
Integrating IMS Learning Design and IMS Question and Test
Interoperability using CopperCore Service Integration

Hubert Vogten, Harrie Martens, Rob Nadolski, Colin Tattersall,

Peter van Rosmalen, Rob Koper.

Open University of the Netherlands, Valkenburgerweg 177
6419 AT Heerlen

{hubert.vogten, harrie.martens, rob.nadolski, colin.tattersall, rob.koper,
 peter.vanrosmalen}@ou.nl

Abstract

Abstract. This article describes a framework for the

integration of e-learning services. There is a need for
this type of integration in general, but the presented
solution was a direct result of work done on the IMS
Learning Design specification (LD). This specification
relies heavily on other specifications and ser-vices.
The presented architecture is described using the
example of two of such services: CopperCore, an LD
service and APIS, an IMS Question and Test In-
teroperability service. One of the design goals of the
architecture was to minimize the intrusion for both the
services as well as any legacy client that already uses
these services.

1. Introduction

This article describes the design and implementation of
a generic integrative service framework, called
CopperCore Service Integration (CCSI) [1], for the
IMS Learning Design specification (LD) [2]. This work
was done as part of the JISC ELF [3] [4] toolkit strand
project called SLeD2 [5] as a joint effort of both the
Open University and the Open University of the
Netherlands. The project extended earlier work which
involved building an LD runtime service and a
corresponding web based client application called
SLeD.
The LD runtime service, called CopperCore [6-8],
processes units of learning (UOLs) which are IMS
content packages containing a learning design defined
in LD. CopperCore does not make any assumptions
about the type of user interface used by the calling
party. This allows CopperCore to be integrated in web
clients as well as rich client platform applications. In

fact, CopperCore does not provide any user interface at
all, and all methods are only available through an
Application Programming Interface (API). Therefore
CopperCore cannot be used as a standalone product
and must be used as a service integrated into a larger
framework or Learning Management System (LMS).
CopperCore relies on the provisioning of other services
by this framework or LMS for parts of the LD
processing.
Some of the services on which CopperCore relies are
generic and may be used by other services as well.
Examples of such common services are authorization
and authentication. Although technically challenging,
these types of services are not the focus of our work as
they apply to all service oriented architectures.
However, there are a number of e-learning oriented
services that are tightly integrated with the LD
specification that provide our focus. Typically, these
can be found in the service section of the LD
environment. Note the LD term service refers to the
functional concept of a learning service supporting a
user in the learning process. The LD term service does
not refer to the technical notion of a service as in the
term web service although the technical
implementation of a LD service could well be achieved
by a web service. The LD specification includes a
number of services such as a mail service, synchronous
and asynchronous conferencing service and an index
and search service. LD also allows additional services
to be specified when needed.
Furthermore LD specifies how other IMS
specifications should be integrated. Examples of such
specifications are the IMS Question and Test
Interoperability specification (QTI) [9] and the IMS
Simple Sequencing specification. Although these
specifications are quite clear on the authoring aspects
of their integration, they are not particularly clear on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Open Universiteit Nederland

https://core.ac.uk/display/55533732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:@ou.nl

their runtime aspects. An example is the integration of
QTI items in the unit of learning. During runtime there
must be a means of reacting to outcomes of QTI
assessment items within the learning design workflow.
These implications are not well understood. The CCSI
framework provides an extensible solution for the tight
integration of loosely coupled services. The cross
service concerns in particular are targeted by CCSI,
alleviating the calling process from the burden of
dealing with these concerns. In the remainder of this
article the CCSI framework will be further elaborated
by focusing on the integration of the CopperCore
service and a QTI service which is called Assessment
Provision through Interoperable Segments (APIS) [10].
APIS is an implementation of a computer aided
assessment service conforming to QTI and is also
funded under the JISC ELF toolkit strand.

2. Integrating IMS Learning Design and
QTIv2

With the release of the second version of QTI
guidelines for the integration of LD and QTI were
described [11]. The integration of LD and QTI
revolves around aligning LD properties and QTI
variable names. Essentially, when property identifiers
and variable names are declared to be lexically
identical at design time (i.e. in LD-based and QTI-
based XML), they are considered to be a shared
variable in run-time software environments that
involve LD and QTI-based processing.
One implementation strategy for the guidelines above
could be to build an integrated system combining the
functionality of both the CopperCore and APIS service.
However, given the considerable efforts that have been
invested in the CopperCore and APIS services, this
may not be an economically viable solution. Another
approach would be an adaptation of both CopperCore
and APIS allowing them to directly communicate with
each other. This approach has two major drawbacks.
First of all this introduces undesired dependencies
between services. Secondly, this solution is not scalable
as each new service being integrated requires an ever
growing integration effort required to support
communication with all the others. In the next section
the architecture for CCSI is described that has none of
the above drawbacks, together with a number of
benefits.

