-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by DSpace at Open Universiteit Nederland

Making Legacy LMS adaptable using Policy and Policy templates

Arne W. Koesling 1.2 Eelco Herder !, Juri L. De Coi !, Fabian Abel !
1.3S Research Center
2Hannover Medical School

Hanover, Germany
{koesling, herder, decoi, abel} @L.3S.de

Abstract

In this paper, we discuss how users and de-
signers of existing learning management systems
(LMSs) can make use of policies to enhance
adaptivity and adaptability. Many widespread
LMSs currently only use limited and proprietary
rule systems defining the system behaviour. Per-
sonalization of those systems is done based on
those rule systems allowing only for fairly re-
stricted adaptation rules. Policies allow for more
sophisticated and flexible adaptation rules, pro-
vided by multiple stakeholders and they can be
integrated into legacy systems. We present the
benefits and feasibility of our ongoing approach
of extending an existing LMS with policies. We
will use the LMS ILIAS as a hands-on example
to allow users to make use of system personaliza-
tion.

1 Introduction

Our working life is accompanied by the growing need for
lifelong learning. Web-based learning systems have since
long been deployed in universities and enterprises to help
closing the knowledge gaps of students and employees re-
spectively. Furthermore, they are used by people in their
leisure time. Therefore, lifelong learning is associated with
a large diversity in interests, knowledge, and backgrounds.

Conventional learning management systems (LMSs)
provide rich functionality, but lack adaptation features
[Hauger and Koeck, 2007] and therefore cannot cater all in-
dividual user needs. Such individual needs could be adap-
tive navigation or adaptive presentation of content for stu-
dents. Teachers might be interested in system adaptability
features, e.g. means to let the system notify the user on cer-
tain events, trigger actions on events or easier integration
of adaptation. Adaptive Educational Hypermedia Systems
(AEHSs) do offer adaptation for students, but they are often
prototypic systems that provide hand-tailored, application-
specific user and domain models and that are used only by
a small audience [Paramythis and Loidl-Reisinger, 2004].
By contrast, conventional LMSs are already used by a large
number of institutes and users. Therefore, it would be very
useful if one could integrate adaptation features into such
legacy learning management systems.

Policy languages, together with engines that interpret the
policies, can offer an easy-to-integrate solution for doing
so. Depending on the language used, policies can be ap-
plied for negotiations, for access control and explanations.
This provides means for making a system scrutable.

In this paper we describe our approach to extend an ex-
isting LMS — the ILIAS learning management system [IL-
IAS Website, 2008] — with adaptive features by means of
policies. We will show how policies can be used for creat-
ing flexible adaptation rules and for lowering the burden of
system administrators.

The paper is structured as follows. In the next section we
introduce a real-world scenario, which reveals the current
need for adaptation at the Hannover Medical School!. In
Section 3 we introduce the concept of policies and describe
our first application: utilization of policies for social nav-
igation support. The architecture, implementation, work-
flow, and furthermore a discussion of our approach are pre-
sented in Section 5. We end this paper with related work,
conclusions, and future work.

2 Real-World Scenario

The Hannover Medical School (MHH) makes use of a
learning management system, called ILIAS [ILIAS Web-
site, 20081, as a central repository provided for their medi-
cal students containing learning material for many courses.
Since eLearning has been integrated into the MHH curricu-
lum and the use of ILIAS is now mandatory, the activity
on the learning platform has significantly increased. There
are currently more than 1200 active users (activity within
two months before ascertainment). Most of the material
is intended to be used in a blended learning fashion, but
teachers also provide a lot of additional material for self-
study of the students. The structure of medical studies is
organized in school years. Therefore, the top categories in
ILIAS were organized according to the academic year of
the students. This structure allows for rudimentary adap-
tivity. For example, if a student is in her second year, she
can access ‘study year 2’ and ’study year 1’ (for reference
purposes), but all following study years are not accessible.

2.1 Disorientation and Information Overload

We learned from non-published usability oriented surveys
that the structure described previously is insufficient. Al-
though the learning material is organized in learning mod-
ule hierarchies and below this level even by topics, many
students complained about losing overview not knowing
which of the material is relevant for them. The vast amount
of learning material available led the students to get disori-
entation similar to lost in hyperspace [Edwards and Hard-
man, 1999]. To make things even worse, ILIAS currently
also offers only rudimentary features for users keeping
overview over their own learning history.

