Style Sheets
CVS Concurrent Versioning System
DCOM Distributed Component Object Model
DHTML Dynamic HyperText Markup Language
DIMM Dual Inline Memory Module
GATE General Architecture for Text Engineering
GB Gigabyte
GHz Gigahertz
GNU GNU is Not Unix
GRDDL Gleaning Resource Descriptions from Dialects of Languages
GUI Graphical User Interface
GUK Gate Unicode Kit
HDD Hard Disk Drive
HTTP HyperText Transfer Protocol
IIS Internet Information Services
JAPE Java Annotation Patterns Engine
JAR Java Archive
JAX-WS Java API for XML - Web Services
JMX Java Management Extension
JSON JavaScript Object Notation
JSP Java Server Pages
KEA Keyphrase Extraction Algorithm
LISL Learner Interactions Scripting Language
LMS Learning Management System
LPGL Lesser General Public License
LSA Latent Semantic Analysis

D2.1 – Services Approach & Overview General
Tools and Resources

LTfLL -2008-212578

44

MSSQL Microsoft Structured Query Language
MUPPLE Mash-UP Personal Learning Environment
NLP Natural Language Processing
ODBC Open Database Connectivity
OpenACS Open Architecture Community System
PDF Portable Document Format
PEAR Processing Engine Archive
PHP PHP: Hypertext Preprocessor
PLE Personal Learning Environment
RAM Random Access Memory
RDBMS Relational Database Management System
REST Representational State Transfer
RFC Request For Comments
RPC Remote Procedure Call
RSS Really Simple Syndication
RTF Rich Text Format
SAML Security Assertion Markup Language
SAN Storage Area Network
SDK Software Development Kit
SGML Standard Generalised Markup Language
SNA Social Network Analysis
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
SVN Subversion
TAE Text Analysis Engine
TB Terabyte
TCL Tool Command Language
TCP/IP Transmission Control Protocol/Internet Protocol
TM TextMining
UIMA Unstructured Information Management Architecture
URI Uniform Resource Identifier
URL Uniform Resource Locator
UTF Unicode Transformation Format
VNS Vince Naming Service
WDDX Web Distributed Data eXchange
WS-BPEL Web Services - Business Process Execution Language
WSRP Web Services for Remote Portlets
XML eXtensible Markup Language
XSLT eXtensible Stylesheet Language Transformation
YAWL Yet Another Workflow Language