3. CopperCore Service Integration
Architecture

In order to make the service integration viable it is
essential that the underpinning architecture is not
intrusive, meaning adaptation to this architecture
should only require minimal changes in the code of the
existing services, like CopperCore and APIS and the
existing clients using these services. Service and client
implementers are unlikely to make it a priority to adapt
their code solely for CCSI.
By the introduction of an intermediate service layer
composed of a dispatcher and adapters we can meet the
above requirements. Each adapter is a software
component encapsulating a single service
implementation. The dispatcher is the central
component, responsible for the orchestration between
these services. To make this orchestration possible, all
adapters share a common API providing the dispatcher
a standard interface to all integrated services. Each
adapter implements specific code to access the
underlying service by implementing this common
interface. This way the required code adaptations
needed for the service integration are now encapsulated
in the adapters, leaving the services untouched.
For each type of service (LD services, QTI services or
conferencing services) multiple implementations may
exist. In order to make these service implementations
interchangeable a contract between the client and the
adapter is introduced for each service type in the form
of an interface. This interface describes the common
functionality for these service types. Adapters are
allowed to extend this functionality by exposing the
complete API of the underlying service
implementations. Not only does this provide a richer
system, it also makes the adapter transparent for any
client using the original service. However, clients that
make use of the extended functionality will need to be
modified when another service implementation is used
that does not provide this functionality.
Each interface is accompanied by an abstract adapter.
Each abstract adapter implements the default hooks for
the dispatcher. This alleviates the implementers of
specific adapters from re-implementing these hooks
over and over again.

Adapter

LDAdapter QTIAdapter

Dispatcher

«Interface»
ICopperCoreAdapter

«Interface»
IDispatcher

«Interface»
IAPISAdapter

CopperCoreAdapter

CopperCoreService APISService

«Interface»
IAPISService

«Interface»
IQTIAdapter

«Interface»
ILDAdapter

«Interface»
ICopperCoreService

APIS Adapter

1

*

Fig. 1. CopperCore Service Integration architecture

Fig. 1 depicts the CCSI architecture. The Dispatchers
most important role is the propagation of events
through all defined adapters. It is the responsibility of
the adapters to listen for these events. Vice versa, it is
the responsibility of each adapter to trigger the
Dispatcher when an event occurs that has potential
cross service repercussions.
The Dispatcher is also responsible for returning an
adapter of the requested type to the client, thereby
acting as an adapter factory. This adapter factory is
necessary because the types and implementation of the
adapters are not known in advance, and may vary even
during deployment by simply adding or replacing
adapters. Adapters can come in two flavors depending
on the way the client wishes to access the adapter. This
can be done either via native Java calls or via SOAP
web services. For a native Java call the dispatcher
returns an instance of a Java class. For a web services it
returns a URL to the WSDL of the requested adapter.
All adapters are declared in the CCSI service definition
file. This file contains information about the base
service type, the implementing Java class and WSDL
URL.
Furthermore Fig. 1 depicts two adapter types; an
adapter for the LD service and an adapter for the QTI
service. Note that there could have been additional
adapters for other services as well. The common
interfaces for these service types are defined by the
interfaces ILDAdapter and IQTIAdapter. Each adapter
must implement the interface for its base type. The
figure also shows two abstract classes LDAdapter and
QTIAdapter that are abstract classes implementing the
hooks for the Dispatcher. They are the extension points
for any adapter acting as façade for either an LD or
QTI service implementation. Both the

CopperCoreAdapter and the APISAdapter provide an
interface that can be used by client applications. This
interface is a replication of the original interface
provided by the service that is being integrated, hence
the dependency relationship between
ICopperCoreAdapter and ICopperCoreService and
between IAPISAdapter and IAPISService. By
maintaining this relationship between the interfaces the
impact for existing clients migrating to CCSI is limited
to a minimum. Vice versa, when a service
implementation is modified the impact is limited to the
adapter acting as the façade for this service.

: Client
: ICopperCoreAdapter : ICopperCoreService : IAPISAdapter : IAPISService

: Dispatcher

getContent()

IMS QTI item

create()

Dispatcher

getLDAdapter()

CopperCoreAdapter

create()

CopperCoreAdapter

getQTIAdapter()

ApisAdapter

create()

ApisAdapter

getContent()

QTIItem

response()

Response

propertyEvent()

handleEvent()
setProperty()

getContent()

response()

handleEvent()

Fig. 2. Sequence diagram showing the processing of a QTI
item and the resulting event handling by the dispatcher.