"http://www.mh-hannover.de

https://core.ac.uk/display/55534579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(01) execute(adapt LearningUnitColor (LU, blue)) «—

(02) current Requester(RequestingU ser),

(02) RequestingU ser.studyY ear : StudyY ear,

(03) in([VisitNumber],rdbms : query(”ILIAS 3947,

(04) "SELECT COUNT (%)” &

(05) "FROM lo_access” &

(06) "WHERE Im_id ="7& LU &7 &

(07) "AND usr_id IN (" &

(08) "SELECT usr_id FROM rbacua” &

(08) "INNER JOIN object_data ON (rol_id = obj_id)” &
(08) "WHERE type =' role’ AND title =" " & StudyYear & 7')”
(09)),

(10) VisitNumber >= 20.

(11) currentRequester(RequestingU ser) — type : provisional.

(12) currentRequester(RequestingUser) —

(13) ontology :< http : //www.L3S.de/policy Framework#current Requester > .

Figure 1: Example policy for color-coding a learning unit blue under certain conditions

Beside this, there are more issues that we identified by
surveys and discussions with all stakeholders of the ILIAS
system. For instance, medical studies are characterized by
their intensive and very continuous learning process. At the
MHH, summative assessments in all courses are performed
at very high frequency. Most of those assessments are per-
formed by all students of the same study year at the same
day. Even though the students do not carry out the assess-
ments directly in ILIAS, ILIAS provides practice material
for these formative tests. Therefore, a very high activity can
be expected on the learning platform some days before such
a summative assessment, especially in the night until the
morning (see [Koesling et al. (GMA), 2008]). Due to the
time pressure, the students’ problems in finding the desired
material are even impaired. They lose time in searching ap-
propriate material rather than working with it. For this rea-
son, teachers seek means to stimulate or enforce students
to spread their learning and training activities more evenly
in time.

2.2 Identified Issues

The demands of the stakeholders we identified mainly point
toward adaption and system personalization of the LMS.
This is not a specific problem of ILIAS. [Hauger and
Koeck, 2007] showed that widespread LMSs generally lack
adaptability and adaptivity features. There is an alterna-
tive, Adaptive Educational Hypermedia Systems (AEHS),
but those systems are not that widespread as LMS and do
focus on a very limited knowledge domain, which is usu-
ally hand-crafted. However, there are already approaches
to extend those systems with policies [Koesling et al. (AH),
2008] to overcome specific limitations.

In case of LMSs, we found that all issues identified are
too complex to be implemented each separately in an eco-
nomic way into the ILIAS source code. Similar to AEHSS,
ILIAS - like many LMSs — has internal, proprietary rule
systems. There is need for a generic solution that opens the
behaviour of the LMS for a more flexible control instance
than an internal and proprietary rule system. To implement
the required degree of flexibility, it is also not sufficient to
let only administrators adapt the behaviour. All stakehold-
ers of the system should be given means to adapt the LMS
to their needs.

We therefore analysed the ILIAS system and plan to ex-
tend this LMS with a system personalization functionality

that is flexible enough to enable each of the stakeholders
to adapt their learning environment by the use of so-called
policies. There are currently several policy languages avail-
able a detailed comparison is provided by [De Coi and
Olmedilla, 2008]. Following their conclusions, we choose
Protune [Bonatti and Olmedilla, 2005], as this policy lan-
guage seems currently the most mature one. The main fea-
tures of Protune are described in 3.

In order to enhance ILIAS with adaptive functionality
our solution furthermore has to access internal system func-
tions of ILIAS. Our architecture will use generic compo-
nents to encapsulate LMS-specific functionality, so that it
can easily applied to any other web-based LMS.

3 Policies

A policy is generally understood as a statement that de-
fines the behaviour of a system. Policies are intended to
guide decisions and actions. In today’s software systems,
policies are primarily used for solving security and privacy
concerns — such as controlling access to sensitive user data
— and to model business rules, for example: New customers
of an online shop have to pay in advance, while regular cos-
tumers may be allowed to pay after delivery. In the scope
of eLearning, similar policies would be possible.