Fig. 2 depicts a sequence diagram representing the
processing of a QTI item within the context of a UOL
run. The client (e.g. SLeD) creates a new instance of
the Dispatcher. The Dispatcher reads the CCSI service
definition file and is informed about all available
adapters. In the case of the example we only have the
CopperCoreAdapter and the APISAdapter. Next, the
client will request a handle for an LDAdapter.
Depending on the technology used, an instance of the
CopperCore adapter or a URL to the WSDL of the
CopperCore adapter is returned. The Dispatcher
provides the client with an identical API in the
CopperCoreAdapter compared to the original
CopperCore service. So legacy clients, like SLeD, only
have to be modified . At some stage in the process the
client retrieves QTI content and reacts by requesting
the Dispatcher to provide a handle to a QTI adapter. In
our example the handle for the APIS adapter is
returned. The client makes a request for the rendered
content of the QTI item to the APIS adapter. The user
response to this item is passed on to the APIS adapter.
The APIS adapter processes this response, which

results in a change of one of the variables defined by
the QTI item’s response section. It is the responsibility
of the QTIAdapter to notify the Dispatcher about this
property event. In turn the Dispatcher will propagate
this event to all defined adapters that have registered as
listeners to this particular type of event giving them a
change to react to this event.
In order to synchronize the value of the QTI outcome
variable, a corresponding LD property needs to be
defined in the UOL. The CopperCoreAdapter will
verify if this property exists and if so the value of the
LD property will be set to the value of the QTI
outcome. After all adapters have been informed about
the property event, the result of the APIS adapter is
finally returned to the client.

4. Integration of other Services

CCSI was developed with the integration of different
kind of services in mind, especially those defined in the
service section of LD although other types of services
are conceivable too. In fact, in SLeD2 a number of
adapters for these services were developed such as a
search adapter and a conference adapter. The principle
of integration is exactly the same as was done for the
QTI adapter. However the type of events that are
dispatched may differ. For example, for the conference
adapter it is relevant to be informed about new runs
[12] being created for a UOL. A run is a runtime
instantiation of a UOL and involves the enrollment of
individual users to the defined roles in the UOL.
Similarly, it is relevant for the conference adapter to be
informed about user subscriptions and role changes
within the run of a UOL. The events are generated by
the CopperCore adapter and can be picked up by a
conference adapter.
Although the design of CCSI started from a need to
establish a close integration of learning services in
CopperCore, the resulting architecture in fact
supersedes this requirement by offering an approach
that allows the integration of all kinds of services even
if they are not directly LD related.

5. Related Work

In the field of learning service integration some
interesting related work has emerged. The IMS Tools
Interoperability Guidelines (TIG) [13] is worth
mentioning here. TIG deals with the interoperability of
tools and LMS and is a first attempt to any
standardization in this area. It shows some resemblance
to the solution presented in this paper although there is

a significant difference. The focus of SIG is mainly on
technical aspects of the integration and less on the
functional integration of the different services. TIG will
not deal with any functional inter service dependencies,
like the orchestration of property values between
services, as shown in our example.
Another interesting, closely related development is the
Business Process Execution Language (BPEL) [14] for
Web Services. BPEL primary focus is the orchestration
of SOAP web services. All logic for this orchestration
is declared in an XML file which is interpreted by a
BPEL engine. Recently tools for BPEL, like engines
and editors have become widely available, which was
not the case when work on CCSI started. Although
BPEL holds some promising advantages over the
presented approach, it is doubtful if the extra overhead
introduced by the use of BPEL can be justified for the
rather light weight integration of the services presented
so far. Especially in cases where services are not SOAP
compliant the presented approach could have
significant advantages.

6. Conclusion

Interoperability specifications like LD and QTI are
having an ever growing impact on the e-learning
community. As a result the number of implementations
is steadily growing; initiatives such as the JISC ELF
have demonstrated this via the delivery of several
services dealing with these specifications (e.g. APIS
and CopperCore). However at the same time, runtime
inter-specification operability issues are not yet
understood. In this article, an approach was presented
that deals with the interoperability of e-learning
services within the context of LD. As the basis for the
presented solution two service implementations were
chosen; CopperCore and APIS. The need for
integrating these two components can be explained by
the fact that QTI is a natural complement to LD.
Furthermore, LD relies heavily on its e-learning
services, which demand a similar integration.
Both CopperCore and APIS were independently
developed as part of the JISC ELF and both are already
being used by legacy systems. The latter introduced an
additional requirement as the identified solution must
deal with legacy systems for both services as well as
clients. The switch to a new architecture should cause
minimal intrusions in any existing code. Furthermore,
the provided solution should be robust for new
developments as the integrated services have their own
development dynamics.
The CCSI architecture deals with these requirements by
seamlessly inserting itself between the service and

client. By replicating the original API the consequences
for the client are limited to a switch of services factory.
The underlying services do not have to be changed at
all. All inter-service issues are dealt with in the adapter
and dispatcher. We have seen that there is an adapter
for each service type and that an adapter has a contract
enforced by an interface per service type. The latter
concept makes the adapter robust for changes in the
services; it makes it possible to completely switch
service implementations with minimal consequences.
Finally, as highlighted above the CCSI architecture is
not limited to the integration of CopperCore and APIS.
Other services such as defined in the LD services part
can and in fact have already been integrated in a very
similar manner although the types of events are
different. The work on CCSI will be taken up by the
recently launched European Commission funded TEN-
Competence [15] programme.
All code for CCSI is available as open source and may
be downloaded from SourceForge at
http://sf.net/projects/ccsi. For an easy up and running
example of CCSI the CopperCore Runtime
Environment, also known as CCRT, can be
downloaded from http://coppercore.org. This runtime
contains deployable versions of the CopperCore
service, the APIS service and the CCSI integrative
service. Additionally, the SLeD2 player downloaded
from http://sourceforge.net/projects/ldplayer. Finally,
the example UOL can be downloaded from
http://dspace.ou.nl/handle/1820/555.

References

1 Vogten, H., & Martens, H. (2006). CopperCore
Service Integration. Retrieved from Website of the
CopperCore Service Integration framework:
http://sf.net/projects/ccsi

2 IMS. (2003, January 20). IMS Learning Design
Information Model. Version 1.0 Final
Specification. Retrieved June 10, 2003, from
http://www.imsglobal.org/learningdesign/ldv1p0/i
msld_infov1p0.html

3 Wilson, S., Blinco, K., & Rehak, D. (2004,
January 7). Service-Oriented Frameworks:
Modelling the infrastructure for the next
generation of e-Learning Systems. Retrieved
http://www.jisc.ac.uk/uploaded_documents/Altilab
ServiceOrientedFrameworks.pdf

4 JISC E-Learning Framework: Technical
Framework and Tools Strand (2006). Retrieved
from Website of the JISC E-Learning Framework,
technical framework and tools strand:

http://www.jisc.ac.uk/index.cfm?name=elearning_f
ramework

5 Service Based Learning Design System (2004).
Retrieved January 10, 2004, from Website of the
Service Based Learning Design System project:
http://sled.open.ac.uk

6 Martens, H., Vogten, H., Rosmalen, P. v., &
Koper, E. J. R. (2004). CopperCore. Retrieved
January 14, 2005, from SourceForge:
http://coppercore.org

7 Vogten, H., Tattersall, C., Koper, E. J. R.,
Rosmalen, P. v., Brouns, F., Bruggen, J. v., et al.
(2006, in press). Designing a learning design
engine as a collection of finite state machines.
International Journal on E-Learning,

8 Martens, H., & Vogten, H. (2005). A Reference
Implementation of a Learning Design Engine. In E.
J. R. Koper & C. Tattersall (Eds.) . Learning
Design: A Handbook on Modelling and Delivering
Networked Education and Training (pp. 91-108)
(chap. 4).Springer Verlag.

9 IMS (2006). IMS Question and Test
Interoperability. Retrieved from Website of IMS
Global Learning Consortium:
http://www.imsglobal.org/question/index.html

10 Barr, N. (2006). Assessment Provision through
Interoperable Segments. Retrieved from The
website of the APIS project:
http://sourceforge.net/projects/apis/

11 IMS. (2006). IMS Question and Test
Interoperability Integration Guide . Retrieved
http://www.imsglobal.org/question/qti_v2p0/imsqti
_intgv2p0.html

12 Tattersall, C., Vogten, H., Brouns, F., Koper, E. J.
R., Rosmalen, P. v., Sloep, P. B., et al. (2005).
How to create flexible runtime delivery of distance
learning courses. Educational Technology &
Society,

13 IMS. (2006). IMS Tools Interoperability
Guidelines. Retrieved
http://www.imsglobal.org/ti/index.html

14 IBM, BEA Systems, Microsoft, SAP AG, & Siebel
Systems (2006). Business Process Execution
Language for Web Services. Retrieved from
Website of IBM: http://www-
128.ibm.com/developerworks/library/specification
/ws-bpel/

15 TENCompetence (2006). Retrieved from The
website of TENCompetence:
http://www.tencompetence.org

http://sf.net/projects/ccsi
http://coppercore.org
http://sourceforge.net/projects/ldplayer
http://dspace.ou.nl/handle/1820/555
http://sf.net/projects/ccsi
http://www.imsglobal.org/learningdesign/ldv1p0/i
http://www.jisc.ac.uk/uploaded_documents/Altilab
http://www.jisc.ac.uk/index.cfm?name=elearning_f
http://sled.open.ac.uk
http://coppercore.org
http://www.imsglobal.org/question/index.html
http://sourceforge.net/projects/apis/
http://www.imsglobal.org/question/qti_v2p0/imsqti
http://www.imsglobal.org/ti/index.html
http://www.tencompetence.org