3.1 Policy Example: Color-coding

Let us assume that the administrator of an LMS wants
to define a policy, that learning units that had at least 20
visits of other students of the same study year should be
blue-colored to indicate that it was deemed interesting by
other students. In the Protune policy language this may be
written as shown in Figure 1. Similar to logic programs
(cf. [Lloyd, 1987]), the predicate execute in line 1 holds, if
each statement in the lines 2-10 hold. The variable Visiz-
Number has to be greater or equal to 20 (cf. line 10). Visit-
Number is set by executing a SQL query, which returns the
number of students, who have accessed the learning unit
LU and are in the same StudyYear as the RequestingUser.
Lines 11-13 represent meta-rules defining additional state-
ments about the predicates used. Line 11 states the type
of the predicate, in particular it defines that the predicate
currentRequester is an action to be performed, which is
uniquely identified by means of the ontology provided in
line 13.

M Open Source elLearning

Logged in as John Doe

Logout

Personal D top AR rch Mai ystem Personalization
2 System Personalization
@ Personalize Template: Gofor-caded emphasis of learning items visited by other users
Flease choose your preferred walues and click on 'Generate Policies'
IF
other users of role Study vear1 v
visited v an item of type Learning Module ILIAS i+ in the ILIAS system
Learning Madule ILIAS
between 01 || 08 w| 20058 v Learning hModule SCORM 15 % || 08 % || 2008 *»
Exgrcise
THEN

color-code the item in three shares of the color
AND distribute the color-coding as follows

USE light shade for at least 5% v

USE medium shade for at least | 15% +

USE strong shade for at least |35% v

Generate Policies

Blue

of the selected user group
of the selected user group

of the selected user group

powered by ILIAS {v3.9.4 2008-05-09)

Figure 2: Personalization of User Template

Of course, there can be more sophisticated policies de-
fined, also allowing for various degrees of coloring, de-
pending on the amount of visits. The example in Figure
1 is intended to demonstrate that the policy can include
logic statements, known from programming languages like
Prolog, but also other elements, like SQL statements. It is
intended to give a flavor of the Protune policy language.

The general applicability of policies in open infrastruc-
tures for lifelong learning was examined by [De Coi et al.
(EC-TEL), 2007]. They gave an overview of both policy
languages and policy engines, which are used to evaluate
policies. The declarative nature of some policy languages
enables users to define what the system should do, and do
not require knowledge about how the system realizes it.
Policy engines like Protune [Bonatti and Olmedilla, 2005],
operate on a rule-based policy language, that has a declar-
ative nature. In general, policy engines also provide rea-
soning support. In addition, Protune offers the previously
mentioned explanations. This means, users have the possi-
bility to specifically ask the system, why a certain answer
was deduced or a decision was taken.

A remarkable feature of Protune policies is that they also
allow for integrating external or environmental information
into the decision making process. By performing nego-
tiations, the user can be asked for particular preferences,
credentials, etc. Furthermore, integration of policies into
existing systems can be easy. The Protune policy engine
is in further development to be called in a service-oriented
manner.

3.2 The Need for Policy Templates

Policies can provide learners and teachers with a very flex-
ible means to personalize the system to their needs. How-
ever, our observations show, that policies are still complex
to be set up freely by the regular user. Looking at the exam-
ple policy in section 3, it is unlikely that a regular user will
be able to define a sophisticated policy. On the contrary,

administrators can be expected to have the skills to set up
policies as complex as needed and are also aware of specific
actions and events that can be used in the policies within the
LMS. It is therefore desirable to let administrators define
templates for policies for regular users. Those templates
(possibly wrapped by user-friendly interfaces) can recom-
mend available options for the students and restrict them in
their choices. This proceeding makes the creation of own
policies easier, since the process is mainly a personaliza-
tion. The use of policy templates does not only make the
creation of policies easier for users, the restriction also al-
lows the administrator to limit the events and actions that
the user can use within her own policies to adapt the sys-
tem. Policy templates can thus be compared to email filter
rules or personal firewalls.

4 Use Case: Social Navigation Support

We designed an architecture to enable the flexible use of
policies within a learning management system, which is
described in the following sections. To demonstrate the
usefulness of this architecture, we created policies and tem-
plates for a particular, simple use case. As described in Sec-
tion 2, the students using ILIAS asked for a functionality
to emphasize learning units that were visited by other stu-
dents, leading them to relevant material. Such a social nav-
igation support has already been explored in many systems
like, e.g. Knowledge Sea II (see [Farzan and Brusilovsky,
2005]). However, we only aware of systems, that imple-
ment this functionality as fixed component. We are not
aware of any system that allows the addition of such be-
haviour afterwards on a flexible base.

In our use case, the students will be enabled to use pre-
built policy templates (see Section 3.2), which are decou-
pled from the core system. Those policies enable the stu-
dents to color-code learning units in three shades of an
arbitrary color, according to some selectable preferences.
Hence, they personalize the policies according to their

needs. A student may choose to count only visits from stu-
dents from specific groups or roles, e.g. students of her own
study year (see Figure 1). He can choose the amount of vis-
its needed to instruct the system to use a specific shade of
a user-defined color or leave the coloring based on aver-
age visiting numbers computed within the policy. He may
also choose to limit the color-coding to visits that happened
in a certain period of time. Another choice is the option
not to count visits, but annotations that other students left
in learning units. Figure 2) demonstrates these user op-
tions in a form-based web interface. However, user input
could also be collected, e.g. by more guided wizard di-
alogs. In [Farzan and Brusilovsky, 2005], annotations were
recognized as being even more significant than visits. How-
ever, the students in the ILIAS of the MHH make rarely use
of annotations. The system could thus recommend certain
values to the user, making the selection process very easy
and fast.

However, because the students will visit new learning
units without any coloring support, the system has to deal
with a cold start problem. The first students may browse or
visit less important learning units first, resulting in wrong
color-coding in the end. In the initial implementation of
our system we solve this problem by enabling teachers to
use policies in order to pre-indicate some relevant learning
units, based on estimations of their relevance.

S Implementation

In this section we explain the general architecture of our
implementation, that consists of several elements (see also
Figure 3). The policy engine as interpreter of the policies is
the core element. According to [Westerinen et al., 1999]),
this element is the Policy Decision Point (PDP). Since Pro-
tune is currently realized in Java while ILIAS is based on
PHP, there are several ways to access Protune from ILIAS.
We decided for requests based on web services because this
results in well-defined interfaces and enables us to benefit
from the advantages of service-oriented architectures, like
easy replaceability. The PDP has access to a Policy Infor-
mation Base (PIB), containing all policies defined by the
stakeholders. As we found in 5.2, there is a also need for
Policy Authoring Points (PAP) for different kind of stake-
holders, presenting different web interfaces. While the ad-
ministrator has access to direct editing of a policy, other
stakeholders do get a specific interface for personalizing
policies. In order to store the template defined by the ad-
ministrator, we also need a template repository.

To extend ILIAS by a sophisticated rule system, like the
Protune policy engine, the implementation needs to execute
system functions of ILIAS on system level, to set system
or object properties and to enforce PDP decisions: the Pol-
icy Enforcement Point (PEP). The PDP furthermore needs
to request a variety of system properties to be included as
triggering conditions for the stakeholders’ policies within
the policy engine. The PEP will be integrated in a wrap-
per, which is specific to the LMS used within the concrete
implementation. The realizaton of the wrapper also deter-
mines all conditions and actions that can be used within the
policies. In contrast to the wrapper, all other components of
the architecture are generic and are applicable for arbitrary
LMS.

5.1 Workflow

The workflow of this architecture has to be initiated from
certain positions within the LMS. In detail, there have to

be several control points within the control structure of IL-
IAS. If such a point is reached, a call to the policy engine
is initiated. In case of our approach, the policy engine re-
turns additional commands that have to be executed within
the LMS or properties that have to be changed. The control
points need to be placed before or during certain activities
that are executed in the LMS. Those activities can be di-
rectly initiated by the system, e.g. generation of webpages,
or initiated by the user, e.g. the start or downloading of
learning units. Pointcuts known from aspect oriented pro-
gramming (AOP) are a possibility to implement such con-
trol points without touching the original code of ILIAS.
There is also a need to initiate policy engine calls on
events occuring in the LMS not directly initiated by the user
being affected, like e.g. the login of a user or the receive
of a chat message. The amount and integration locations of
those points within the control structure of the LMS deter-
mine the spectrum of design freedom that is available with
policies afterwards. Policies can only react on events and
initiate actions that are enabled by the wrapper within the
LMS. Those events and action are LMS-specific. For our
use case, a call during the webpage generation is sufficient.

5.2 Discussion

The policy code of Section 3 contains an important draw-
back. In this case, the system would have to ask the
PDP specifically whether a certain learning unit has to be
colored in blue. Policies were developed in the research
field of trust management to determine access rights on
objects or services and return boolean values indicating
those rights or returning a list of items, for which access
is granted. Policies were not intended to extend the flexi-
bility of an LMS. If the policies are formulated as above,
the system needs either to anticipate the kind of adaptation
of the user or to check for each possible adaptation, during
the webpage generation. The first option would require pre-
evaluation of policies. [De Coi et al (PEAS), 2007] presents
an approach to pre-evaluate polices, but only regarding to
deduction of access rights. Since we have to decide on ac-
tions and not access rights, pre-evaluation may not be fea-
sible for our approach. The second option, to check for
each possible adaptation, will fail mainly because of per-
formance issues.

In evaluations [De Coi et al. (EC-TEL), 2007] it was
found that one call to the policy engine using the TuPro-
log logic interpreter currently takes approx. 200 millisec-
onds. If called several times in a row, this duration is pretty
long for web-based applications, enforcing economical use
of those calls. Therefore, we developed the approach to
insert calls to the policy engine only at the control points
presented in Section 5.1 and those policy engine calls re-
turn actions and parameters to be executed. Those actions
are afterwards performed within the LMS. Because we also
used an old, non-optimized version of the Prolog policy
engine we do also expect a high increase in performance
when switching to the newest version.

6 Related Work

General learning management systems like Moodle, Sakai,
or ILIAS have very simple rule systems. Those systems
offer no or rudimentary adaptivity features. However, there
are already attempts to enhance generic LMS like Moodle
with adaptive functionality (see [Tiarnaigh, 2005]).
Policies based on the Ponder policy language are ex-
plored in [Yang et al., 2002] within collaborative eLearning

ILIAS Learning Management System

Wrapper
(Policy Enforcement Paint)
Puolicy Execution
Palicy Information Gatering

Policy Authoring
Point
(Administrators)

Policy Authoring
Point (other
Stakeholders)

called by
Webservice

Policy Decision Point
(Policy Engine)
uses

creates
policies

Policy Information Base

creates

lci personalizes
policies

policies

Template Base

based on policies
personalized again into policies

Figure 3: General architecture for ILIAS rule system extension

systems, but this work only focusses on security and pri-
vacy aspects, not on extending the adaptivity of eLearning
systems. Another work that is very close to our approach
is the SeLeNe project [SeLeNe Project Website, 2004] run-
ning until 2004. SeLeNe developed a so-called reactivity
feature comprising a change detection mechanism based on
ECA rules. However, conditions were based on RDF query
languages only and actions were limited to notifications.
Using a policy language like Protune allows for arbitrary
conditions and actions.

The general idea of integrating sophisticated policies
into eLearning environments, as we intend it in this paper,
is discussed in [De Coi et al. (EC-TEL), 2007]. However,
the idea of enhancing legacy learning management systems
was only explored on a general level and without address-
ing the policy creation problem for different stakeholders.
We are not aware of any other advanced research on policy-
based behaviour control in technology-enhanced learning
environments.

The idea of providing policy templates is not new, but
there are currently no sophisticated policy template editors
available, allowing for definition of policies, based on logic
rules. We are furthermore not aware of any similar work
enabling learners to adapt learning environments by pre-
defined sophisticated policy templates outside the focus on
security or privacy.

7 Conclusions and Future Work

In this paper we presented an approach to use policies for
extending existing general-purpose learning management
systems with adaptive features. By means of rules that can
be developed by administrators, teachers, and learners, all
stakeholders can adapt the system to their needs and re-
quirements, which can be created from policy templates.
Therefore, we presented a generic architecture and we will
demonstrate the practicability of our approach by extending
the ILIAS system with adaptable social navigation tech-
niques.

We are currently researching and developing tools for
many of the open issues we pointed out in this paper. For
example, we are enhancing the ILIAS extension and are

working on an editor that allows administrators to define
policies templates for users.

An important aspect of our work is that it takes place
in a ’real life’ situation. This creates the opportunity to
test and further refine the adaptive features and the way
they can be configured and manipulated, based on usage
statistics and feedback from a large pool of users. Adaptive
and adaptable functionality is specifically demanded by the
stakeholders and not imposed as an interesting technique
that might be useful. In this paper we demonstrated, how
Policies can be used for system personalization, but Poli-
cies can be means to make also more sophisticated adaptive
functionality in legacy systems possible.

We are currently implementing our approach for a visual
adaptation: We will further need to investigate in detail,
how it fits with content-related adaptations and the exact
limitations of policies within the eLearning context.

Acknowledgments

We would like to thank Daniel Olmedilla, Daniel Krause
and Philipp Kérger for contributing with suggestions and
remarks. The work reported in this paper is partially
funded by the European Commission in the TENCompe-
tence project (IST-2004-02787).

References

[Bonatti and Olmedilla, 2005] Piero A. Bonatti and Daniel
Olmedilla. Driving and monitoring provisional trust ne-
gotiation with metapolicies. In In 6th IEEE Policies for
Distributed Systems and Networks, IEEE Computer So-
ciety, (June 2005).

[De Coi et al (PEAS), 2007] Juri L. De Coi, Ekaterini
Toannou, Arne W. Koesling, and Daniel Olmedilla. Ac-
cess Control for Sharing Semantic Data across Desk-
tops. In Ist International Workshop on Privacy En-
forcement and Accountability with Semantics, (Novem-
ber 2007)

[De Coi et al. (EC-TEL), 2007] Juri L. De Coi, Philipp
Kaerger, Arne W. Koesling, and Daniel Olmedilla. Ex-
ploiting Policies in an Open Infrastructure for Lifelong

Learning. In 2nd European Conference on Technology
Enhanced Learning, volume 4753 of Lecture Notes in
Computer Science, pp. 26—40, Crete, Greece (2007)

[De Coi and Olmedilla, 2008] Juri L. De Coi, Daniel
Olmedilla. A Review of Trust Management, Security
and Privacy Policy Languages. In 3rd International
Conference on Security and Cryptography, Porto, Por-
tugal (2008)

[Edwards and Hardman, 1999] D. M. Edwards and L.
Hardman. Lost in Hyperspace: Cognitive Mapping and
Navigation in a Hypertext Environment. In Hypertext:
theory into practice, pp. 90-105, Exeter, UK (1999).

[Farzan and Brusilovsky, 2005] Rosta Farzan and Peter
Brusilovsky. Social Navigation Support Through
Annotation-Based Group Modeling. In Proceedings
of 10th International Conference on User Modeling,
(2005).

[Hauger and Koeck, 2007] D. Hauger and M. Koeck. State
of the Art of Adaptivity in E-Learning Platforms. In
ABIS 2007 - 15th Workshop on Adaptivity and User
Modeling in Interactive System, pp. 355-360, Halle,
Germany (2007).

[ILIAS Website, 2008] The ILIAS Learning Management
System http://www.ilias.de (Link visited 27.06.2008)

[Koesling et al. (AH), 2008] Arne W. Koesling and Eelco
Herder and Daniel Krause. Flexible Adaptivity in AEHS
Using Policies In Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems, (2008).

[Koesling et al. (GMA), 2008] Arne W. Koesling, Gustav
Meyer, Joern Krueckeberg, and Herbert K. Matthies. IL-
IAS im Rahmen des Modellstudiengangs HannibalL am
Beispiel von Lerninhalten aus dem Chemischen Prak-
tikum. Jahrestagung der Gesellschaft fuer Medizinische
Ausbildung, (2007).

[Lloyd, 1987] John W. Lloyd. Foundations of Logic Pro-
gramming, 2nd Edition. Springer, (1987)

[Paramythis and Loidl-Reisinger, 2004] A. Paramythis
and S. Loidl-Reisinger. Adaptive Learning Environ-
ments and e-Learning Standards. In Electronic Journal
of e-Learning, 2 (2), 2004, Paper 11, (2004).

[SeLeNe Project Website, 2004] The Self eLearning Net-
works Project http://www.dcs.bbk.ac.uk/selene (Link
visited 27.06.2008)

[Tiarnaigh, 2005] M. Tiarnaigh. Adaptive Moodle. An
Integration of Moodle (Modular Object Oriented Dy-
namic Learning Environment) with an AHS. Final Year
Project, University of Dublin, (May 2005).

[Westerinen et al., 1999] A. Westerinen, J. Schnizlein, J.
Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh,
M. Carlson, and J. Perry, S. Waldbusser. Terminology
for Policy-Based Management Request for Comments:
3198, (November 2001)

[Yang et al., 2002] Yang, Lin and Lin. Policy-based pri-
vacy and security management for collaborative e-
education systems. Sth TASTED Multi-Conference
Computers and Advanced Technology in Education,
Cancun, Mexico, (2002).

